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BY
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1. Introduction. In this paper it is proposed to deal with the immersion

theory of surfaces from a point of view somewhat different from the classical.

Part I, sections 3-6, will be devoted to an exposition of the role of the mean

curvature in the immersion theory. In the general case, expressions will be

obtained for the second fundamental tensor Qa$ in terms of the mean curva-

ture, the first fundamental tensor and their derivatives; and necessary and

sufficient conditions will be derived in order that a function Km(u") may con-

stitute the mean curvature of a surface with given linear element. Given a

function Km(ua) satisfying these conditions, the surface will be determined to

within rigid motions in space, except in certain particular cases, which will

be given careful treatment.

The dependence of the immersion on the mean curvature is considered in

two papers by W. C. Graustein [l], in the first of which ample references to

the literature are given. The expression for Qa$ in terms of the mean curva-

ture, and the differential equations governing the mean curvature, do not

appear to have been obtained before.

Part II, sections 7-11, will deal with an important type of singularity

of the immersion, referred to as the edge of regression, which is the envelope

of both sets of asymptotic lines, and for which the mean curvature is infinite.

The geometrical properties of the edge, both local and in the large, as well

as its analytical structure, will be studied in these sections.

Part I

2. Notation and definition. In Part I we shall be dealing purely with the

local geometry of a surface; that is, with a region R of the surface which is

homeomorphic to the interior of a circle of the Euclidean plane. The coordi-

nates ua, a = 1, 2, of a point of R are defined to be the Cartesian coordinates

of its image under the homeomorphism, and the homeomorphism defines a

coordinate system over R, denoted by [«"]. The functions we shall consider

are assumed to possess a sufficient number of derivatives so that the quanti-

ties defined shall exist.

* Presented to the Society, in part on September 9, 1937, and in part on December 28, 1939;

received by the editors July 12, 1939, and, in revised form, November 18, 1939.

230



IMMERSION THEORY OF SURFACES 231

The region R belongs to an immersed surface if to each point of R there

corresponds an ordered triad of numbers x\ i = \, 2, 3* called its space co-

ordinates, such that the sum of the squares of the Jacobians of the *'s with

respect to the m's is not identically zero.

The region R belongs to an intrinsic surface if to each coordinate system

there corresponds an ordered triad of functions gu(ua), gn(ua) =g2i(w),

ga(«a)i called the components of its first fundamental tensor, such that

g— \g«ß\ ^0, gaßduaduß is positive definite, and gaß undergoes the transforma-

tion

du" duß

when the coordinate system [w] is transformed into the coordinate system

[üa]. The surface is regular at a point P if there exists a coordinate system

for which g ̂ 0 at P. We shall deal only with such surfaces.

From an immersed surface we can obtain an intrinsic surface by defining

the fundamental tensor

dx* dx'
{2A) *** " 7T77;

du" dw"

conversely, given an intrinsic surface by means of the functions gaß(w), we

may be able to integrate (2.1) to obtain an immersed surface.

If ti# denotes a factor which is zero unless i,j, k are different, and 1 or — 1

according as ijk are in cyclic or anticyclic order, and if taß is the skew sym-

metric tensor whose components are [2 ]

eu = e22 = o,      e12 = - t21 = g-M,

then the second fundamental tensor is given by

dx< dx> d2xk

and the mean curvature by

Km = g<#Qa9.

The quantities fl„s satisfy the equations of Codazzi

(2.2) ®aß,y — ®ay,ß ~ 0,

where the comma indicates covariant differentiation, and satisfy the equa-

tions of Gauss

* We shall employ Greek indices to denote the range 1, 2, and Latin indices to denote the range

1,2,3.



232 H. W. ALEXANDER [March

Kg = Ü,

where £2 is the determinant of fia/3, and K is the Gaussian curvature, which is

expressible in terms of the gaß and their derivatives.

In the classical treatment, the immersion theory of surfaces is broken

down into two stages: first, the discovery of a tensor Q„<j satisfying the equa-

tions of Gauss and Codazzi; and, second, the integration of certain equations

of the Riccati type to obtain the space coordinates of the surface. The theo-

rem is proved that if an intrinsic surface is initially given, and if there exist

functions Uaß(uy) satisfying the equations of Gauss and Codazzi, then there

exists an immersion of the surface, unique to within rigid motions in space,

for which Q0ß(«T) is the second fundamental tensor. In the present paper it

is proposed to introduce a stage prior to the two mentioned: namely, to dis-

cover a single function Km (the mean curvature) satisfying, in general, two

partial differential equations of the third order. The tensor fl„3 may then be

obtained without integration.

We shall assume that the region R is free from umbilics. That is, if pi

and pi are the principal radii of curvature, pi^p2 over R. Let us choose P2

to be the larger of the two radii, and define

Km / 1       1 \ /ll
M =-= (1/2) (— + —),     N = (M2 - Kyi* = (1/2) (-

2 \Pl P2 / \Pl P2

As a notational convenience we introduce the idea of the "bisector tensor"

of a real symmetric tensor. The symmetric tensor a*ß is the bisector tensor of

the symmetric tensor aaß if a*ßduaduß is the Jacobian of aaßduaduß and

gaßduaduß divided by 4g1/2. It may be shown that

a% = (l/2)(t.aaSß + t.ßaia),

where tsa = gya£h'. By definition the directions a*ßduaduß = 0 bisect the

angles between the directions aaßduaduß = 0. Thus the equations üaßduaduß = 0

and Q.*ßduaduß = 0 define, respectively, the asymptotic and principal direc-

tions.

The bisector tensor satisfies the identity

a* = | a*f\ = a - {g/4){g°ßaaß)2.

The following three conditions, A, B and C, are equivalent to each other:

On       Ö12       «22 _ *
(2.3)        A:   a  = 0;      B: -= -       =-;      C:   a% = 0.

gll gl2 g22
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3. General expressions for Qa$. In §§3 and 4 we shall assume we are given

an immersed surface, and we shall obtain necessary conditions on the mean

curvature, and on an invariant <b to be defined.

Theorem 3.1. Let A («*) be any real non-constant scalar (that is, AiA ^ 0), f

and let baß be the tensor (2NA taÄtß)/AiA. Let <p be twice the angle from the vector

A,a to the line of curvature whose principal radius is pi. Then

(3.1) üaß = cos <t>(baß — Ngaß) + sin <bbaß + Mgaß,

where baß is the bisector tensor of baß.

Proof. Use the coordinate system consisting of the lines A — const, and

their orthogonal trajectories, with ul = A. In this system equations (3.1) re-

duce to

(3.2) fin = gu(N cos <t> + M), fi12 = gl'*N sin <b, fi22 = g22(- N cos <f> + M).

If 6 is the angle between the direction du" and the line curvature whose

principal radius is pi, then from Euler's theorem the normal curvature corre-

sponding to the direction dua is given by

QatdWduP
(3.3) —- = iV" cos 20 + If.

gaßdwduß

Using (3.3) with du2=0, 26=<p, we obtain the expression for flu given in (3.2).

Using (3.3) with du1 = 0 and 26=4>+tt, we obtain ß22. Finally, to obtain tin

we use
2 2 2

fii2 = finfi22 — Kg = gN sin 4>.

Thus equation (3.2) is verified.

Theorem 3.2. The invariant <j> satisfies the differential equation

<f> a = - [2A 7Ai(M, A) — M.yAiA}' [tya cos <j> — Si sin 4>]
NAXA

2t     A.ßA^ya t.aN,y
!

AiA N

where 81 is the Kronecker delta.

By using the coordinate system of the proof of Theorem 3.1, it is readily

verified that equations (3.4) are equivalent to the Codazzi equations (2.2),

where üaB is given by (3.1).

t Throughout the paper the signs = and ^ will be assumed to hold at every point of the re-

gion R.
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4. Necessary conditions on the mean curvature. From this point on we

shall specialize the invariant A to equal either M or K. If M is not constant,

we put A = M; if M is constant, but K is not, we put A = K. It is easily proved

that if both M and K are constant, the surface reduces to a plane, a sphere

or a circular cylinder.

We consider first the case AiMVO. Then we may take A =M, and (3.4)

reduces to

M,y    , t      ^      2e^M,sM,Ta 7
(4.1) <p,a =- (e.a cos 0 — oa sin 0)- — e.a-■

N AiM TV

Theorem 4.1. The invariants M and <b satisfy the equation

(4.2) R cos 0 + 5 sin 0 + T = 0,

P = (1/iV) [A2Af - Ai(M, log A^/iV2)],

(4.3) 5 = (- 1/N)@(M, log Aj_M/N2),

T = A2 log N - AiM/N2 - 2/C.

Equation (4.2) is the condition of integrability of equations (4.1). That

this is the case may be verified by using the coordinate system of the proof

of Theorem 3.1 with A =M.

The invariant T of (4.3) may also be expressed in the form

- M A2K AiK
(4.4) T =-g«*a«0-2K,

N2 2N2 2N*

where

(4.5) aaß = - M,aß + (l/N)(M,aN,ß + M,ßN,a).

This expression is obtained from those of (4.3) by expanding A2 log n

= (l/2)A2log (M*-K).

If tt*aß is the cofactor of ß*ß in the determinant | tiaß\ divided by

12* = -gn2} and if p and q are given by P = - ti*aßaaß, q = - Q*<*aa*, where

aaß is given by (4.5), then P and q satisfy the identities

P = — S cos <f> + R sin <j>,      Q = — R cos <£ — S sin <i,
(4.6)

P2 + <22 = R2 + S2 = - 4a*/g^2-

The proof follows readily when the coordinate system of Theorem 3.1, with

A = M, is employed.

t ®(A, B) is defined by G(^, B) =t^A,aB,ß.
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From (4.2) and (4.6) we have Q = T; and hence, using (4.6) it follows

that P and Q are both expressible in terms of M and gaß and their derivatives:

(4.7) P = e(i?2 + S2 - T2)1'2,      Q=T, e=±l.

Throughout the remainder of this section, and also in §5, we shall be

concerned with the case in which R and S are not both zero. Since R and S

are real functions, this condition is equivalent to R2+S2^0, or P2+Q2?^0,

or a* 5^0. Then we may solve equations (4.6) for sin <j> and cos <f>:

RP - SQ - SP - RQ
sin d> =->      cos <b =-•

P2 + Q2 P2 + Q2

If we substitute the values for P and Q from (4.7), we obtain

- ST + eR(R2 + S2 - T2)1'2
sin <f> = ->

R2 + S2
(4.8)

- RT - eS(R2 + S2 - T2)1/2
cos 4> =-;

ic2 + S2

these expressions could be obtained more directly by solving equation (4.2)

for sin <b and cos <p. When the expressions (4.8) are substituted in (3.1) with

A =M, we obtain the result stated in the following theorem.

Theorem 4.2. If R and S are not both zero, the second fundamental tensor

satisfies the identity

(4.9) Uaß = Uaaß + eVa*aß + Wgaß, t - ± 1,

where

aaß = - M,aß + (l/N)(M,aN,ß + M.pN.a),

(4.10) -IT 2(R2 + S2 - T2)1'2 U
U =-,  F = --—,  W = M-gaßaaß,

R2 + S2 R2 + S2 2

and R, S and T have the values given in (4.3).

We may use the coordinate system of Theorem 3.1, with A =M, and equa-

tions (3.2) for the components of tiaß. The theorem then follows readily with

the aid of (4.8).

When we substitute the expressions (4.9) in the equations (2.2) of Co-

dazzi, we obtain two third order differential equations on the mean curvature

which may be written

(4.11) tßy(Uaaß + eVa*aß + Wgaß),y = 0,
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where e has the same value as in (4.9). These are thus necessary conditions

on the mean curvature in the case R2+S29£0.

5. Sufficiency of the conditions (4.11). In this section the problem of im-

mersing a given intrinsic surface will be reduced, in the general case, to finding

a function M(u") satisfying equations (4.11). Exceptional cases will be treated

in §6.

Theorem 5.1. If M(w) is any real solution of equations (4.11), then there

exists an immersed surface, determined uniquely to within rigid motions in space,

for which 2M(ua) is the mean curvature and gaß the fundamental tensor.

Proof. It is readily verified that since (4.11) is satisfied, üaß as defined by

(4.9) satisfies the equations of Gauss and Codazzi. Thus the existence of the

surface follows from classical theory, and its second fundamental tensor is

given by (4.9). Moreover, gaßüaß = 2M, so that 2M(u") is actually the mean

curvature.

The ambiguity of sign in the expression for üaß in (4.9) has the following

consequences. If M(u") is a solution of (4.11) with « = 1, then equations (4.9)

with e = 1 yield a tensor Qaß satisfying the equations of Gauss and Codazzi;

a similar statement holds for e= — 1. If it happens, however, that AT(w)

satisfies the pair of equations

in addition to (4.11), then the expression (4.9) with e equal to either 1 or — 1

will satisfy the equations of Gauss and Codazzi. In this case, from a single

function M(ua) we would be led to two surfaces, intrinsically identical, but

having different immersions [3]. We remark that equations (4.11) together

with (5.1) would lead to certain necessary conditions on the intrinsic geome-

try of the surface; these will not be investigated here.

6. The case i? = 5 = 0. In this case it follows from (4.2) that T = 0; and

from the identities (4.6) we have P = Q = a* = 0.

Theorem 6.1. The condition P= —U*aßaaß = 0 is necessary and sufficient

that the surface be isometric, that is, that the lines of curvature form an isometric

system.

The proof consists in taking the lines of curvature as parametric, and

recalling that the condition that the parametric lines be isometric [4] is

d2log (gn/g12)/du1du2=0. This condition may be reduced to P = 0 by making

use of the Codazzi equations together with the relations

(5.1) tßy(Va*aß),y = 0

fin = gu(M + N) fi22 = g22(M - N).
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Since a* = 0, from (2.3) we have an/'gn = axi/'gw = a22/gw- If we write these

equations in the form aaß = pgaß, and multiply through by gaß, we obtain

p = (l/2)g°%a,j. But since 2" = 0, from (4.4) we have

gaßaaß = - (l/2MN2)(N2A2K + AtK + 4WK).

Thus

Oat = ~ {gaß/4MN*){N*A2K + ArK + 4N*K),

or

Maß = (l/N)(M,aN,ß + M,ßN,a)

+ (g^/4MN2)(N2A2K + AiK + 4NAK).

Conversely, it is readily shown that equations (6.1) imply R = 0, 5 = 0 and

T = 0.

Equations (6.1) lead to certain necessary conditions on the intrinsic ge-

ometry, which we may obtain in the following way. Let us write (6.1) in the

form

(6.2) M,aß = faß{M,a, M, gaß),

where faß involves the derivatives of gaß; this will be understood also in the

functions Fa and $ below.

To obtain integrability conditions on (6.2), we make use of the identity

(6.3) £yM,aßy = — Kz.aM,ß.

This is derived from the identity [5]

in view of the fact that for a two dimensional surface all the components of

R\aßy vanish except Rvm^Rsm** ~Rmi= -Rnn = gK.

When we differentiate covariantly the expressions (6.2) for M,aß, substi-

tute in (6.3), eliminate M,aß and solve for M,„, we get an equation of the form

(6.4) M,a = Fa(M, gaß).

We now develop the integrability condition of (6.4), eliminate M,„ and solve

for M, obtaining

(6.5) M=^gaß).

Thus we may obtain a set of necessary conditions on gaß by substituting M

from (6.5) in (6.2):

(6-6) <f>,aß = faß( g„ß).
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Conversely, if gaß(w) is such that (6.6) are identically satisfied, then M de-

fined by (6.5) will be a solution of (6.2).

Certain details have been obtained for the case (of greatest generality)

when Ai(AiiT)^0, &(K, AxK)^0. In this case it turns out that (6.4) can be

written in the form

M,a = 0K,a + b(AiK),a

where b satisfies a cubic equation bz+Ab2+Bb+C = 0, and a is given by

a = (Db+E)/(Fb+G). The coefficients A, B, C, D, E, F and G are polyno-

mials in M with coefficients formed from the differential parameters of K.

The author is not able to give any indication of the form of (6.5).

Suppose that (6.6) are satisfied, and that M(ua) is a solution of (6.1),

such that A1.MVO. Then equations (4.1):

M,y y y     . 2tß ,ßM, y a y N,y
4>,a =-         (e.a cos 4> — 8a sin <b)-t.a-

N AiM N

are completely integrable. Thus we have an infinity of solutions <b{w, a),

where a is an arbitrary parameter. Consider the functions Üaß(uy, a) defined

by (3.1) with 4= M:

Qaß = cos 4>(baß — Ngaß) + sin 4>b*aß + Mgaß,    baf = 2NM,aM\ßl'AiM.

It is easily verified that the tensor Qaß so defined satisfies the equation of

Gauss; it also satisfies the equations of Codazzi, since <j> satisfies (4.1). More-

over, it may be shown, as in Theorem 5.1, that 2M(w, a) is actually

gaßüaß(uy, a). Hence we have

Theorem 6.2. If M{ua) is any solution of equations (6.1) such that AiM^Q,

then there exist [6] 001 surfaces with the intrinsic geometry gaß(uy) and the mean

curvature 2M{u").

The case AiM = 0, or M = const., automatically satisfies R2+S2 = 0, as is

evident from (4.3); but the above discussion is inapplicable, since equations

(4.1) are only valid for AiM^O. We first consider the case AiM = 0, AxK^0.

Then we may put A=R~ in equations (3.1) and (3.4). Remembering that

N2 = M2-K, and Af,« = 0, we get

(6.7) na0 - cos <t>(baß - Ngaß) + sin d>b*a0 + Mgaß, baß = 2NK,aK,ß/A1K,

and
ßy y

- 2C     K,ßK,ya Z.aK,y
(6.8) =--■

AiK 2N2
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If, as in Theorem 4.1, we develop the integrability conditions of (6.8), we

obtain the single equation

N2A2K + AiK + 4N*K = 0.

The method of proof is identical with that used in Theorem 4.1, except that

the curves K = const, and their orthogonal trajectories are taken to be para-

metric.

We can eliminate M entirely from this equation by first writing it in the

form

(6.9) 4KM* + M2(A2K - 8K2) + 4K3 - KA2K + AiK = 0.

When we solve for M2 and substitute in Ai(M2) =0, we get

8K2 - A2K + (AiK - UKAiK)1'2
(6.10) Aik = 0,      k=-■-—.

K

In the particular case M = 0, (6.9) reduces to

(6.11) KA2K - AxK - 4K3 = 0

which is thus a necessary condition on the intrinsic geometry of a minimal

surface [7].

Conversely, suppose that we are given an intrinsic surface gaß{w) satisfy-

ing (6.10) with either the + or — sign, say the + sign for definiteness. Then

the expression k of (6.10) is a constant. If £2^0, then (6.9) is satisfied with

M = (l/2)k112. Hence equations (6.8) are completely integrable, and we have

*-/[

ßy 7

— 2c  KtßKiya t.aKty
-I--\dw + C.

A^ 2N2

There are thus oo1 values of <b differing by an additive constant. As in the

remark preceding Theorem 6.2 we may conclude that ß«^«7, C) as defined by

(6.7) satisfies the equations of Gauss and Codazzi, and that 2M = k112 is the

corresponding mean curvature. Hence we have

Theorem 6.3. If gaß(uy) satisfies Aik = 0 where

8K2 - A2K ± (A22K - lGKAiK)112
k

K

and if k = 0, then there are <x>1 surfaces 2 with the intrinsic geometry S and the

constant mean curvature k1'2.

It has already been pointed out that if AiM = AiK = 0, the surface reduces

to a plane, a sphere or a circular cylinder.
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Part II

7. The edge of regression: definition. In view of the significance of the

mean curvature in the immersion theory of surfaces, it becomes natural to

consider what kind of singularities the function Km may exhibit, and what

corresponding singularities will arise on the immersed surface. We shall now

consider a certain curve £ on a surface along which Km is infinite, and which

is the analogue for a general surface of the edge of regression of a developable

surface. It will be referred to as the edge of regression; this name is appropriate

not only because of the analogy with a developable surface, but also because

it has been used to designate the envelope of a congruence of curves in 3-space

[8].
In order to provide an adequate foundation for the study of the edge of

regression, both local and in the large, we shall first define an immersed sur-

face with boundary, and then state conditions in order that the boundary

may constitute an edge of regression. For convenience, we shall speak in

terms of analytic functions; but all the properties obtained would continue

to hold if the functions involved possessed only a finite number of derivatives.

The region of the Euclidean plane defined by \w\ <e will be called a

square; the region defined by | u1 \ <e,0 = u2<e, will be called a half square,

and the segment u2 = 0, \ u1\ < e will be called its bounding edge. The homeo-

morphic image of a square is of course a region; we shall refer to the homeo-

morphic image of a half square as a half region, and the image of its bounding

edge will be called the bounding edge of the half region.

Consider a two-dimensional manifold together with its boundary. The

totality of interior points will be denoted by A, and the totality of boundary

points by B. A+B shall be coverable by a finite number of regions Rt,

i — 2, • » • , and half regions Rj, j = l, 2, • • • , each homeomorphic to a

square Si or a half square S, of the Euclidean plane. The regions R{ lie on A

and the half regions Rj have their interior part on A and their bounding edge

on B. The coordinates w, a = 1, 2, of a point with respect to a particular Rt

or Rj to which it belongs are defined to be the Cartesian coordinates of its

image under the homemorphism. If a point belongs to more than one of the

sets Ri or Rj, the transformation from one coordinate system to the other

will be assumed to be analytic. To each point of A +B there shall correspond

an ordered triad of real numbers x\ i=l, 2, 3, such that the sum of the

squares of the Jacobians of the x's with respect to the it's is different from

zero.

Let 2 be an immersed surface and let the curve E be its bounding edge.

E will be assumed to possess a unique tangent at every point. The plane
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normal to E through an arbitrary point P of E will cut the surface in a curve

C bounded by P. We define as follows a coordinate system [s, t] for a certain

half region R whose bounding edge lies on E: s is the arc length along E from

a fixed point 0 to P, and t is the arc length along C measured from P. The

curve E will be called an analytic edge of regression if it satisfies the following

three conditions:

Condition I. The mean curvature is infinite and the total curvature finite

along E.

Condition II. The space coordinates xi of the curves t = const, are functions

of s analytic in R.

Condition III. The curves C: s = const, have an algebraic singularity at

t = 0; that is, within R the space coordinates x' of C are analytic in t1,a, where a

is an integer called the order of the singularity, a is assumed to be the smallest

integer for which this condition is satisfied. E is not a straight line.

8. Analytic structure of the edge of regression. We may now write the

equations of the surface in terms of the parametrization [s, t] defined in §7.

Let be the equation of E, and let i^fY), ^(s) and |g(*) denote, re-

spectively, the unit tangent, principal normal and binormal vectors of E.

Then the equations of the surface may be written in the form

(8.1) X1 = x + a(s, t)(2 + b(s, t)&,

where a(s, t) and b(s, t) must, according to Condition II, be analytic in s;

while according to Condition III, they must be analytic in fla. Hence

00 CO

l l

where <z„ and bß are analytic in s.

From the definition of the parameter t, it follows that g22 = 1, where gaB

denotes the fundamental tensor in the [s, t] system. We may use this fact

to prove that the integer a defined in Condition II (the order of the singu-

larity) is equal to 2. We have

dt
v-a^i""1

1
£ mV""1

a l l

Hence

1    oo     M+2a— 1

£22 = — X)    £ j(# + 2a - j) [ajap+ia-j + b jbll+2a-j]v,lc'.
a£ „_i ,_i
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But since g22 = 1, we have, for p^O,

p+2a-l

(8.2./*) zZ }(p + 2a - j) [afOt+tv-j + 6A+2a-,] = 0.
,=1

We first show that a ^ 1. If a were 1, the coordinates of the surface would

be analytic in the parameters [s, t], and the mean curvature would be finite,

contrary to Condition I.

Secondly, a cannot be odd. For suppose a were odd and not 1. We shall

prove by induction that

(8.3) a,,. = 0» = 0 for p ^ 0 (mod a).

Equation (8.2.2-2a) yields a\+b\ = Q or

(8.4) ai = fii = 0.

Suppose we have shown that <z„ = &„ = 0 for vf^O (mod a), v<p. Consider

equation (8.2.2ju — 2a), where pf^O (mod a). Every one of the products

a\ai„-\, b\b2ll-\ occurring in this equation will involve a term a, or b, for which

v ̂ 0 (mod a) and v <p, except the terms a^+b2.. Hence all the product terms

will vanish except and equation (8.2.2/x — 2a) will yield 0^4-^ = 0,

since 2p — 2ay^Q. Hence a„ = bß = 0; and equation (8.3) is established in gen-

eral, since we have shown independently that ai = &i = 0. But (8.3) implies

that all the terms in the expansions of a and b involving fractional powers

of t drop out. Thus a and b would be analytic in t, which we have already

shown to be inconsistent with Condition I.

Finally, suppose a is even. Then an argument exactly analogous to that of

the previous paragraph would enable us to prove that aß = bß = 0 for p^O

(mod a/2). Hence a and b would be analytic in /1/2; and from the minimal

property of a, as stated in Condition III, we must have a = 2.

Let us put 6 = tm. Then we have

CO CO

(8.5) a = X>„0",      b = EM'.

The remainder of this section will be occupied with showing that

(8.6) ai = 6i = 0,      a2 = e=+l,      b2 = a3 = 0,      b3 ^ 0.

The relations &i = b\ = 0 have already been obtained in (8.4). We shall use the

notation A =o(6n) to mean that lime,0 A/dn = k where k is a function of s

alone. Then we may write (8.1) in the form

(8.7)     X* = ** + fs [a/ + a/ + o(0*) ] + & [b/ + b36 + o{d) ].
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From these we obtain, using the Frenet formulas, and denoting by p and t,

respectively, the radii of curvature and torsion of E,

l + o(62),      g» = o(0), g=l + o(62),

- is
-+o(fl),

P

/da2     b2\ /db2 a2\

3 r
- [ — fl3*2 + «2*3 + o(6)\.
46

The mean curvature and the total curvature are thus found to be

(8.9) Km= (3/46) [ - a3b2 + a2b3 + o (6) ],

(8.10) K = - (3b2/4P6)[- a3b2 + a2b3 + o(6)].

Since, according to Condition III, E is not a straight line, l/p^0. Let us

consider the neighborhood of a point at which l/p^0. By Condition I, Km'\s

infinite for 0 = 0, and hence from (8.9)

(8.11) a3b2 - a2b3 ^ 0.

Again by Condition I, K is finite for 0 = 0, so that from (8.10) we must have

&2 = 0. This fact, together with (8.11), implies that a2^0, b3^0. Equation

(8.2.0) yields a22 + bl = l, whence a2=e= +1. Finally, from equation (8.2.1)

we have

10(a2a3 + b2b3) = 0,

so that a3 = 0. This completes the proof of equations (8.6).

In the Cartesian coordinates [y1, y2], consider the curve yl = a, y2 = b. In

view of (8.6), these equations become

CO CO

(8.12) j'=E^,        y2 = EM'.
2 3

These are the equations of a curve with a cusp at the origin, of which one

branch is the curve C, and whose cuspidal tangent coincides with f|. Let us

choose the sign of a2 in such a way that C corresponds to 6>0, and let us

denote by C the branch of the curve corresponding to 0<O. As the point P

traverses E, the curve C will generate the surface S, and the curve C will

generate a second surface 2' meeting 2 cuspidally along E. The surfaces 2

(8.8)

gn =

On -

fil2 =

fi22 —



244 h. w. alexander [March

and 2', corresponding respectively to 6>0 and 0<O, will be referred to as

the two sheets of the edge of regression.

Conversely, if we are given a plane curve whose equations in the [y1, y2]

plane are of the form (8.12), with <z2^0, a3 = 0, b3^0, with a1 and analytic

in s, and with 62 equal to the arc length of the curve, measured from the cusp,

then the surface

. °° °°
_ i i i x—*        u i x—\ u

X = x +h2Z<>ß
2 3

which is generated by displacing the curve along the analytic curve E:Xi = xi

in such a way that the point 0 = 0 lies on E and the cuspidal tangent at 6 = 0

coincides with the principal normal of E, obviously has E as an analytic

edge of regression.

9. Local geometrical properties of the edge of regression. This section

will be devoted to deriving certain geometrical properties of the edge of re-

gression. Consider a surface defined, in the neighborhood of its edge of regres-

sion E, by
00 00

lit ^—r        u i —. u

X = x +hzZaß +fäEM,
2 3

where Xi is analytic in the half region R: \s\ <fi, O^02<r2. The geodesic

curvature of E may be defined by

Pa       g1'2 dt

The half region R is said to be convex (concave) with respect to its bounding

edge £ at a point P of E if the geodesic curvature of E is greater than 0 (less

than 0) at P.

We may mention in passing that the concept of convexity as defined

above is equivalent to the following more intuitive definition, which may be

given a rigid analytical foundation: the half region R is convex (concave) with

respect to E at P if the geodesies orthogonal to E converge (diverge) in R

near P.

Property I. If 1/p, \/p„, 1/r and K denote, respectively, the curvature,

geodesic curvature and torsion of E, and the total curvature of the surface along E,

then

(9.2) P = ep„,        K+1/t2^0, 6=±1.

Proof. From (8.7) we have
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dxi dxi a28*
gn =-= 1 - 2 -+ o(8*).

ds   ds p

Hence, from (9.1),

(9.3) 1/p, = a2/p + o(8*).

But since, from (8.6), a2= « = + 1, it follows that p = ep„ along E.

Combining equations (8.8) and (8.6), we have

— 3£>3 1 3a2o3r
(9.4) ßu =-8 + 0(8*),   Üu = — + o(8),     ß22 =-[l + o(ö)]f

2p r 40

whence ÜT = — 9a262/8p — \/t2+o(6), so that, along E,

1 9a2os 9o32
(9.5) K-\-=-=-9*0.

t2 8p 8p,

The case l/p = l/p„=0 has already been excluded.

Property II. A surface is convex or concave with respect to its edge of re-

gression according as K + I/t2<0 or >0 along the edge.

Proof. From the definition of convexity, the surface will be convex or con-

cave with respect to its edge of regression according as p„ is positive or nega-

tive along E; that is, because of (9.5), according as ÜT+l/r2<0 or >0 along

E.

Property HI. The edge of regression is the envelope of both sets of asymptotic

lines, which are analytic curves near E. It is likewise enveloped by one set of

lines of curvature, and met orthogonally by the other set.

Proof. The asymptotic lines are given by

üuds + (Qiü + (- gKY>2)dt = 0.

We shall consider only the set of asymptotic lines for which the + sign is

appropriate; the proof is identical for the other set. Making use of (8.8) and

(9.4) we have

fSh "I       T 1 I
+ o(82)  dsi--h (- Kyi* + o(6)jdt = 0,

so that

dt 3b38
(9.6) — =-+ o(8*).

ds     2P(l/r + (- Ky<*)

This shows that dt/ds = 0 for 0 = 0, which implies that the asymptotic lines
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are tangent to E. Since the directions of the lines of curvature bisect the

angles between the asymptotic lines, it is obvious that one set of lines of

curvature will envelope E, and the other set will meet it orthogonally.

Putting dt = 2ddd in (9.6) and inverting, we have

Since the right-hand side is analytic in s and 9, it follows that s is analytic

in 6. Let <s be the arc length along the asymptotic line. Then, recalling that

#22 = 1, we have

which shows that da/dd is analytic in 6, and hence that a is analytic in 0.

But from (9.7), da/dd is obviously not 0 for 0 = 0, and we conclude that 6

is analytic in a, and that the same is true for s. Finally, substituting these

analytic functions in the equations (8.1) of the surface, we obtain the coordi-

nates of a point on the asymptotic line as analytic functions of its arc length.

We may also show that the asymptotic lines cross over from 2 to 2' as

they envelope E. This follows from the fact that, according to equation (9.7),

dff/dd^O at E. Hence, near E a change in the sign of a leads to a change in

the sign of 8, and thus to a change from 2 to 2', or vice versa.

10. The index of a region. Consider an immersed surface whose only sin-

gularity is an edge of regression, consisting of one or several pieces. We wish

to study the topology of the region bounded by such a singular locus. For

this purpose, §10 will develop the properties of an index of a region, inti-

mately connected with its Euler characteristic. In §11 the index of a region

bounded by an edge of regression will be shown to depend upon the indices of

the umbilics in that region.

Indices of the type we are considering, and in particular the index of an

umbilic, have been studied by Hamburger [9], Blaschke [10], and Franklin

[11]. In their treatment of umbilics, these authors depend on the work of

Darboux [12] and Gullstrand [13], who investigated the behaviour of the

lines of curvature in the neighborhood of an umbilic. The present treatment

is quite independent of these earlier discussions, and makes use of the in-

variants of the surface at an umbilic, rather than the descriptive geometry

of the lines of curvature near an umbilic.

We shall now proceed to define and discuss an index jR for a region R of

an orientable surface.

ds - 4P

3b3
(1/t+ (- KY'2) + o(6).

(9.7)
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Let R be a region of an orientable surface 2, such that the boundary C

of R contains no umbilics and has a unique tangent at all except a finite

number of points Pi} i = 1, 2, • • ■ , at each of which it has a corner. Let C

be oriented in such a way that the positive tangent vector T of C, the normal

N of C directed toward R, and the normal of 2 form a positive triad of direc-

tions. Consider the vector T as it traverses C in the positive sense; let 0<

be the angle through which T must rotate in passing from one to the other of

the two segments of C which meet at the angle P (the positive sense of rota-

tion is from T to N). Let P be any point of C and let V be the unit tangent

vector to an arbitrarily chosen line of curvature through P, with an arbitrary

orientation. Finally, let 6 be the positive angle from V to T. Then we may

define an indexes for the region R by

Consider the vector V of the above definition, and let V be the tangent

vector of the other line of curvature through P. It is readily seen that, as P

makes a circuit of C, the vectors V and V cannot be permuted. For if 1/pi

and l/p2 are the principal curvatures corresponding to V and V respectively,

and if l/pi>l/p2 at the start, then l/p1>l/p2 over the whole path, since it

contains no umbilics. This implies that V and V will still correspond to the

same principal directions after any circuit.

The vector V may, however, return to its original position with sense re-

versed. An example illustrating this fact is afforded by a circuit enclosing an

umbilic of an ellipsoid, for which the lines of curvature in the neighborhood

of an umbilic have the form illustrated in Fig. 1. Consider the region R:

ABCD, enclosed by two lines of curvature, with right angles at B and D.

The index is jR = 1 — (it/2t) = 1/2, and it is clear that the vector V returns

to its original position with sense reversed.

Since V must be carried into + V after one circuit, it follows that

tfcd9+22i0i must be some multiple of tt. Hence jR must be some multiple,

positive or negative, of 1/2. This has the consequence that the index is un-

changed when R is deformed continuously in such a way that its boundary

never goes through an umbilic.

Theorem 10.1. If R is a region which is simply connected and free from

umbilics, thenjR = 0.

Proof. Consider any conformal mapping

(10.1) 2 ~ E
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which carries the region R, the curve C, and the vectors V and T of 2, re-

spectively, into R, C, V and T of the Euclidean plane E. Let D be a fixed

oriented direction in the plane. Let <p and \f/ denote, respectively, the positive

angle from D to P*Land the positive angle from D to T. Then 9=\p—(p.

Fig. 1

Since R is simply connected, C is a simple curve, and the vector T

will turn through 27r in one circuit, which is the total increment in \p:

<ß'cdij/-\-£ifl< = 27T. Hence

Since R is free from umbilics, V is a nonsingular vector field over R, and V

is a nonsingular vector field over R. Thus the angle 0 is a nonsingular scalar

function over R, and the increment of <j> on traversing the boundary C of R,

J"cd<p, equals zero. Hence jn = 0.

Theorem 10.2. If R is a region which contains p holes and is free from um-

bilics,

jR = p = 1 - x(R),

where x(R) ** the Euler characteristic of R [14].

Proof. We reduce R to a simply connected region R' by introducing ^

cuts, one cut connecting each hole to the outer boundary of R. Then R' is
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simply connected and free from umbilics, so that jV =0. But in making the

cuts, we have introduced 4-p new angles on the boundary, whose total con-

tribution to zZii^i is 2^7r; so that the index of R has been reduced by p. Hence

js =jR'+P = P-

Theorem 10.3. Let R be a simply connected region covered by a system of

isometric coordinates, so that

gll = g22 = X,        gu = 0

and such that the boundary C of R is free from umbilics and corners. Then

1 f    ( 8»\
in = — <b  d[ arc sm-).

4tt Jc    \ \N/

Proof. Let a be the angle from the line u1 = const, to the vector V previ-

ously defined. Then under the conformal mapping (10.1), the direction dul = 0

is carried into a nonsingular vector field over R. Hence <p— a, the angle from

D to dul = 0, is a nonsingular scalar function over R, so th.&tf^d((p — a) =0.

Thus

Let us put a=tii2, b = (1/2)(S72U— A22). Then the lines of curvature are

given by

— adu^ 4- 2bduldu2 4- adu2% = 0,

from which we find sin la = a/\N = Qu/\N, and the theorem is proved.

11. Umbilics. Region bounded by the edge of regression. In this section,

Theorem 10.3 will be used to evaluate the index of a region containing an

umbilic of the simplest type, in terms of a certain invariant evaluated at the

umbilic. The method is perfectly general, however, and could be extended to

umbilics of higher order; the present results are intended merely as illustra-

tive. It is then possible to evaluate the Euler characteristic of a region

bounded by an edge of regression. We shall assume that the coordinates of

the surface in the neighborhood of the umbilic are functions of class Civ in the

parameters. We shall also assume that the parametrization [u, v] is such

that the positive tangent to v = const., the positive tangent to u = const., and

the surface normal form a positive triad.

We shall deal only with the simplest type of umbilic, namely, those for

which

(11.1) r = g«hyst^üayXQßSß ^ 0,
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where tiaßy=tiaß,y; we have suppressed the comma since &aß,y is symmetric

in all three indices.

Theorem 11.1. At an umbilic the invariant V satisfies the identity

Km
r = A2K-A2Km,

2

where K and Km are, respectively, the total and mean curvatures.

Proof. In an isometric coordinate system we find that both sides of the

identity reduce to

(11.2) r = (2/X3) [ßmOiM + fiii20222 - o!u - oLi].

If the simply connected region R contains a single umbilic, then jn is

called the index of the umbilic. We shall use the notation sign (x), or some-

times sign x, to denote a quantity which is 1, — 1 or 0 according as x is posi-

tive, negative or zero.

Theorem 11.2. // U is an umbilic for which rVO, then its index ju is given

by
ju = (1/2) sign (r)

where T is given by (11.1).

Proof. Let R be a simply connected region surrounding U, covered by an

isometric coordinate system [u, v] of which the umbilic is the origin, and

bounded by the curve k:

(11.3) au + bv = r sin ß,      cu + dv = r cos ß,

where r is constant and

a = On2,     6 = Oi22,     c = (l/2)(Oin — Om),     d = (l/2)(On2 — fl222),

all evaluated at the origin. We shall assume that at the origin gn = g22 =X = 1.

Making use of (11.2), it is readily verified that at the origin, be — ad = T/4.

Using Taylor's series, we find the following evaluations for Qa and N at

points of k:

Qu = r sin ß + o(r2),      N = r + o{r2).

Hence, on k,

sin 2a = Ü12/\N = sin ß + o(r),       2a = ß + o(r).

Consider in the [u, v] plane the conic H defined by (11.3). Since T^O,

it is readily shown that H is a nondegenerate ellipse. The curve k will like-
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wise be a nondegenerate closed curve; and as the curve k is traversed in the

positive sense, the curve H will also be traversed in the positive sense. That

is, the angle y defined by y = arc tan v/u will run from 0 to 27r.

The relationship between ß and y is given, from (11.3), by

a + b tan y
(11.4) tan 0 =-

c Ar d tan y

This shows that as tan y runs from — oo to «, tan ß covers the same range in

the positive or negative sense. That is, as y increases by 2x, ß increases by

+ 2ir. From (11.4) we obtain

dß     T cos2 ß sec2 y

dy     4(c + d tan y)2 '

which shows that as y increases by 2-ir, ß increases by 27r sign (r). Hence

ju = —<f 2da = — <f dßAr 0(r) = (1/2) sign (r) + o(r).
4=irJ t. 4irJ k

But^V is independent of the size of the curve k, and so ju = (1/2) sign (r).

Theorem 11.3. If R is a region entirely bounded by the edge of regression,

free from singularities and containing umbilics Ui,i = 1,2, ■ ■ ■ , with indices ji,

then the Ruler characteristic of R is given by x{R) —y.iii.

Proof. The edge of regression cannot contain umbilics, since along E

Km = oo and K is finite, while at an umbilic Km — 4-K. Since the boundary E

of R is met orthogonally by one set of lines of curvature, the angle 6 appear-

ing in the definition oIjr is constantly equal to 0, x/2, ir or 37r/2. Hence by

definition, jit = 1.

Suppose that there are q umbilics, and that R has p holes. Let R{,

i = 1, 2, ■ ■ ■ , q, be a set of nonoverlapping simply connected regions, each

with a boundary C< which contains neither umbilics nor corners, and such

that Vi c Ri. Then

On the other hand, the region Rf =R~2~2iRi is free from umbilics and has

p+q holes, and its boundary is E— X^tC... Hence

jR' = p + q = l -       de - ;c£  rföj = 1 - Z (1 - jR)

= 1 + q - X)yt-,
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so that

x(R) = 1 - p = Ei*.
i

In the case when the umbilics U; are all such that T ^0, we may combine

Theorems 11.2 and 11.3 to obtain

Theorem 11.4. If R is a region entirely bounded by the edge of regression,

free from singularities, and containing umbilics Ui, i = \, 2, ■ ■ ■ , such that

T(Ui)^0, then the Euler characteristic of R is given by

x(R) - — Esignrd^).
* »

It is, of course, always to be understood that E may consist of one or

several pieces. As simple illustrations of Theorem 11.3, consider the surfaces

of revolution whose meridian curves are shown in Fig. 2. In each case BC

Fig. 2

is the axis of revolution. In the first example, we obtain a simply connected

region, free from singularities, and bounded by the edge of regression traced

out by the cusp at A. For such a region, x(R) = 1hence Theorem 11.3 implies

that there must be one or more umbilics. As a matter of fact, B is an umbilic

of index = 1. However, T = 0 for that umbilic, so that this illustration does

not come under Theorem 11.4. In the second example the region is again

simply connected, so that x(R) = 1. Since the surface is of negative curvature,

there can be no umbilics. Thus Theorem 11.3 necessitates the existence of a

singularity—in this case a conical point at B.
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