
STOCHASTIC PROCESSES WITH AN INTEGRAL-
VALUED PARAMETER*

BY

J. L. DOOB

The purpose of this paper is to set up the measure relations of the most

general stochastic process and to discuss the properties of the conditional

probability functions of the processes depending on a parameter running

through integral values. In particular, the study of temporally homogeneous

processes of this type is shown to be essentially the study of measure pre-

serving transformations. The well known results in the latter field are applied

to develop and extend the theory of Markoff processes from a new point of

view.

Throughout the paper, any non-negative completely additive function of

point sets, denned on a Borel field of setsf of some abstract space ß will be

called a probability measure if the space ß is itself in the field of definition

and if the set function is defined as 1 on ß.

1. Probability measures defined on spaces of infinitely many dimensions.

Let fio (X) be any abstract space, consisting of elements w0 (x), and let

Fo,0 (Fx) be a Borel field of subsets of ß0(X). We shall suppose that ß0 e Fa„,

and X e Fx. If/(w0) is a function defined on ß0 which takes on values in X,

and if the ß0-set defined by the condition /(w0) e E is in FUo for every set E of

Fx, then the function/(w0) will be called measurable on ß0. Let {/„(wo)} be

any sequence of such measurable functions, where the subscript « ranges

through any aggregate zA, not necessarily denumerable. If a probability

measurePo(A0) is defined on the sets A0 of FUo, the measurable function/n(w0),

considered from the standpoint of probability, is a chance variable xn. The

following method of analyzing the mutual relations of such a set of chance

variables has been used, more or less explicitly, in recent years. J Consider

the space ß whose points are the aggregates oj: {xn}, « e zA, xn e X.§ If n runs

through all real numbers /, ß consists of all functions of the real variable t,

* Presented to the Society, April 9, 1937; received by the editors July 26, 1937.

f A field of sets is a collection of sets E containing, with E, and Et, their sum E,-\-E% and differ-

ence E\—E, ■ Ei. A Borel field of sets is a field which contains with Ex, Ei, • • • their sumj^, E¡.

% Cf. Doob (I); Hopf (I); Khintchine (I); Kolmogoroff (II, pp. 24-30); Levy (I and numerous

papers) ; Lomnicki and Ulam (I) ; Paley and Wiener (I, chaps. 9 and 10, and earlier papers by Wiener).

The Roman numerals refer to the bibliography at the end of the paper.

§ Each subscript n determines a coordinate x„, and the space Ü is thus a Cartesian space with

a dimension corresponding to each element of <¡A.
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with range in X; if zA is the set of natural numbers, ß is the space of all se-

quences (xi, x2, ■ ■ ■ ), x„ e X; if zA is the set of all integers ■ • -, — 1, 0, 1,

• • • , ß is the space of all sequences ( • • • , x_i, x0, xx, ■ ■ ■ ), xn e X. The last

example will be the one studied in later sections, but in the present section

no restrictions will be made on zA. Let ax, ■ ■ ■ , ap be any finite set of sub-

scripts, and let Ex, ■ ■ ■ , Ep be sets of Fx. The conditions

(1.1) xajeEj, j = 1, • • • , p,

determine a set of elements of ß. The class of all ß-sets defined in this way

determines a Borel field Fa of sets of ß.* Evidently ß e Fa. We shall define a

probability measure P(A) on the sets A of Fa which will have as its value, on

the set defined by (1.1), the P0-measure of the ß0-set determined by the con-

ditions

(1.2) /«,(««)« Eu j=l,---,p.

The P-measure on ß is defined by means of a mapping of ß0 on ß, which

takes the sets of FBo into sets of Fu. Let w0 be a point of ß0. The map takes

coo into the point (£„) of ß defined by the equalities

(1.3) £„ = /„(co0), nezA.

To the ß-set determined by the conditions of (1.1) will then correspond the

ßo-set determined by the conditions of (1.2). Then to any set A of Fa will

correspond a set A0 in the Borel field of sets determined by those sets which

are defined by conditions of type (1.2). Since the latter sets are in Fa„ A0 e FUo.

We define P(A) as P0(A0). In this way the study of the mutual measure rela-

tions of the aggregate of functions {/n(oj0)} (the probability relations of the

aggregate of chance variables {x„} ) is reduced to the study of the properties

of the space ß. The earlier representation of the chance variable xm by means

of the function/m(w0) defined on ß0 has been replaced by a new representation

by means of the function xm(u>), defined on ß and taking on the value £OT at the

point«: (xn) for which the mth coordinate is £m.f

* The (Borel) field determined by a given collection of point sets can be defined as the intersec-

tion of all the (Borel) fields of sets which include the sets of the given collection.

f The measure relations of fi correspond to similar relations between the chance variables [x„ j ;

that is, between the original functions/„(uç>) in the sense that, if A is an fi-set in the field F„,, the corre-

sponding SVset in the field F„0 is defined by conditions on the /'s which, when imposed on the x's

define A; and -P(A) = Po(Ao). Due to the fact that the transformation from fio to fi is not one-to-one,

certain relations of the functions |/„(u0)} may become distorted; thus an fio-set in the field Fao may

not go into an fi-set in the field Fu. For example, if zA is the set of real numbers /, so that fi becomes

the space of functions x¡ = x(t), and if X is the space of real numbers, it may be that/i(wo) is a con-

tinuous function of / for all u«; on the other hand the set of elements x(t) of fi which are continuous

functions of t will never be measurable (in terms of P-measure). Cf. Doob (II) for a detailed treatment

of this case.
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As an example of the advantages of this procedure, we give a discussion

of the following classical theorem:

If xi, ■ ■ ■ , xn is a set of mutually independent chance variables, the ex-

pectation of their product is the product of their expectations*

In order to treat this theorem we take X as the space of real numbers,

Fx as the field of Borel sets of X (or some more inclusive field), and zA as the

set of integers 1, • • • , N. The space ß becomes ordinary iV-dimensional

cartesian space. A probability measure is defined, in terms of the measure

properties of x, on thex,-axis,f and the P-measure on ß is determined in the

usual (multiplicative) way from these separate measures. | The theorem in

question is now an immediate consequence of Fubini's theorem on the equal-

ity of a multiple integral and the corresponding iterated integrals. § Inci-

dentally Fubini's theorem provides very sensitive sets of possible hypotheses :

it is sufficient to suppose that the expectation of every x, exists, or else that

the expectation of xi ■ • • x# exists.

In the preceding discussion, the given aggregate of chance variables was

considered in a given representation in terms of a corresponding aggregate

of measurable functions {/„(wo)}, all defined on the same space ß0; and a new

representation was obtained in terms of the aggregate of functions {x„(co)}

defined on ß. If the chance variables are not given in some such representa-

tion, the problem becomes more difficult. A family of chance variables is

generally considered as a family of entities {x„}, distinguished by a subscript

« (which is usually identified in some way with the time) varying in an ag-

gregate zA. The chance variable xn, which takes on values in a space X, is

considered defined by a physical process in the course of its development.||

More specifically, it is supposed that there is a Borel field Fx of sets of points

* If a numerically-valued chance variable x is represented by a measurable function/defined on

a space on which some measure is defined, and if / is absolutely integrable, the expectation of x is

defined as the integral of/. In treating this theorem we shall assume that the N chance variables are

represented by N numerically-valued functions defined and measurable on a space on which some

measure is defined. The fact that such a representation is always possible will appear later in this

section. A recent proof of the theorem in question, with somewhat more stringent hypotheses than

those to be given, and with the chance variables represented by Lebesgue measurable functions

defined on the interval Ogig 1, was published by Kac (I, pp. 47-50).

f The measure of the interval a<x,<b is defined as the probability that a<Xj<b.

î Cf. Saks, Théorie de l'Intégrale, Warsaw, 1933, pp. 257-263, for the details for N = 2. The
P-measure is determined by the fact that the P-measure of the A-dimensional interval aj<Xj<b¡,

j = l, • • • , N, is defined as the product of the (1-dimensional) measures of the sides a¡<Xj<b, pre-

viously defined.

§ Saks, ibid., p. 262.

|| Thus the chance variable x¡ may be the ^-coordinate of the position of a particle (in a Brownian

movement) at time /.
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of X such that X is in Fx, and that if ax, ■ ■ ■ , ap are elements of zA, and if

Ei, ■ ■ ■ , Ep are in Fx, a non-negative number is assigned to the p conditions

(1.4) xajeEu j - 1, • • • ,p.

This number is called the probability that the conditions of (1.4) are satisfied.

If ai, • ■ • , ap are kept fixed, these probability numbers assign measures to

certain sets of the space of points (xai, ■ ■ • , xap), the sets being those deter-

mined by conditions of the form

(1.4') xajeEj, i - 1, • • • ,p.

It is supposed further that this (/»-dimensional) measure function is additive

for fixed subscripts «i, • ■ • , ap, and that it can be defined on every set of the

Borel field Fai, ...,„„ (the field of ß-sets determined by the sets, defined by

(1.4'), on which the function is already defined), in such a way that the ex-

tended set function is a (/»-dimensional) probability measure. Now consider

the space ß and field Fa as described above. An ß-set, determined by condi-

tions imposed on a certain set of coordinates, will be called a cylinder set over

those coordinates. It is readily shown that the field F'«,,•••,«, is the field

of cylinder sets of Fu over x„„ • ■ ■ , xap. What was just described was there-

fore the determination of a probability measure on the cylinder sets of Fu over

*«„ • • • , xap. Moreover the various measures, obtained by varying the co-

ordinates involved, are coherent in the sense that if A is a cylinder set of Fu

over xai, • • ■ , xap and also a cylinder set over xplf ■ ■ ■ , xßs, then the proba-

bility measures, assigned to A in the two representations, will be the same.

To show that the present situation is no more general than that described

above, when a' probability measure was defined on all the sets of Fa, not

merely over the cylinder sets of Fa over a finite number of coordinates, it is

necessary to prove the following theorem :

Theorem 1.1. A set function, defined on every cylinder set of Fw over a finite

number of coordinates, which is a probability measure on the field of cylinder

sets of Fw over each such finite set of coordinates, can be so defined on the remain-

ing sets of Fu that it becomes a probability measure on this field.

This theorem was proved by Kolmogoroff (I, pp. 27-30) under the addi-

tional hypothesis that X is the set of real numbers, and that Fx is the field of

Borel sets of X. Daniell (I) discussed measures on ß in the case where ß is

the set of natural numbers (with X, Fx defined as in Kolmogoroff's case) so

that ß is the space of sequences co: (x\, x2, ■ ■ ■ ). This latter case, for which

in addition the chance variables concerned are independent, has been dis-

cussed by many other writers who map ß on a linear interval and define the
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measure of an ß-set by means of the Lebesgue measure of the corresponding

set on the interval.*

Let F be the collection of ß-sets each of which is determined by conditions

of the form (1.4') or is a finite sum of such sets. Then F is a field,f and the

given set function P(A) is defined on the sets of F. Let A0, Ax, ■ ■ ■ be sets of

F. Then if Ai, A2, • • •  are disjunct, and if, in addition,

00

(1.5) A0=X)Am,
i

we shall show that
00

(1.6) P(Ao) = E-P(A-).
i

We prove (1.6) by reducing it to the corresponding result in the special case

considered by Kolmogoroff. Fix a value of «, n = v, and consider the sets

£i(v), E2M, • ■ • of X which are involved in the restrictions on x, used to

define A0, Ai, • ■ • 4 We shall define a numerically-valued function f„(x), with

domain X, so that each set £/'> is determined by simple inequalities imposed

on/„(x). In order to define the function/„(x) we shall need the lemma which

follows :

Lemma 1.1. Let £x, £2, • • • be any point sets of an abstract space. There is a

collection of sets {£/ } (where r is rational and 0 <r < 1) with the following prop-

erties :

(i) each £,- is in the field determined by the sets £/ and conversely;

(ii) ifrx<r2, £ns£r2;

(iii) if rm—+r, where rx>r2> • ■ ■ , then Y[x £r  = £/ ;

(iv) ifrm^O (r„-i), thenme:m=0 (E^ =£:£,).

This lemma can be proved by a modification of the proof of a similar re-

sult due to von Neumann.§ We do not suppose that there are necessarily

infinitely many distinct sets £,-. In the contrary case, there will be only a

finite number of distinct sets £/.

Using this lemma, we define fy(x) as follows: Identify the sets {E¡M }

(v fixed) with the sets {£,-} of the lemma, and set

(1.7) f,(x) = lim sup r, xt£'r

* The details of such a map can be found in Paley and Wiener (I, pp. 145-146). Lomnicki and

Ulam (I) treat the case for which zA is the set of natural numbers, and the chance variables concerned

are independent (with no restriction on X) ; but their proof of the theorem stated above (Theorem 1.1)

is defective. (The mistake is in the proof of Lemma 4, pp. 254-255.)

t Cf. Kolmogoroff (II, pp. 25-26).

Î Except for a denumerable set of superscripts v, there will be only one set E,M ; namely X itself.

§ Annals of Mathematics, vol. 33 (1932), p. 602.
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The set £/ is characterized by the inequality

(1.8) /.War.

Since every set £,• is in the field determined by the sets 6/, every set Ef'^ is

characterized by a finite number of inequalities imposed onfv(x).* Moreover, if

E is any Borel set of real numbers, the x-set E determined by the condition

f,(x) e Eis in the field Fx. The latter fact is apparent if E is an interval, and its

truth then follows for E any Borel set.

Now consider the space Û of points ¿>: {xn}, n e zA, where xn is any real

number.f Let F-x be the field of Borel sets of the x-axis, and let Fz be the Borel

field of ß-sets determined by Fx in the same way that Fu is determined by Fx.

We map ß on ß, sending the point (x„) of ß into the point (x„) of ß for which

(1.9) Xm=fm(xm),        mezA.

This mapping is a single-valued transformation of ß into some subset of ß.

If A is the ß-set determined by the conditions

(1.10) x„,££,-, /=!,•••,/>,

where Ex, ■ ■ ■ , Ep are Borel sets, the corresponding ß-set A is determined by

the conditions

(1.11) /ay(x,-) e £,-, j=i!...tP.

It then follows from the definitions of Fu and Fa that the ß-sets going into

cylinder sets of F¿ over xai, ■ ■ ■, xap are cylinder sets of Fa over x„„ • • •, xap,

and that the ß-sets going into the sets of F are sets of Fa. We now define

a set function P(A), on the sets Ä of F¡¿ which are cylinder sets over a finite

number of coordinates, by setting P(A) =P(A), where A is the ß-set contain-

ing every element w which is taken by the transformation into an element ¿j

of A. The set function P(A) is uniquely defined and is a probability measure

on the field of cylinder sets over any fixed finite set of coordinates. According

to the definition of ß, there are sets A0, Â\, • ■ • to which correspond the sets

A0, Ai, • • ■  of (1.5). The sets Ai, Â2, ■ • •  are disjunct, and

oo

(1.5') Â0 = EÂm.
i

Now we are assuming Kolmogoroff's result that Theorem 1.1 is true if X is

* One can readily determine these inequalities explicitly, using the fact that any set in the field

determined by the sets {&■'} can be written in the formEr+{ET,—Er^-\- • • • +(Erx—Erx_¡),v!Íth

ro<r¡^r2^ ■ ■ ■ í rx, or else in the same form without the first set Er„.

t The space fi is the space of numerically-valued functions with domain ^A.
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the space of real numbers, and if Fx is the field of Borel sets. Then P(A) must

certainly be completely additive on its domain of definition, so that

00

(1.60 P(Ao)=IP(L)¡
i

and this is equivalent to (1.6), since P(Am) =P(Am), m — 0.

The proof, that the domain of definition of P(A) can be extended as de-

scribed in Theorem 1.1, is now immediate. By hypothesis, P(A) is an additive

function of sets on the field F* and the result just proved shows that P(A)

is completely additive on this field. It is then possible, according to a well

known extension theorem,t to extend the definition oiP(A) to all the sets of

the Borel field determined by the sets of F (in this case the Borel field will

be Fu), in such a way that P(A) becomes a completely additive function of

sets on the larger field. The set function thus obtained is the probability

measure described in Theorem 1.1.

2. Definition of a stochastic process. We can now state the definition of

a stochastic process (of the type to be studied in this paper) suggested by the

preceding section. Let X be any abstract space of elements x, and let ß be

the space whose elements w are sequences (•-.-, x_i, x0, xx, • ■ ■ ) of points

of X. Let Fx be a Borel field of sets of points of X, including X itself, and sup-

pose that Ex, ■ ■ ■ , Ep are sets in Fx. The conditions

(2.1) Xa,tEh ; = !,•••,?,

(ax, ■ ■ ■ ,ap any /»distinct integers) determine a cylinder set over xa¡, ■ ■ -,xar.

The class of all such cylinder sets determines the Borel field Fa of ß-sets.

Let P(A) be a probability measure defined on the sets of Fa. For a fixed

set of coordinates xa„ ■ • ■ , xap, P(A) becomes a probability measure defined

essentially on the /»-dimensional space of elements (xa„ •• • , xa¡>), and" the

converse (Theorem 1.1) is also true. A stochastic process depending on the

parameter « running through integral values is the combination of the space

ß together with a probability measure defined on the sets of a field Fa. More

precisely, the process is the changing real entity of which the above is the

mathematical abstraction. Examples of stochastic processes are given in §5.

The function x,(w) taking on the value x, at the point «:(•••, x,-, ■•• )

is a measurable function on ßf taking on values in X; and the sequence of

functions • • • , x_i(co), x0(w), xx(o)), • ■ ■ can then be considered as a repre-

sentation of a sequence of chance variables  • ■ •, x_1; x0, xx, ■ ■ ■. Conversely,

* The field F was defined at the beginning of the proof.

t Cf. H. Hahn, Annali délie Università Toscane, Pisa, (2), vol. 2 (1933), pp. 433-436.

t Cf. §1.
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we have seen in §1 that any such sequence of chance variables can be repre-

sented in this way.* It is sometimes useful to consider the sequence of chance

variables xi, x2, • • • . To do this we need only restrict our attention to the

cylinder sets of Fa over Xi, x2, ■ ■ ■ .

We shall suppose throughout this paper that the probability measure

P(A) is so extended that it is defined on every set Ai differing from a set A0 of

Fa by at most a subset of a set on whichP(A) vanishes, if we setP(Ai) =P(A0).

The sets of this extended domain of definition will be called P-measurable.

The subsets of a set of P-measure 0 are measurable and of P-measure 0. The

P-measure of a P-measurable set is the greatest lower bound of the P-meas-

ures of sets M 2 A which are finite or denumerably infinite sums of sets of the

field F defined above.t It follows from this fact that if A is P-measurable, to

every positive number e corresponds a set Ae which is a cylinder set of Fa over

a finite number of coordinates, and which has the property that P(A-CAe)

+P(CA-Af) <e.J If A is a P-measurable cylinder set over xai, ■ ■ ■ , xap,

it is determined by a condition of the form (xai, ■ ■ ■ , xap) e E, where E is

a /»-dimensional set of points (xa„ • • • , x0p). The set E will be called an

(xa¡, • ■ ■ , xap)-set of P-measure P(A).

Let/(co) be a numerically-valued function of co. If for every number k the

inequality/(co) >k defines a set of Fa (a P-measurable set),/(co) will be called

measurable with respect to Fa (P-measurable). If /(co) is measurable with re-

spect to Fw, then it is P-measurable; and conversely if /(co) is P-measurable,

there is a function/i(co), measurable with respect to F„ and equal to/(co) ex-

cept possibly on a set of P-measure 0.§ This can be deduced from the following

fact (which in turn follows readily from the approximation of P-measurable

sets by means of cylinder sets of Fa over a finite number of coordinates) that

if/(co) is any P-measurable function, to every positive number e corresponds

a function /,(co), measurable with respect to Fa, depending on only a finite

number of coordinates, and having the property that |/(co) —/,(«) | :£ « except

perhaps on an ß-set of P-measure ;£ e. Throughout the above if the given

function depends only on some given set of coordinates, the approximating

functions can be supposed to depend only on the same coordinates. If /(co) is

measurable with respect to Fa, and if {m,} is any set of integers, /(co) becomes

a function of the coordinates x„„ x„2, ■ • •  only, if the other coordinates are

* Cf., however, the note on p. 88 in accordance with which it may sometimes be necessary to

define a stochastic process using a subspace of fi rather than fi itself, as in Doob (II).

f The extension theorem used in the proof of Theorem 1.1 defines P(A) in precisely this way.

Î The complement of any set A will be denoted by CA throughout this paper.

§ The corresponding theorems for Borel and Lebesgue measurable functions are discussed by

de la Vallée Poussin in his book Intégrales de Lebesgue, Fonctions d'Ensemble, Classes de Baire, 2d

edition, Paris, 1934, pp. 34-40.
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held fast, and this function of x„„ x„2, • • • will be also measurable with re-

spect to Fw.

In later sections we shall use the fact that if Fx is the Borel field deter-

mined by some denumerable collection of its sets, the same will be true of Fu.

Even without this hypothesis, it can be shown (by transfinite induction) that

any given set A, in the field F„, is in the field FJ corresponding to some Borel

field Fx = Fx such that Ff is the Borel field determined by some denumerable

collection of its sets. It then follows that if /(co) is a function measurable with

respect to Fa, a subfield FJ of Fx can be found which satisfies the denumera-

bility condition just described and is such that/(co) is measurable with respect

to the corresponding field FJ.

The integral of the P-measurable function/(w) over a P-measurable set A

will be noted by

f f(fi>)dP;
J A

and if the domain of integration is not stated explicitly, it will be understood

to be ß. If /(co) depends only on a finite number of coordinates xa„ • ■ ■ , x«p,

and if A is a cylinder set over those coordinates, we shall use the notation

Ç f(o>)P(deai....,ap)
Ja

for the integral of /(co) over A. Corresponding notation will be used for in-

tegration with respect to other probability measures.

Let Tu be the transformation taking co: ( • • • , x_i, x0, xx, ■ ■ ■ ) into co':

( • • • , x_2, x_i, x0, • ■ • ), that is, the transformation defined by

x'i  = x,_i, j = 0, + 1, + 2, • • • .

If Fco is measure preserving, the process is called temporally homogeneous.

3. The conditional probability functions.* Let A be a P-measurable set.

The conditional probability function Pai,.. -,ap(xai, ■ ■ ■ , xap; A) is defined

as follows. If the set M is allowed to range through the P-measurable cylinder

sets over xai, ■ ■ ■ , xap, P(AM) is a non-negative completely additive func-

tion of sets M which vanishes whenever P(M) =0. There is therefore a func-

tion Pa,. ■ ■ ..ap(xai, • • • , x«p; A), a non-negative P-measurable function

depending only on the coordinates xa„ ■ ■ ■ , xap, satisfying

* The ideas in this and the following section are not new, but there seems to be no systematic

presentation of many of them in the literature, and some of the theorems have not been previously

stated explicitly. (Known theorems and definitions are stated for later reference.) The importance

and usefulness of the conditional probability and conditional expectation functions have been

stressed most by P. Levy.
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(3.1) f Pai.....ap(xai, • ■• , xap;A)dP = P(AM)

for every set M.* The function Pau.. .,ap(xai, ■ ■ ■ , xap; A) is determined

uniquely up to an (xa¡, • • • , xaj))-set of P-measure 0. For a given set A,

Pax, ■ ■ ■ ,ap(x°ai, ■ ■ ■ , x° ; A) is called the conditional probability of A if

xa/—XaS,j' = 1, ■ • ■ ,p. The subscripts determining the function are given by

the subscripts in the argument, so there will be no danger of confusion if

Pai,...,ap(Xax, • ' ■ , xap; A) is written simply asP(xai, ■ ■ • , xap; A). We shall

need the following properties of P(xai, ■ - • , xap; A) which are easily derived

from the definition :f

(i) If P(A) = 1, then P(xai, ■ ■ ■ , xap; A) = l, except possibly on an

(xai, ■ • • , xap)-set of P-measure 0. If P(A) =0, then P(xai, ■ ■ ■ , xap;A)=0,

except possibly on an (xa„ ■ ■ ■ , xa)))-set of P-measure 0.

(ii) If Ai, A2, • • •  are disjunct P-measurable sets, and if A =2~2xAm,

00

"\Xai, ,   Xap', A)   =   ¿_i   "\Xax, ,  Xap, Am)

1

except possibly for an (xai, ■ ■ ■ , xap)-set of P-measure 0.

This implies the following fact :

(iii) If A', A" are P-measurable, and if A' £ A", then

"\xax, , xap; A ) = Jr\xai, , xap; A )

except possibly for an (x„u ■ • ■ , x„p)-set of P-measure 0.

By taking complements in (ii) we obtain the following property :

(iv) If Ai, A2, • • •  are P-measurable sets, and if

00

A!3A25  •• •  ,        J\Am = A,
i

then

lim P(xai, ■ ■ ■ . xap; Am) = P(xai, • • • , xUp; A),
m—*«

except possibly for an (xau • ■ ■ , xap)-set of P-measure 0.

Theorem 3.1. If Fi is any Borel field of P-measurable sets, including the set

ß, determined by a denumerable subcollection Ai, A2, • • • , and if a>i, ■ ■ ■ , ap

are any given subscripts, then P(xai, ■ ■ ■ , xap; A) can be so defined that there is

an (xai, • • ■ , xap)-set E of P-measure 0 such that for (xa„ • ■ ■ , x„p) fixed, not

in E,P(xai, ■ ■ ■ ,xap; A), (A eFx), is a probability measure.

* This definition is due to Kolmogoroff (I, pp. 41^14).

t Cf. Kolmogoroff (II, pp. 43^4).
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If we identify the sets Ai, A2, • • • with the sets £1, £2, ■ ■ • of Lemma 1.1,

we obtain sets A,' corresponding to the sets £/ of that lemma. We then map

ß on the /-interval 0 <t < 1 by the transformation which takes a point co into

tii

t = L. U.B. r.

According to properties (i), (iii), (iv) of the conditional probability functions,

if r, s are rational, with r <s, there is an (xa„ ■ ■ • , xaj,)-set Er3 of P-measure 0

such that if (xa„ ■ ■ ■ ,xap)fEre,

(3.2) P(xa„ ■ ■ ■ , xap; A'r/) = P(xai, ■ ■ ■ , xap; A/),

and there is an (xa„ ■ ■ ■ ,xap)-set Er of P-measure 0 such that if r' approaches

r from above (r, r' rational, r^O), and if (xa„ ■ ■ ■ , xap)iE', then

(3.3) lim P(xa„ ■ ■ ■ , xap; A'r.) = P(xa„ ■ ■ ■ , xap; A')
r'-*r

(where if r = 0 the right side is replaced by 0). Let E' be defined by

E' = ££„ 4- }ZEr,
t,s r

and suppose that (x„„ • • • , xap) is fixed, not in E'. Then

F(r) = P(xai, • • • , xap; A/)

is a monotone non-decreasing function of r, defined for rational values of r

between 0 and 1 and continuous on the right at these values. Define F(t) for

every value of / in the interval 0 ^ t < 1 as limr,¡ F(r) (r rational, r>t). This is

consistent with the previous definition if t is rational, and F(r) thus becomes a

monotone non-decreasing function F(t) defined for 0 ;£ / < 1 and continuous on

the right. There is a non-negative completely additive function of Borel sets

on the /-interval (0, 1) determined by the condition that its value on the

interval 0 <t^r is F(r).* The Borel /-sets correspond to the sets of a certain

Borel field F of ß-sets, under the transformation from co to /, and a non-nega-

tive completely additive set function P(xa„ ■ ■ ■ ,xap; A) is thereby defined on

these ß-sets. The Borel sets of the interval (0, 1) are the sets of the Borel

field determined by intervals of the type 0<t^r, for r rational, so that the

sets of F are the sets of the Borel field determined by the images of such in-

tervals. The image of the interval 0<t^r (r rational) is the set A/, so that

the field F includes every set A/ and therefore every set Ar; F 2 Fi. By defini-

tion of P(xa¡, ■ ■ ■ , xap; A), if ris rational,

* J. Radon, Sitzungsberichte der Akademie der Wissenschaften, Vienna, class Ha, vol. 122

(1913), pp. 1305-1313.
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(3.4) P(xai, • • • , x„„; A,') = P(xai, ■ ■ ■ , xap; A/).

We deduce from this, using the properties of the conditional probability func-

tions listed above, that if A is a set in the field Pi,

(3.5) P(xax, • ■ • , xap; A) = P(xax, ■ ■ ■ , xap; A),

except perhaps on an (xai, • • • , x„!))-set of P-measure 0; and to define

P(x01, ■ • • , xap; A) as required in the statement of the theorem, we need

only re-define P(xa¡, • • • , xap; A) asP(xau ■ • • , x„v;A).

If 4>(xal, ■ ■ ■ , xap, XßU ■ ■ ■ , Xßg) =<j>((xa), (xß)) is a P-measurable and in-

tegrable function depending only on the indicated coordinates, we now define

the function

(3.6) E(xai, ■ ■ ■ , xap; <t>) =  \ <>((xa), (xß))P(xai, ■ ■ ■ , xap; deßll...,ßt)

not as an integral, but in such a way that the indicated integration actually

gives E(xa„ ■ ■ ■ , xap; <j>) when it can be carried out. Let Ma be a P-measur-

able cylinder set over x„u • • • , xap. Then E(xa„ ■ ■ ■ , xap; <p) is defined as

the P-measurable integrable function which satisfies

(3.7) I    E(xau • • • , xap; <t>)dP =  f   <t>((xa), (xß))dP

for all sets Ma. The function 7i(xai, • • • , xap; <j>) is known as the conditional

expectation of <j> for given (xai, ■ ■ ■ ,xap).* Changing <j> on a set of P-measure

0 does not affect E(xa„ ■■ ■ , xUp; <f>). If <j> is the characteristic function of a

P-measurable cylinder set over xßl, ■ ■ ■ , xßq,

E(xai, ■ ■ ■ , xap; <j>) = P(xa„ ■ ■ ■ , xap; A).

Theorem 3.2. Suppose that P(xau ■ ■ ■ , xap; A) can be defined so that

for each (xai, ■ ■ ■ , xa¡¡) not in some (xai, ■ ■ • , xap)-set of P-measure 0,

P(xai, • • • , xap; A) becomes a probability measure for A in the field of cylinder

sets of Fu over (xßl, • • • , xßi). Then (3.6) can be interpreted as ordinary integra-

tion.

This means, if tf>((xa), (xß)) is P-measurable and integrable, that (a) when-

ever (xai, • • • ,xap) is not in some exceptional set of P-measure 0,<f>((xa), (xß))

for (xai, ■ • • , xap) = (x°u ■ ■ • , x°p) fixed is measurable in terms of the meas-

ure function P(xa„ • • ■ , xap; deßl,.. .¿ç) (that is, that the cylinder set over

(xßl, • • ■ , Xß,) defined by <f> >k with (xai, ■ ■ ■ , xap) = (x°a¡, ■ ■ ■ ,xlp) is either

in Fw or differs from such a set by a subset of such a set on which P(x„u ■ ■ • ,

* This definition is due to Kolmogoroff (II, pp. 46-47).



1938] STOCHASTIC PROCESSES 99

xap; A) vanishes) ; and that (b) the integral (3.6) exists and is E(xa„ ■ ■ ■ , xap;

A), if we neglect sets of P-measure 0.

We shall suppose that p = q = l to simplify the notation, and we can then

drop the subscript 1 from a and ß. We shall suppose that P(x„; Aß) is already

defined to satisfy the conditions of the theorem. In order to avoid confusion

we shall reserve the integral sign throughout this proof for actual integration.

(i) According to a theorem of Kolmogoroff (II, pp. 48-49), if <f>(xa, xf) is

P-measurable and integrable, then

+00

(3.8)    £(xa; <*>) = lim     ]T k\P(xa; \k = <j> < \(k + 1)),        X > 0,*

(if X approaches 0 taking on only a denumerable set of values), except per-

haps for an xa-set of P-measure 0. The series in (3.8) converges absolutely

for each value of X, except perhaps for an xa-set of P-measure 0. In particular,

suppose that <i>(xa, xf) is measurable with respect to Fw. Then for fixed xa,

4>(xa, Xß) becomes a function of xß which is measurable with respect to F„

(cf. §2). The existence of the limit on the right, for a fixed value of xa, is ex-

actly a condition that the integral

I  4>(xa, xß)P(xa; deß)

exist; and in fact the limit is equal to this integral. Theorem 3.2 thus follows

from Kolmogoroff's result for a function which is measurable with respect

toF„.

(ii) Let <f>o(xa, xs) be the characteristic function of a set A0 in the field F„,

of P-measure 0, and let A(£), (£ e X), be the cylinder set over xß determined by

the condition c/>0(£, xß) = 1. Then, neglecting x„-sets of P-measure 0 and using

(i), we obtain

0 = E(xa, 0o) =   I  <t>o(xa, xß)P(xa; deß) = P(xa; A(x„));

that is, P(xa; A(xa)) = 0. This same result will be true even if A0 is only sup-

posed P-measurable, since it can then be enclosed in a set A0', in the field F„,

which is of P-measure O.t From this it follows that if 4>(xa, xf) is any function

which vanishes except perhaps on an (xa, x#)-set of P-measure 0, then

* The function P(xa;\k^<\{k+\)) is the conditional probability, for given xa, that

\k^(¡><\(k+l). Kolmogoroff's result does not require the hypotheses of Theorem 3.2.

t Cf. §2. The result is a generalization of the fact that if £ is a Lebesgue measurable set of meas-

ure 0, in two-dimensional {x, y) space, the intersection of E with the line x = c will be of (one-dimen-

sional) Lebesgue measure 0 for almost all values of c.
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E(xa, <f>) =   I  <t>(xa, Xß)P(xa; deß) = 0,

if we neglect an xa-set of P-measure 0.

(iii) Let 0(x„, xß) be any P-measurable and integrable function depending

only on xa, xß. Then it can be expressed in the form

<t>(xa,  Xß)   =   C60(*a,   Xß)   + <¡>l(xa,  Xß)

(cf. §2), where <f>o(xa, xß) vanishes except perhaps on an (xa, xfl)-set of P-meas-

ure 0, and where <j>i(xa, Xß) is measurable with respect to Fu. Combining this

fact with the results of (i) and (ii) we see that (neglecting x„-sets of P-measure

0), for fixed xa =x„°, <j>(xa°, xß) is measurable in xß with respect to the measure

function P(xa°; deß), and that

I  4>(xa, xß)P(xa, deß) =   I  <pi(xa, xß)P(xa; deß) = E(xa; 4>x) = E(xa; <j>),

as was to be proved. Conversely it is readily seen that if (3.6) exists as an

integral, except possibly for an (xa)-set of P-measure 0, and if the function of

(Xax, • * • , xap) thus obtained is integrable, then <f>((x„), (xß)) is itself integrable,

and the original definition of conditional expectation is applicable.

According to Theorem 3.1, the hypotheses of Theorem 3.2 are always sat-

isfied if Fx (and therefore Fa) is the Borel field determined by a denumerable

collection of its sets. This will be true, for example, if X is euclidean space of

N = l dimensions, and if Fx is the field of Borel sets of X. A stronger statement

can be made, however, since if 4>x is measurable with respect to P„, there is

always (cf. §2) a Borel field Fx(<j>x) of X-sets, (depending on (j>x), which is the

Borel field determined by a denumerable collection of its sets, such that if

Fa((j)X) is the Borel field of ß-sets defined in terms of Fx(<px), as P„ is defined

in terms of Fx, then <j>x is measurable with respect to Fu(<j>x). Theorem 3.1 then

shows, since only sets of Fx(4>x) (or Fa(<bi)) are involved, that (3.6) can always

be interpreted as integration,* if we define P(xa; As) in a way depending on

the function </> under consideration.

The following theorem, proved by Kolmogoroff (II, pp. 47-48), is stated

for future reference:

Theorem 3.3. If a, ß, y are distinct integers, and if <f>(xa, xß, xy) is P-meas-

urable, then

(3.9) E(xa; 4>) = E[xa; E(xa, xß; <¡>)].

* The transition from the P-measurable function tf> to the function <fr, measurable with respect to

Fu, is made as in (ii) above.
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In particular, if <p is the characteristic function of a P-measurable cylinder set A,

over xy,

(3.10)     P(xa; A) = E[xa; P(xa, xß; A)] =   I P(xa, xß; A)P(xa; deß).*

The following theorem will be useful:

Theorem 3.4. Let<f>(xa¡, ■ ■ ■ , xap) be a P-measurable integrable function.

Then

f 4>dP = f P(deai) f P(xai; deai) J

(3.11)

xap-,; aeap).jJV(a

This theorem can be considered as a corollary to the preceding one, but a

direct proof will be given by induction. If p = \, (3.11) becomes

J <¡>(xai)dP = j <t>(xai)P(deai),

which is certainly true. Suppose that q>l and that the theorem is true

for p<q. In (3.11) (with P=q), the first (symbolic integration) gives

P(xai, ■ • • , xaq_,; 4>). Since the theorem is supposed true for p=q — 1, the

right side of (3.11) then collapses to

J  £(x01, • • • , xaq_,; 4>)dP,

and this is equal to the left side of (3.11) by the definition of conditional ex-

pectation.

Most stochastic processes which have been discussed in the mathematical

literature are Markoff processes, that is, processes which satisfy the following

* The last expression is only symbolic for the second one unless the conditional expectation con-

cerned can be expressed as an integral. Theorem 3.3 is true and will be used below in a somewhat

more general form obtained by considering three groups of subscripts, an or-group, a ß-group, and a

7-group, to replace a,ß,y.

t This expression is to be evaluated from right to left. If the expression can be considered as an

iterated integral, the theorem becomes the generalization of Fubini's theorem (on the evaluation of a

multiple integral by means of iterated integrals) to the most general measures on product spaces on

which the field of measurable sets is defined by starting with the sets which are direct products of

measurable sets in the component spaces. In the case considered in Fubini's theorem, P(xa„ ■ ■ ■ , Xa,;

deaj+l) — P(deaj+1),j^l. Levy (I, p. 73) obtains the generalization (where the product space is «-di-

mensional euclidean space) by a change of variable which reduces the result to Fubini's theorem.
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condition : If a <ß, and if A is a P-measurable cylinder set over Xg+X, xß+2, • • •,

then, except perhaps for an (x„, Xa+i, ■ ■ ■ ,x^)-setofP-measure0,

P(xa, ■ ■ ■ , xß; A) = P(xß; A).*

It follows at once that if ax<a2< • ■ ■ <ap, and if A is a P-measurable cylin-

der set over xap+i, xap+2, ■ • ■ , then if we neglect an (xai, ■ • ■ , x<,p)-set of

P-measure 0, P(x„„ ■ • • , xap; A) =P(xap; A). If a<ß, and if A is a cylinder

set over Xß, xß+i, ■ ■ ■ , (3.10) implies that

(3.12) P(xa; A) = j P(xß; A)P(xa; deß)

for a Markoff process. Markoff processes are sometimes carelessly discussed

in the literature as if they were the general case, as if (3.12) followed from the

definition of probability.

4. Probability measures in terms of the conditional probability functions.

In §3, the conditional probability functions were derived from the measure

relations of a stochastic process. In this section the converse problem will

be discussed. It will be seen that more is supposed below to be true of the

conditional probabilities than is true in the general case, but the hypotheses

are wide enough to cover the applications to be made.

Let Fx, Fu be fields as described in §2. Suppose that for every pair of in-

tegers m, «, with m^n and cylinder set An+i in the field F„ over xn+i, a func-

tion P(xm, ■ ■ • ,x„;A„+i) is defined and has the following properties:

(i) Forfixedx™, • • -,x„,P(xm, • • -, x„;A„+i) is a probability measure on

the field of sets A„+i.

(ii) For fixed An+J, P(xm, ■ ■ ■ , xn; An+1) is measurable with respect to Fu.

Let Q(A) be a probability measure defined on the field of cylinder sets

of Fw over xm. There is then, as we shall now show, a uniquely determined

probability measure defined on the cylinder sets of Fa over xm, xm+x, ■ ■ ■ ,

having the given functionsP(xm, ■ • • , xn;An+i) as its conditional probability

functions and equal to Q(A) if A is a cylinder set of F„ over xm. If <f> is the char-

acteristic function of any cylinder set of Fu over xm, ■ ■ ■ , x„, P(A) is defined

by an iterated integral

P(A) =   I Q(dem)  I  P(xm; dem+i)  I  P(xm, xm+i; dem+2)  I

(4.1)

<¿>AP(xm, • • • , xn_i; den).\
/•

* A detailed discussion of the physical meaning of a Markoff process is given in Kolmogoroff (I),

t Cf. P. Levy (I, pp. 121-123).
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To show that this defines P(A) uniquely it is necessary to show that if A is

also a cylinder set over xm, • ■ ■ ,x„-,(n'j¿n), the expression (4.1) and the cor-

responding expression •

P'(A) =  I Q(dem) I P(xm; dem+x) I  P(xm, xm+x; dem+2) I

(4.1')

• • ■   I  <t>h.P(xm, • • • , Xn'-i; den')

are equal. We can suppose without restricting generality that m' >m. Then

P'(A) = J Q(dem) J J   p(x<*> ■ ' * i *—i; de„) J

• • •   I 4>KP(xm, ■ ■ ■ , x„-_i; den>),

and since <j>* can depend only on xm, ■ ■ ■ , x„, the first integration gives

P(xm, ■ ■ ■ , Xn'-X; ß) (which is identically 1) multiplied by c/>a- Similarly the

next integrations, up to the integration over x„, give c/»A; hence P'(A) =P(A).

Evidently P(A), as thus defined, is a probability measure on the field of

cylinder sets of Fu over any finite set of coordinates with subscripts at least

equal to m. It then follows from Theorem 1.1, as applied to the case where zA

is the set of integers m, m+1, ■ ■ ■ , and where X, Fx are as here given, that

the domain of definition of P(A) can be extended to include all the cylinder

sets of Fw over xm, xm+i, • ■ • in such a way that the extended set function is

a probability measure. Since if A, M are respectively cylinder sets over xn+i

and xm, ■ ■ ■ , x„, with characteristic functions c/»a, c/»m,

P(xm, ■ ■ ■ , x„; A)P(dem,....n) =   I  P(xm, ■ ■ ■ , x„; A)(f>uP(dem,...,„)
Jyi J

=   I  Q(dem)P(xm; dem+x) I    ■ ■ •   I  <t>M.P(xm, • • ■ , x„; A)P(xm, • • • , x„_i; den)

=  I Q(dem) I    • • •   I P(xm, ■ ■ ■ , Xn-X; den) I </>a0m7>(xot, • • • , x„; den+x)

= P(A- M);

the conditional probability functions determined by P(A) are actually the

given ones. The set function P(A) thus exists and it is uniquely determined

by Q(E) and the given conditional probability functions, since (4.1) holds for

P(A) either as a definition or as a theorem, because of Theorem 3.4.
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What made this problem simple was the fact that the given conditional

probability functions were entirely independent of each other; that is, there

were no necessary relations between the given functions. This was possible

because only cylinder sets over xm, xm+i, ■ ■ ■ were being considered, for m

fixed. If m is not to be kept fixed, the set of conditional probability functions

can no longer be chosen independently of each other. We shall only consider

the problem in detail for conditional probability functions corresponding

to Markoff processes. In the treatment just given, if we had supposed that

P(xm, ■ ■ ■ , x„; A„+i) depended only on xn, the resulting process would have

been a Markoff process. To extend the results to the consideration of all the

sets of Fa, we shall need the following lemma :

Lemma 4.1. Let {Qn(£) } be a sequence of probability measures defined on

the sets of some Bor el field S of sets of an abstract space. Suppose that

(4.2) 6x26,2 ••• ,   Ôê. = 0
i

implies that

(4.3) limQN(£,) = 0
v—*«

uniformly in N.

(i) If

(4.4) lim QN(£) = Q(£)
JV—»

exists for every £ in S, the set function Q(£) is a probability measure.

(ii) If S is the Borel field determined by a denumerable collection of its sets,

there is a subsequence { Qn„(£) \ of { Qn(£) } converging to a limiting probability

measure.

This lemma can be considered as a generalization of Helly's theorem.* Its

proof will only be sketched.

Proof of (i). We need only prove that

oo

(4.5) £ = E 6», £,»■£» = 0, (m^n),
i

implies

(4.6) Q(£) = E<2(£m),

* Sitzungsberichte der Akademie der Wissenschaften, Vienna, class Ha, vol. 121 (1912), p. 286.
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or (since Q(£) is obviously additive) that

(4.7) Q(£)-£Q(£m)=Q(££m) = limQ_v(£em)-+0,    ?->».
1 \ v+l I N—<° \ y+1 /

Now

£ £m= £ £m= • • •, n £ £m = o,
1 2 JV=1   iV

so that the hypotheses of the lemma imply (4.7).

Proof of (ii). Let £{, £2 , ■ ■ ■ be a denumerable collection of sets of S,

such that the Borel system of sets determined by the sequence {£m' } is S.

By a familiar procedure, we can find a sequence of integers {Nn} such that

limnJ.M Qjv„(£) exists for every set £ of 5 which is in the field of sets deter-

mined by the sequence of sets {£„' }. The hypotheses then imply that

limn^M Qn„(£) exists for every set £ e S* and the remainder of part (ii) then

follows from (i).

Theorem 4.1. Suppose that Fx is the Borel field of sets determined by a

denumerable subcollection of its sets, and that, for every pair of integers m, n,

with tn = n and cylinder set A in F„ over xn+i, a (conditional probability) function

P(xm, • ■ ■ , xn; A) is defined which has properties (i), (ii) given above, and for

which also

(4.8) P(xm, ■ ■ • , x„; A) m P(xn; A).

Suppose that for each fixed value of n, whenever Ax, A2, ■ ■ •  is a sequence of

cylinder sets of Fa over xn+i satisfying

00

(4.9) AiHAa?  • • • ,    II A, = 0,
i

it is true that

(4.10) limF(xn; A,) = 0
V—* 00

uniformly in xn. Then

(i) there is a Markoff process with the given conditional probability func-

tions, and

(ii) if xn = x„+i implies

(4.11) P(x„;A) = P(xn+x;TA),-\

* This can be proved by transfinite induction.

f The transformation T was denned at the end of §2.
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there is a Markoff temporally homogeneous process with the given conditional

probability functions.

Proof of (i). Let Q(E) be any probability measure defined on the sets of

Fx. Then if M is any cylinder set of P„ over xN, xN+x, ■ • ■ , x„ with charac-

teristic function 4>m, define Pjv(M) by

(4.12)     PN(U) = J Q(deN) J  P(xN; deN+x) if <t>uP(xn-i; den).

It was shown above that this determines P^(M) uniquely. In the following,

if M is any cylinder set over a finite number of coordinates xm, xm+i, ■ ■ ■ ,xn,

we define P(xm_i ; M) by

(4.13)P(xm_!; M) =   I  P(xm_i;dem)  I  P(xm;dem+X)  I   • • •   I <t>MP(xn-i; den),

where $M is the characteristic function of M.

Now let m, n be any two integers with m^n. The cylinder sets of P„ over

Xm, • ■ ■ , x„ constitute a Borel field Pm,„ determined by a denumerable sub-

collection.* Suppose that Ai, A2, • • •  are sets in the field Fm.n, and that

00

Ai=A2=  • • • ,    IIa, = 0.
i •

Then

(4.14) lim P(*_i; A,) = 0,
v—*w

for all Xm-i- If e>0, and if M„ is the cylinder set over xm_i on which there is

a value of ¡x = v such that P(xm-i, AM) >e, then it follows from (4.14) that

00

Mi = M2= • • • ,    II M„ = 0.
i

It follows from the definition of M, and from the fact that the conditional

probability functions are less than or equal to 1, that

(4.15) P(xm_2; A,) = J  P(xm_i; A,)P(xm_2; de^-i) ^ « + P(xm-2; M,).

The hypotheses of the theorem imply that

lim P(xm-2; M,) = 0
i^-*oo

uniformly in xm_2. If v0 is chosen so large that

* Cf. §2.
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P(xm-2; M„) < i, v > va

for all xm_2, it follows from (4.15) that

P(xm_2; Ay) < 2í, v > ^o

for all xm_2. Then if N<m — 2, and if v>vo,

PN(AJ) =   I Q(deN)  I  F(xat; deN+x)  I    • • •   I P(xm-2; Ay)P(xm-3; dem_2) < 2e;

so that if the field Fm,„ is identified with the field 5 of Lemma 4.1, the

hypotheses of the lemma are satisfied. There is therefore a subsequence

¡Pjvm(A)} of {PN(A)} converging to a limiting probability measure (de-

fined on the field Fm,n). Since m, n are arbitrary except that m^n, there

is a further subsequence | P¡fa (A)} such that

lim PNam(A) = P(\)
m—*oo

exists for every cylinder set A of Fa over a finite number of coordinates. Since

P(A) satisfies the hypotheses of Theorem 1.1, its domain of definition can

be extended to include all the sets of Fu. If m, n are again any two integers

with m^n, and if A is a cylinder set of F«, over x„+i, it was shown in the gen-

eral discussion preceding the statement of Theorem 4.1, that (if N^m),

f P(xn;A)dPN =  f P(xN, ■ ■ ■ ,xn; A)dPN = PN(AM),
J M J U

for every set M of Fm,„; which expresses the fact that the conditional proba-

bilities at the A4h stage are the given ones. If N becomes negatively infinite

only assuming values of the sequence {Na„}, this becomes

/
P(xn;A)dP = P(AM),

so that the conditional probability functions of the new P-measure are the

given ones.

Proof of (ii). Suppose that (4.11) is satisfied, and let Q(E) be as in the

proof of (i). Let A be a cylinder set of Fu over a finite number of the coordi-

nates x2,x3, ■ • ■ . Consider the sequence of set functions {Qn(A)\ where

(MA) = — £ f P(xi; T™A)Q(dex).
N   i J

A slight modification of the argument just used shows that some subsequence
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{Qxm(A)} of \Qn(A)} converges for every such set A. Moreover, if P(A) is

the limit, then

P(TA) = lim —- E I P(xi; T>+lA)Q(dei) « lim —-   E   I P(*U Ti\)Q(dei)
m—*« Nm     i    J m—*oo A'm        2      **

= lim — E f P(*U T'A)Q(dei) = P(A),
IB-.»   iVm      i     J

so that if A is any cylinder set of PQ over a finite number of coordinates, we

can consistently define P(A) asP(PmA), where m is chosen so large that P^A

is a cylinder set over x2, x3, • ■ • . The set function thus defined satisfies the

conditions of Theorem 1.1, hence it can be extended to become a probability

measure defined on all the sets of P„. Evidently P(A) =P(PA) for every set

of Pa,, and, as in the proof of part (i), the conditional probability functions

are the given ones. We have proved incidentally the following corollary:

Corollary. 7m part (ii) of Theorem 4.1, if Q(E) is any probability measure

defined on the field Fx, there is an increasing sequence of positive integers

Ni, N2, ■ ■ ■ such that

Hm — ¿ f P(xi; T"A)Q(dei) = P(A)
"-" Nr   i  J

exists for all cylinder sets A over a finite number of the coordinates x2, x3, ■ ■ ■ and

determines a possible choice of the probability measure P(A).

The proof becomes particularly simple if a value #i«° of Xi is chosen, and

if Q(E) is defined as 1 or 0 according as E does or does not contain Xi(t). The

integral then becomes P(xi(0) ; PmA).

5. Examples. The examples discussed in this section are simple illustra-

tive examples, all of Markoff processes, which will be studied in detail in §7.

I. The type of stochastic process most frequently studied is that in which

the chance variables form an independent set, that is, in which if EX, ■ ■ ■ ,EP

are sets of Fx and ax, ■ ■ ■ , ap are distinct integers, the P-measure of the

ß-set determined by the m conditions xaj t E,-, (j = 1, ■ ■ ■ ,m), is the product

of the P-measures of the m sets determined by the single conditions. This case

is characterized by the fact that P(xa¡, ■ ■ ■ , xap; A) does not depend on

xau ■ ■ ■ , x„p if A is a P-measurable cylinder set over coordinates not includ-

ing xai, ■ ■ ■ ,xap*

II. Let X contain n elements, the numbers 1, ■ • • , n. We shall define a

* The corresponding P-measures on fi have been examined by many writers, referred to in §1

and §2.
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Markoff temporally homogeneous process. Let (pjk) be an «2 matrix of ele-

ments which satisfy the conditions

Pik = 0, j, k = 1, • • • , «,

(5.1)
2~lPik = i, y-i, ■ «.
*=i

The element p,k is identified with the conditional probability that x,+x = kii

x,=j, v = 0, ±1, ■ ■ ■ . The P-measure will be completely determined if the

probability /»* that x, = k (which is to be independent of v) is assigned. The

hypotheses of Theorem 4.1 (ii) are satisfied, so the existence of the "absolute

probabilities" px, ■ ■ ■ , pn is assured. These satisfy (cf. equation (3.1))

n n

(5.2) 2Z PiPik = pk,        Iii=l, k = 1, • • • , n.
;'-i i

According to the corollary to Theorem 4.1, the absolute probabilities can be

obtained in the form

(5.3) pk = lim-2^1 Pik , (jûxed),
■ÍV v m=X

where the set Nx, N2, • • • is an increasing set of positive integers, and p^1 is

the conditional probability that x,+m = k if x, =j. The element p*fHf is deter-

mined (cf. equation (3.12)) by

,_       . (1) (m+D ^->      <<»)    (1)

(5.4) pjk  = p,k, pjk       = ¿^ Pit Pik •
(1) (m+D ■,-->      (">)    (1)

i-i

Evidently the matrix (/>]"') is the mth power of the matrix (/»,•*), and its

elements satisfy (5.1).*

III. Let X be arbitrary, but suppose that Fx is the Borel field of sets de-

termined by some denumerable subcollection. A non-negative completely ad-

ditive set function (not necessarily always finite-valued) is supposed defined

on X,~\ and the integral, with respect to this measure, of an X-measurable

* This classical Markoff process, the one originally studied by Markoff, is discussed by Hostinsky

(II), who gives an extensive bibliography. References to more recent work will be given in §7.

Fréchet has announced a new book on Markoff processes in which he will probably study this case

in détail.

f It is supposed that there is a monotone increasing sequence of sets, each of finite X-measure,

whose sum is X, and that the X-measure of any X-measurable set is the limit of the X-measure of its

intersection with the sets of the sequence. We shall suppose that this set function is extended as

usual so that it is defined (and 0) on the subsets of sets of Fx on which it vanishes. The sets for which

the extended set function is defined will be called X-measurable, and X-measurable functions are then

defined in the usual way.
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function f(x) over an X-measurable set E will be denoted by fBf(x)dx*

Let XX Y be the product space of pairs (x, y), (x, y e X). A measure can

then be defined on A" X F by the condition that if E, F are X-sets in Fx, the

X X F-measure of the set determined by x e E, y e P is the product of the

A-measures of E and P.t Let p(x, y) be a function defined on XxF-space

which is measurable with respect to the measure just defined,% and which

satisfies the following conditions :

(a) p(x, y) is non-negative ;

(b) p(x, y) is integrable in y for fixed x, and

(5.5) jp(x,y)dy

If A is a cylinder set over x„+i determined by the condition x„+i eE,(Ee PA, we

define P(x„; A) by

(5.6) P(x„; A) =   I  p(x, y)dy, v - 0, ± 1, • • • .
J E

By Theorem 4.1 (ii) these conditional probability functions are those of a

temporally homogeneous Markoff process if, whenever Ex, E2, ■ ■ ■ are sets in

the field,

(5.7) £i2JE,2 ••• ,   f[Em = 0
i

implies

(5.8) lim    I    p(x, y)dy = 0
m—* oo   J ßm

uniformly in x. This can be interpreted as the uniform (in x) integrability of

p(x, y) with respect to y, that is, the uniform (in x) absolute continuity (in E)

* It will be supposed, as usual, that integrability means absolute integrability, and that a non-

negative function is integrable if and only if its integral on the sequence of sets in the preceding note

is bounded. In many applications, X is supposed to be a Borel set £ of »-dimensional euclidean space

and Fx the field of Borel subsets of £; and the set function is supposed to be Borel measure.

t Saks, Théorie de l'Intégrale, Warsaw, 1933, pp. 257-263. As usual we suppose that the measure

is further extended so that subsets of sets of measure 0 are measurable and of measure 0.

t We shall suppose further that p(x, y) is measurable with respect to the XX Y measure, as

defined before its extension described in the preceding note, so that p{x<¡, xx) is measurable with re-

spect to Fw, considered as a function defined on fi. In any case p(x, y) will be equal to such a function

almost everywhere on XX F-space. It then follows (cf. Saks, ibid., p. 258) that p(x, y) is X-measura-

ble in x (y) for each fixed value of y (x).

§ As in the previous sections, when no region of integration is explicitly prescribed integration

will be over the whole space.
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of the set function fBp(x, y)dy. The condition will be satisfied if p(x, y) ^<f>(y),

for all x, y, where <j>(x) is X-measurable and integrable over X. If the X-meas-

ure of X is finite, that is, if fldx < <x>, the condition will be satisfied if p(x, y)2

is integrable in y, and if there is a number K such that for every value of x,

/
p(x, y)2dy g K.

If (5.7) implies (5.8), the measure function P(A) given by Theorem 4.1 be-

comes, on the cylinder sets over xx, a function Q(E) of sets E e Fx; and if A is

determined by the condition xx e E, Q(E)=P(A). Moreover (cf. equation

(3-D),

(5.9) JQ(dx)Jp(x,y)dy = Q(E).

If the X-measure of E vanishes, (5.9) shows that Q(E) =0, that is, Q(E) is

absolutely continuous. There is then an X-measurable function p(x) for which

Q(E) =   f p(x)dx,
J B

for all sets E e Fx* This function p(x) satisfies the equation

(5.9') f P(x)dx f p(x, y)dy =  f p(y)dy,
J Je Je

so that, if the order of integration is interchanged (p(x, y), p(x) are non-

negative),

I  dy I p(x)p(x, y)dx =   I  p(y)dy.
J e     J Je

Then

(5.10) f {f P(x)[p(x, J) - P(y)]dx}dy = 0.

Since E is arbitrary, (5.10) implies

(5.11) fp(x)p(x, y)dx = p(y)

for almost all y. The function p(y) can now be changed on a set of X-measure

0 to make (5.11) true for all y. According to the corollary to Theorem 4.1,

the "absolute probability density" p(y) can be obtained in the form

* Saks, Théorie de l'Intégrale, Warsaw, 1933, p. 257.
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(5.12) j  p(y)dy = lim-E Í pw(x,y)dy, (x fixed),
J E "~"  N,    i  J E

where Ni, N2, ■ ■ ■ is an increasing sequence of positive integers, and

fEp(m)(x, y)dy is the conditional probability that x„+m e E if x, = x. The func-

tion p(m)(x, y) is determined (cf. equation (3.12)) by

(5.13) /><»(*, y) = p(x, y),       #<«+»(*, y) = jV">(x, 3)/>(2, y)ds.

Evidently the function /»(m)(x, y) satisfies the conditions (a), (b) imposed on

/»(x, y). Moreover if the sequence of sets satisfies (5.7), and if (5.7) implies

(5.8), then

/p(m)(x, y)dy =   I   dy I  /»«"-»(x, z)/»(2, y)áz

=  I p<-m-u(x,z)dz I   />(z, y)dy—>0,

uniformly in x, so that p<-m)(x, y) satisfies the condition of uniform integra-

bility if p(x, y) does. A slight modification of the proof shows that if, for some

integer m =51, P("KX, y) satisfies the condition of uniform integrability, the

function /»(m)(x, y) for m>n will also satisfy the condition; and then a suitable

modification of the proof of Theorem 4.1 (ii) will show that it is sufficient to

assure the existence of an absolute probability density (given, for example, by

(5.12)) to suppose that for some m, /»(m,(x, y) satisfies the uniform integrability

condition.

The Markoff process considered here is very general.* Example II is a

special case. To show this we need only define X-measure suitably and define

the function p(x, y) in terms of pjk. The space X has points denoted by the

numbers 1, ■ • • , n. If E is any set of X containing r elements, define the

X-measure of E as r. The function p(x, y) is defined as p,-k for x=j, y = k.

More generally we can consider a space X whose points are the numbers

1, 2, • ■ • . The field Fx is to be the field of all subsets of X, and the X-measure

of a set is the number of points in it. A matrix (pjk) is given whose elements

satisfy

00

(5.14) Pik^O, Eíí*=l.

* Hostinsky discusses this type in (I) and (II) and gives an extensive bibliography in (II). Cf.

also the forthcoming book by Fréchet. Further references will be given in §7.
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The condition of uniform integrability becomes here the condition of uniform

convergence in (5.14) :

N

(5.15) lim  yZPik = 1
N-><°   *_i

uniformly in/. If the condition is satisfied, absolute probabilities px, p2, • • •

exist satisfying the conditions

00 00

(5.16) Pi = 0,        j=l; ¿ Pipa = pk, k=l; £ pt = 1.
i=i i

Let g0, qi, ■ ■ • be a sequence of non-negative numbers whose sum is 1. Sup-

pose that pjk = 0 if k <j, and p,k = <?*_,• if k ¡zj. If q0 < 1, it is readily seen that no

process exists, temporally homogeneous or not, having the given conditional

probabilities.* A particular case in which this is obvious is obtained by setting

?i = l.
IV. The following example is again that of a temporally homogeneous

Markoff process. The space X is arbitrary, but we suppose that a probability

measure is defined on the field Fx, and that a transformation Sx is defined

on X which is one-to-one, takes X-measurable sets into X-measurable sets,

and is X-measure preserving. If A is a cylinder set of Fa over x,+x, determined

by the condition x„+i e E, define P(x„; A) by

F(x„; A) = 1        if        Sx, e E,

P(xr; A) = 0       if       Sx„ < E.

The condition of Theorem 4.1 is not satisfied, but there is nevertheless a

temporally homogeneous Markoff process with these conditional probability

functions, for if M is an ß-set determined by the conditions xaj e E¡,

(j = 1, ■ ■ • , p), the P-measure of M can be defined as the X-measure of the

set (S—'.Ei)($-«'£,) • • • (S—*EP).

6. Temporally homogeneous processes. A stochastic process suggests the

transformation idea in its very phraseology; for example, "the conditional

probability that xx belong to a set E if x0 = x0<0) " ; and in §1 an explicit trans-

formation T was defined to exploit this suggestion. In this section we shall

consider only temporally homogeneous processes (for which T is measure-pre-

serving). The theory of temporally homogeneous processes uses to a large ex-

tent the terminology of the theory of measure-preserving transformations,

and in this section we shall see that this has a complete justification, in every

* This statement refers only to a process corresponding to a sequence of chance variables

■ • • , 3c_i, xo, Xi, • ■ ■ . The results of the preceding section show that the statement is not true if

processes corresponding to a sequence of chance variables x,, xi, ■ ■ ■ are being considered.
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detail, through the mediation of the transformation P.f The present section

will then essentially be an independent study of the measure-preserving trans-

formation P, with particular stress on the case where the P-measure satisfies

the conditions imposed on the P-measure corresponding to a Markoff process.

We shall apply the theory of measure-preserving transformations, as devel-

oped by Birkhoff, Koopman, and von Neumann.

Suppose that a given process is temporally homogeneous. The ergodic

theorem gives the following result. Í

Theorem 6.1. Let the given process be temporally homogeneous, and let A

be any P-measurable set.

(i) 7/c/>(co) is P-measurable and integrable, there is a P-measurable function

c/>*(co) such that
1   N

(6.1) lim — E <K7mco) = **(«)
if— N   i

almost everywhere on ß. 7m particular there is a P-measurable function Q(co; A)

such that
1   "

(6.2) lim — E P(xm; PmA) = Ç(co; A)
AT—« N    i

almost everywhere on ß.

(ii) If the process is a Markoff process, and if A is any P-measurable cylinder

set over x„ x„+i, • • • for some integer v,

1   N
(6.3) lim — E P(xo; PmA) = P*(x0; A)

N->~ N    i

exists almost everywhere on ß; that is, except possibly on an xo-set of P-measure 0.

The fact that the limit exists in (6.2) is apparently new. Results closely

related to (ii), with more restrictive hypotheses on the conditional probability

functions,! have been proved by Fréchet and (jointly) by Kryloff and

Bogolioùboff.

t Conversely, as was seen in example IV, a measure-preserving transformation gives rise to a

certain (Markoff) temporally homogeneous process, which is necessarily of a very special type.

t The form of the ergodic theorem used here (due to Birkhoff) is the following : If Ta is a measure-

preserving transformation of an abstract space fi, then part (i) of the following theorem (Theorem

6.1) holds. A simple proof was given by Khintchine, Mathematische Annalen, vol. 107 (1933), pp.

485-488. The function <¡>(x, N)/N of Khintchine's proof corresponds to the average in (6.1). For a

complete treatment of the ergodic and related theorems see E. Hopf, Ergodentheorie, Ergebnisse der

Mathematik, vol. 5, no. 2, which appeared so late that detailed reference to it could not be made in

this paper.

§ The only restriction on the conditional probability functions made in Theorem 6.1 is that

there should actually exist a corresponding temporally homogeneous process; that is, that there

should exist "absolute probabilities." Exact references will be given in §7.
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Proof of (i). The first part of (i) is a restatement of the ergodic theorem.

The second part of (i) is an application of the first part, with <j>(u>) =P(x0; A).

Proof of (ii). Suppose that A is as described in (ii). Then if m> — v, it fol-

lows from equation (3.12) that

J  P(xm; TmA)P(x0; de) = J  P(xm; TmA)P(xa; dem) = F(x„; r-A),

neglecting sets of P-measure 0, so that

f l lim — £ P(xm; r-A)lp(*o; de) = lim — £ \ P(xm; TmA)P(xa; de)
J       l.JV-00 N     1 ) JV-oo N     1    J

I N I     N
= lira —   2 P(*o; TmA) = lim — £ P(x„; TmA),

n-+~ N  |,|+i if-.» N   i

neglecting x0-sets of P-measure O.f

Corollary 1. If the transformation T is metrically transitive^ then

<j>*(w) ^j<¡>(co)dP,   Q(a>; A) = P*{x0; A) = P(A)

almost everywhere on ß.

This corollary is merely a rephrasing, pertinent to the case being consid-

ered, of the ergodic theorem for metrically transitive systems. §

Corollary 2. If Fx is the Borel field determined by a denumerable collection

of its sets, and if there are no angle variables^ then

f If the first two of the above expressions are considered as actual integrals, the admissibility

of the transition from the first to the second follows from Lebesgue's theorem on the admissibility

of term by term integration of a uniformly bounded convergent sequence of measurable functions.

However, even if the integrals are considered merely as symbols for conditional expectations, the

proof of Lebesgue's theorem can be extended to this case.

% Metric transitivity means here that no P-measurable set of measure not 0 or 1 is invariant

under T. If there is a P-measurable set A of measure not 0 or 1, which is invariant neglecting a set of

P-measure 0, that is, if rA=A+Ao—Ao', where P(Ao) = P(Ao')=0> then the P-measurable set

2^-»P™A has measure P(A)^0, 1 and is invariant under T, so there cannot be metric transitivity.

Hence the content of the definition is not changed if invariance up to a set of P-measure 0 is sub-

stituted for actual invariance.

§ Cf. Khintchine, ibid., p. 488.
|| An angle variable is a complex-valued P-measurable function </>(u) such that | <j> \ >0 on an

i2-set of positive P-measure, and that

4(Tü>) = cK«),       (|i| =l,e^l),

almost everywhere on Í2. If the transformation is metrically transitive, the invariance of | <¡>(a) \ under

T implies that 14>\ =const. almost everywhere on Ü. (Cf. B. O. Koopman, Proceedings of the National

Academy of Sciences, vol. 17 (1935), pp. 315-318.)
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(6.4) limP(MPmA)
m—»w

exists, when m is restricted to a certain increasing set of integers of measure 1,*

independent of the sets A, M which can be any P-measurable sets. If there is also

metric transitivity, the limit in (6.4) is P(A) -P(M).

Conversely, if the limit in (6.4) exists, for all P-measurable sets A, M on

some set of integers of measure 1, there are no angle variables; and if the limit is

P(A)-P(M), there is metric transitivity.

This theorem was proved by Koopman and von Neumann in the metri-

cally transitive case, for a one-parameter family of transformations {Tt ],

— °o </< oo.f Their proof is applicable, with insignificant modifications, to

the family, considered here, of transformations P„ = Tn.\

Lemma 6.1. Letf(u>) be any complex-valued P-measurable function, and let

fiii, m?, ■ • • be an increasing sequence of positive integers. Suppose that

{f(Tm>w)\ and \f(T~m>u>)\ are sequences of functions convergent almost every-

where on ß. Then if 0 is any open set of the complex plane, the Q-sets defined

by the conditions

(6.5) lim f(Tm¡u) « 0, lim /(P""'co) e O
j—» 00 j—► 00

are respectively cylinder sets over x_i, x_2, • • • and Xi, x2, ■ ■ ■ (if we neglect

sets of P-measure 0).

To any positive integer v corresponds (cf. §2) a P-measurable function

/,(«) depending on only a finite number of coordinates, and having the prop-

erty that

(6.6) |/(«) -/,(«) | <l/v

except perhaps on an ß-set of P-measure at most 2_". There is a subsequence

* A set of integers ax, a¡, ■ ■ ■ , {ax<w¡< • • • ), is said to have measure 1 if

lim -  Y. 1 = 1-
m—»w rn a^m

t Proceedings of the National Academy of Sciences, vol. 17 (1935), pp. 315-318. To extend

their proof to the non-metrically transitive case, it is only necessary to allow a wider interpretation

of their projection operator E¡¡. The hypotheses of- topological character they impose on their space

are unnecessary in this application.

Î We use the fact that the P-measurable complex-valued function whose absolute values squared

are integrable, form a unitary space H when distance and inner product are defined in the usual way

(cf. Stone, Linear Transformations in Hilbert Space, American Mathematical Society Colloquium

Publications, vol. 15, pp. 23-29). The hypothesis that Fx is the Borel field determined by a denumera-

ble collection of its sets means that H is separable and thus is either finite-dimensional or a Hilbert

space. The theorem (and proof) of Koopman and von Neumann is valid in the finite case also.
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{uj} of {m,} such that for each positive integer/,/,(F"''co) (/,(F-"'co)) de-

pends only on x_i, x_2, • • •   (xi, x2, •■ • ). Since T is measure-preserving,

( |/(r««)-/i(^'«)| <1//

(|/(F-«co)-/,(F-«co)| <1//),

(/ fixed, except perhaps on an ß-set of P-measure at most 2_>. Then

| /(2>*0 - /XF-co) | < Í/N,        v = N, N + 1, • • •

( | /(F-"-co) - /,(F-">co) | < \/N,    v = N, N + 1, • • ■ )

except perhaps on a set of P-measure at most 2~N+1; so that

lim/,(F"-co)    = lim f(T"'ü¡)
V—»OO y—► 00

(6.9)

( lim /,(F-""co) = lim /(F-"-co) )
\   V—* w ^—.» /

almost everywhere on ß. Then the sets defined by (6.5) are the same as the

sets defined by the conditions

lim /„(F"'co) é 0 lim /»(F-"-«) « 0
v—»00 v—►»

respectively, if we neglect sets of P-measure 0. This fact implies the truth of

the lemma.

Lemma 6.2. The equality

P( ■ ■ ■ , xn_i, xn; A) = P(xn\ A)*

holds almost everywhere on the space ß of a Markoff process, for any P-measur-

able cylinder set A over xn+i, xB+2, • • • .

We need only show that, if M is a P-measurable cylinder set over

■ • • , Xn-i, Xn, then

(6.10) f P(xn\ A)dP = P(AM).

It is evidently sufficient to prove (6.10) for sets M which are cylinder sets

over a finite number of coordinates. If M is such a cylinder set, over

xm, xm+x, ■ ■ ■ , xn, (6.10) follows from the fact that P(xm, • • • , x„; A)

=P(xn; A) almost everywhere on ß.

* The conditional probability function P( • • • , x„_,, xn; A) is defined in the same way as the

function P(xm, ■ ■ ■ , x„; A). Note that the finiteness of the set a,, ■ ■ • , ctp was not used in the defini-

tion of the latter function.
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Theorem 6.2. A temporally homogeneous Markoff process is metrically tran-

sitive* if and only if there is no set E of the field Fx such that if A is the Sl-set de-

termined by the condition xx e E, (0 <P(A) < 1), and

(i) A is invariant under T, if we neglect a set of P measure 0, or

(ii) if we neglect x0-sets of P-measure 0,

then

P(xo; A) = 1, Xo e E
(6.11)

P(x0; A) = 0, xo t E.

Proof of (i). If there is an invariant set A of the type described in the theo-

rem, the process cannot be metrically transitive, by the definition of metric

transitivity. Conversely, if the process is not metrically transitive, there is a

P-measurable set M invariant under T, and 0<P(M) <1. If/(co) is the char-

acteristic function of M, /(co) =/(Pco) on ß so that

(6.12) lim f(Tmw) = lim f(T~mu) = /(co)
m—» » m—. »

on ß. Then by Lemma 6.1, M can be considered either as a cylinder set over

x_i, x_2, • • •   (when we denote it by Mi), or as a cylinder set over xx, x2, ■ ■ ■

(when we denote it by M2), neglecting sets of P-measure 0. It follows from

0 g P( • ■ ■ , x_i, xo) M») á 1,

f    P( • • • , x_i, x0; M2)¿P = P(MiM2) = P(Mi),
J M,(6.13)

J       P( • ■ • , *_i, x0; M2)dP = P(CMiM2) = 0
J CMX

that

P( ■ ■ ■ , x_!, Xo\ M2) = 1, co e Mi,
(6.14)

P( ■ ■ ■ , x_i, x0; M2) =0,        co « Mi,

if we neglect sets of P-measure 0. Now, according to Lemma 6.2,

P( ■ ■ -, x_i, x0; M2) =P(x0; M2) almost everywhere on ß. Then if a set of

P-measure 0 is neglected, M must be a cylinder set over x0; this set is de-

termined by the condition x0 e E, where E is the x0-set on which P(x0; M2) = 1.

Since we can suppose (cf. §2), altering P(x0; M2) on an x0-set of P-measure 0

if necessary, that P(x0; M2) is measurable with respect to Fu, we can suppose

that E is in Fx. The ß-set determined by the condition x0 e E is invariant (up

* If the transformation T is metrically transitive, or has angle variables, the same will be said to

be true of the corresponding stochastic process.
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to a set of P-measure 0) ; so that it is the same as any set determined by a

condition x„ e E, up to a set of P-measure 0.

Proof of (ii). If there is a set E, as described in the theorem, for which

the hypotheses of (ii) are true, then

P(T~lA; A) =  f     P(x0; A)dP = F(A),
J T  1A

so that F~XA, and therefore A, is invariant under F up to a set of P-measure 0;

and the process cannot be metrically transitive. Conversely, if the process is

not metrically transitive, an invariant set A of the type described in part (i)

exists, and (6.14) becomes precisely (6.11).

Theorem 6.3. Suppose that </>(co) is an angle variable of a temporally homo-

geneous Markoff process, so that

(6.15) (j>(Tw) = cc6(co), |c| = l,c5¿l,

almost everywhere on ß.

(i) The function c6(co) can be considered as a function of x0 alone, namely,

4>(a>) = \p(xo), so that (6.15) becomes

(6.15') *(*,) = c¿(xo),

and the possible exceptional set is an (x0, xx)-set of P-measure 0.

(ii) If the hypotheses of Theorem 3.2 are satisfied, and if the conditional

probability functions are supposed defined as described in the statement of that

theorem, then for each value of x0,

(6.16) ip(xi) — const. = op(xo)

on a cylinder set A(x0) over xx such that P(x0; A(x0)) = 1 except possibly on an

Xo-set of P-measure 0.

(iii) If\p(xo) takes on any non-zero value on a set of positive P-measure, c is

a root of unity.

(iv) There exist P-measurable cylinder sets A0, Ai over x0, Xi respectively,

determined by the conditions x0 e E0, xx e Ex, such that 0<P(A¿) <1, and if we

neglect x-sets of P-measure 0,

P(x0; Ai) = 1, x0€ Eo,

P(x0; Ai) =0, x0 « E0.

(v) The function xp(x0), if it is integrable, satisfies the integral equation

(6.18) J \U(xi)P(x0; dex) = cvP(x0),
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except possibly for an Xo-set of P-measure 0.*

Proof of (i). Suppose that (6.15) is satisfied. There is an increasing se-

quence of positive integers nx, n2, ■ ■ ■ such that

lim c"' = lim c~n" = 1.
V—* oo y—» oo

Then

(6.19) lim <j>(T"'ùi) = lim d>(T-n>o>) = 4>(œ),
V—* oo v—* oo

almost everywhere on ß. If A(0) is the ß-set determined by the condition

c/>(co) e 0 (0 an open set of the complex c/»-plane), the method used in the proof

of the preceding theorem shows that A(0) is a cylinder set over x0, neglecting

an ß-set of P-measure 0. It follows readily from this that there is a P-measur-

able function yp(xo), depending only on x0 and such that c/»(co) =ip(x0) almost

everywhere on ß.

Proof of (ii). Let A(x0) be the cylinder set over xx, determined by the con-

dition Xi e E(x0), on which \f/(xi) =ap(x0). The (x0, Xi)-set M, determined by

the condition that Xi e E(x0) for each value of x0, is of P-measure 1, and its

measure can be expressed, according to Theorem 3.4, as

J P(de0) j fMP(x0; dex) = j P(x0; A(xo))P(de0) = 1,

where/M is the characteristic function of M. Then P(x0; A(x0)) = 1 except pos-

sibly on an x0-set of P-measure 0.

Proof of (iii). If ^(xo) takes on a value i^o^O on a set A0 of positive P-

measure, \fs(xo) must take on c"\p0 on a set A„ of the same P-measure (since

\p(xn) =cn\p(xa)). The number c must then be a root of unity; for if not, the

numbers \p0, cipo, ■ ■ ■ are all distinct, so that the sets A0, Ai, • • • are all dis-

junct. But this is impossible since then

Up(Ea„) = raP(Ao), = 1,2,

Evidently the fact that the process is a Markoff process was not needed in

this proof of (iv).

Proof of (iv). If 0 is an open set of the complex î/'-plane, so chosen that

the P-measure of the ß-set A0, determined by the condition ^(x0) « 0, is posi-

* The left side of (6.18) is the conditional expectation E(x<¡; ¡f), and the conditions under which

it can be considered an integral were considered in §3. The integrability condition imposed on \j/

is unimportant, since if \p is an angle variable, the integrable function \j/K, equal to ^ if 14* \ = K and

otherwise equal to K, satisfies (6.15') almost everywhere, so that i'K is als° an angle variable if K is

chosen so large that | ̂ k| >0 on a set of positive P-measure.
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tive and less than 1; and if Ax is the ß-set determined by the condition

c~l\p(xx) € 0, then A0=Ai (if we neglect sets of P-measure 0). Equation (6.17)

then follows at once. (Cf. the proof of Theorem 6.2 (ii).)

Proof of (v). If ip(xx) =af/(xo) almost everywhere on ß, and if \p is integra-

ble, then

I ^(xi)F(xo; dex) = c I \p(x0)P(x0; dex) = c\p(x0),

except possibly on an Xo-set of P-measure 0, as was to be proved.

Theorem 6 A. A temporally homogeneous process for which the correspond-

ing sequence of chance variables ■ ■ ■, x_i, x0, xx, ■ ■ ■ form an independent set

(cf. §5, example I) is metrically transitive and has no angle variables*

A process of this type is a very special case of a Markoff process, so Theo-

rems 6.2 and 6.3 are applicable. A set A, as described in the statement of

Theorem 6.2, is impossible, since in the case of independence P(x0; A) =P(A) ;

and the process is therefore metrically transitive. For the same reason, there

can be no sets A0, Ai, as described in Theorem 6.2 (ii) ; and the process there-

fore has no angle variables.

Theorem 6.5. Suppose the measure relations of a temporally homogeneous

Markoff process have the following property: There is a function 4>(xo;xx), meas-

urable with respect to Fu and integrable over ß in xx for fixed x0, such that (except

possibly for an x0-set of P-measure 0),

(6.20) P(xo; A) =  \ 4>(xo; xi)P(dei)
Ja

whenever A is a cylinder set of F„ over xx.

(i)  The process has no angle variables if and only if liñudo P(x0; FmA)

exists (except possibly on an xa-set of P-measure 0) for every such set A.

(ii) The process has no angle variables and is metrically transitive if and only

if linim..^ P(x0; TmA) =P(A) (except possibly on an Xo-set of P-measure 0) for

every such set A.

(iii) If it is true that P(xa; A) (for A a cylinder set of Fu over Xi) can be de-

fined to be a probability measure, for each fixed value of x0, which vanishes identi-

cally in Xo for a given set A if it vanishes at all, then a function <j> exists and

satisfies the hypotheses of the theorem.

Before proving the theorem, we shall give an example of a temporally

homogeneous stochastic process which has no angle variables, and for which

* This result was proved by Doob (I, pp. 761-763), and Hopf (I, p. 95).
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the limit described in (i) does not exist. This example will therefore show that

some condition, such as the existence of the function c/> as described, is neces-

sary in the theorem. The example is a particular case of example IV of §5.

In example IV suppose that the transformation 5 is metrically transitive and

has no angle variable. Then it is readily seen that the transformation P is

metrically transitive and has no angle variable. On the other hand, if A

is a cylinder set of P„ over xx, determined by the condition xx e E, then

P(x0; TmA) is 1 or 0 according as Smx0 is or is not in E. Then limm^ooP(x0; PmA)

exists almost everywhere on ß only if Smx0, for large m, is finally always in E

or never in E for almost all x0. This implies that E is invariant under 5 (up

to a set of X-measure 0), which is impossible, since 5 is metrically transitive,

if we choose A so that P(A) ^0, 1.

Proof of (i). Suppose first that there are no angle variables and that Fx is

the Borel field determined by a denumerable collection of its sets. According

to Theorem 6.1, Corollary 2, there is an increasing sequence of integers, inde-

pendent of A, M, such that

(6.21) lim P(MP<"A) = lim    f P(*x; Ta-A)dP = Q(M; A)
V—* » v—> «   J yi

exists, where A, M are P-measurable cylinder sets over x\. From this it follows

readily that if f(xx) is P-measurable and integrable over ß, then

(6.22) lim   f P(xi; T"A)f(xi)dP =  f f(xx)Q(dex; A) .*
y—»00     %/ U

In particular (cf. equation (3.12))

lim   I  P(xi; T"'A)<t>(x0, xx)P(dex) = lim   J  P(xi; P<"A)P(x0; dex)

(6.23)
= lim P(x0; Ta'A)

v—»oo

exists. We shall denote this limit by Q(x0;A). Evidently

(6.24) f Q(x0; A)dP = Q(K; A)
J K

if K is a P-measurable cylinder set over the coordinates xm, xm+i, ■ ■ ■ , x0

(m^0).Iie>0, there is an integer N = N(e) so large that if a,>N,

| P(x0; 7>A) - Q(x0; A) | = e/6

* The set function Q(M ; A) is obviously additive in M for fixed A. Since Q(M ; A) á P(M), Q(M ; A)

for fixed A is a completely additive function of sets M; hence integration with respect to the differ-

ential element Q(dex; A) has a meaning.
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except possibly on a set Ae such that P(Ae)^e/6. If M is a P-measurable

cylinder set over xx, and if a¡ < v, then

(6.25) P(MT'A) = P(T"'-'ATaiA) =   f P(x0; T"iA)dP,

so that, if use is made of (6.24) and (6.25),

| P(MPA) - Q(T"'-"M; A) \ =     f [P(x0; Ta>A) - Q(x0; A)]dP
I J ^'-"m

^ e/6 + 2P(Aí) =S e/2,
if v>a,->N. Then since

Q(TkM; A) = \im~2ZP(TkMTiA) = lim — £f(MF>-*A)
jv-» N i=i at-oo iV i=i

is independent of k,

(6.26) lim P(MF'A) = Q(M; A),

so that (6.21) holds with av = v. The proof that (6.21) implies the existence

of the limit in (6.23) can now be used to show that' the existence of

lim„,„P(MF'A) implies the existence of lim,,..» P(x0; F"A). The hypothesis

that Fx is the Borel field determined by a denumerable collection of its sets

can now be removed; since if this is not true, we can preassign the set A, and

then replace the field Fx by a smaller field FJ for which the denumerability

hypothesis is true, such that (cf. §2) the set A is in the corresponding field FJ,

and such that </>(x0, Xi) is measurable with respect to FJ.

Conversely suppose that lim„<00 P(x0; F"A) exists for every set A, as de-

scribed in the theorem. Then if M is a F-measurable cylinder set over Xi,

(6.27) lim P(MT"A) = lim    f F(xi; F"A)aT
v—»oo v—»oo    %) m

exists. Thus

(6.28) lim   f f(xi)gJxf)dP*
V—»00     %J

exists, if f(xi), g(xx) are characteristic functions of cylinder sets of F„ over Xi.

The limit can then be shown to exist (using a familiar method of approxima-

tion) if/(xi), g(xx) are any bounded complex-valued P-measurable functions

* If £ is a complex number, the notation £ will be used, as is customary, to denote its conjugate

complex number.
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depending only on xx. Now if there is an angle variable, there is, as was seen

above, a bounded angle variable. If $(xi) is a bounded angle variable, we set

f=g=ip in (6.28) and find that the limit

lim   f \P(xx)tP(x,)dP = lim c-^1 f | iA(xi) \2dP,
y—*oo     •/ y—>oo */

= 1,^1,

must exist. This is absurd ; hence there can be no angle variable.

Proof of (ii). If the process has no angle variables, and if it is also metri-

cally transitive, lim^«,P(x0; T'A), which we know exists for A a P-measurable

cylinder set over xi by part (i), must beP(A) since (Theorem 6.1, Corollary 1)

lim — E T^x»; r»A) = P(A),
N->* N    i

if we neglect x0-sets of P-measure 0 throughout. Conversely if, whenever A is

a P-measurable cylinder set over xx, lim,..«, P(xo] T'A) =P(A) except possibly

on an x0-set of P-measure 0, the process can have no angle variables, accord-

ing to (i). If the process is not metrically transitive, there is a P-measurable

cylinder set A over Xi, (0 <P(A) < 1), which is invariant under P (if we neglect

a set of P-measure 0). Then

P(x0; A) = P(x0; P'A) -» P(A),        v -+ =o ,

that is, P(x0; A) =P(A) except possibly on an x0-set of P-measure 0. This is

incompatible with (6.11). The process therefore has no angle variables and is

metrically transitive, as was to be proved.

Proof of (iii). We shall use the hypotheses of (iii) only to derive the fact

that if A is a cylinder set of Pw over xx, and if P(x0; A) = 0 for some value of x0,

then P(A) =0. This fact is obvious from the equation

P(A) = j P(xo;A)P(de0).

Now consider the field of cylinder sets of Pu over x0, xi. One probability meas-

ure is already defined on this field, namely P-measure. We define a second

probability measure P(M) for M in this field by

(6.29) P(M) = J P(de0) J fu(x0, xx)P(dex),

where/m(x0, xx) is the characteristic function of M.* According to Theorem

3^_

* This new measure is essentially a measure in two-dimensional (xo, #i)-space, obtained in the

usual (multiplicative) way (cf. Saks, Théorie de l'Intégrale, Warsaw, 1933, pp. 257-263) from a given

measure (P-measure) on the Zo-axis and a given measure (P-measure) on the :ri-axis.
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(6.30) P(M) = J P(de0) j fu(xo, xx)P(x0; dex),

and the integration need not be taken symbolically. Let M(x0) be the cylinder

set over Xi defined by the equation/m (x0, Xi) = 1. If we integrate in (6.30), then

if P(M) =0, P(x0; M(x0)) =0, except possibly on an x0-set of P-measure 0. It

has already been shown that for each value of x0 = £ such that P(£; M(£)) =0,

P(M(£))=0. ThenifP(M)=0,

P(M) = J  P(M(xo))P(deo) = 0;

hence the set function P(M) is absolutely continuous with respect to P(M).

There is therefore* a function <f>(xQ, xx), measurable with respect to F„, such

that if M is a cylinder set of Fa over x0, xx,

(6.31) F(M) =   f d>(xo, xx)dP.
J M

In particular if M is the intersection of A0 (a cylinder set of Fw determined by

the condition x0 e EQ) and A (a cylinder set of Fu determined by the condition

Xi e Ex), (6.31) becomes

P(Ao)P(A) =   f P(de0) f P(xo;dex),
J Ea Je,

so that

f P(deo)\P(A) -  \ <t>(x0, xx)P(x0; dex)\ = 0.
J e0 l Je, )

This equation is to hold for every set E0 in the field Fx, so that the quantity

in the brace must vanish, except possibly on an x0-set of P-measure 0, as was

to be proved.

Theorem 6.6. If the conditional probability functions of a temporally homo-

geneous stochastic process satisfy the conditions

P(xo; A) = XoF(A)
(6.32)

P(x_„ ■ ■ ■ , x0; A) = X,F(x_,+i, ■ • • , x0; A),     v = I, 2, ■ ■ ■ ,

for every P-measurable cylinder set A over xx,j where 0 <XP = 1, and if

* Saks, ibid., p. 257.
t The inequalities are to hold with probability 1 for each set A.
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00

(6.33) n>» = A>0,
1

then the process is metrically transitive and has no angle variables.

If the process is a Markoff process, we can take X, = 1, whenever v>0,

leaving only the first inequality of (6.32) as an actual condition. Theorem 6.2

gave a much more sensitive condition.

Let A2 be a P-measurable cylinder set over xx, ■ ■ ■ , xn, n = 1. Then if / is

the characteristic function of A2, and if m = \ (cf. equation (3.10)), then

P(x_m, • • ■ , x0; A2) =   I   P(x_m, • • • , x0; dex)  I  P(x_m, ■ ■ ■ , xx; de2)  I

/]r\X—m,        , xn—x; aen)

= 1—1  P(x_m, ■ • ■ , x0; dex) I

■ ' •   I   (1 — f)P(x-m, ■ ■ • , *«--i; den)

(6.34) C C C
^1—1  \mkm-i ■ ■ ■ \¡P(dei)  I  Xm+i • • • XiP(xi; de2)  I

• • •   I Xm+„_i ■ • • X„_i(l — f)P(xx, ■ ■ ■ , xn-X; den)

S 1 -X J P(dex)  f P(xx;de2) j

■ ■ ■   I   (1 — f)P(xi, • • • , ac»-i; den)

= 1 -X[l - P(A2)].

If Ai is a P-measurable cylinder set over x_m, ■ • • , x0, (m^0),then

(6.35) P(AiA2) =   f P(x_m, ■ ■ ■ , x0; A2)dP S P(Ai) {1 - X[l - P(A,)]} -
J AX

Since this inequality is true for any sets Ax, A2 as described, it is true for any

P-measurable cylinder sets Ai, A2 over x0, x_i, ■ ■ • ; Xi, x2, • - • respectively.

Now suppose there is a function c£(co), a complex-valued P-measurable func-

tion which does not vanish almost everywhere on ß, and such that, for some

constant c of modulus 1,
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(6.36) <t>(Tu) = c<t>(u>)

almost everywhere on ß. To prove the theorem, it is sufficient to show that

</>(co) is identically a constant almost everywhere on ß. Since

0(F-co) = C<p(o>), v = \,2,- ■ ■ ,

almost everywhere on ß, if the integers nx, «2, «3, • • • are chosen so that

lim„..,»cn» = l, it follows that

(6.37) lim 4>(F""co) = lim <t>(T-n"w) = <j>(w)

almost everywhere on ß. Let A =A(0) be the ß-set defined by c6(co) e O where

O is an open set of the complex 0-plane. According to Lemma 6.1, (6.37)

implies that A(0) can be considered (neglecting sets of P-measure 0) as a

cylinder set over both xx, x2, ■ ■ • , and x_i, x_2, • • • . Then in (6.35) we can

take Ai = A2 = A, obtaining

(6.38) P(A)£P(A){l-X[l-P(A)]},

which implies that P (A) =0, or that P (A) = 1. Since O is arbitrary, this means

that there is a constant ci>o such that </>(co) =4>o almost everywhere,* as was to

be proved.

As an application of the theorems of this section, we shall show how to

derive a theorem of Kolmogoroff (I, p. 425).f Suppose that Fx is the Borel

field determined by a denumerable collection of its sets,î and that conditional

probability functions are given,.as in Theorem 4.1 (ii), except that instead

of supposing that (4.9) implies (4.10), we suppose, with Kolmogoroff, the

validity of the stronger condition that there is a number X, (0 <X — 1), such that

whenever A is a cylinder set of F„ over xx,

(6.39) P(x0; A) = XP(x0'; A)

for all Xo, xó. There is then, according to Theorem 4.1 (ii) a temporally homo-

geneous Markoff process with the given conditional probability functions.

From (6.36) (interchanging x0, x0' ) we find that

(6.40) F(A) =  f P(xo; A)P(de0) = — P(x„'; A)
J X

for all Xo. Then according to Theorem 6.6, with X0 = X, \x =X2= ■ • • =0, the

* The point </>o of the complex plane is the intersection of the interiors of all the circles of rational

radii with centers at points whose coordinates are rational and for which the corresponding i2-sets

are of P-measure 1.

t The proof to be given cannot compare in simplicity or elegance with that of Kolmogoroff.

It is only given to show the significance of Kolmogoroff's hypothesis, (6.39) below, and the place of

such a theorem in thjs development.

t This hypothesis will be eliminated below.
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process is metrically transitive and has no angle variables. Moreover the hy-

potheses of Theorem 6.5 (iii) are satisfied, so that, according to part (ii) of

that theorem, P(x0; PraA)—>P(A) except possibly on an x0-set of P-measure 0.

We shall show that this exceptional set is actually empty. In the integral

following

(6.41) f P(xx; TmA)P(x0; dex) = P(x0; T™A)

we have just seen that the integrand converges toP(A) except possibly on an

Xi-set of P-measure 0. It follows readily from (6.39) that if P(A) =0, then

P(x0; A) =0,* so that the exceptional set is of P(x0; de^-measure 0 for each

value of x0. Then term by term integration in (6.41) gives Kolmogoroff's re-

sult, that P(x0; PmA)—>P(A) for all x0.f The assumption made above, that

Fx is the Borel field determined by a denumerable collection of its sets, is

unnecessary, since in any case, if A is preassigned, Fx can be chosen to satisfy

the denumerability condition and the condition that A lies in Fu.

7. Application to the examples of §5. In this section we apply the results

of §6 to a detailed study of the examples of §5.

I. In this case, that of a sequence of mutually independent chance varia-

bles, the conditional probabilities become absolute probabilities. If the proc-

ess is temporally homogeneous, it is always metrically transitive and has no

angle variables (Theorem 6.4). The ergodic theorem, as applied in Theorem

6.1, gives the strong law of large numbers. J

II. We have seen above (§5) that absolute probabilities pi, ■ ■ ■ , p„ al-

ways exist in case II, and can be obtained in the form

1      N"       (m)
(7.1) pk = lim —— E Pik, (j fixed).

»-»•• N, m=i

Theorem 7.1. (i) Except possibly on an Q-set of P-measure 0,

1   N
(7-2) lim — Ei*.*-

AT-.» A „,=i

exists.§

* In fact P(A) ê AP(*o'; A) for all *</.

t Kolmogoroff actually obtains more, since he obtains an estimate of the speed of convergence.

t Cf. Doob (I, pp. 764-765); Hopf (I, p. 83); Khintchine (I).
§ Part (i) supposes that some set of absolute probabilities is accepted, thus determining P-meas-

ure. In (7.2), pXmk is a chance variable, a function of w. ( • • -, *_i, x¡¡, ■ ■ ■ ) taking on the value prk at

a if xm = r. Since only cylinder sets over xx, X2, ■ ■ ■ are involved in the theorem, the result holds when

only the space of points (x¡, x2, • ■ ■ ) (on which P-measure is defined in terms of that on fi in an ob-

vious way) is considered.
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(ii) If (j, k) is any pair of subscripts, there exists

N

(7.3) hm--2~lPik  = Ci*-
.v-.» N m_i

The existence of the limit in (7.3) was proved by Fréchet (I, p. 151) by

means of an explicit determination of pjk , as a function of/, k, m, derived

from the theory of linear difference equations. The proof given here will hold

in the more general case III. It will be remembered that (7.3) is an integrated

form of (7.2).

Let pi, ■ ■ • ,pn be some set of absolute probabilities corresponding to the

given matrix. The first part of the theorem is simply the first part of Theorem

6.1 (cf. equation (6.2)) in this special case. The proof of (ii) requires more care.

We shall first choose a particular set of absolute probabilities px, • ■ ■ , pn ob-

tained by applying the corollary of Theorem 4.1 (ii), where we define the set

function Q(E) to be equal to the number of points in E divided by «. This

convention gives absolute probabilities defined by

1 1    N* /  n    , A

(7.4) Pk = -hm — 2Z{2Zpt\
n ,-.» N, m=i \ ,_i        /

According to Theorem 6.1, the limit in (7.3) exists for all pairs of subscripts

/, k for which pi>0. Let J be the set of subscripts/ for which pj = 0. Then

the limit in (7.3) exists if/ i J. We can write pjk+") in the following form:

U ••>) Pik        -  2-j Pn Plk   »

and if we set

we obtain the relation

2-1

1   N
11Í*- 2s Pik    ,

N m-1

(7.6) -n,*-II,*   =  2-,PiiTTik.
ß M l=i

Now according to (7.4), since pi=0 ill eJ,

(7.7) hm-^2:rt(z^r))l = o.

This implies that

(7.8) liminf  ¿1^ = 0.
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Moreover, it has already been shown that

(7.9) limUa=qlk, l(J,
ft—>oo

exists. Then letting yt become infinite in (7.6), and using (7.9), we obtain

(7.10) hm sup n,-*   = lrm sup ¿^ Pn nlt   + 2^ Pu ?i* ^ 2w Pu  + lu Pu ?«*

and

(7.11) lim inf n,-*    ¡g   2^1 Pn lik,
*->•> ¡f/

so that

(7.12) hm sup n,i   — hm inf n,-*    g 2w Pn •
AT—>oo if-»« je/

This inequality is true for v = l, 2, ■ ■ ■ , so that, using (7.8), we obtain

(if) (if)
(7.13) lim sup II,*   = lim inf n,-*

as was to be proved.

Since, in general, there is not a unique set of absolute probabilities

pi, ■ ■ ■ , pn, a given matrix may correspond to several temporally homo-

geneous processes. If all these processes are metrically transitive, the matrix

(pik) will be called metrically transitive. If none of these processes has angle

variables, the matrix will be said to have no angle variables. Otherwise the

matrix will be said to be not metrically transitive, or to have angle variables,

as the case may be.

Theorem 7.2. The matrix (pjk) is metrically transitive if and only if

(i) there is a single set of absolute probabilities (pi} • ■ ■ , pn); or

(ii) the limit qjk depends only on k; or

(iii) the equations

n

(7.14) E Xjpjk = xk, k = 1, ■ ■ ■ , n,
i=l

have only a single linearly independent solution in (xh • • • , xn),* that is, the

matrix (pjk — ôjk) has rank n — l;or

* This condition is not the same as that of (i) since the absolute probabilities are restricted to be

non-negative.
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(iv) the characteristic equation of the matrix (pjk) has I as a simple root; or

(v) the matrix (p¡k) cannot be put in the form of Fig. 1 (where Rx, R2, Rs

are square matrices and the O's represent blocks consisting entirely of O-elements,

in which R3, but not Rx or F2, may be absent, by means of some permutation

applied to both rows and columns.

Ri    0     0'

0    R2    0

•      •     R».

Fig. 1

It would be very difficult to give complete references to previous work on

the various parts of this and the following theorems, and such references are

perhaps made unnecessary by Fréchet's forthcoming book. Since the time of

Markoff, various writers have rediscovered and extended his results, inde-

pendently of Markoff and of each other. It is hoped that this paper will

provide a certain unity to these results, and it is claimed that the terminology

used to describe the various cases is of more general validity and less ad hoc

than that previously used. The methods, and some of the results, are new.

Fréchet and Hadamard (I) have given a historical discussion of some of

them. The equivalence of (i)-(iv) was shown by Fréchet (I) in the most de-

tailed treatment of case II which has as yet appeared. The equivalence of

(ii) and (v) is somewhat related to more specialized results of von Mises

(I, pp. 533-549). The equivalence of (iv) and (v) (in a somewhat different

form, with the additional hypothesis that no column of (pjk) contains only

0 elements) was obtained by Romanovsky (I, pp. 154-155) by applying theo-

rems of Frobenius. The matrix can be further decomposed if 1 is a root of

multiplicity >2. As Romanovsky proves, and as follows readily here also,

Pi, P2 can be replaced by v boxes along the main diagonal, if v is the multiplic-

ity of 1 as a root of the characteristic equation. A complete proof of each part

of Theorem 7.2 will be given, since the method will be available for the treat-

ment of case III, and the details of the latter case will then be omitted.

Proof of (i). Suppose that the given matrix is metrically transitive, and

let px, • ■ ■ , pn be a set of absolute probabilities corresponding to it. Then

according to Theorem 6.1, Corollary 1,

Qik = pk, k = 1, • • • , n,

if pj>0. If p{, ■ ■ ■ , pj is a second set of absolute probabilities corresponding

to the given matrix, then

KP1 + Pi),'   ■   ■   ,h(Pn  +  Pn')
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is also a set of absolute probabilities corresponding to the given matrix, so

that if pi+P'i >0,

<lik = \(pk + pk), k = 1, ■ • • , M.

Combining these two results, if we choose /« so that /»,„>0,

?;„* = pk = \(pk + pk), k = 1, ■ ■ ■ , n,

that is,

pk = pk , k = 1, ■ • • , M.

Thus metric transitivity implies that there is only a single set of absolute

probabilities.

Conversely, suppose that there is only a single set of absolute probabili-

ties, pi, ■ ■ ■ ,pn. It can be verified directly that for each value of/, qn, • • • ,qjn

is a set of absolute probabilities corresponding to the given matrix,* so that

qik = pk for all/, k. If the matrix is not metrically transitive, the process de-

termined by the matrix of conditional probabilities (p]k) and the absolute

probabilities is not metrically transitive (that is, the corresponding trans-

formation P is not metrically transitive), so that there is, according to

Theorem 6.2, a set of subscripts K, such that

(7.15) 0 <pk,  ktK, .}2pk < 1,
ktK

(7.16) 2~lpk? = 1, keK, m= 1, 2, ••• .t
UK

Then

En!f = l, ktK, m=l, 2, •••,
UK

so that, using the fact that Uxf)—*qki = ph and (7.16), we obtain

2Zpi = lim Enlf =1, ktK,
UK m— "    UK

contradicting (7.15). The matrix is thus metrically transitive.

* In general, it can be shown that if qx, ■ ■ ■, qn is a linear combination of columns of the matrix

(?i/)i where the coefficients of the combination are non-negative and have sum 1, then qx, ■ ■ ■ , q„

is a set of absolute probabilities corresponding to the given matrix, and conversely every set of ab-

solute probabilities corresponding to the given matrix can be obtained in this way. Cf. the discussion

of case III below.

f The fi-set determined by the condition x„ e K is invariant under T up to an ¡Co-set of P-measure

0. Equation (7.16) for ra=l is then the first equation of (6.11), and it follows for m>\ by direct

verification in view of the definition of p¡£.
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Proof of (ii). If the matrix is metrically transitive, it was shown in the

proof of (i) that q,k = pk for all/, k (where pi, ■ ■ ■ , p„ is the uniquely de-

termined set of absolute probabilities) and q,k therefore depends only on k.

Conversely if q]k = qk is independent of /, we shall show that the absolute

probabilities are uniquely determined by investigating the solutions of (7.14).

Let (xi, • • • , x„) be a solution of (7.14). Then it can be verified directly that

(7.17) 2 Xjpj7  = x*, k = 1, ■ ■ ■ ,n; m = 1,2, ■ • - ,
j-i

so that

(7.18) £x,TT%) = xk, *- 1, •••,»; 2V- 1,2, ••• .
í=i

Letting m become infinite in (7.18) we obtain

n n

(7.19) X xi°k = ?*]£ Xj= xk, k = 1, • • • , «.
/-i ¿-i

Then if (px, ■ ■ ■ , pn) is a set of absolute probabilities, since px, • • • , pn is a

solution of (7.14) and since pi + ■ • ■ +pn = l,

n

Ok2^1 Pi = qk = />*, k = l, • • •, ».
3=1

Thus the absolute probabilities are uniquely determined; which fact implies,

according to (i) that the matrix (p,k) is metrically transitive.

Proof of (iii). If the system (7.14) has only a single linearly independent

solution, the absolute probabilities (which constitute a particular solution)

are surely uniquely determined, so the matrix is metrically transitive (ac-

cording to (i)). Conversely, according to (i), if the matrix is metrically transi-

tive, there is a unique set of absolute probabilities pi, ■ ■ • , pn, and we have

seen that q,k=pk = qk, (j,k = \, ■ ■ ■,«). Then if (xx, ■ ■ -, xn) is any solution of

(7.14), it is linearly dependent on (px, ■ ■ ■ , pn) by (7.19).

Proof of (iv). Since a set of absolute probabilities is a solution of (7.14),

1 is always a root of the characteristic equation of the matrix (/>,*). If the

matrix is metrically transitive, there is only a single linearly independent

solution of (7.14), according to (iii), and we shall show that 1 is a simple root

of the characteristic equation of the matrix. Suppose the contrary. If all the

columns of the matrix (pjk — \5jk) are added to the first, every element of the

first column becomes 1 —X. If 1 —X is factored from the determinant, the de-

terminant still vanishes for X = 1, by hypothesis. Then the equations
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Xl +   ■   ■   •   +   Xn   =   0,

(7.20) »
2^ Xjpjk = xk, k = 2, • • ■ , M,
j'=i

have a non-trivial solution (expressing the fact that the rows of the determi-

nant are linearly dependent). If the last m —1 equations are subtracted from

the first, the first becomes

n

(7.21) E Xjpjl =   — x2 —  ■ ■ ■   — Xn = Xi.
)'=1

Thus (xi, ■ ■ ■ , x„) isa solution of (7.14), and since Xi+ • • • +x„ = 0, it is not

linearly dependent on (pi, • • • , pn) ; which contradicts the fact that there is

only a single linearly independent solution of (7.14).

Conversely, if 1 is a simple root of the characteristic equation of the ma-

trix (pjk), the system (7.14) has only a single linearly independent solution.*

Proof of (v). If the given matrix is metrically transitive, we shall prove,

using the fact that qjk = Pk for all/, k (where pi, • ■ ■ , p„ is the uniquely de-

termined set of absolute probabilities), that the matrix (pjk) cannot be put

in the form of Fig. 1, with Pi and P2 both present, by a transformation of

the type described. (Such a transformation corresponds to a relabeling of the

points of X.) If, on the contrary, the matrix can be put in this form, it is no

restriction to assume that it is already in this form. It can then be verified

directly that the iterated matrix (p^), and therefore HjP, will also be in

this form with the same blocks Pi, R2. But then each column of the limiting

matrix (q¡k) = (pka¡) (with ai = • • • =<z„ = l) contains zeros, so that pi= ■ • ■

= /»„ = 0, contrary to fact.

To show the converse we shall assume that the matrix is not metrically

transitive and put it in the form described. Let pi, ■ ■ ■ , p„he a set of abso-

lute probabilities for which the corresponding process is not metrically transi-

tive. If any p's vanish, we can assume they are the last ones:t

Ps > 0,        j = a, 0 < a g m,

Pa+l   =   pa+2   =   ■   •   •    =   p»   =   0.

Since

E PiPik = pk, k - 1,
j=i

* This follows from elementary matrix theory and does not depend upon the particular proper-

ties of our matrix {p¡k) ■

f This assumption implies the possibility of a matrix transformation of the type described in the

theorem.
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it follows that

(7.23) Pik = 0,    if   / > a,

where the inequalities on/, k are to hold simultaneously. Because of the fact

that there is not metric transitivity, there is a set of subscripts K such that

pi>0 ii j e K, that 2~lhKpi<^> and that

(7.24) Pik = 0,
h *

j tK,    kiK

j ( K,     k t K,    j = a.*

We can assume that K consists of the first a subscripts; then equations (7.23)

and (7.24) describe the form of Fig. 1. Since K is not empty, Pi cannot be

absent; since2~1ukPí<^> P2 cannot be absent. If no p¡vanishes, R3 is absent.

Theorem 7.3. The matrix (p¡k) has no angle variables if and only if

(i) for every pair of subscripts j, k,

(7.25) lim Pjk   = qjk
m—*»

exists; or

(ii)  1 is the only root of modulus 1 of the characteristic equation of pjk; or

(iii) the matrix cannot be put in the form of Fig. I by a transformation of

the type described in Theorem 7.2 (v), where R2, R3 may not be present, and

where Rx is itself in the form of Fig. 2, obtained by dividing the subscripts into

v groups Jx, ■ ■ ■ , 7„, of consecutive subscripts, such that p,k = 0, unless p,k, is

in some one of the square matrices Sx,

j ejy, k e 7i.t

7i

0

0

0

S4

S y for which j eJr,k e Jr+X ,(r<v),or

/1

J2

J»

72

5,

0

0

0
Fig. 2

/.

0

52

0

0

0

0

S3

0

v = 4,

Proof of (i). Suppose that the matrix (pjk) has no angle variables. Let

* Cf. Theorem 6.2. The fi-set determined by the condition xo e K is invariant under T, if we neg-

lect a set of P-measure 0. The first set of equations in (7.24) is obtained from the first equation of

(6.11), which implies that P(x0;CA) = 0, (x0 e E), except perhaps for an z0-set of P-measure 0, and the

second set of equations in (7.24) is obtained directly from the second equation of (6.11).

f The equivalence of (i), (ii) was shown by Fréchet (I, q.v. for earlier references). Romanovsky

(I) has discussed matrices like that of Fig. 2. Cf. also Doeblin and Fortet (I, p. 1700). The latter

authors omit mention of exceptional points, implying here the possible existence of R3.
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pi, ■ ■ ■ , pn be a set of absolute probabilities corresponding to this matrix.

The condition of Theorem 6.5 will be satisfied if, whenever r is a subscript

such that pr > 0, prk can be put in the form

Prk  =   4>rkpk, k   =   1,  •   •   •   , M.

This will be possible if, for r fixed, prk = 0 whenever pk = 0 ; but this is true,

since

n

E PiPik = Pk.
Î-1

Thus the condition of Theorem 6.5 is satisfied so that the limit in (7.25)

exists for all/, k for which p,->0. Then if J is the set of subscripts for which

the absolute probabilities vanish, the limit in (7.25) exists if jtJ. We shall

suppose, using the results of Theorem 7.1 and the fact that for any subscript/

an, ' ' ' , <7ín is a set OI absolute probabilities corresponding to the given ma-

trix, that the absolute probabilities px, ■ ■ ■ , pn are given by

1   n 1 1   N    "    i i

(7.26) Ph = - E Oik = - hm - E E pV.
n ,_! n JV-« N m-i ,_i

We can write p%+y) in the form

(7.27) pjk     = 2-r Pn pik + 2^i Pn pik •
M HJ

Then letting v become infinite in (7.27), we obtain

(7.28)

.. . l">;    .  v-v   . im;   ,    v">      IM
hm sup/»,t   ^ 2^ íí¡   + ¿-.Pn lik

lim inf />,-*   ^ E Pn On,

so that

(7.29) lim sup/»,*   — lim inf pjk   ^ /Z Pn M = 1, 2, ■ • • .
m—» oo m—> oo it j

Now as in the proof of Theorem 7.1 we know that (7.8) is true, and combining

this with (7.29) we obtain

.. .0») . (m)
hm sup pjk   = hm inf pjk

as was to be proved.
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Conversely, if the limit in (7.25) exists for every pair of subscripts /, k,

Theorem 6.5 shows that there can be no angle variables in any process corre-

sponding to the matrix (/>,*) ; thus the matrix (pjk) has no angle variables.

Proof of (ii). If there are no angle variables corresponding to the given ma-

trix, there can be no root of the characteristic equation of the matrix (/>,*)

of modulus 1, other than 1 ; for if c is such a root, there is a set of constants

xi, • • • , xn, not all 0, such that

n

(7.30) 23  PikXk = cxj, j = 1, ■ • ■ , «.
*-i

Then

"        (m)

(7.31) 2Zpik xk = cmXj,    j = 1, • • • , n; m = 1, 2, • • • .
*-i

When m becomes infinite, the left side converges, to 2Z*_i<7,-*x*, whereas the

right side, if/ is chosen so that x^O, does not converge. Then the character-

istic root c is impossible.

Conversely, suppose that there is no root of the characteristic equation

of modulus 1 other than 1. Let pi, ■ ■ • , pn be any set of absolute probabilities

corresponding to the given matrix. We shall prove that the temporally homo-

geneous process defined in terms of pi, • ■ ■ , pH and (pjk) can have no angle

variable, by showing that the existence of an angle variable implies the exist-

ence of a root (not equal to 1) of the characteristic equation, of modulus 1.

If ^(xo) is an angle variable, and if \p(j) =\pj, (6.18) becomes

(7.32) £piwl>k = a¡,j, |c| = l.c^l,
*-i

for those values of/ for which pj>0. Let these make up the set of subscripts

not belonging to the set 7. If/ < J, we have seen above that pjk = 0 for k e J, so

that changing \ph iorkeJ does not affect (7.32). We shall attempt to re-define

\f/j for/ e 7 to make (7.32) valid for all/. To do this, we must solve the follow-

ing system of equations for \¡/¡, j eJ:

n

(7.33) 2~lPik^k = cPj,       jel;
k-l

or, if we set

S Pik-Pk  =   OCj,
ktJ

the system
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(7.34) E Pikfk = cpi - <Xj,        j tJ,
ktJ

that is,

(7.35) E (Pik — c5jk)pk = — a,-,        j tJ.
ktJ

If these equations have a solution, this solution, when combined with the \p/s

for/ f J, satisfies (7.32) for all/, so that the matrix (p,k) has the number c as a

root of its characteristic equation. On the other hand, if the system (7.35) has

no solution, the matrix (pjk), with/, k restricted to /, has c as a root of its

characteristic equation, so that there is a set of numbers {yj},je J, not all 0,

satisfying

(7.36) YjPikpk = c-ij,        jeJ.
ktJ

But then if y¡ is defined as 0 for/ « /, the set yi, • • • , y„ provides a non-trivial

solution of (7.32) for all/, so that again the matrix (Pjk) has the number c as a

root of its characteristic equation. In any case then, the hypothesis that there

is an angle variable implies the existence of a root cy^l, \c\ = 1, (which is the

characteristic value corresponding to the angle variable) of the characteristic

equation of the matrix.

Proof of (iii). If there are no angle variables, the matrix (pjk) cannot be

put in the form described; for it is readily verified that if (pjk) is in this form,

the matrices (p%+1)), (/>(2"+1)), ■ ■ ■ are of the same form, whereas the mat-

rices (pft), (P%+2)), (P]l"+2)), ■ ■ • are of the same form except that the non-

zero blocks of Pi are the matrices determined by (Pi/g), (J2Jt), • • • instead

of (JiJ2), (J2J3), ■ ■ ■ . Then if pj^—^qjk, the submatrix Pi of (qjk) must have

only 0 elements; but this contradicts the fact that the sum of the elements in

each row of Pi is 1. (It would also have been possible to prove this part by

giving an explicit definition of an angle variable corresponding to the given

matrix.)

Conversely, suppose that there is an angle variable corresponding to some

choice pi, ■ ■ ■ , pn of the absolute probabilities, so that (Theorem 6.3 (i))

there is a function ip(x0) such that

(7.37) <K*i) = ap(xo), \c\ - 1, c* 1,

except on an (x0, xi)-set of P-measure 0. Since ip(xa) (which takes on at most

m values) necessarily takes on some value on a set of positive P-measure, c

must be a root of unity (Theorem 6.3 (ii)). This fact will appear again below.

Let \¡/(j) =\pj. Let ax, a2, ■ ■ ■ be those non-zero values in the set \J/X, ■ ■ ■ , ipn
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for which the corresponding probability p¡ is positive. Define /* as the set of

subscripts/ for which pj>0, and \pj = ak. Let «* be the number of subscripts

in /*. We can assume (transforming the matrix as described above if neces-

sary) that Jx consists of the first «i subscripts, /2 of the next «2 subscripts,

and so on. According to (7.37), some a,- will necessarily be cax, and we can

suppose it to be a2. In the same way, some a, will necessarily be 002, and we

can assume it to be a3 (unless it is Oi), • • • . Continuing this, we will neces-

sarily find a first integer v>\, such that if ax, a2, ■ ■ ■ , a? are chosen succes-

sively as described, so that a2 = cax, • ■ • , a, = c*~1ax, the next application of

the algorithm will give cav = ax, and hence c" = 1. Then c is a pth root of unity,

and 1 <v = n. If «r_i<x0^«r* (so that \f/(x0) =ar), then iir<v, it follows that

^(xi) =ar+i necessarily (if r = v, \p(xx) =ax necessarily), if we neglect Xi-sets of

P-measure 0, that is, subscripts k for which pk = 0; and

„    .,     (/«7r,     ktJr+i,    pk>0, r=l,---,v-l,
pjk = 0    if    <

Kj eJy,     k <t Ji,        pk > 0.

These equations describe the (Ji+ ■ ■ ■ +J,)2 matrix Rx. The fact that the

ß-set determined by the condition xx e Jx+ ■ ■ ■ +Jt is invariant under the

transformation F up to a set of P-measure 0 means that the matrix (pjk)

can be put in the form of Fig. 1, as was shown in the proof of the preceding

theorem, except that in this case the matrices P2, R3 may be absent. The

R3 is absent if every p¡ is positive; R2 is absent if the ß-set, determined by the

condition x0 e 7i4- • ■ • +J„ has P-measure 1.

Theorem 7.4. The matrix (pjk) is metrically transitive and has no angle

variables if and only if

(i) for every pair of subscripts j, k, limm^M pf^  exists and is independent of

j]or

(ii) the root 1 is the only root of the characteristic equation of modulus 1 and

is itself a simple root; or

(iii) the matrix cannot be put in the form of Fig. 1 if either both Rx and R2

are present, or if Rx is present and has the form of Fig. 2 ; or

(iv) each matrix (p(jk), ■ ■ ■ , (p^) is metrically transitive.

Only the last part requires any comment. Suppose that the matrix (pjk)

is metrically transitive and has no angle variables. Then pfl?—*Pk (where

pi, ■ ■ ■ , pn is the uniquely determined set of absolute probabilities). In par-

ticular, limm.oo p%m)=pk, so that, according to (i) the matrix (pfk) is metri-

cally transitive. Conversely, suppose that the matrices (/$'), • • • , (p'ff) are

* Take «o = 0.
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metrically transitive. We shall prove that the matrix (pjk) can have no angle

variable. If there is an angle variable, its characteristic value c, (\c\ = l,c?±l),

is a root of the characteristic equation of the matrix (pjk) (cf. the proof of

Theorem 7.3 (iii)), and we have seen that this number c must be a root of

unity of order less than or equal to m. Then there is a set of numbers

Xi, ■ ■ ■ , xn (not all 0) such that

Moreover, if we sum over k,

E Xjpik = CXk, k =  1, • • • , M.
;-i

2~lxi = CE xk,
j-l k=l

which implies that E"-ix;' = 0- If v is chosen so that c' = l, (v^n), then

E". îXjpjt = CXk = Xk. Now the (uniquely defined) absolute probabilities

pi, ■ • • , pn satisfy the equations

E PiPik    = Pk, k =   1, ■ • •  , M.
J-l

If the matrix (p#) is to be metrically transitive, the sets pi, ■ ■ ■ , pn,

Xi, • • ■ , Xn must be linearly dependent (Theorem 7.2 (iii)), but this is im-

possible, since

n n

Eíí = i,        E Xi = o.
j-i i-i

The hypothesis that the matrix (pjk) has an angle variable has thus led to a

contradiction.

III. In this example, special conditions must be imposed on the condi-

tional probability density p(x, y) to insure the existence of an absolute proba-

bility function. If there is an absolute probability function, it was shown in §5

that it is determined by an X-integrable density function p(x) which can be

supposed to satisfy

(7.38) J  p(x)dx =1, J  p(x)p(x, y)dx = p(y)

for all y e X. In the following we shall mean by an absolute probability density

p(x) an X-integrable function, which is non-negative and satisfies (7.38) for

all y. It follows that two absolute probability densities which are equal almost

everywhere on X are identical. We shall assume throughout that pim)(x, y),for
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some integer m = \, satisfies the condition of uniform integrability discussed in §5

insuring the existence of at least one absolute probability density function. In

fact, we have seen in the corollary to Theorem 4.1 that if Q(E) is any proba-

bility measure defined on the sets of Fx, we can obtain a probability density

p(x) in the form

(7.39) f p(x)dx = lim-¿ f Q(dx) f p^(x, y)dy.
Je >—*" N, m=i" Je

The denumerability hypothesis on the field Fx and the uniform integrability

hypothesis were employed in order to obtain a certain compactness in an ag-

gregate of set functions (cf. §4) through which (7.39) was derived. More ab-

stract formulations are possible (cf. the hypotheses of Kryloff and Bogolioù-

boff (I)).

Theorem 7.5. (i) Except possibly on an Q-set of P-measure 0,

(7.40) lim — £ p(xm, y) = q(a>; y)*
N-<* N m=l

exists for each value of y for which p(y) is finite-valued.

(ii) The limit

(7.41) lim — £ f #(->(*, y)dy = q(x, E)
JT-»o= IS m=l J E

exists for allxtX and every set EeFx.If there is a value of m for which p ("° (x, y)

is a bounded function of x for each value of y,

1   N
(7.42) lim — 2Z P(m)(x, y) = ?(*, y)

N^- N m~l

exists for all x, y.

Part (i) of the theorem is new. Part (ii), which is an integrated form of (i),

generalizes Theorem 7.1 (ii). The existence of the limit in (7.42) was proved

by Fréchet (II, p. 81) who supposes that X is the closed cover of a bounded

domain of euclidean space, and that there is a value of m such that p(m)(x, y)

is a bounded function. Fréchet's results were generalized by Kryloff and

Bogolioùboff (I) to a form which is substantially identical to Theorem 7.5

(ii) (cf. the note above on the hypotheses of the present discussion) but less

general than Theorem 6.5 (ii).

Proof of (i). Let p(x) be an absolute probability density corresponding to

the given conditional probability density. For each fixed value of y for which

* Cf. the note to Theorem 7.1 (i).
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p(y) < oo, p(xo, y) is a P-measurable function, depending only on x0, which is

integrable on ß; namely

J   P(xo, y)dP = J   p(x, y)p(x)dx = p(y).

Then according to Theorem 6.1 (if c/»(w) =p(x0, y)) the limit in (7.40) exists

almost everywhere on ß.

Proof of (ii). This proof follows the outline of the special case considered

in Theorem 7.1 (ii). There is an X-measurable function 4>(x), such that

<t>(x) > 0, J  <t>(x)dx = 1.

If in (7.39) we define Q(E) as fE<p(x)dx, an absolute probability density p(x)

is obtained in the form

(7.39') I   p(x)dx = lim-¿ j   4>(x)dx I   p(-m\x,y)dy,
Je '-**> Nv m—iJ Je

where the sequence {N,} is independent of E. We shall suppose that p(x) is

defined by (7.39')- If we define II w (x, y) by

n<»>(x, y) =-)-2Zp{m)(x,y),
N m-l

we find (cf. equation (7.6)) that

(7.43)- n<"+"'(x, y) - — n<">(x, y) =  ]  pM(x, z)n<">(z, y)dz.
M P J

Let Eo be the X-set on which p(x)=0. Then if E e Fx, the limit in (7.41) exists,

according to Theorem 6.1 (ii), for x almost everywhere in the complement of

Eo, and

(7.44) lim   f nc»(i, y)dy = q(x, E), xeCE0,
JV-.00    J ß

except possibly for an X-set of measure 0. According to equation (7.41),

lim   I  <t>(x)dx I   n»"(i, y)dy = lim-E I 4>(x)dx I   /»(m)(«, y)dy = 0.
V-XB     J J E0 ►->»     Ny    m=lJ J Eq

* If fldx = X < »o, we can take ¡t>(x) = 1 /X. Otherwise we use the fact (cf. §5) that there is an in-

creasing sequence EiC £2C • • • of X-measurable sets such tha.t¿_,í Ej = X and that fE.\dx = \¡< ».

There is a sequence of positive numbers jc„j such that tn+£,\°tnQ^n+\—X„) = l,and we define <t>(x)

as to on Ei and «„ on En+i — E„, for n> 1.
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This implies that

(7.45) lim inf   |  <p(x)dx I   p<-m)(x, y)dy = 0.
m—»oo      %) J

Equation (7.45) means that some subsequence {4>(x)fE,plai)(x> y)} oí

{(j>(x)fEop(m)(x, y)dy), when integrated over X, converges to 0. This implies

that <j>(x)fE0p<-ai)(x, y)dy converges in measure to 0* which in turn implies

that a further subsequence {<t>(x)fp<-b>)(x, y)dy) converges to 0 for almost all x.

Since (¡>(x) >0,

lim   f
./-.oo    J i

p{bi)(x, y)dy = o

for almost all x. Now

/p&i+V'x, y)dy =  Í p(x, z)dz I   p^^z, y)dy.
Et, J J E0

The z-integrand (for x fixed), p(x, z)fp'-b>)(z, y)dy, converges to 0, for almost

all z, according to what has been just shown, and is less than or equal to the

z-integrable function p(x, z). Then, by a well known integration theorem, we

can go to the limit under the integral sign, so that

(7.46) lim   f p<bi+»(x, y)dy = 0, xeX.
}->">   J Ea

If both sides of (7.43) are integrated with respect to y over a set E in the field,

then if ¡j.—» oo f we obtain

(7.47)

lim inf    I   n<w>(x, y)dy = lim inf   Í  pw(x, z)dz I  U^(z, y)dy
N—»«o     v e /i—»oo     J Je

= lim inf   j     pw(x, z)dz I   II<">(z, y)dy.

Now the z-integrand p(r)(x> z)fBTl<-ii)(z, y)dy converges, as u—><x>, to

pM(x, z)q(z, E) for almost all z in CE0, according to (7.44). Moreover this

integrand is less than or equal to the z-integrable function pM(x, z). Then we

can go to the limit under the integral sign, and obtain

Um inf   |  n^'(x, y)dy =   f    pM(x, z)q(z, E)dz, v = 1, 2, • • • .
jv-.»     Je J ceo

* Convergence in measure was defined and discussed by F. Riesz, Comptes Rendus de l'Académie

des Sciences, Paris, vol. 148 (1909), pp. 1303-1305.
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On the other hand,

lim sup   I  nW)(x, y)ay = lim sup -J   J   p^(x,z)dz\  II<">(z, y)dy
at-»»    •/ ¡j p-tx     \Je0 Je

+ f    pM(x,z)dz fuM(z,y)dy\
(/.4o) J CE,, Je !

^   f Pw(x, z)dz + f    pV(x, z)q(z, E)dz,
J En J CrE„

Then
1,2,

(7.49)   lim sup   j  n<w>(x, y)dy - lim inf   J 11™(x, y)dy ^  f pM(x, z)dz,
N-"o    Je N-"o    Jß J e„

y - 1, 2,   .. .

If j» is allowed to increase without limit through the sequence {ô, + l} of

(7.46), it follows that the limit in (7.41) exists for all x, as was to be proved.

Now in addition to the other hypotheses, suppose that for some integer n,

p{ß)(x, y) is bounded in x for each y. The existence of the limit in (7.41) is

readily seen to imply that if f(x) is a bounded X-measurable function,

1   N   r
lim — E      Pim)(x, z)f(z)dz

JV-.» N m-l J

exists for all x. If we take/(z) =pw(z, y), then

lim — E I  P*-m)(x, z)p^(z, y)dz = lim —   E Pim)(%, y)
if-»» N m_i J ff-. N m_M+i

1  w
= lim — E Plm)(x, y)

Jr— N m_i

exists for all x, y, as was to be proved.

A given function p(x, y) may correspond to several temporally homogene-

ous processes. If all these processes are metrically transitive, the function

p(x, y) will be called metrically transitive. If none of these processes has angle

variables, p(x, y) will be said to have no angle variables. Otherwise p(x, y)

will be said to be not metrically transitive, or to have angle variables, as the

case may be.

Theorem 7.6. The function p(x, y) is metrically transitive if and only if

(i) there is only a single absolute probability density p(x); or

(ii) q(E, x) (or q(x, y) if the hypotheses of the second part of Theorem 7.5

(ii) are satisfied) is independent of x; or
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(iii) the integral equation

(7.50) ^(x)p(x,y)dx = il(y),

in the X-measurable integrable function \p(x), has only a single linearly independ-

ent solution; or

(iv) there are disjunct X-sets Fh F2 in Fx, of positive X-measure, such that

(7.51) p(*,y)=0, xeFj, ytFj, (j - 1, 2),

if we neglect (x, y)-sets of (x, y)-measure 0.*

The various parts of this theorem are proved by exactly the methods of

the proof of Theorem 7.2. In the case of metric transitivity, the limit q(x, E)

can be expressed simply by

(7.52) q(x,E)=  f p(y)dy.
J E

(This equation corresponds to the equation qjk = pk for all/, k in case II, when

the given matrix is metrically transitive.) As an example of the proofs used,

we prove (iii).

Proof of (iii). If the function p(x, y) is metrically transitive, let p(x) be the

uniquely determined probability density. Then (7.52) is true. If ip(x) is X-

measurable and integrable, and satisfies (7.50), it follows that

JiP(x)dx | WN>(x, y)dy =  j i(y)dy,     N - 1, 2,   • • • ;
J E J E

and if /Y—»oo, this becomes!

(7.53) f *(x)dx f p(y)dy =  f Ky)dy.
J J E J E

If a is defined as f\p(x)dx, (7.53) implies, since E is arbitrary, that^(y) =ap(y)

for almost all y. Since the functions p(y), and xp(y) satisfy their integral equa-

tion identically, \p(y) =ap(y), as was to be proved. Conversely, if there is a

solution of (7.52), uniquely determined (up to a constant factor), then the

absolute probability density, which is a solution, is uniquely determined;

hence there is metric transitivity, according to part (i).

* The equivalence of (i), (ii), (iii) was proved by Fréchet (I), in the case (described above) which

he considered. The equivalence of (ii) and (iv) was announced by Kryloff and Bogolioùboff (II),

whose hypotheses apparently exclude the possibility of exceptional values in (7.51).

t The z-integrand <p(x)fETlw>(x, y)dy converges for all x to <P(x)fEp(y)dy and is uniformly less

than or equal to >//{x) ; so we can go to the limit under the «integral sign.
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There is some interest in developing this theorem further.* Suppose a

function p(x, y) is not metrically transitive. Then X sets Pi, P2 exist as de-

scribed in (iv). Now it may be that F( itself contains X-measurable sets

Fa, Ei2, of positive measure, such that p(x, y) =0 if x e P¿,-, y f P,,-, if we neg-

lect (x, y)-sets of (x, y)-measure 0. In the contrary case the function p(x, y),

considered only for x e P,-, y e P,-, is metrically transitive. Now it is readily

seen that the uniform integrability condition prevents the existence of infi-

nitely many X-measurable sets Pi, P2, • ■ ■ , of positive X-measure, such that

if x e F,, y f Fi, then p(x, y) =0 neglecting (x, y)-sets of (x, y)-measure 0. Hence

there is at most a finite number p of such sets, and p(x, y) is metrically transi-

tive when considered defined only for x,y e Pt. Let Pi(x) be the corresponding

uniquely defined absolute probability density, and define pi(x) =0 if x t Fi.

Then if pi, ■ ■ ■ ,p„are non-negative numbers with sum 1, p(x) =Ei'-i P*pi(x)

is an absolute probability density for p(x, y), and conversely, any absolute

probability density for p(x, y) is such a linear combination. The limit q(x, E)

of Theorem 7.6 (ii) must he2~21~iPifE.E¡Pi(x)dx.

Theorem 7.7. The function p(x, y) has no angle variables if and only if

(i) whenever E e Fx,

(7.54) lim   I   p^(x, y)dy = q(x, E)
m—>oo   J e

exists for all x e X (or, in case the hypotheses of the second part of Theorem 7.5

(ii) are satisfied, whenever limm^„ />(m)(x, y) exists for all x, y); or

(ii) it is impossible to find disjunct sets Eh • ■ ■ , Ev, v>\, of positive

X-measure, such that (if we neglect an (x, y)-set of (x, y)-measure 0),

.„ ... ,      .       . ix«£r, yfPr+i, r=l,--,v-l,
(7.55) p(x, y) = 0, I

\xtE,,        y f Ei.

In case II, there seems to be no essential difference between the existence

of angle variables and the existence of solutions (not equal to 1, of modulus 1)

of the characteristic equation of the given matrix. However, in the present

case it seems possible to obtain more general results by considering angle

variables rather than solutions of the integral equation

J Hy)P(x, y)dy = cp(x).

The greater adaptability of angle variables is shown, for example, by the fact

* Cf. Kryloff und Bogolioùboff (I, II), Doeblin and Fortet (I).
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that the existence of an angle variable implies the existence of a bounded

angle variable (as we have seen above). Fréchet was able to extend the usual

Fredholm theory of integral equations to his kernels p(x, y), and so could ob-

tain the complete analogue of Theorem 7.3 ; and in the present treatment also,

if the Fredholm theory is available, the proof of Theorem 7.3 goes right

through in case III.

Proof of (i). Suppose that p(x, y) has no angle variables. Let p(x) be an

absolute probability density corresponding to p(x, y). We show first that the

hypotheses of Theorem 6.5 are satisfied, so that there is a function c6(x, y)

such that for every set E e Fx and for all x (except perhaps values in a set on

which the integral of p(x) vanishes),

(7.56) I   p(x, y)dy =  f </,(x, y)p(y)dy.
Je Je

Let Po be the x-set on which p(x) = 0. Since

(7.57) |   p(x)dx I    p(x, y)dy =   f p(y)dy = 0,
J J E„ J E„

fE„p(x, y)dy = 0, except possibly on an x-set on which the integral of p(x)

vanishes. Then if <p(x, y) is defined by

.. „, <*>(*, y) = P(x, y)/P(y),       P(y) > o
(7.5o)

<t>(x, y) = 0, p(y) = 0,

it is readily verified that (7.56) holds, except possibly for values of x for which

the integral of p(x) vanishes. The hypotheses of Theorem 6.5 are therefore

satisfied, and as the process has, by hypothesis, no angle variables, whatever

absolute probability density is chosen, the limit in (7.56) must exist almost

everywhere on CE0. A suitable generalization of the proof of the correspond-

ing part of Theorem 7.3 then completes the proof. Conversely, if the limit in

(7.54) exists for all x, Theorem 6.5 states that the function p(x, y) has no

angle variables. The transition from (7.54) to the unintegrated form

(limm..„ p(m)(x, y)) is easily made as in the proof of Theorem 7.5

Proof of (ii). If there are sets Ex, ■ ■ ■ , E, as described in (ii), an angle

variable can easily be explicitly defined, or the proof of the corresponding

part of Theorem 7.3 can be generalized to show that p(x, y) must have angle

variables. Conversely suppose there is an angle variable, so that (cf. Theorem

6.3) there is an X-measurable function ^-(x) such that

(7.59) ^(xi) = ctA(xo), |c| = l,c^l,

if we neglect an (x0, Xi)-set of P-measure 0. Then
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j [P(xi) - aP(xo)]P(deBi) = jj p(x)p(x, y)[p(y) - c^(x)]dxdy = 0,

so that

(7.60) P(x)p(x, y) [iKy) - a¡,(x) ] = 0

for almost all (x, y), and

(7.61) p(x, y)[p(y) - cp(x)] =0,        x f P„,

if we neglect (x, y)-sets of zero measure. Let £ be a point not in E0, such that

f P(t, y)dy = p(t, y)[Hy) - ^(1)] - 0

(where the second is to hold for almost all values of y). This may exclude

(cf. (7.5)) a £-set of measure 0, besides E0. Then, since /»(£, y) >0 on CEa on a

set of positive y-measure (its integral over CEa is 1), ^(xx) takes on the value

aj/(Ç) on a set of positive P-measure. Now let a be any value, not equal 0,

assumed by yp on a set of positive P-meaSure. According to Theorem 6.3 (iii),

c must be a root of unity. Let v be the smallest exponent r for which C = 1.

The function ^(x) takes on values a,ca, ■ ■ ■ , c*-1 a on subsets Ei, ■ ■ ■ , E, of

CPo- The fact that if x0 e Er, then xi e ET+i, (r = 1, • • • , v — 1), (if x0 e E„, then

xi e Pi) necessarily, if we neglect sets of P-measure 0, and that the set deter-

mined by the condition x0 e E+ ■ ■ ■ +E„ is invariant up to a set of P-meas-

ure 0, implies the conditions of (7.55).

The set £i+ • • • +EV is one of the sets P (corresponding to invariant

ß-sets) analyzed above. In general there will be then a finite number of P-sets,

and if the function p(x, y) has any angle variables, one or more of these

P-sets will be divided into a finite number of E-sets.*

Combining the previous theorems we obtain finally the theorem :

Theorem 7.8. The function p(x, y) is metrically transitive and has no angle

variables if and only if

(i) whenever E e Fx, limmH.M fBp<-m)(x, y)dy exists for all x and is independ-

ent of x (or, in case the conditions of the second part of Theorem 7.5 (ii) are satis-

fied, if limm .«, p(m) (x, y) exists for allx,y and is independent of x) ; or

(ii) it is impossible to find sets as described in Theorems 7.6 (iv) or 7.7 (ii) ;

or

(iii) every function p(x,y), p{2)(x,y), ■ • • is metrically transitive.

* This decomposition of X was announced by Doeblin and Fortet (I). The hypothesis, made here,

that absolute and conditional probabilities are given by density functions, is unnecessary, as we only

need enough hypotheses to assure the fact that an angle variable will assume one of its values on a

set of positive P-measure.
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IV. The case requires little comment. The properties of the transforma-

tion 5 correspond to similar properties of T; for example, if one has angle

variables, so has the other.
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