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1. Introduction. We shall begin by considering certain simple operations

or transformations on the oriented lineal elements of the plane. A turn Ta

converts each element into one having the same point and making a fixed

angle a with the original direction. By a slide Sk, the line of the element re-

mains the same and the point moves along the line a fixed distance k. These

transformations together form a continuous group of three-parameters which

we call the whirl group W3. The group of whirls is isomorphic to the group of

rigid motions M3. These two three-parameter groups are commutative and

together generate a continuous group of six-parameters which we term the

whirl-motion group G6. In preceding papers (see the bibliography at the end

of this paper), Kasner and the author developed the geometry of this group

G6. In this paper, which is a continuation of the paper by the author The

differential geometry of series of lineal elements, these Transactions, vol. 46

(1939), pp. 348-361, we shall give the differential geometry of fields of lineal

elements with respect to the whirl-motion group G6.

A set of oo1 elements is called a series; this includes a union (curve or

point) as a special case. A collection of »2 elements is termed & field, which of

course corresponds to a differential equation of the first order, F(x, y, y') = 0.

The totality of w3 elements of the plane is called the opulence (as defined by

Kasner).

In the earlier paper, we considered the tangent turbines, the osculating

flat fields, and the osculating limacon (circular) series of a given series S. We

defined the curvature k and the torsion r of any series. The curvature k and the

torsion r of a series S conjugate to a given series S are given by the formulas

~k = k/t,t = 1/t. We proved the fundamental result that any two general (equi-

parallel) series which have their curvatures and torsions the same functions of the

angle u {arc length s) are equivalent under the whirl-motion group Ge. This result

establishes the intrinsic equations of any series in the geometry of the whirl-

motion group Gi.

In the present paper, we shall derive the analogues of some of the classic

theorems for a surface in a euclidean three-dimensional space. In particular,

* Presented to the Society, March 26, 1937, under the title The differential geometry of series of

lineal elements, and September 6, 1938, under the title Asymptotic directions of a field of lineal elements;

received by the editors November 16, 1939.
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we shall consider the Meusnier, the Euler, the Joachimsthal, and the

Beltrami-Enneper theorems for a field in the geometry of the whirl-motion

group G6. The theory of geodesic series (minimum curvature) will be devel-

oped. We shall define the gaussian curvature K of a field. Finally the theory

of conjugate fields will be considered.

2. The tangent turbines of a series. A series which consists of <x>1 non-

parallel (parallel) elements is called a general (equiparallel) series. A general

series is given by v = v(u), w = w(u), whereas an equiparallel series is given by

u = c,w = w(v), where c is a constant. A general series possesses a point-union

and a line-union, whereas an equiparallel series possesses only a point-union.

A turbine is the series which is obtained by applying a turn Ta to the ele-

ments of an oriented circle (the outer circle). It is nonlinear or linear accord-

ing as this base circle is not or is a straight line.

A nonlinear turbine is a general series. Its point-union is a circle (the

outer circle), and its line-union is also a circle (the inner circle). These two

circles are concentric, and their common center is called the center of the tur-

bine.

From the preceding remarks, we find that a nonlinear turbine may be con-

structed by applying a slide Ss to the elements of an oriented circle (the inner

circle). Thus the equations of a nonlinear turbine are

v = a cos u 4- b sin u 4- r,

(1)
w = — a sm u + b cos u + s,

where (a, b) are the cartesian coordinates of the center, r is the radius of the

inner circle, and 5 is the constant distance of the slide Ss. We call T(a, b, r, s)

a set of nonlinear turbine coordinates.

A linear turbine is an equiparallel series whose base curve is a straight

line. The equations of a linear turbine are

(2) u = U — 03,      v cos w + w sin oi = V,

where (U, V) are the hessian coordinates of the base line and co is the con-

stant angle of the turn Tu. We call T(U, V, w) a set of linear turbine coordi-

nates. Obviously

T(U, V, «) = T(U + tt, - V,ü> + tt).

The angle u2 — Ui between any two elements is the angle between their

lines. Two elements are parallel or supplementary (antiparallel) according as

the angle between them is 0 or tt. The distance [(v2 —v1)2+(w2 — Wi)2]1/2 be-

tween two parallel elements is the distance between their points.
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Two parallel elements are on a unique linear turbine. Two nonparallel

elements are contained in a unique nonlinear turbine T. The center of T is

the intersection between the perpendicular bisector of the segment deter-

mined by the points of Ei and Et, and the angle bisector of the angle deter-

mined by the oriented lines of Ei and E2.

Two series Si and S2 are said to be tangent (or to have contact of the first

order) at a common element E if they have two (but not three) consecutive

elements in common at E. The two series Si and S2 are said to be osculating

(or to have contact of the second order) at E if they have three (but not four)

consecutive elements in common at E.

If a one-parameter family of series has the property that consecutive se-

ries have a common element, the family is called a set of enveloping series.

The locus of intersection of consecutive series is termed the envelope. It is

easy to prove that any series St of a set of enveloping series is tangent to the

envelope S at any one of their common elements.

In the remainder of the paper, an accent will always mean total differ-

entiation with respect to u unless otherwise specified.

Theorem 1. The tangent turbines of a general series are the »1 nonlinear

turbines whose parameter values are

a = — vr sin u — wr cos u,      b = v' cos u — w' sin u,

(3)
r = v + w', s = — v' -\- w.

On the other hand, the tangent turbines of an equiparallel series S are

the oo1 linear turbines all of which possess the common direction of 5 and

whose base lines are tangent to the base curve of S.

It may be observed that two series Si and S2 are tangent at a common

element E if and only if they have the same tangent turbine at E.

3. Conjugate series. Two turbines T and T are said to be conjugate if they

have the same circle as point-locus and the elements of the two turbines are

symmetrically related to the elements of the circle. Two series S and S are

said to be conjugate if there exists a one-to-one correspondence between their

elements in such a way that the tangent turbines of the two series at the

corresponding elements are conjugate turbines.

The conjugate turbines Ti and T2 of two given turbines Z\ and T2 (not

both linear) do or do not possess a common element according as Ti and T2

do or do not possess a common element. The conjugate turbines of two inter-

secting linear turbines never possess a common element.

Theorem 2. For any general series S, there always exists one and only one

conjugate series S which either consists of one element or is a general series. This



210 JOHN DE CICCO [March

series S is given by the equations

- sV + b's'                               - a's' - b'r'
cos ü =-1 sin ü ■-— >

(4) a'2 + b'2 a'2 4- b'2

v = a cos ö + i sin ö 4- r, w = — a sin w 4- b cos «2 — i,

where (a, b, r, s) are the parameter values of the tangent turbines of S.

If an equiparallel series S is not a turbine, then there is no series conjugate

to it.

4. The osculating flat fields of a series. A nonlinear fiat field consists of

the oo2 elements cocircular with a given element, called the central element.

The equation of a nonlinear flat field II is

(5) w = (v — v) cot (m — ü)/2 — w,

where (m, v, w) are the hessian coordinates of the central element G of II. We

call II (w, v, w) a set of nonlinear flat field coordinates.

A linear flat field is the set of <x>2 elements on °°1 parallel straight lines.

Any linear field is given by u = const.

The invariants between two nonlinear flat fields are identical with those

between their central elements.

In a given flat field, there are oo2 turbines. The turbines which are con-

tained in a nonlinear flat field II are those whose conjugate turbines possess

the central element G of II. The turbines which are contained in a linear flat

field IT are the linear turbines which have the common direction of II.

Three parallel elements determine a unique linear flat field. Three ele-

ments which are not all parallel and which do not lie on one turbine determine

a unique nonlinear flat field II. The central element G of II is the single inter-

section of the conjugate turbines of the three turbines which pass through

these elements.

Two elements of a flat field II determine a turbine which lies entirely in II.

Two flat fields (not both linear) intersect in a turbine. Two linear flat fields

have no common elements.

The flat field which has three consecutive elements in common with a se-

ries S at an element E of S is called the osculating flat field of S at E.

Theorem 3. The osculating flat fields of a general series S are the nonlinear

flat fields whose central elements are the elements of the series S conjugate to S.

If S consists of only one element G, then S is contained in the nonlinear

flat field whose central element is G. In this case, we shall say that 5 is a

coflat series.
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Any equiparallel series S has one and only one osculating flat field,

namely, the linear flat field in which it is contained.

5. The osculating limacon series of a general series. Let T be a nonlin-

ear turbine, let G be a fixed element on the conjugate turbine T of T, and let

7 be a real number. Let O be the point of G, and let P be the point of any ele-

ment E of T. On the line (OP), let us select the points P< (i = 1, 2) such that

the distance d(P, P{) = 2y. Let Et be the element whose point is Pi and whose

direction is that of E. By this construction, to each element E of T there are

associated two parallel elements Ei and E2. The totality of these elements

Ei, E2 is called a limaqon series with central turbine T and radius y.

Upon letting C and D denote

(6) C = - 27 sin w/2,      £> = 27 cos ü/2,

we find that the equations of a limacon series are

v = A cos u 4- 5 sin u 4- C cos w/2 4- Z> sin w/2 4- R,
(7)

w = — A sin m 4- 25 cos m — C sin w/2 4- D cos w/2 4-5,

where (A, B, R, S) are the parameters of the central turbine T, ü is the normal

angle of the fixed element G, and 7 is the radius of the limacon series. We call

L(A, B, C, D, R, S) a set of limacon series coordinates. Obviously

L{A, B, C, D, R, S) = L(A, B, - C, - D, R, S).

A limacon series L is contained in the nonlinear flat field II whose central

element is G. The centers of the tangent turbines of L, which of course are

in LI, are on a circle with center (A, B) and radius 7. We call this the associ-

ated circle of L. A limacon series is uniquely determined by its flat field and

its associated circle.

Three elements no two of which are parallel and which do not all lie on

one turbine determine four limacon series. Three elements only two of which

are parallel determine two limacon series. The flat field II of these limagon

series is the one determined by the given elements. Their associated circles

are those which are tangent to all three of the angle bisectors of the angles

formed by each of the oriented lines of these elements with the oriented line

of the central element G of II. In the first case, there are four circles, namely,

the inscribed and escribed circles of the triangle formed by these lines. In

the second case, there are only two circles since two of these three lines are

parallel.

Theorem 4. The osculating limaqon series of a general series S are those

whose parameter values are
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A = a 4- 2r' sin u 4- 2s' cos u, B = b — 2r' cos m 4- 2s' sin w,

(8) C = - 4r' sin m/2 - 4s' cos u/2,      D = 4r' cos w/2 - 4s' sin w/2,

R = r + 2s', S = s-2r',

■where (a, b, r, s) are the parameters of the tangent turbines of S.

The envelope of the central turbines of the osculating limafon series of a

general series 5 is called the series of curvature of S. This series is given by

(9) u = u + t,      v = v+2w',       w = - 2v'+ w.

Theorem 5. The tangent turbines and the central turbines of any general

series S have in common the series of curvature of S.

6. The osculating circular series of an equiparallel series. An equiparal-

lel series whose point-union is a circle with center (A, B) and radius y is called

a circular series with center (A, B) and radius y.

The osculating circular series of an equiparallel series S are those which

possess the common direction of S and whose circles are the osculating circles

of the point-union of S.

7. The curvature and torsion of a general series. The curvature k at an

element £ of a general series 5 is defined by the formula

(10) k - (r'2 4- s'2)1'2,

where (a, b, r, s) are the parameters of the tangent turbine of S at £.

The quantity k is one half of the radius of the osculating limagon series L

of 5 at E, and also it is one half of the distance between the centers of the

tangent and central turbines of 5 at E.

The torsion r at an element £ of a general series S is defined by the formula

(11) t = dü/dui

where u and ü are the normal angles of the element £ of 5 and the element E

which is the central element of the osculating flat field of S at £.

The torsion r at an element £ of a general series S is the rate of change

of the angle of the osculating flat field per unit radian measure of the angle

of the element £.

8. The curvature of an equiparallel series. The curvature n = l/y at an

element £ of an equiparallel series 5 is defined by the formula

1 w"
(12) k = — =->

y      (14- w'2)3'2

where the accent denotes differentiation with respect to v.
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The quantity y = 1/k is the radius of the osculating circular series of 5 at

E.
The torsion r of an equiparallel series is taken to be zero.

9. The osculating spherical fields of a general series. Let E denote an

element, and let II denote a nonlinear flat field with central element G. On

the oriented line of E, construct the element G which is in II. Let I be the line

connecting the points of G and G. The perpendicular distance between the

point of E and the line I is said to be the distance between E and II.

The set of =o2 elements E(u, v, w) which are at a constant distance p

from a fixed nonlinear flat field U(U, V, W) is called a spherical field 2. We

term II the central flat field and p the radius of 2. The equation of 2 is

(13) w = (« - 7) cot (« - 77)/2 + p esc (« - Z7)/2 - W.

We call 2(C/, V, W, p) a set of spherical field coordinates. Obviously

2(77, V, W, p) = 2(77, 7, F, - p) .

The integral curves of 2 are given in hessian line coordinates by the equa-

tion

v = - p[cos (« - 77)/2 + sin2 (u - 77)/2 log cot (« - F)/4]
(14) _      _ _ _

- C cos (« - U) + W sin (« - U) + 7 + C,

where C is an arbitrary constant. If p = 0, then 2 becomes its central flat

field II, and its integral curves are the so1 circles which contain the central

element G of II. Otherwise if p^O, the integral curves are transcendental.

Let C be the circular series whose center is the point of the central ele-

ment G of the central flat field II of the spherical field 2, whose radius is the

radius p of 2, and whose direction is that of G. We call C the associated circu-

lar series of 2. Obviously a spherical field 2 is uniquely determined by its

associated circular series C.

The only turbines in a spherical field 2 are the »1 linear turbines whose

conjugates are tangent to the associated circular series C of 2. These are the

equiparallel series of 2. Thus a spherical field 2 contains no nonlinear tur-

bines.

There are <»3 limacon series in a spherical field 2. Their central turbines

are contained in the central flat field II of 2. If p is the radius of 2, y is the

radius of any one of these limacon series L, and a is the angle between LT and

the flat field of L, then

(15) p = 2y sin a/2.

A least limaqon series of a spherical field 2 is any limacon series of 2
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which has either one of the two equivalent properties: (1) its radius 7 is one

half the radius p of 2, or (2) its flat field is supplementary or antiparallel to

the central flat field II of 2. There are 002 least limacon series in a spherical

field 2.

A spherical field 2 intersects a nonlinear flat field Iii which is not parallel

to the central flat field IT of 2 in a single limacon series. If LTi and LT are paral-

lel but not identical, then 2 intersects LTi in two linear turbines (which may

be coincident or imaginary). If II1 and LT are identical, then 2 andLT =LTi have

no common elements. A spherical field intersects a linear flat field in two lin-

ear turbines.

Two spherical fields 2X and 22 whose central flat fields LTi and n2 are not

parallel intersect in two limacon series. If ITi andll2 are parallel but not iden-

tical, then 2] and 22 intersect in four linear turbines (two of which may be

coincident, or two or all four of which may be imaginary). If Iii and II2 are

identical, then 2i and 22 have no common elements.

Four elements, at most two of which are parallel and which do not all

lie in one flat field, determine eight spherical fields. Let us denote the four ele-

ments by Ei, E2, E3, E4, where Es and E4 are the two possible parallel ones.

Now Ei, Ei, Ej (j = 3, 4) determine four limacon series. The associated circles

of these are the inscribed and escribed circles of a triangle Tj which has one

vertex at the center 0 of the turbine determined by Ei and E2. Let and

Lji denote the two limacon series whose associated circles are the inscribed

circle and the escribed circle opposite the vertex 0 of Tj. Let Lj3 and Zj4 de-

note the remaining two limacon series. The central turbines of L3i, L32, La, L&

will have a common element Fi, and hence will determine four nonlinear flat

fields LT< (*=T, 2, 3, 4). Similarly, the central turbines of L33, L3i, Li3, La will

have a common element F2^Fi, and hence will determine four new nonlinear

flat fields n,- (i = 5, 6, 7, 8). These eight flat fields IT {i = 1, • • • , 8) are the
central flat fields of our eight spherical fields 2,-. The radius p< of 2< is the

distance between LT,- and any one of the four given elements.

The four elements Ei, E2, E3, Ei such that only Ei, E2, E3 are parallel to

each other but are not all on one turbine, determine six spherical fields. Con-

struct the linear turbine Tx determined by and Ej (i, j = 2, 3). Let II

be the linear flat field which contains the conjugate turbine Ti of Ti. Con-

struct the two linear turbines T2 and T3 contained in II such that their con-

jugate turbines T2 and T3 contain the remaining two elements. Our spherical

fields are those whose associated circular series are tangent to Ti, T2, and T3.

The spherical field 2 which has four consecutive elements in common with

a general series 5 at a given element E of S is called the osculating spherical

field of S at E.
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Theorem 6. The parameter values of the »1 osculating spherical fields of a

general series S are

V = u - 2 arc tan R'/S',

V = A cos V + B sin V + R,      W = - A sin V + B cos V - S,

(16) _ 4(r'R' + s'S')

wAere (a, ft, r, s) <z«<f (.4, B, R, S) are the parameters of the tangent and central

turbines of S.

Let v and w in (13) be replaced by functions of u. Upon differentiating

this result three times with respect to u and simplifying, we obtain

(z> - V) sin (u - V)/2 + (w + W) cos (u - Z7)/2

= 2v' cos (u - V)/2 - 2w' sin (« - Z7)/2,
(17) _ _

- p/4 = r' sin (u - U)/2 + s' cos (u - U)/2,

0 = R' cos (« - V)/2 - S' sin (m - Z7)/2.

The second and last of these equations give the values of U and p of (16).

Upon replacing p in (13) by the value given in the second of these equations,

and then solving this result and the first of the above equations for V and W,

we find their values to be those of (16). This completes the proof of Theorem 6.

An immediate consequence of Theorem 6 is

Theorem 7. The central flat fields of the osculating spherical fields of a gen-

eral series S are the osculating flat fields of the series of curvature of S (the en-

velope of the central turbines of S).

If a denotes the angle between the osculating flat fields of a general series

S and its series of curvature, we find from (4) and (16)

r'R' + s'S' p
(18) sin a/2 = - = — >

(f'2 + s'*yi2(R'* + S'2)1'2 2y

where p and y are the radii of the osculating spherical field S and the osculat-

ing limacon series L at an element E of S. Since the central turbine of L is also

in the osculating flat field of the series of curvature of S, we find that the

following result holds.

Theorem 8. The osculating limaqon series L at an element E of a general

series S is the intersection of the osculating flat field II and the osculating spherical

Held 2 ofS at E.

From (4), (8), (10), and (11), we find
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(19) r' + is' = Kei("-«)/2;       R> + iS' = fa - 2«')6i(5-""2.

Substituting these into the last of equations (16), we obtain

Theorem 9. The radius of spherical curvature p in terms of the curvature k

and the torsion r of the general series S is

4k2t

(20) P =-
(kV + 4k'2)1'2

Upon substituting the last of equations (19) into the formulas for the

curvature and torsion of the series of curvature of a general series S, we ob-

tain the theorem which follows.

Theorem 10. The curvature ki and the torsion Ti of the series of curvature

of a general series S in terms of the curvature k and the torsion r of S are

Ks = («cV + 4k'2)1'2,

(21) k2t3 + 4t(2k'2 - kk") + 4/c/cV

kV + 4k'2

Differentiating (20) with respect to u, we find

Theorem 11. The derivative p' of the radius of spherical curvature p with

respect to u is

(22) p' = 4kk't1/V

It may be that the osculating spherical fields of a general series 5 consist

of only one spherical field, namely, the one in which it is contained. In that

case, we shall say that S is cospherical. From the preceding theorem, we de-

duce

Theorem 12. A general series S is cospherical if and only if its series of

curvature is coflat.

10. The tangent flat fields of a field. A set of °o2 elements of the plane is

called a field. We shall omit from consideration the linear flat fields. That is,

whenever we speak of a field, we shall understand it to be not a linear flat

field. It is always possible to find a whirl-motion transformation such that any

field F is given by w = w(u, v).

Let v = v(u), w = w(u, v) be a general series S contained in the field F.

Its tangent turbines are given by the parameter values

a = — wu cos u — (sin u 4- wv cos u)v',

(23) b = — wu sin u 4- (cos u — wv sin u)v',

r = v + wu 4- v'wv,      s = w — v'.
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From these equations, we conclude that the following proposition is true.

Theorem 13. The tangent turbines of all the series, contained in a field F

and passing through an element E of F, constructed at E are contained in a non-

linear flat field.

The nonlinear flat field of Theorem 13 is called the tangent flat field of F

at E. Its central element E(ü, v, w) is given by

1 - wl . 2wv
cos (« — «) =- >       sin (u — u) = —

(24) l + Wl '        ' 1 + Wl

2wu 2wuwv
jj = v -\- > w = — w-•

1 + w2v 1 + wl

We call E the conjugate element of E with respect to F.

Two fields Fi and F2 are said to be tangent at a common element E if they

have the same tangent flat field at E.

As an application of the above, we find that the tangent flat fields of a

spherical field 2 consist of the °°1 flat fields whose central elements are those

of the associated circular series of 2.

11. One-parameter families of fields. The equation

(25) w = w(u, v. a)

defines a one-parameter family of fields. The series of intersection of any two

consecutive fields of this family is called a characteristic. The locus of all the

characteristics is a field, called the envelope of the family. The equations

(26) w = w(u, v, a),       wa(u, v, a) — 0

for each a represents a characteristic of the family. When we eliminate a from

the above equations, the result is the equation of the envelope.

It may be easily proved by the preceding equations that the envelope is

tangent to each member of the family at all elements of its characteristic.

The series of intersection of consecutive characteristics of a one-parameter

family of fields is called the edge of regression. The eliminants with respect to a

of the equations

(27) w = w(u, v, a),       wa(u, v, a) = 0,      waa(u, v, a) = 0

give the equations of the edge of regression.

We may prove by (26) and (27) that the edge of regression is tangent to any

characteristic at a common element.

12. Developable fields. The envelope of oo1 nonlinear flat fields is called

a developable field F. The series 5 formed by the central elements of these co1
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tangent flat fields of F is called the associated series of F. The characteristics

of F are turbines. These are called the generators of F.

Since each flat field is tangent to the envelope along its characteristic, it

follows that the tangent flat field to a developable field F is the same at all ele-

ments of a generator.

An umbilical field F is a developable field whose associated series S is an

equiparallel series. Thus a spherical field 2 is an umbilical field whose asso-

ciated series is a circular series. The generators of an umbilical field F are

linear turbines. These are the conjugates of the tangent turbines of its as-

sociated equiparallel series S. The edge of regression of F does not exist. The

equation of any umbilical field F is

(28) w = v cot (« - d)12 + b(u),

where a is a constant.

A developable field F is said to be general if its associated series S is a

general series. The generators of a general developable field F are nonlinear

turbines. These are the tangent turbines of the edge of regression R. Since

consecutive generators are the consecutive tangent turbines of R at an ele-

ment E of R, the osculating flat field of R at E is that flat field of the family

which contains these generators. But this flat field is tangent to the develop-

able. Hence the osculating flat field at any element E of the edge of regression R

of a general developable field F is the tangent flat field of F at E. We find from

this that the edge of regression R and the associated series S of a general de-

velopable field F are conjugate series.

The necessary and sufficient condition that a field F: w = w(u, v) be de-

velopable is that its conjugate elements E(ü, v, w) of (24) consist of at most

oo1 elements. These will then form the associated series S of F. Hence upon

setting the three jacobians of the three functions ü, v, w of (u, o) equal to

zero, we obtain

Theorem 14. A field F: w = w(u, v) is a developable field if and only if

2 2
(29) (1 + wv + 2wuv) — 4w„(wuu + wuwv) = 0.

A field F: w = w(u, v) is a general developable field if and only if the func-

tion w of (u, v) satisfies the above equation and wvvy^0.

13. Conjugate fields. The conjugate elements E(ü, v, w) of (24) of a field

F:w = w(u,v) form a field F: w = w(ü, v) if and only if F is nondevelopable, or

if and only if the function w of (u, v) does not satisfy (29). This field F:

w = w(ü, v) is termed the conjugate field of F. The equation of F is the elimi-

nant with respect to u and v of the equations (24).
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Since the conjugate field F consists of the central elements of the tangent

flat fields of a nondevelopable field F (and conversely), it follows that the

tangent turbines of F are the conjugates of the tangent turbines of F (and

conversely). Hence for the special case when the tangent turbines are circles

(the self-conjugate turbines), we deduce the following result.

Theorem 15. Two fields F and F are conjugate if and only if their integral

curves possess the same osculating circles.

14. The gaussian curvature of a field. The series of intersection between

a nonlinear flat field and a given field F is called a flat section of F. If F is not

a flat field, there are oo3 flat sections in F. There pass »2 flat sections of F

through any element E. Finally there are °°1 flat sections of F which contain

a given element E and which possess a fixed tangent turbine at E.

Let Si be any general series contained in a field F. There is a unique flat

section S which osculates ^ at a given element E of Si, This flat section S

is the intersection between the field F and the osculating flat field of Si at E.

The two series Si and S will have the same tangent turbine, the same osculat-

ing flat field, the same osculating limacon series, and the same curvature at E.

Thus in order to study the curvatures and the osculating limacon series of

any general series contained in a field F, it is necessary merely to study those

of any flat section of F.

Next we shall seek to obtain the curvature k of any flat section S of a

field F: w = w(u, v) at any element E of S in terms of the angle ß between the

flat field of S and the tangent flat field of F at E. Upon eliminating v" from

the values of r' and s', the first derivatives with respect to u of the last two

parameters r and s of the tangent turbine of 51 at E, we find

2
(30)        r' + wvs' = (wuu 4- wuwv) 4- (1 4- wv 4- 2wuv)v' 4- wvvv'2.

We see from (4) and (24) that the angle ß satisfies the equation

Solving the preceding two equations for r' and s', and then substituting these

results into the curvature formula, we find that the value of the curvature k

of a flat section S of a field F at any element E of 5 in terms of the angle ß

between the flat field of S and the tangent flat field of F at E is

r' sin 0/2 - wv cos ß/2
(31)

cos ß/2 + m, sin ß/2

(32)
(w„„ 4- wuwv ) 4- (1 4- w, + 2wuv)v +

k

1 4- w2)1'2 sin ß/<2
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When the angle ß = ir, we shall call the flat section a supplementary section

and its curvature at E the supplementary curvature k„. By the preceding equa-

tion, the value of the supplementary curvature ks is

2 r /2

(wuu + wuwv) + (1 + wv + 2wuv)v 4- wvvv
(33) k,-

d + wiY'2

By the above two equations, we obtain the following analogue of

Meusnier's theorem in the geometry of the whirl-motion group Gi.

Theorem 16. Let ks and k be the curvatures of a supplementary section and

any other flat section which have the same tangent turbine at a common element

E of a field F, If a denotes the angle between these two flat sections, then

(34) ks — k cos a/2.

The above result shows that a supplementary section possesses the least

curvature of all the flat sections of a field F which pass through a given ele-

ment £ in a given tangent turbine direction.

A field F which is generated by a one-parameter family of turbines such

that consecutive turbines of the family do not lie in a flat field is termed a

ruled field. We shall say that a ruled field F is general or special according as

the turbines of the family are nonlinear or linear. A special ruled field F is

given by either wvv = 0, or w = vm(u)+b(u), which is not of the form (28).

A field F: w = w(u, v) is called a general field if it is neither a special ruled

field nor an umbilical field. Thus F is a general field if and only if wvv^0.

Of course, the general ruled and the general developable fields are all examples

of general fields.

Theorem 17. At any element E of a general field F, there is one and only

one extremal (maximum or minimum) supplementary curvature k0. It is given

by the formula
2 2

— (1 + wv + 2wuv) + 4w„(w„„ 4- wuwv)

4wOT(l 4- wl)112

For upon completing the square of the quadratic expression in v' of (33),

we find that (33) may be written in the form

2 2

— (1 + ie. 4- 2wuv) 4- 4wvv(wuu 4- wuwv)

ks = -

4wjl + wlY"
(iO) . 2 ',2

[(1 4- wv 4- 2wuv) + 2wvvv J

4w„(l 4- wl),2\ 1/2
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This will be a maximum or a minimum with respect to v' only when the

squared bracket is zero. The remaining part of the above expression will give

us the value of k0 of (35). Theorem 17 is completely proved.

Through any element E of a field F, there passes a unique equiparallel

series 5 contained in F. The curvature of 5 at E is called the equiparallel

curvature X of F at E. It is given by

(37)
(l + wir«

By means of (35) and (37), we find that (33) or (36) may be written in the

form
2

2 r    i + w„ + 2wuv~\2
(38) ks = k0 + X(l + w„)   v' H-.

L 2wvv

If 5 denotes the distance between the centers of the tangent turbines of (23)

of the extremal supplementary section and any supplementary section, we

obtain the following analogue of Euler's theorem.

Theorem 18. Let k0 be the extremal supplementary curvature and X the equi-

parallel curvature at an element E of a general field F. If 5 is the distance between

the centers of the tangent turbines of the extremal supplementary section and any

supplementary section whose curvature at E is ks, then

(39) ks - k0 + X52.

The gaussian curvature K of any field F at any element E of F is given by

the formula

2 2

,„ , (1 + Wv + 2wUv) — 4wvv(wuu + wuwv)

(40) K = -•
d + ^)2

We note that K is zero if and only if F is developable.

Theorem 19. The gaussian curvature K at any element E of a general field F

is minus four times the product of the extremal supplementary curvature k0 and

the equiparallel curvature X at E. That is

(41) K = - 4/c0X.

By relations (23), (33), and (40), we now deduce the following proposition.

Theorem 20. If 8 is the distance between the centers of the tangent turbines

of any two supplementary sections whose curvatures are ks and k's at a common

element E of a special ruled field F, then
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(42) k. - k,, + Kl'2S.

For an umbilical field F of (28), all the supplementary curvatures at an

element E of F are equal, and they have the common value

(43) ks = -f--—— = b" sin (« - o)/2 + 6' cos (« - a)/2.
(1 + w2)1'2

Through any element E of a general field F, there is a single tangent tur-

bine direction which gives the extremal supplementary curvature k0. This is

called the principal direction of F at E. Any general series S of a general field £

such that the tangent turbine direction of any element E of 5 is a principal

direction is called a principal series. The differential equation of all principal

series of a general field F is

t 2
(44) 2wvvv 4- (1 4- wv + 2wuv) = 0.

Since the equiparallel curvature X at an element E of any field F is a sort

of extremal curvature, the equiparallel series of F may be considered to be

principal series. Thus a general field F possesses 2 oo1 principal series, namely,

(1) the oo1 general series which satisfy (44), and (2) the <x>1 equiparallel se-

ries. A special ruled field F has only «1 principal series, the equiparallel

series of F. Finally all oo00 series of an umbilical field F are principal series.

The angle a between the two tangent flat fields at a common element E

of two fields F: w =f(u, v) and G: w = g(u, v) is defined to be the angle between

F and G at E. By (24), the derivative of this angle a with respect to u is

2 i 2 /
(1 + fv + 2fuv) + 2fvvv      (1 4- gv + 2guv) 4- 2gvvv

(45) *-r+yj-tti-

We deduce from this the following analogue of Joachimsthal's theorem.

Theorem 21. If the series of intersection of two fields is a principal series

on both, the fields cut at a constant angle. Conversely, if two fields cut at a constant

angle, and the series of intersection is a principal series on one, then it is a

principal series on the other.

15. The gaussian curvature of the conjugate field. From (24), we find

that the partial derivatives of the first and second orders with respect to ü

and v of the function w = w(ü, v) which defines the field F conjugate to the

field F:w = w(u,v) are
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dw dw
- = — wu, -—- = — wv,
dü dv

2 2 2 * S
d w     — w««(l 4- wv) + 4wuwv(wuuwvv — wuv)

(46)
dü2       (1 4- w\ 4- 2wu„)2 — 4w„(wOT 4- wuw„)

2 2 2 2 2
äii     — wuc(l 4- wv) 4- 2(1 4- wv)(wuuwvv — wuv)

düäv        (1 4- wl + 2wuv)2 — 4wvv(wuu + wuwv)

2 2 2
d w — w„(l 4- w„)

öü2     (1 4- w2 4- 2w„r)2 — 4ji;„(wa„ 4- wuwv)

By these equations, we deduce the following result.

Theorem 22. The product of the gaussian curvatures K and K at [conjugate

elements E and E of two conjugate fields F and F is unity. That is

(47) KK = 1.

The series S of a field F and the series S of the field F conjugate to F are

said to be conjugate with respect to F or F if they are corresponding series

under the transformation (24).

For any two series S and S conjugate with respect to two conjugate gen-

eral fields F or F, we obtain the following relation:

2 2
2 dv (14- wv)

(48) 14-^4- 20«; + 2wtv — =-:-• ■
dü    1 + »;+ 2wuv 4- 2wvvv'

By substituting this into the supplementary curvature formula of F, we prove

Theorem 23. Let E be any element of a general nondevelopable field F and E

its conjugate element of the general field F conjugate to F. The corresponding sup-

plementary curvatures ks and k5, the extremal supplementary curvatures k0 and

i?o, and the equiparallel curvatures X and X of F and F at E and E are related by

the formulas

Ks 1 _ 1
(49) Ks = -> k0 = -!        X = - •

4X(k„ — k0) 4X 4k0

For any two series S and S conjugate with respect to two conjugate spe-

cial ruled fields F or F, we find the following relation (since wm = 0)

2
dv 2(1 4- wv)wUv — 4wuwvwuv

(50) — = v +
dü (1 4- wl)(l + wl+ 2wuv)
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Upon substituting this into the supplementary curvature formula of F, we

obtain the following result.

Theorem 24. Let E be any element of a special ruled field F and E its con-

jugate element of the special ruled field F conjugate to F. The corresponding sup-

plementary curvatures k„ and ks of F and F at E and E are related by the formula

(51) Is = — •
K

The principal series of two conjugate fields F and F are conjugate with

respect to F or F. A principal general series of one of these two general fields

corresponds by the transformation (24) to an equiparallel series of the other.

Otherwise the equiparallel series of these two special ruled fields correspond

to each other under the transformation (24).

16. The osculating limacon series of a field. Upon solving the equations

(30) and (31) for r' and s' and making use of the supplementary curvature

formula (33), we find that their values are

ks(sin 0/2 — wv cos ß/2) ks(cos ß/2 + wv sin ß/2)
(52) r' = -—->       s' =

(1 + wl)1'2 sin ß/2 (1 + wlY12 sin 0/2

Substituting these values into (8), we see that the parameters of the osculat-

ing limacon series L of any flat section S of a field F: w = w(u, v) at an element

E of F are

A = a + 77^-im« •   „/» tcos u) -\- wv sin {ß/2 - «)],
(1 + w2)    sin ß/2

B = b + —-— , [- sin (ß/2 -u) + wv cos (ß/2 - «) ],
(1 + Wy/2 sin ß/2

(53)

4k

C = - 77^—^rf2 • al, tcos   - M)/2 + w"sin ^ - M)/2J-
(1 + w;)112 sin ß/2

4k
D =---•   , [sin (0 - «)/2 - w, cos (ß - «)/2],

(1 + w2,)1'2 sin 0/2

Ä = r + n  ■ ^7T [cos 0/2 + w, sin 0/2 ],
(1 + w2)1'2 sin 0/2

2ks
[sin 0/2 — wv cos 0/2 J,

(1 + w2v)1'2 sin 0/2

where (a, b, r, s) are the parameters of the tangent turbine T of (23) of 5 at E,
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ks is the supplementary curvature at E of the supplementary section of F

which is tangent to 5 at E, and ß is the angle between the flat field of 6" and

the tangent flat field of F at E.

Next let us consider all the »1 flat sections of the field F which pass

through the element E of F and which possess the same tangent turbine T

at E. In the formulas (53) for the «1 osculating limacon series of these flat

sections at E, we observe that only the angle ß is variable. The °o1 central

turbines of these osculating limacon series all contain the element Ei of the

tangent turbine T which is supplementary (antiparallel) to E. By (53), it may

be proved after some calculation that these central turbines all are contained

in the flat field II whose central element G(U, V, W) is given by

2

1 — wv 2wv
cos (U — u) =-1 sin (U — u) =->

CM) '      « + «
2wu           4kswv                             2wuwv 4k,

V = v + —-      + ——■--— ,     W = - w - —- +
i + wi   (l + wi)1" i + wi   (i + wy*

From these equations and from Meusnier's Theorem 16 (formula 34), we de-

duce

Theorem 25. Let us consider the oo1 flat sections of a field F which pass

through an element E of F and which possess the same tangent turbine T at E.

The oo1 osculating limaqon series of these flat sections at E generate a spherical

field 2.

Let Ei be the element on the tangent turbine T which is supplementary

(antiparallel) to the fixed element E. Let Ts be the linear turbine whose direc-

tion is that of the central element E of the tangent flat field of F at E, and

whose base line joins the points of E and Ei. The central element G of the

central flat field II of the spherical field 2 of Theorem 25 is on the linear tur-

bine Ts and the distance of G from E is 4k„. The radius p of 2 is also 4ks.

If we vary the tangent turbine direction T of Theorem 25, there will re-

sult oo1 spherical fields. The oo1 central elements of their central flat fields

will generate the linear turbine Ts.

17. The geodesic series of a field. A series 5 of a field F is termed a geo-

desic series if its curvature at any element E oi S does not exceed the curva-

ture at E of any other series of F which is tangent to 5 at E. By setting the

partial derivative with respect to v" of the curvature k of any general series

of a field F equal to zero, and solving the result for v", we find that the differ-

ential equation of all the geodesic series of a field F: w=w(u, v) is
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(55)
III, — wvw uu — 2wvwuvv' — wvwvvv'

V
1 + wl

There are °o 2 geodesic series, all general, in a given field F. The »1 equi-

parallel series of a field F are also considered to be geodesic series. The geo-

desic series of a spherical field are its °o 2least limacon series, together with its

oo1 linear turbines. The geodesic series of a flat field are its °° 2 turbines.

The curvature k of any geodesic series S of a field F at any element E of S

is equal to the supplementary curvature ks of the supplementary section of F

which is tangent to S at E.

To calculate the torsion r of a geodesic series S, we proceed as follows.

The derivatives r' and s' with respect to u of the last two parameters r and s

of the tangent turbine T of S at any element E of S are given by (52) where

ß = ir. Thus s'/r' =w„. By this and (4), we find that the normal angle ü of

the osculating flat field of 5 at £ is

(56) ü = u + 2 arc tan wv.

Differentiating this with respect to u, we see that the torsion r of any geodesic

series S at any element E of S is

Theorem 26. The torsion t of a geodesic series S of a field F at an element E

of S is zero if and only if S is tangent to a principal series of F at E. The neces-

sary and sufficient condition that a geodesic series be a principal series is that it

be coflat.

By equation (57), we obtain the following two results.

Theorem 27. Let X be the equiparallel curvature of a general field F at an

element E of F. Let 8 be the distance between the centers of the tangent turbines

of the extremal supplementary section and any geodesic series S through E. The

torsion r of S is

Theorem 28. The torsion r of any geodesic series S of a special ruled or an

umbilical field F at any element E of S is

(57) T =

1 + wl

(58) r = 2X5.

(59)

To define the geodesic curvature k0 of any series S of a field F at any ele-

ment E of S, we proceed as follows. Let St be the geodesic series tangent to S
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at E. Let Es be the element on 5 which makes an angle Am with E, and let E„

be the element on S„ which makes the same angle Aw with E. At Ea and E„,

construct the two tangent turbines Ts and Tg of S and S„. Let A 8 be the dis-

tance between the centers of Ts and T0. Then

d8 AS
(60) Kg = — = lim-

du     Au-»o Aw

is defined to be the geodesic curvature of 5 at E.

It is found that k0 = (1 +w2)v\v" — v"), where t'f belongs to the geodesic

series Sa. From this, it follows that the geodesic curvature k0 of any series S

of a field F: w = w(u, v) at any element E of S is

(1 + w%)v" — (wu — wvwuu) + 2w,w„,r/ + wvwvvv'2
(61) k„ = -

(1 + ™2)1/2

By means of (33), (52), and (61), we obtain the result which follows.

Theorem 29. Let ß be the angle between the osculating flat field of a general

series S of a field F and the tangent flat field of F at an element E of S. Let k

be the curvature and k„ the geodesic curvature of S at E. Let k, be the supplementary

curvature of the supplementary section which is tangent to S at E. Then

2 2 2

(62) k3 = k sin 0/2 = — k0 tan 0/2,   k0 = — k cos 0/2,   ks + kg = k .

18. The asymptotic series of a field. Reciprocal directions at an element

£ of a field F may be defined as follows. Let G be an element in F adjacent

to E. Let ER be the turbine of intersection of the tangent flat fields of F at E

and G. As G tends to coincidence with E, the limiting tangent turbine direc-

tions of EG and ER are said to be reciprocal at E.

The necessary and sufficient condition that the tangent turbine directions

dv/du and 8u/ 8v be reciprocal are

8v dv 2 /8v dv\
(63) 2wvv-h (1 + V>v + 2wuv) (-1-+ 2(wuu + wuwv) = 0.

Su du \8u du/

Theorem 30. Let T0 be the principal tangent turbine (the principal direc-

tion), and let T and T\ be any other two tangent turbines at an element E of a

general field F. Let 8 and 8i be the distances of the centers of T and Tifrom that

of To. The directions of T and Ti are reciprocal if and only if

(64) Mi - - ko/X,

where k0 is the extremal supplementary curvature and X is the equiparallel curva-

ture of F at E.
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Theorem 31. The two tangent turbine directions T and 7\ at an element E

of a special ruled field F are reciprocal if and only if the sum of the supplementary

curvatures ks and k's of T and Ti is zero. That is

Any two tangent turbine directions at an element E of an umbilical field F

are reciprocal.

In general, given a one-parameter family of series <p(u, v) = const, of a gen-

eral or special ruled field F, we can find another one-parameter family of

series \p(u, v) = const, of F such that the two tangent turbine directions of the

two series of the two families passing through any element E of F are recipro-

cal at E.

The self-reciprocal directions of a field F are called asymptotic directions.

Any series S of a field F whose tangent turbine direction at any element E

of S is an asymptotic direction is termed an asymptotic series. The differential

equation of all asymptotic series of a field F is

(66) wvvvn + (1 + w I + 2wUv)v' + {Wuu + wuwv) = 0.

This means that a series S is an asymptotic series if and only if the supple-

mentary curvature *cs of the supplementary section tangent to S at any ele-

ment E of S is zero at E.

In a general field F, there are 2 «s1 asymptotic series, all general series.

A special ruled field F possesses 2ooJ asymptotic series, namely, (1) the eo1

general series which satisfy (66), and (2) the oo1 equiparallel series of F.

Every series of an umbilical field F is an asymptotic series.

From Theorem 30 we pass to the following conclusion.

Theorem 32. Let T0 be the principal tangent turbine (the principal direc-

tion) , and let T be any other tangent turbine at an element E of a general field F.

Let 5 be the distance between the centers of T0 and T. The tangent turbine direc-

tion T is an asymptotic direction if and only if

The osculating flat field of a general series S of a general or special ruled

field F at any element E of S will coincide with the tangent flat field of F at E

if and only if the normal angles of the central elements of these two flat fields

are identical. This means that the angle of equations (52) must be zero.

Hence the supplementary curvature k„ of the supplementary section tangent

to S at E is zero at E. Therefore S is an asymptotic series. Thus we obtain

Theorem 33. A general series S of a general or special ruled field F is an

(65) Ks + «C« = 0.

(67) 5 = (- K0/X)1/2.
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asymptotic series of F if and only if its osculating flat fields coincide with the

tangent flat fields of F at the elements of S.

By this result and by (4) and (24), it follows that the torsion t of an

asymptotic series 5 at any element E of S is the same as that of the geodesic

series which is tangent to 5 at E. Hence r is given by (57). Upon squaring

this value of r and noting that 5 satisfies (66), we obtain the following ana-

logue of the Beltrami-Enneper theorem.

Theorem 34. The torsion r of any asymptotic general series S of a general .

or special ruled field F at any element E of S is equal to the square root of the

gaussian curvature K of F at E. That is,

(68) r = K1'2.

Thus we have discussed in the geometry of the whirl-motion group Ge the

analogues of some of the classic theorems in the differential geometry of

curves and surfaces embedded in a euclidean three-dimensional space. Of sig-

nificant interest is the fact that our geometric configurations and invariants

may be constructed by ordinary geometric means. Some of our results which

seem to be completely analogous in content are nevertheless entirely distinct

when we think of the meanings of the terms used.
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