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Introduction

The study of locally connected continua has been greatly simplified by

the introduction of the cyclic element concept of G. T. Whyburn.f By defini-

tion, a cyclic element of a locally connected continuum M is any subset E

of M satisfying some one of the following conditions: (1) E is a cut point of M;

(2) E is an end point of M; (3) E is any nondegenerate subcontinuum of M

containing no cut point of itself which is saturated§ in M with respect to this

property. Every cyclic element of type (3) is called a true cyclic element.

Along these lines much light has been shed upon the knotty problem of

the structure of a locally connected continuum M by considering M as the

sum of its cyclic elements and then deducing properties of M from the prop-

erties of cyclic elements and the known relationships which exist between

them.

The richness of the results in this direction has led to the hope that some

still finer decomposition of locally connected continua may be possible. One

such finer decomposition, based on combinatorial concepts, is given by the

cyclic elements of higher order. || It is to the problem of obtaining a decompo-

sition in the set theoretic direction that the present paper is devoted. We

begin with a true cyclic element C as our space and attempt to decompose it

into subsets having desirable properties. The decomposition of the space into

its cyclic elements then gives the decomposition we want.

This paper is but a first step towards the ultimate goal of an extensive

structure theory of true cyclic elements. It explores only the most fundamen-

* Presented to the Society, April 9, 1938, and October 29, 1938; received by the editors June 26,

1939, and, in revised form, December 19, 1939.

f This paper was completed while the author was a National Research Fellow at the University

of Pennsylvania.

X See Kuratowski and Whyburn, Fundamenta Mathematicae, vol. 16 (1930), pp. 305-331. In

this article an extensive bibliography may be found.

§ A subset £ of If is said to be saturated in M with respect to a property P provided E has

property P and no subset of M containing E but distinct from E has this property.

|| See G. T. Whyburn, American Journal of Mathematics, vol. 56 (1934), pp. 133-146.
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tal properties of our new elements, and the most elementary relationships

existing between pairs of such sets and between such sets and their comple-

ments. It leaves for future study such considerations as the following:

(1) The possible existence of analogues of simple cyclic chains.

(2) The possible existence of analogues of A-sets.

(3) The study of the hyperspace formed when each secondary element

is considered as a single point.

The author wishes to state that he benefited greatly from conversations

with Dr. G. E. Schweigert during the earlier parts of the work.

Part I. Development of the theory

Let C be a cyclicly connected continuous curve which is not a simple

closed curve.

Lemma 1. Every free arc* of C is a subset of a maximal free arc of C.

Proof. Let a be a free arc and a be an interior point of a. Let / be a simple

closed curve containing a. Obviously J s a. On each of the two arcs of J from

a let x and y be the first point of the closed set C — J. Since C^J, x and y

exist. Further x^y, for otherwise this single point would be a cut point of C.

Then xay is a free arc containing a and maximal.

We now define the following terms:

(a) A 2-set consists of any pair of points of C which separate C and do not

lie together on the same free arc of C.

(b) A 2-point of C is any point h belonging to a 2-set of C.

(c) Two points a and b of C are biconjugate if no 2-set separates C between

a and b.

(d) By a secondary element of C we shall mean any subset E of C satisfying

some one of the following conditions:

I. E consists of a non 2-point a of C together with all points b of C bicon-

jugate to a, and there is at least one such point b. In this case E is called a

true secondary element. A true secondary element is said to be nondegenerate

provided that it contains at least one nondegenerate component.

II. £ is a non 2-point a such that no point b of C is biconjugate to a.

In this case a is called a 2-end point.

III. E is a maximal free arc of C containing at least one 2-point in its

interior.

IV. £ is a 2-set.

* An arc axb of C is called a free arc of C provided the interior of axb, which we denote by

(axb), is an open subset of C. We shall denote the sets axb —a and axb — b by (axb and axb), respec-

tively. An arc axb is said to span a point set M provided axb- M = a-\-b. This lemma is an unpublished

result of G. C. Watson. The proof here given was suggested by the referee.
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The following theorems are easily established:

Theorem I. (a) The space is the sum of its secondary elements, in fact every

point p of C is contained in a secondary element of type I, II, or IV.

(b) Every secondary element is a closed set.

(c) Every two points of a true secondary element are biconjugate.

(d) Every true secondary element is independent of the non 2-point defining

it, that is, it may equally well be defined by any non 2-point which it contains.

(e) Every non 2-point belongs to at most one true secondary element.

(f) The product of two true secondary elements is vacuous, a 2-point, or a

2-set.

(g) If A be a free arc of C with end points a and b containing at least one

2-point r in its interior, then every 2-set K of C which contains r separates C be-

tween a and b.

(h) If A be a free arc of C, then a necessary and sufficient condition that A

contain a pair of biconjugate points is that every interior point of A be a non

2-point.

(i) If E be a true secondary element, then every interior point of every free

arc of E is a non 2-point.

(j) If E be a secondary element of type III, then every interior point of E

is a 2-point and E contains no biconjugate pair of points.

(k) If E be a true secondary element containing b and c, then E contains

every free arc joining b and c in C.

Theorem II. Let E be a true secondary element and K any component of

C — E. Then

(a) F{K) = K — K consists of exactly two points, r and s;

(b) both r and s are local separating points of C of order greater than 2;

(c) either r or s is a 2-point.

Proof, (a) Since C is cyclic, F(K) contains at least two points x, y. Let z

be any third point of F(K). Let U and W be regions containing x and z, re-

spectively, and having disjoint closures neither of which contains the point y.

Let x', z' be arbitrary points in KU, KW. There exists a simple arc x'z' in K;

hence x'z' does not contain y. Let V be a region in C, containing y, such that

V is disjoint with each of the three sets U, W, and x'y'. Let x'x, z'z be simple

arcs in U, W, respectively, and x", z" the first points of E on these arcs

(Theorem 1(b)). It follows easily that there exists a simple arc x"z", having

its interior in K, which does not intersect V. We may find a point c in K and

three simple arcs cx", cy", cz", disjoint except for c, having their end points

x", y", z" in E, but otherwise lying in K. Now let a be any non 2-point of E.

Then c is not biconjugate to a, hence there exists a 2-set H separating C be-
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tween a and c. Let L be the component of C — H which contains c. Since H

consists of two points, L must contain one of the three arcs cx", cy", cz",

say cx". Thus *" is not biconjugate to a, which contradicts Theorem 1(c).

This proves (a).

(b) Evidently r and s are both local separating points of C. Neither of

these points is of order one in C, since C is cyclic. Hence (b) will be proved

if we show that r is not of order 2, since the same proof will hold for 5. We

first observe that E contains a non 2-point distinct from both r and s. If (r, s)

is a 2-set, this is immediate. Otherwise there exists a free arc rs in C. By

Theorem I(k), rs is in E, hence by Theorem I(i) every interior point of rs is

a non 2-point. Therefore, using Theorem 1(d), we may assume that the non

2-point a used to define E is neither r nor s. Let z be any point of K and define

44 = min (p(a, r), p(z, r), p(r, $)) ^ 0.

Assuming that r is of order 2 in C, let U(r) be a neighborhood of r in C of

diameter less than d, having two points y and w as its boundary. From the

definitions of K and d we may assume without loss of generality that w lies

in K and y in C — K. Thus (w, y) separates C between a and r. Since r is in E,

it follows by Theorem 1(c) that there must exist a free arc wy in C. We have

at once that either r or s is interior to the free arc wy. Call the one of these

points satisfying this condition /. Now w is not biconjugate to a, hence there

exists a 2-set (h, k) separating C between w and a. Since t is in E, (h, k) does

not separate C between a and t. Thus either h or k is t or (h, k) separates C

between t and w. Hence in either case one of the two points h, k, say h, must

be interior to the free arc wy. Thus k does not lie on wy, and we see at once

that if p is any point interior to wy then (p, k) is a 2-set separating C between

a and w. Taking p interior to the subarc ty of wy, we have at once that (p, k)

separates C between a and /, which is impossible since t lies in E. The proof of

(b) is thus complete.

(c) We postpone the proof of this part of Theorem II until after the proof

of Theorem VI(a) in order to establish some results which we shall need in its

demonstration. To this end let R be the collection of all 2-points of C; L the

collection of all non im kleinem cut points* of C; and IF the set of all ramifica-

tion points of C.

Lemma 2. Every nondegenerate subcontinuum G of R contains a free arc of C.

Proof. Since G consists entirely of local separating points of C it followsf

* For definitions of the new terms used see G. T. Whyburn, Mathematische Annalen, vol. 102

(1930), pp. 313-336. We shall use Theorem 10, p. 320, of this paper and refer to it as Theorem B:

Let T be any arc of C. Then if W is dense on T, LT has at least the power of the continuum.

t See G. T. Whyburn, Bulletin of the American Mathematical Society, vol. 39 (1933), p. 97.
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that G is a locally connected continuum. Let T be any simple arc in G. It

follows* that T contains at most a countable number of points of order differ-

ent from 2.

Since T consists entirely of local separating points of C, it follows by

Theorem C that every point of T is an im kleinem cut point. Thus LT = 0.

Therefore, W is not dense on T, by virtue of Theorem B. Hence T contains

a subarc T' which is a free arc of C. Since T' is contained in G, the proof is

complete.

Theorem III. (a) Every continuum of convergence K of C is contained in

some true secondary element E of C. Moreover, every such K contains a non

2-point of C.
(b) If (Kj) be an infinite sequence of disjoint subcontinua of C having a

nondegenerate limit inferior L, then there exists a true secondary element G of C

which contains L, and is such that L = lim inf KtG.

Proof, (a) Since K is a continuum of convergence of C, no two points of K

can be separated in C by a finite set. Thus every two points of K are bicon-

jugate and, in particular, K contains no free arc. Hence the proof is complete

if we show that K contains at least one non 2-point of C. This fact follows at

once from Lemma 2.

(b) f It follows from the disjointness of the Kt that L is a continuum of

convergence of C, hence by (a) there exists a true secondary element G of C

which contains L. Let L' be the limit inferior of (KjG). We have at once that

V is contained in L and need only show the reverse.

To this end let q be any point of L, and (<?,•) any sequence of points con-

verging to q such that <?,- lies in K, for each i. If q is not in L', we may assume

without loss of generality that q{ lies in Kf—G for every i. Let Si be the com-

ponent of C — G containing q{. By definition q lies in FQjS*), andf

F(zZSi) cEns,).

Assume for the moment that there exists an Si; call it S, which contains

infinitely many of the sets if,-. It follows at once that every point of £ is a

boundary point of S, contrary to Theorem 11(a).

We shall show in Theorem IV that for any positive number d there can

* See G. T. Whyburn, Monatshefte für Mathematik und Physik, vol. 36, pp. 305-314. We shall
use Theorem 9 of this paper and call it Theorem A: All save possibly a countable number of the local

separating points of a continuum M are points of order 2 of M. We shall also refer to Theorem 8 of

this paper as Theorem C: The properties of being an im kleinem cut point and of being a local sepa-

rating point are equivalent for all points of a continuum M at which M is locally connected.

f See Kuratowski and Whyburn, loc. cit. The present proof is a modification of the proof of (6, 7)

of this paper.

X See Hausdorff, Mengenlehre, Berlin, 1927, p. 155.
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exist at most a finite number of S{ having diameter greater than d. From this

result and the previous paragraph it follows easily that we may pick a sub-

sequence of the Si, which we may assume is the whole sequence, consisting

of distinct elements, and then a subsequence of the Kit which we take as the

whole sequence, such that each Kt contains a point r< not in 5, and a point

in Si. It follows at once that for every * the set Kt contains a point pt of F(S%).

Hence pi converges to q since qt converges to q. But pi lies in G Ki, for each i;

thus q belongs to L', and the proof will be complete when we establish Theo-

rem IV.

Theorem IV. If E be a true secondary element, then there exists for every

positive number d at most a finite number of distinct components of C—E having

diameter greater than d.

Proof. Otherwise there exists an infinite sequence (Si) of distinct compo-

nents of C — E each of diameter greater than d. We lose no generality in as-

suming that (Si) is a convergent sequence to the limit set L. From the fact

that E is closed (Theorem 1(b)) we deduce immediately that L lies in E.

Since L is a connected set of diameter at least d, let a, b, c be any three dis-

tinct points of L. Choose U, V, W as regions in C having disjoint closures

and containing a, b, c respectively. Let S* be an Si intersecting all three of

the regions U, V, IF. It then follows easily that Sk has at least three boundary

points, contrary to Theorem 11(a).

This completes the proof of Theorems III and IV.

Theorem V. If E be a true secondary element and N a component of C—E,

then for every true secondary element F we have either FN = 0 or N sF.

Proof. Let a and b be non 2-points defining E and F respectively. Then

there exists a 2-set (h, k) which separates C between these two points. It fol-

lows easily that C — (h, k) has exactly n components At, (i = 1, 2, ■ ■ ■ , n),

for some finite n. We lose no generality in assuming that b lies in Ai and a in

A2. It follows at once that F is contained in Ai, and E is contained in A2.

But C — E contains C — A2 = Ai+X^.; hence if N is the component of C — E

containing b we have that N contains Ai which contains F. Thus N 3 F. Evi-

dently, FM = 0 for every other component M of C —E. This completes the

proof of Theorem V.

Lemma 3. If E be a true secondary element, and K a component of C — E with

boundary points r and s, then K contains at most one true secondary element F

of C containing r+s.

Proof. Assume that there exist two such true secondary elements F and G

of C. By Theorem 1(f), (r, s) is a 2-set; hence both r and s are 2-points. Let a
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and b be non 2-points denning F and G, respectively, and let axb be a simple

arc in K. Let w be the last point of axb in F and z the first point of axb follow-

ing w which is in G. By Theorem 1(f), w and z are distinct points; hence the

arc wz is nondegenerate. If M be the component of C — G containing a, then M

contains F by Theorem V. It follows that M has the three boundary points

r, z, s, contrary to Theorem 11(a). The proof is thus complete.

Theorem VI. (a) For every positive number d there exists at most a finite

number of true secondary elements E having components of diameter greater

than d.

(b) C contains at most a countable number of distinct true secondary elements.

Proof. Contrary to the theorem, let (Ei) be an infinite sequence of distinct

true secondary elements having components of diameter greater than d. The

proof now splits into two cases:

Case (i). For each i the set Ei intersects at most a finite number of the sets .

In this case there is an infinite subsequence of the E{ no two of which have

a point in common, and we may assume this is the entire set Ei. Let e» be a

component of Ei of diameter greater than d. We may assume that the se-

quence (e,) converges to a limit set e of diameter at least d. From Theorem III

it follows that there exists a true secondary element F of C containing e. We

may assume F is distinct from all the Ei. Using Theorems IV and V, we may

assume that there exists a component N of C — F such that N contains Et

for every i. Using Theorem 11(a) we may assume that all the £, are disjoint

with F. Hence all the (ei) are contained in N, a single component of C—F

which gives an easy contradiction to Theorem 11(a) since C is a continuous

curve. Thus the theorem is proven for Case (i).

Case (ii). There exists an Ei intersecting infinitely many E,.

We may assume in this case that Ei intersects all the remaining Ei, and,

by Theorems IV and V, that there exists a component N of C — Ei such that N

contains all the remaining Using Theorem 11(a), let r and s be the bound-

ary points of N. By Lemma 3 we may assume that every Ei contains r and

no Ei, other than Ei, contains s. Continuing, this process of taking subse-

quences indefinitely we may assume without loss of generality that for i not]

we have E{Ej = r. Let q lie in Ei — (r, s) and define Sm = p(q, N), 5n = d and

k = min (m, n). If we define d' = 3k, we have at once that d' is less than d.

Let e{ be a component of E( having diameter greater than d'. It follows

easily that there exists a point Pi in ef, such that p(p{, r) is greater than k.

Let Vi and U, respectively, be the spherical ^-neighborhoods of pt and q; and
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define Gt as the sum of these neighborhoods. We shall assume, henceforth,

that i is not one. We note in passing that U and E, are disjoint for all such i.

We now know that e{ is a continuum and Gt is an open set intersecting both e,

and C—$i. It follows, therefore, by a well known theorem* that the compo-

nent Ki of G»e< which contains pi contains at least one point of F(Gi), and

hence at least one point of F(Vi). Thus Ki is a continuum of diameter at least

k which does not contain r. The Ki} being subsets of the corresponding Ei}

are disjoint by pairs. The proof given for (i) now holds exactly if we substitute

the sets Kt for the sets e, used in that proof, and k for d. This leads to the same

contradiction and completes the proof of (a).

We postpone the proof of (b) until after the development of some special

theory of degenerate true secondary elements. Meanwhile we give the follow-

ing proof.

Proof of Theorem 11(c). Assuming the theorem false we first prove

(i) K contains a continuum of convergence of itself. Furthermore, every simple

closed curve J containing r, s and a point of K intersects some continuum of

convergence of K in at least two points. Moreover, the true secondary element F

of C which contains this continuum of convergence is contained entirely in K.

Proof. Let / be any such simple closed curve and let A be any simple arc

of / joining r and s in K. Since (r, s) is not a 2-set, but does separate C, it

follows that there exists a free arc B = rxs in C, and B is in E by Theorem I(k).

Thus if we define J' = A +B, it follows that /' is a simple closed curve such

that J'K is contained in JK. Hence it suffices to prove the theorem using J'

in place of J.

From our hypothesis and Theorem I(i) it follows that every point of B

is a non 2-point, hence no point of K is biconjugate to any point of B. Let x

be an interior point of A ; then there exists a 2-set (hi, ki) separating r from x

in C. It follows at once that both hi and Kx are interior to A and that we may

assume that hi lies between r and x and ki between x and s on this arc.

Now (r, ki) does not separate C. If it did, since r is a non 2-point, we could

find a free arc rh in C. It follows easily that this gives a theta curve in C

having r and ki as vertices. This is impossible since kx is not biconjugate to r.

Since (r, ki) does not separate C, there exists a simple arc IF joining x to a

(an interior point of B) but containing neither r nor ki. Since (hi, ki) separates

C between x and s, and since no interior point of A is biconjugate to s, we

may find a simple arc 7\ in K spanning J' and having its end points ai, bi

interior to the subarcs rhi and ski of A, respectively, except that ai may possi-

bly be hi.

* See Hausdorff, loc. cit., p. 161.
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Now ax is not biconjugate to r; hence there exists a 2-set (h2, k2) separating

ax from r in C, and we may assume that h2 is interior to rax and k2 is on the

half open arc sbi). Using the argument of the preceding paragraphs, we may

find a simple arc T2 in K spanning J' between a2 and b2. These points will

lie respectively in the half open arc {rh2 and the open arc (sk2). It follows at

once that (h2, k2) separates C between every point interior to Tx and every

interior point of T2 whence an easy consequence is that Tx, T2 are disjoint.

In the same manner we may find an infinite sequence (7\) of disjoint

simple arcs in K spanning /' each between a point of rhi and a point of ski;

hence all of the Ti are of diameter as least as great as the distance between

these disjoint closed sets. Thus we may assume that the 7\ converge to a non-

degenerate limit set T. Hence by Theorems 111(a), 1(f), V, the fact that both r

and s are non 2-points, and the following assertion (which follows easily from

Theorems 11(a) and 111(b)), there must exist a true secondary element F of C

which contains T and is contained in K.

Assertion. If E be a true secondary element, then there exists no convergent

infinite sequence of disjoint subcontinua of C — E each member of which is of

diameter greater than some preassigned d such that the limit of this sequence is

in E.

From the compactness of rhx and skx we have at once that T must inter-

sect the interiors of both of these arcs. This completes the proof of (i).

We continue to use the simple closed curve /' defined in proving (i). We

see by that Theorem that K contains a continuum of convergence tx of itself

which is contained in a true secondary element Ex of C. Moreover, by (i), Ex is

contained in K and has at least two points in It follows at once that these

points must both be interior to A. Let mx, nx be respectively the first and last

points of the closed set Ex in A. Define

d = min (diam tx, p(rmx, snx)).

We shall now prove the following assertion:

(ii) (r, mx) does not separate C.

Proof. Otherwise, since r is a non 2-point, there exists a free arc rmx in C.

By Theorem 11(b), s is not interior to this free arc; hence (rmx is contained

in K. Let z be any point of (rmx). Then (s, z) separates C between r and mx.

Otherwise there exists a simple arc rwmx in C — (s, z), and it follows easily

that (rwmx lies in K. Since rwmx does not contain z, it must be disjoint with

the interior of the free arc rmx. It is easily established from these facts that K

contains a point w which can be joined to r by three independent arcs of C.

This is impossible since no point of K is biconjugate to r.
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Therefore, (5, z) separates C. Thus, since s is a non 2-point, there must

exist a free arc sxzin C. This free arc cannot contain r by Theorem 11(b),

hence it must contain mi. But the half open arc rynii) is contained in a single

component N of C—Ei, by definition of mi. This gives a contradiction to

Theorem 11(b), and thus establishes (ii).

It is immediate that there exists a component N of C — E\ such that

F(N) = (m\, tii); thus (mi, »1) separates C. Therefore, by (ii), there exists a

simple arc xy in K spanning /', where x is in (rmi) and y in stii. Thus x is

biconjugate to y, whence y is not 5.

Using the notation of (i) we find a 2-set (hi, ki) separating r from x in C,

where hi is in (rx) and ki in (stii). It follows at once that (hi, ki) separates C

between r and tii. Continuing as in (i) we obtain a continuum of convergence

h of K intersecting both ski and (rhi). We let E2 be the true secondary element

of C containing k, and note that E% is contained in K and is of diameter at

least d. Also, £1 and E2 are distinct. Repeating this process indefinitely gives

an infinite sequence (<,■) of continua of convergence of K, each lying in a differ-

ent true secondary element of C and each of diameter at least d. This contra-

dicts Theorem VI(a) and completes the proof of Theorem 11(c).

Theorem VII. If E be a degenerate true secondary element, then every two

points p and q of E are vertices of a theta curve in C.

Proof. By a theorem of N. E. Rutt* our theorem is equivalent to showing

that no pair of points (h, k) separates p and q in C. Assuming it false, let /

be any simple closed curve in C containing p and q; then / contains h and k.

By Theorem 1(c) there exists a free arc hxk in C.

Case (i). p is a non 2-point.

If hxk contains p, then by Theorem I(j) the free arc hxk is contained in E,

which is impossible since E is degenerate. If hxk contains q, then, since q is

biconjugate to p, every interior point of hxk is biconjugate to p, and we are

led to the same contradiction through Theorem 1(d).

Thus hxk spans /, whence h is biconjugate to k, and by Theorem 1(h),

every interior point c of hxk is a non 2-point. Thus hxk lies in a nondegenerate

true secondary element F of C. By Theorem 1(f), c is not in E; hence c is not

biconjugate to p. This yields an easy contradiction to the fact that p and q

are biconjugate points, since any 2-set which separates c from p in C will also

separate p from q. Thus Case (i) is established.

* See N. e. Rutt, American Journal of Mathematics, vol. 51 (1929), pp. 217-246, where the theo-

rem is established for the plane. (Note in particular Theorem 4, p. 244, of this paper.) For the proof

of the theorem for more general spaces see G. Noebeling, Fundamenta Mathematicae, vol. 18 (1932),

p. 23-38.
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Case (ii). Both p and q are 2-points.

There exists a point z such that (p, z) is a 2-set. By Theorem 1(c) there

exists a component K of C — (p, q) such that K contains E; hence K contains

a non 2-point a of E. Let b be any point of C — K, and / any simple closed

curve in C containing a and b. Thus / contains both p and q. The half open

arc (pb of / is contained in C — K and hence in C— E. Thus p is a boundary

point of some component of C — E. Hence by Theorem 11(b), p, and similarly

q, is a local separating point of C of order greater than 2. Thus hxk spans J;

hence h is biconjugate to k, and, by Theorem 1(h), every interior point of hxk

is a non 2-point. Let c be any interior point of hxk and F the true secondary

element of C containing c. Since p is biconjugate to q, it follows easily that

both p and q are biconjugate to c, hence, Theorem 1(f), EF = (p, q) and (p, q)

is a 2-set. F is also nondegenerate, when considered as a true secondary ele-

ment. If b be a non 2-point defining E, it follows at once that b is not on the

free arc hxk. Thus (h, k) separates C between b and either p or q, say p. Let /'

be a simple closed curve in C containing p and b; then /' contains h and k and

is spanned by the simple arc hxk. It follows that b is biconjugate to c, since />

is biconjugate to b. Hence EF contains the three distinct points p, q, b con-

tradicting Theorem 1(f) and proving the theorem.

In the first paragraph of the proof of Theorem VII we established the fol-

lowing theorem.

Theorem VIII. Every 2-point p of C which is contained in a true secondary

element E of C is a local separating point of C of order greater than 2 and also a

boundary point of some component of C — E.

Theorem IX. If E be a true secondary element containing no free arc, and K

is any component of C — E, then F(K) is a 2-set.

The proof is immediate from Theorems I(k), II(a), and 11(b).

Theorem X. If E be a degenerate true secondary element, then E contains

infinitely many 2-sets and C — E contains an infinite sequence of components

whose closures are disjoint by pairs.

Proof. Let a be any non 2-point of E and b an arbitrary point of E — a.

By Theorem VII there exists a theta curve H=YsLaxJ> in C having a and b

as vertices. Using Theorem I(k) and the fact that a is a non 2-point, we have

at once that C - (a, b) is connected. It follows that there is an arc faki span-

ning H between axxb and one of its other two arcs. We lose no generality if

we assume that hi lies in (axib) and ki in (ax2b). It is immediate that both hi

and ki are in E since both of these points are biconjugate to a.
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We have thus shown that for any point bin E — a and any theta curve H

in C having a and b as vertices, there exists a point q (hi above) interior to axib

such that q and a are vertices of a theta curve in C.

Using hi as b we may find an h2 in (axihi) such that h2 is in E and h2 and a

are vertices of a theta curve in C. Continuing this process indefinitely we may

construct an infinite sequence of points (hi) such that for every i we have

(a) hi is in E;

(b) a precedes hi+i precedes hi precedes b on axxb;

(c) hi and a are vertices of a theta curve in C.

We may assume that the sequence (hi) converges to a point h. We have that a

lies on axib and precedes all the h{ on this arc.

Since E is degenerate there exists for each n a point p„ in the subarc

(hunxhtn-i) of axib which is not in E. Hence, (Theorem 1(b)), let wn, zn be re-

spectively the last point of E preceding and the first point of E following pn

on axib. We have at once that both of these points are contained in the closed

arc hinXihin-i; hence if K is the component of C — E containing pn it follows

from Theorem 11(a) that F(Kn) = (w„, z„).

We have at once that the infinite sequence of components (K2i-i) oiC — E

are mutually separated by pairs. The remainder of the theorem follows at

once from Theorem IX.

Proof of Theorem VI(b). By virtue of Theorem VI (a) it suffices to prove

that C contains but a countable number of degenerate true secondary ele-

ments. Assume the theorem false and let (E) be any uncountable collection

of degenerate true secondary elements of C. Let

(1) pi, ft, Pi, ■ ■ ■

be the set of all local separating points of C contained in at least one of the

sets (E). This set is countable by Theorem A. Using Theorems VIII and X,

we see that every set E contains infinitely many distinct points of (1). It fol-

lows that some point of (1), say pi, must be contained in an uncountable sub-

collection of the (E); hence we lose no generality in assuming that it is con-

tained in all the E. Let Ex be any one of these sets. From Theorems IV and V

we lose no generality in assuming that there exists a component K~i of C — Ex

such that Ki contains all the sets (E) except Ei. Using Theorem 11(a) and

Lemma 3, we may let F(Ki) = (pi, Si) and assume that si lies in none of the

sets E other than Ei. From Theorems VIII and X every E contains a 2-point

q distinct from pi. From this it follows easily that we may assume p2 lies in

uncountably many E; hence uncountably many E's contain both pi and pi.

This gives an easy contradiction to Lemma 3 using Theorem IV. The proof

of Theorem VI(b) is thus completed.
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Theorem XI. Every isolated point q of a true secondary element E is a 2-

point.

Proof. Let a be any non 2-point of E and akq a simple arc in C. Let k be

the last point of E preceding q on akq. It follows at once from Theorem 11(a)

that there exists a component K of C — E such that F(K) = (k, q). The theo-

rem is then immediate by Theorem I(k).

Notation. For any set M let L(M) denote the number of components of M,

if MVO, and L(M) = \ if M = 0.

Theorem XII.* Let F be a closed subset of a compact continuum S such that

each component of S — F has a most n limit points in F. Then for any continuum

N of S, we have

L(NF) ^ nL(S - F).

Proof. We have only to consider the case where L(S—F) is finite and

N d: F, as the inequality is obvious in the other cases. Let P be the set of all

limit points in F of components of S — F. Then the number of points in P

is less than nL(S—F). Let q be a point of NF — P. By a theorem of Hausdorff

the component of N containing q and lying in the open set U = S—S—F has

a limit point on F(U). But this component belongs to NF—P and F(U) c P

Thus each component of NF contains a point of P which proves the theorem

Corollary. For any true secondary element E of C and any continuum N

in C we have

L(NE) ^ 2L{C - E).

Theorem XIII. If Z(E) is finite, and K is a continuum of convergence of C

which is contained in E, then K contains a continuum of convergence of E.

Proof. Let Z(E) =h, and let d be so chosen that the diameter of K is 4hd-

Since K is a continuum of convergence of C, there exists an infinite sequence

(Ki) of disjoint subcontinua of C converging to K. By Theorem 111(b) the

sets KiE will also converge to K. We thus lose no generality if we assume that

the diameter of KtE is greater than 3hd for all i. Since if is a continuum of

diameter 4M, there will exist 3h points pi, (i = l, 2, • • • , 3h), in K such

that min p(pi} p,)=d, (i^j). Construct the neighborhoods Vi(pt),

(* = 1, 2, ■ ■ • , 3h), in C having disjoint closures. For i sufficiently large

KiE will intersect all of these neighborhoods. By the corollary to Theorem

XII, KiE has at most 2h components for every i. It follows that for every suf-

ficiently large i some component ki of KiE must intersect at least two of the

neighborhoods Vi(pi). Using this fact and the information that the Vi(p%)

* This theorem and its proof were suggested by the referee.
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have disjoint closures, the required continuum of convergence of E is easily-

constructed.

Part II. Secondary extensibility and redtjcibility

Definition. Let P be a property of point sets. Then P will be said to be

secondarily extensible provided C has property P whenever every component of

each true secondary element of C has property P. The property P will be said to

be secondarily reducible provided the assertion C has property P implies that

every component of each true secondary element E of C has property P.

Theorem XIV. Let C have the property that for each true secondary element

E of C, L(C—E) is finite. Let P be any one of the following properties: (1) being

hereditarily locally connected; (2) being a regular curve; (3) being a rational

curve. Then P is secondarily extensible and reducible.

Proof. The proof that each of these properties is secondarily reducible

follows at once from the fact that if C has property P then every subcon-

tinuum of C necessarily has property P.

(1) is secondarily extensible.

Otherwise there exists a continuum of convergence K of C. Using Theo-

rems III (a) and XIII we obtain at once a continuum of convergence of some

component of a true secondary element E of C. This contradiction establishes

our assertion.

(2) and (3) are secondarily extensible.

Assume that C is not a regular (rational) curve. Then, by a theorem of

Menger,* C contains a subcontinuum N composed entirely of irregular (irra-

tional) points of C. Using two theorems of G. T. Whyburn,f we see that the

non-local separating points of C are dense on N. Let a be any non-local sepa-

rating point of C contained in N. Then a is a non 2-point of C. Since a is of

order greater than 2, it is not a 2-end point of C and hence defines a true sec-

ondary element E of C. Since Z(E) is finite and a is not a local separating

point of C, it follows that a is not a limit point of C — E. Hence by Theorems

XI and XII we see that a lies in a nondegenerate component K of NE. Let M

be the component of E containing K. From the Corollary to Theorem XII

we have that a is not a limit point oiC — M, hence the order of a in M is the

same as the order of a in C. Therefore, a is an irregular (irrational) point

of M. Thus M is not a regular (rational) curve. This contradiction establishes

(2) and (3).

* See K. Menger, Kurventheorie, Leipzig, 1932, pp. 127, 133.

t See Bulletin of the American Mathematical Society, vol. 35 (1929), p. 102, Theorems 13 and C.
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Theorem XV. The property of being a regular curve is not secondarily ex-

tensible*

Proof. The proof will be by an example constructed in the Euclidean

plane P. Let ABD be an equilateral triangle in P with base AD. Let E be

the midpoint of AD and join E to the midpoints of AB and BD by line seg-

ments EF and EG respectively. There will then be two triangles (namely

AFE and EGD) having their bases on AD. Repeat the above construction

on each of these triangles, and continue the process indefinitely. Call the re-

sulting configuration K. Let K' be the reflection of K in AD with B' the point

corresponding to B under the reflection. Through each point of AB' having

order three construct a segment parallel to AD and extended until it meets

the segment B'D. Denote by H the set K' modified by the addition of these

intervals. Let C' consist of H, K and a free arc BB' formed by two segments

and spanning the point set H+K. Let / be any free arc of H+BB' and p any

interior point of /. With p as center and sufficiently small radius we may draw

a circle disjoint with C' — t, but lying in the plane of C'. Let C be the set C'

modified by the addition of such a circle to every free arc of H+BB'. Then

the secondary elements of C may be classified as follows: (1) one disconnected

nondegenerate true secondary element G consisting of K and all points of

H+BB' of order greater than two; (2) a countable number of connected non-

degenerate true secondary elements, each consisting of a theta curve com-

posed of a circle and a proper subinterval of some free arc of H+BB'; (3) a

countable number of secondary elements of type III each consisting of the

closure of a component of the complement in C of all secondary elements

mentioned in (1) and (2).

It will be noted that although no secondary element of C contains an

irregular point of itself, the set C is not even hereditarily locally connected.

Part III. Examples

Theorem XVI. There exist true secondary elements E having each of the

following properties :

(a) E is connected and locally connected;

(b) E is connected but not locally connected;

(c) E is locally connected but not connected;

(d) E is countable;

(e) E is uncountable;

(f) E is the closure of a free arc;

(g) E is cyclic;

* Cf Theorem XIV.
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(h) E has exactly one end point of itself;

(i) E is neither connected nor locally connected.

Proof, (a), (e), (g): Let C be a 2-cell; then E = C.

For the remaining examples we define a lumped free arc of C to be on open

subset A of C which contains B, where A is an open arc, B is a 2-cell, and

A ■ B is an arc (closed).

(c) , (e): Let C consist of two disjoint 2-cells H and K joined by three dis-

joint lumped free arcs; then E = H+K.

(e), (i): The example shall be constructed in the Cartesian plane. Let C<

be a circle and its interior having the center (2~*, 0) and the radius l/2'+2.

It follows easily that all the d are disjoint by pairs. Let pi, qt be respectively

the points of d having the maximum and minimum ordinate. For each i let Ai

be the line segment joining pi to pi+\, and B{ the line segment joining qt to

qi+i. Let T denote the closed interval of the x axis from (0, 0) to (1/2, 0),

and let D consist of the sum of all the sets A,-, Bi, d, T. In D replace each free

arc by a lumped free arc and denote the resulting configuration by C. Let E

denote the subset of C consisting of the origin and all the sets C,-. Then E

is a true secondary element of C fulfilling the conditions (e) and (i).

(e), (f): Let C consist of a right triangle plus the three segments parallel

to the hypotenuse and joining the points dividing its legs into four equal

parts. Then E will be the middle one of these segments.

(d) , (i): Let D' consist of an equilateral triangle pqr, having p at the

origin and the side pq along the positive x axis, plus an infinite sequence of

disjoint free arcs spanning pqr between points on pq and pr and converging

to the point p. Let D" be the reflection of D' in the y axis, where q' is the

reflection of q and r' is the reflection of r. Define D as the sum of D' and D"

plus two disjoint spanning arcs of this set, one between q' and q, the other

between r' and r. Let C be the configuration D in which every free arc has

been replaced by a lumped free arc. Then E will consist of the non 2-point p

plus the end points of all the lumped free arcs of C.

(a) , (e), (h): In the Euclidean plane P let D be the sum of two disjoint

2-cells A and B. Let a, b, c be three distinct points of A which are limit points

of P— A and d, e two distinct points of B which are limit points of P—B.

Let D' consist of D together with a spanning arc ad of D and a spanning

lumped free arc ce of D which is disjoint with ad. Let / be any interior point

of ad and bf a lumped free arc spanning D'. Let C consist of the entire con-

figuration. Then E will be the sum of A and the free arc af of C.

(b) , (e), (g): Let A be a square and its interior with center at p. Let B

be a square and its interior with side half that of A, having its center at p
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and its sides parallel to those of A. Let D=A—B. Then D divides the plane

into exactly two regions, the bounded one of which we call R. Thus the

boundary of R is a square having sides W, X, Y, Z in the counterclockwise

order. We define (Dt) as an infinite sequence of disjoint 2-cells contained in R,

converging monotonically to W, and each intersecting R in exactly two simple

arcs, one on X and one on Z. (The 2-cells are most easily pictured as strips.)

Add i disjoint lumped free arcs in R spanning E between points of Df and

Di+i and equally spaced in the region between these 2-cells. Then the result-

ing space C is a locally connected continuum. It is easily seen that the setE

consisting of D and all the sets D( is a true secondary element of C satisfying

(b), (e), and (g).
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