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1. Introduction. A minimal surface in a Euclidean space of three dimen-

sions is harmonic if it is representable in terms of Cartesian coordinates

(xi, x2, x3) by an equation of the form U(xi, x2, x3)= const., where U is a

harmonic function. The problem of the determination of all harmonic mini-

mal surfaces is equivalent to a problem in hydrodynamics which will be de-

scribed in §2. Hamelf has recently solved this problem in two ways. His first

method demands in itself that the functions under consideration be real. On

the other hand, the second method places no restriction on the functions in-

volved and, since it appears to lead to the same results as the first, one is

tempted to infer that all solutions U(xi, x2, x3) of the problem are real. Ac-

tually, there exist imaginary solutions and they are geometrically far more

intriguing than the real solutions.

■It is shown in this paper that all solutions, real and imaginary, except

those with isotropic gradients, are reducible, by means of a change of coordi-

nate axes and an integral linear transformation on the function itself, to one

of the following forms:

(I) U = tan-1 (xi/x3) + axi,

(IIa) {2zU + t*i)2 = 3 tan (4zZ72 + Um.B + z),

(lib) zV + 3(xl + x\ + xl) = 0,

u-- f    dy     -If    * ,
(Ilia) J (1 - y3)1'2     3 J (1 + m2)6/6

(z2 - 2ixi)%2 + (z3 - 3ixiz + fz)2 = 0,

(IV) U =/(*)*! + *(*),

where z = x2+ix3 and z = x2—ix3 throughout. It is to be noted that only in

the last case does the solution involve arbitrary functions.

The families of minimal surfaces U = const, in the five cases are: (I) a

family of helicoids or a pencil of planes with Euclidean axis; (Ha) a family

of imaginary transcendental surfaces; (lib) a family of imaginary quartic

surfaces; (Ilia) a family of imaginary sextic surfaces; and (IV) families of

* Presented to the Society, December 29, 1939; received by the editors December 2, 1939.

f Potentialströmungen mit konstanter Geschwindigkeit, Sitzungsberichte der Preussischen Aka-

demie der Wissenschaften, 1937, pp. 5-20.
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imaginary cylinders with isotropic rulings, or a pencil of planes with isotropic

axis, or a pencil of parallel planes.

The helicoids of a family (I) are all congruent and each of them admits ä

one-parameter group of screw motions about a Euclidean axis into itself. The

transcendental surfaces (Ha) are all congruent under a one-parameter group

of "rotations" about an isotropic line. Each of the sextic surfaces (Ilia) ad-

mits a "screw motion" about a line at infinity into itself. Finally, the quartic

surfaces of the family (Hb) are all congruent and each admits a one-parame-

ter group of "rotations" about an isotropic line into itself. Furthermore, this

family of surfaces belongs to a triply orthogonal system of surfaces which

admits a two-parameter group of rigid motions into itself.

It is of interest to note that in every case, not merely those just cited,

a one-parameter group of rigid motions plays an important role, and it is per-

haps still more striking that these groups exhaust all the one-parameter

groups of complex rigid motions.

Analytically, the problem calls for the simultaneous solutions of two par-

tial differential equations of the second order in three independent variables.

A frontal attack on it from this point of view seems hopeless. In fact, no

matter how it is approached, the analytic complications are severe. The

method here adopted turned out to be the same as the second method em-

ployed by Hamel. It makes use of the intrinsic geometry of surfaces and con-

gruences of curves. In particular, it introduces three mutually orthogonal con-

gruences of curves, with unit tangent vector fields a, ß, y, which are closely

associated with the required family of surfaces U = const., and expresses the

desired properties of these surfaces by a suitable choice of the coefficients in

the equations of variations of a, ß, y with respect to the arcs of the curves of

the three congruences. These equations of variation constitute the differential

system finally to be integrated. Their conditions of integrability yield a sec-

ond differential system of ten partial differential equations of the first order

in five dependent and three independent variables. The analytic difficulties

lie primarily in the solution of this second system and they are not rendered

any easier by the fact that the independent variables are the nonholonomic

arcs of the curves of the three congruences.

The paper falls into five parts. In Part A, the general case of the problem

is formulated after the manner just outlined, and the solutions of the second-

ary or scalar differential system are listed. In Part P>, the primary or vector

differential system is integrated in the various cases and the functions U

found, and in Part C, the properties of the corresponding minimal surfaces

U = const, are discussed. The deductions of the solutions of the scalar differ-

ential system and the proof that there are no other solutions is given in Part
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D, and Part E is devoted to a special case, previously excluded, which gives

rise to the solution (IV).

It is assumed that all functions are analytic in the complex variables

X\y #2, x3,

A. Formulation of problem and method of solution

2. The physical problem. Let there be given a stationary irrotational flow

of a frictionless incompressible liquid with the special property that the veloc-

ity along an arbitrary line of flow is constant along this line.

A flow of the general type described is characterized by the existence of

a harmonic function Ufa, x2, x3) whose gradient is the flow-vector. It will

have the desired special property provided the gradient of the velocity of

flow, or of any variable function of the velocity, is orthogonal always to the

flow-vector. Thus, the problem of determining all flows of the kind required

is identical with the problem of finding the simultaneous solutions of the two

partial differential equations

(1) A2C/ = 0,      &t(U, V) = 0,

where

(2) V = log (Ait/)1'2.

Equivalent to these equations are the relations A2Z7 = 0, A2i7 —Ai(U, V) = 0

which characterize the function U as harmonic and the surfaces U = const,

as minimal.

In the general case in which ALyV0, we prefer to employ the following

equations:

(3) A2U - A,(U, V) = 0,      äi(ü, V) = 0.

Thus, our problem becomes that of determining the families of minimal sur-

faces U = const, which are cut orthogonally by the corresponding families of

surfaces V = const., where V and U are related by conditions (2). It is in this

form that we shall solve the general problem in the complex domain.

The special case in which AiF = 0 will be treated in §17.

3. Geometric formulation of the analytic problem. If U is a solution of

(3) for which AiV^O, the families of surfaces U = const, and V = const, are

mutually orthogonal and determine three mutually orthogonal congruences of

curves: the orthogonal trajectories & of the surfaces U = const., the orthogo-

nal trajectories C2 of the surfaces V = const., and the curves of intersection C3

of the two families of surfaces. The curves of these congruences, properly di-

rected, have respectively the unit tangent vectors
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VU VF —
(4) a =-1        ß = ->        y = aß,

(Ait/)1'2 (AiF)1/2

where VU, for example, is the gradient of U and y is the vector product of a

and ß.

The curves G and G lying on a generic surface S of the family U = const,

form an orthogonal system. If l/ft, l/r2, l/p2 are the normal curvature,

geodesic torsion, and geodesic curvature of the directed curves C2, with re-

spect to +a as the unit vector normal to S, and l/r3,1/V3, l/p3 have the same

meanings for the directed curves C3, then 1/t2+1/t3 = 0 and, since S is mini-

mal, l/r2+l/V3 = 0.

From (4) and (2) it follows that the differential of arc dsi of the curves G

has the value e-vdU. Hence, the curves G are geodesies on the surfaces 5"

of the family V = const., and ß and 7 play for them the roles of principal nor-

mal vector and binomial vector, respectively. Furthermore, the torsion 1/Ti

of the curves G is equal to the geodesic torsion of these curves, as curves on

the surfaces S'. This geodesic torsion is the negative of the geodesic torsion

of the curves G, as curves on the surfaces S' or, since the surfaces 5 and S'

intersect under a constant angle, as curves on the surfaces S, and hence it is

equal to l/r2. Thus, l/ri = l/r2.

By means of these results we obtain from the Frenet-Serret formulas for

the curves G, and from the formulas for the variation of the surface tri-

hedrals* of the curves G and G, as curves on the surfaces S, the following

equations:

da da da
- = Aß, -= Bß + Cy, — = Cß - By,
dsi ÖS2 dsi

dß dß dß
(5) - = - Aa      -Cy, - = - Ba      + Ey, -        = -Ca +Fy,

ds\ dSi ds3

dy dy dy
- = Cß, - = - Ca-Eß, r— = Ba-Fß,
dsi ös2 ds3

where d/dsi, d/ds2, d/ds3 represent directional differentiation in the positive

directions of the curves G, G, G respectively, and

1 11 111 1 1
(6) A = —, B = — =-,  C = — = — =-, E = —, F = —,

Ri r3 r% T\     t2 t3 p2 p3

\/R\ being, of course, the curvature of the curves G.

Inasmuch as, for an arbitrary function/(xi, x2, x3),

* See Graustein, Differential Geometry, p. 165.
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a/ a/      df a/      df a
—- = 2-i «* —»     — = 2-1 ßi —'     — = 2-, t< —'
dsi dXi dSi dXi ÖS3 dXi

it follows, by (5), that

d   df      d    df df df df
-J- = A — + B— + 2C —,
3^2 dsi     dsi ds2 dsi ds2 ds3

d    df       d    df df df
(7)- - E— + F —»

dss ds2     ds2 ds3 ds2 3s3

ds\ dsz     dsz ds\ dsz

These relations we shall refer to as the conditions of integrability (/; S\, s2),

(/; 52, s3), (/; Si, si), respectively.

From (4) we have, in view of (2),

du au au
(8) — = e,    — = o,     — = o,

dS\ 052 dsz

dV dV dV
(9) — = 0,        — = — = 0,

dsi                 dS2 dS3

where

(10) A = (AiF)1'2 ^ 0.

The conditions of integrability of equations (8) simply require that the

quantity A in (9) and (10) be identical with the quantity A in equations (5)

to (7).

The conditions of integrability of equations (9) are

dA dA
(11) — = - AB, -= AE.

dsi ds3

Equations (5) and (11), together with the inequality (10), constitute nec-

essary conditions. Suppose, conversely, that the scalar functions A (^0), B,

C, E, F and the vector functions a, ß, y, representing three mutually orthogo-

nal unit vector fields with the same disposition as the coordinate axes, are

known solutions of equations (5) and (11). Equations (9), for the given a, ß, y,

and A, are then integrable and the function V is determined to within an

additive constant; and equations (8), for the given a, ß, y and the V just

found, are integrable and U is determined to within a multiplicative and an

additive constant.
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Since (8) and (9) are equivalent to the relations VU = era, W = Aß, it

follows that F = log (AiU)1'2, A,V = A2, and A^U, V) = 0. Hence, the function

V is related to U as prescribed by (2), AiV^O, and the families of surfaces

U = const, and V = const, cut orthogonally. Finally, since a is a unit vector

normal to the surfaces U = const, and the curves C2 and the curves C3 deter-

mined respectively by the unit vector fields ß and y lie on these surfaces, it

follows from (5) that the surfaces are minimal.

Thus, we have established the following existence theorem.

Theorem 1. A necessary and sufficient condition that there exist a harmonic

function U{x\, x2, x3) such that the surfaces U = const, are minimal is that there

exist three mutually orthogonal unit vector fields a, ß, y, with the same disposition

as the axes, and five scalar functions A (^0), B, C, E, F which satisfy equations

(5) and (11). The function U is then determined to within a multiplicative and

an additive constant and can be found by quadratures.

Corollary. If two solutions a, ß,y, A (=^0), B, C, E, F of equations (5)

and (11) are related to one another by a rigid motion, the two resulting families of

surfaces U = const, are congruent.

The corollary is an obvious consequence of the fact that the equations

with which we are dealing are invariant with respect to the group of rigid

motions.

4. Outline of the solution. The nine conditions of integrability of equa-

tions (5), combined with the two equations in (11), yield the following ten

independent equations in A, B, C, E, F and their directional derivatives:

dA 8A M
(12a) -=-AB, - = A2 + 2B2 + 2C2 — AF, - = AE,

dsi ds2 dss

dB dB dC
B2 - C2 - AF, -■-= 2CF + 2BE,

(12b)
dsi ds3 ds2

dC dB dC
-= AE + 2BC, -1-= 2CE - 2BF,
dsi dSi ds3

dE dC
-1-= - BE - 2CF,
dsi dSi

dF dC
(12c) -H-= AB + BF,

dsi dS3

dE dF

ds3 ds2

= - B2 - C2 + £2 + F72
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The process of solving our problem now becomes clearer. First, the system

of equations (12) is to be solved for the unknown functions A, B, C, E, F.

For the values found for these functions, equations (5) will be completely

integrable and will determine, to within a rigid motion, three mutually per-

pendicular unit vector fields a, ß, y, and equations (9) and (8) will, then,

yield the desired functions V and U. This, at least, would be the general

procedure if, instead of the directional derivatives, we had ordinary partial

derivatives with which to deal. Actually, equations (12) involve the unknown

vector functions a, ß, y (through the directional derivatives), as well as the

unknown scalars A, B, C, E, F, and equations (5) involve a, ß, y both in the

derivatives and as the unknown functions. Nevertheless, the general pro-

cedure described remains valid, as we shall proceed to show.

The essential requirement for the employment of this procedure is that

the three mutually orthogonal unit vector fields a, ß, y and the directional

derivatives in the directions of a, ß, y which are employed when equations

(12) are solved for A, B, C, E, F should later be found to satisfy equations (5)

for the values of A, B, C, E, F obtained. This requirement is actually fulfilled

by the inherent demand that the directional derivatives in question enjoy the

conditions of integrability (7). For, it is readily proved that, if (7) are satis-

fied, the vector fields a, ß, y and the derivatives in their directions satisfy (5).

Equations (12), subject to the integrability conditions (7), have the fol-

lowing solutions:

B = 0,

dA dA
-= A2 + 3C2,

ÖS2

E = 0, AF + C2 = 0,

dA

(I) dC
-= - 2CF,
ds2

dF
-= C2 - F2,

ds2 ds3

AE = — 2BC,

dA
- = - AB,

AF = 2B2, A2 + 4(B2 + C2) = 0,

dA
2 - 2B2, - - - 2BC,
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£ = 0, F=-%A, A2 + 4(B2 + C)2 = 0,

dA dA dA
-=-AB, -= A\ -= 0,
dsi dSi ÖS3

(III)       dB dB dB
- = ^42 + 52 - C2, - = AB, - = 0,

dsi dS2 ds3

dC dC dC
— = 2BC, - = AC, - = 0.
dsi dsz ds3

In all three cases, A ^0. Henceforth, this condition will always be tactily un-

derstood.

Solutions (II) and (HI) are imaginary, whereas (I) exists in the real do-

main. It may be readily verified that all three satisfy equations (12) and the

integrability conditions (7).

The derivation of the three solutions from (12) and the proof that (12)

has no other solutions present analytic problems of unusual complexity. In

order not to interrupt the present development, we shall postpone the con-

sideration of them to Part D.

Since, for the values of A, B, C, E, F furnished by a solution of (12), equa-

tions (5), (9), and (8) are completely integrable, it is theoretically possible

to solve equations (5) for the three mutually orthogonal unit vector functions

a, ß, y and hence (9) and (8) for the scalar functions V and U. Practically,

however, this procedure is complicated by the presence of directional, rather

than partial, derivatives, and we find ourselves forced to adopt a different

method.

We remark, first, that equations (8) and (9) are of the same type as the

differential equations in one of the solutions of (12), and hence that U and V

are just as much known as the quantities involved in these differential equa-

tions. Consequently, we have at our disposal the seven functions U, V, A, B,

C, E, F. It is evident from (I), (II), (HI) that at most two of the last five are

functionally independent.

By integration of equations (5) it is possible to find a, ß, y in terms of

certain of the seven functions. For these values of a, ß, y, the equations

dx dx dx
(13) ^ = <*>       ~ = 0,       — = 7

dSi dSi dS3

are completely integrable, by virtue of (5), and x%} x2, x3 may be found in

terms of three independent functions, or parameters, one of which is U. Elimi-

nation of the other two parameters from the three equations results in the

desired value of U as a function of     %2) #3-
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Geometrically, each of the three solutions (I), (II), (III) has two cases

according as CVO or C = 0, that is, by (6), according as the curves C are

twisted or plane. The two cases we shall distinguish by attaching the letters a

and b to the Roman numerical. It is readily verified that the solutions (Hb)

and (IHb) are identical.

B. The harmonic functions

5. The real solutions. Case la. Inasmuch as B = E = 0, we conclude from

(6) that the curves C2 are straight lines. Since CVO, the Gaussian curvature*

of the surfaces S is not zero. Hence, the surfaces 5 are right helicoids and a

normal form for the function U is

(14) U = tan-1 (x-t/xs) + ax\ = 0, a ^ 0.

The lines of flow in the physical problem are the circular helices cutting the

helicoids orthogonally.

Case lb. It may be shown geometrically that the surfaces S form a pencil

of intersecting planes and that a normal form for U is (14), where a = 0. The

lines of flow are circles.

It will be advantageous to illustrate the analytic method described at the

end of the preceding section in this simple case. Since B = C = E = F = 0, equa-

tions (I) reduce to

BA BA BA
(15) -= 0, -= A\ -= 0.

Bsi Bsi 8s3

Comparison of these equations with (9) shows that we may take V = log A.

Then, (8) becomes

BU BU BU
(16) -= A, -= 0, -= 0.

Bsi Bsi 3s$

Equations (5) reduce to da/dsi = Aß, dß/dst = —Aa, with the remaining

derivatives of a and ß, and all of those of y, zero. Consequently, in view of

(16) , if a, b, c are three fixed mutually perpendicular unit vectors with the

disposition of the axes, we have

a = b cos U — c sin U,      ß = — b sin U — c cos U,      y = — a.

But then equations (13), since a function W exists satisfying the equations

BW BW BW
(17) ^ = 0'       T- = 0' T-=_1'

asi 0S2 0S3

* For the formula employed, see Graustein, Invariant methods in classical differential geometry,

Bulletin of American Mathematical Society, vol. 36 (1930), p. 508.
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have the integral

x = Wa + e~v{b sin U + c cos U) + k,

where k represents a triple of constants.

By means of a rigid motion this representation is reducible to the normal

form

(18) X\ = W,      »2 = e~v sin U,      x3 = e~r cos U.

Eliminating V, we obtain for U the normal form tan-1 (x2/x3).

Equations (18) represent a change from Cartesian coordinates to curvi-

linear coordinates (U, V, W). In view of equations (15), (16), (17) and the

fact that A = ev, the congruences of parametric curves consist of the curves

Ci, the curves C2, and the curves C3, respectively, and the parametric sur-

faces form a triply orthogonal system, that of cylindrical coordinates.

6. The imaginary solution Ha. The point of departure here is solution

(II) of equations (12) for Cf^O, namely,

AE = — 2BC,      AF = 2B2,      A2 + 4(B2 + C2) = 0,      C ^ 0,

dA dA dA
-=-AB, -= \A2 - 2B2, -= -2BC,
ds\ dSi dss

(19) dB      i dB dB
— ±A2, = A B, = % AC,

dsi ds2 ds3

äC dC 3C
-= 0, ■— = \AC, -= 0.
dsi dS2 ds3

Equations (5) become

da da da
-= Aß, -■ = Bß + Cy, — - Cß - By,
dsi ds2 ds3

dß dß 2BC dß 2B2
(20) - =-Aa-Cy, -= - Ba-y,- - Ca -\-y,

dsi ds2 A ds3 A

dy dy 2BC dy 2B2
- = Cß, - =-Ca +-ß, - = Ba-ß.
dsi dS2 A 8s3 A

It follows from (19) and (20) that the determinant of ß and its first two

derivatives with respect to s2 vanishes. Hence, the curves C2 are plane curves.

The planes in which they lie are determined by the vector fields ß and

Ba-Ey.

Similarly, it can be shown that the curves C3 are plane curves, lying in the

planes determined by the vector fields y and Ba—Fß.
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A vector field common to the planes of C2 and C3 is Ba—Fß—Ey or, since

B^O by (19), Aa-2Bß+2Cy. The vectors of this field are isotropic. More-

over, they are fixed in direction. In fact, it is readily shown, by (19) and (20),

that the derivatives of the vector field

A2       2AB 2AC
(21) a = — a-ß -\-7

C3        C3 C3

all vanish.

A vector field normal to the planes of the curves C3 is 2Ba+Aß. Setting

2B A
(22) V = —a + -ß,

we find that

di) 07) d-n
-= - \C2a, -= 0, -= 0.
dsi dSi ds3

Comparison of (9) with the derivatives of C in (19) shows that ev = kC2. Since

k becomes the multiplicative constant in the value of U, we may without loss

of generality specialize it. Taking k = —1/2, and noting that (8) then becomes

ÖU dU 8U
(23) — = - %C2,        — - 0,       — - 0,

0S\ 0S2 os3

we conclude that

(24) 77 = Ua + b,

where b is a triple of constants.

Equation (21) and the equation obtained by equating the values of 77 in

(22) and (24) can be solved for ß and 7 as linear combinations of a, a, b.

Substituting these values of ß and 7 in the equations for the derivatives of a

in (20), we find that the resulting equations can be written in the forms:

d ,/C3  \ C4 C4
-( — a) = — Ua + —
dsAA2 I A2 A2

3 /C3  \ /C6      2BC4   \ 2BC*
- —a) = -h-U)a+ -
ds2\A2 / \2^3      A*     ) Az

d /C3  \     /    BCS    C6 - B2CS   \      C5 - £2C3

ds3\A2 /     \    2A3 A3        / A3

It may be shown, by means of (19) and (23), that the coefficients of b in
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these three equations are respectively the directional derivatives of the func-

tion U/4-BC2/2A2 and that -BCi/2A2, C6/2A3, -BO/2A3 are the deriva-

tives of the function — C4/8A2. Hence, the equations are integrable and yield

the relation

C3       /l BC2        C4\       /l BC2\
(25)        — a = l— U2-U-)a + l—U-1» + e,

A2       \8 2A2        8A2/       \4 2A2)

where c is a triple of constants.

Having solved equations (20) for a, ß, y, we could proceed by the method

outlined at the end of §4 to find %2j ̂3- We adopt a different, but equiva-

lent, method. Instead of solving equations (21), (22), (24), (25) for a, ß, y

in terms of a, b, c, we solve for a, b, c in terms of a, ß, y. Making use of the

function H = A-B/CZ, whose directional derivatives are the coefficients of a, ß,

y in (21), we find the expressions

dH        dH dH
a = —a + —ß + —y,

asi        oSi 0S3

/     dH        2B\ /     dH        A\ dH
-U + —)a+  (-U + —)ß-Uy,

\     oil C / \     Ö52 C / ds3

/ 1  dH B        C\       / 1  dH A BC\
(-U2-U-)<* + (-U2-U +-)ß
\8  dSl 2C         8/       \8  ds2 4C 4AJ

/ 1  dH C2\
+ (-U2 +-It-

\8  ds3 4Aj

The conditions on a, b, c guaranteeing that a, ß, y are mutually perpendic-

ular unit vector fields with the same disposition as the axes are now readily

found to be*

m, («U) = 0,      (b\b)=-4, (c\c)=0,
(27) , , . (a b c) = — 2.

(b\ c) = 0,       (c| a) = 1,      (a I b) = 0,

It is to be noted that the vector c, as well as the vector a, is isotropic.

The integrals of equations (26) are

(a\x) + a0 = H,      H = 4B/C\

(28) (b I x) + b0 = - HU - 2/C,

(c I x) + co = iHU2 + §U/C) U+i tan-* (C/B),

(26)

c =

* By (a I b) is meant the scalar product of the vectors a and b, and by (a b c), the determinant of

the components of three vectors a, b, c.
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for equations (26) simply state that a, b, c are respectively the gradients of

the functions which appear on the right-hand sides of (28).

Equations (28) define functions of U, B, C—three parameters

which by (19) and (23) are independent. Denoting the linear functions of

Xi, Xi, x3 on the left-hand sides by a(x), b(x), c(x) respectively, and eliminating

B and C, we obtain the equation

(29) [a(x) U + b(x) ]2 = a{x) tan [a(x) U2 + 2b(x) U + &c(x)},

which with the attendant conditions (27) serves to define, within a multiplica-

tive and an additive constant, the general solution U in this case.

It follows from (27) that the equations

a(x) = 4(^2 + ixi),      b{x) = 2ix( ,      8c(x) = x{ — ixi

define a rigid motion. By means of this rigid motion or, what is the same

thing, by setting a0, b0, ca equal to zero and taking as a, b, c respectively the

triples

(30) 0, 4, 4i,      2i, 0, 0,      0, i, - H

(29) reduces to the normal form

(29a) (2zU + ix{)2 = z tan (4zU2 + UxxV + z),

where z = x^+ixs and z = x2—ix3. Hence, there is essentially only one solution U

of our problem in this case.

7. The imaginary solution lib. When C = 0, equations (II) become

£ = 0,      F=-\A,      A2 + 4B2 = 0,      C = 0, B^0,

BA dA dA
-= — AM, -= A2, -= 0,

(31) dsi ds2 dSi

dB dB dB
-= - B2, -= AB, -= 0.
dsi ds2 ÖS3

Hence, equations (5) reduce to

da da da
- = Aß, - = Bß, —=-By,
dsi ds2 ds3

dß dß dß
(32) - = - Aa, - = - Ba, - = - \Ay,

dsi ds2 dsi

dy dy dy
- = 0, - = 0, -=Ba + $Aß.
ds\ ds2 ds3
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The curves C3 turn out to be plane curves, lying in the isotropic planes

determined by the vector field 7 and the isotropic vector field Ba+^Aß.

The vectors of the latter field are fixed in direction. In fact, we find that the

vector

(33) a = BKa + \AKß,

where K (^0) is a function defined by the compatible equations

dK dK dK
(34)-BK,-\AK,      — = 0,

asi ÖS2 0S3

is a fixed vector.

It follows from (32) that

(35) 7 = - Wa + b,

where W is defined by the integrable equations

dW dW dW 1
(36) -= 0, -= 0, - =-,

dsi ds2 ds3 K

and b is a triple of constants.

When the value of ß in terms of a and a from (33) and the value of 7

from (35) are substituted in the differential equations for a in (32), these

equations are readily integrated and have the solution

1 /    1 B      \ B
(37) -« = (-W2)a-\-Wb + c,

AK       \2ABK2    2A     ) A

where c is a fixed vector.

From equations (33), (35), (37), we find a, b, c as linear combinations of

«, ß, 7:

dK        dK dK

dsi dsi ds3

dK dK
(38) b=-W-a — W-0 + 7,

dsi ds2

/ B        dK        1\        / B        dK        1  \ B
c = (-W2-1-)<* + (-      W2-)ß-Wy,

\2A       dsi     2AKJ       \2A       dsx    4BKJ A

and hence obtain

r„,                  (a\a)=0, (b\b) = l, (c\c)=0,
(39) . .           , .              (a b c) = 1/2,

(Z>|c)=0, (c\a)=B/A, (a\b) = 0,
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as the conditions on a, b, c equivalent to the initial conditions on a, ß, y. It

should be noted, from (31), that b/a is a constant.

It is readily shown that equations (38) have the solutions

(a I x) 4- a0 = — k,

(b\x)+b0= - kw,
(40)

(c \ x) + co = — (kW2 + —^—Y
2a\ 3b2k/

denning xi, x2, x3 in terms of b, K, W.

We proceed to find values of b, K in terms of U, V. For this purpose, it

will be convenient to replace e~r by — F2 in equations (8) and (9). These

equations then become, after dropping the bars,

dU 1 dU 8u
(41) - =-, -= 0, -= 0,

dsi V2 ds2 dsz

dV dV dV
(42) -= 0, -=-\AV, -= 0.

dsi ds2 ds3

From (31), (34), (41), (42), it is readily verified that we may write

1 V
(43) 5=-,      k = —, uv^o.

uv2 u

Denoting the left-hand sides of (40) by a(x), b(x), and c(x), substituting

the values of b and K from (43), and eliminating V, W, we obtain the equa-

tion

6a
(44) [a(x)YU6 + 3[b(x)]2 -\-a(x)c(x) = 0,

b

which with (39) serves to define the required function U to within an additive

and a multiplicative constant.

By means of the equations

ib b
a(x) = x2' 4- ixi ,      b{x) =-ix{ ,      c{x) = -{x{ — ix{),

a 2a

which by virtue of (39) represent a rigid motion, or, what is the same thing,

by setting a0 = &o = Co = 0, and taking as a, b, c the triples

2b b b
(45) 0, 1, i, -i, 0, 0,       0,-,-i,

a 2a 2a
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(44) reduces to the following normal form:

4    6 2 2 2
(44a) (*2 + ix3) U + 3(xi + x2 + x3) = 0.

Thus here, too, the solution of the problem is essentially unique.

Equations (40), when B and K are replaced by their values from (43),

represent the transformation from (xi, x2, x3) to the curvilinear coordinates

(U, V, W). From (41), (42), (36), it follows that the parametric surfaces for

these coordinates form a triply orthogonal system and that the congruences

of parametric curves consist precisely of the curves G, the curves C2, and the

curves C3.

8. The imaginary solution Ilia. In this case we have

£ = 0,       F=-\A,       A2 + 4(B2 + C2) = 0, C^O,

BA dA BA
-=-AB, -= A2, -= 0,
dsi ds2 ds3

(46) dB dB dB
- = \A2 + B2 - C2, - = AB, - = 0,
dsi ds2 ds3

dC dC BC
-= 2BC, -= AC, — = 0,
dsi ds2 ds3

and equations (5) become

da da da
— = Aß, — = Bß + Cy,      — = Cß-By,
dsi ds2 ds3

dß Bß Bß
(47) -=-Aa-Cy, -= - Ba, -= - Ca - \Ay,

Bsi ds2 ds3

'  By By By

-= Cß, - =-Ca, - = Ba + \Aß.
Bsi ds2 ds3

The principal normals of the curves C3 are all parallel to one and the same

isotropic plane, whose aspect is given by the fixed isotropic vector field

A IB
(48) a =-a + — ß + 2Cl'2y.
V     ' £1/2 £1/2

For the field of vectors
B A

I = — a A-ß
C 2C

in the directions of the principal normals of the curves C3 we find, in terms

of the function L defined by the compatible equations
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dL A dL        B dL 1
-=-,       — =-, -= — C1'2,

dst 4C1/2 ds2     2C1'2 ds3 2

the relation

Z = La + b,

where & is a fixed vector.

Using (48) and the equation which results from equating the two values

of £, we may eliminate ß, y from the differential equations for a in (47). The

resulting equations are found to have the integral

Cl/2

a = (-—l2-— l + —^ a - (l + ——} ft + c,
\    2 AC1'2        8C /      \ AC1'2/

where c is a triple of constants.

We may now compute a, b, c in terms of a, ß, y:

/ dL dL dL
I-a + -ß + -
\dSi ds2 ds3

(49)

/ dL     B\       / dL      A \ dL
b = [- 4L -+ —)a + [ ~ 4L-h-)ß- 4L-y,

\ dSl     C /       \ ds2      2Cf ds3

/ dL      B A \
c = [ - 2L2-1-L-I a

\        dsi     C 8C3'2/

/ dL      A B  \       / dL        1 \
+ ( - 2L2-H-L +-) ß + ( - 2Z,2 —-) y,

V ds2      2C 4C3'2/       \ ds3 4C1'2j

and hence obtain the conditions

(a I a) =0,       (*]*) « -1,        (c\c) =0,
(50) . . . (a b c) = — 1,

(ftI c) = 0,       (c \ a) = - 1,       (a| ft) = 0,

which insure that a, ß, y are mutually perpendicular unit vector fields with

the disposition of the axes.

Integration of equations (49) yields the relations

(a \ x) + ao = 4L,

1
(&  *) + *<>= - 2Z,2->

(51) 1 2C

2 1 B
(c I x) + Co =-L3-L —

3 2C 3AC312

where a0, b0, c0 are arbitrary constants.
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The directional derivatives of the function u defined by the equations

2B 2C
(52) —— = u,       — = e(l + u*yi\ (e = ± i),

A A

are - 6C2/A, 0,0. Furthermore, it follows from (9) and (46) that ev = k(A 2C)1/3,

where k is a constant, not zero. Comparison of the derivatives of U in (8) with

those of u shows that U is a function of u. In particular, if we take k = (2/e)1/3,

2  r du
(53) U = —-

3/(1 + m2)5'6

Denoting the left-hand sides of (51) by a(x), b(x), and c(x), setting

B/A =u/2, and eliminating L and C, we obtain the equation

(54) {[a(x)]2 + 8b(x)}W + {[a(x)]* + Ua{x)b(x) - 48c(z)}2 = 0,

which with (53) and the conditions (50) define the general solution U to

within a multiplicative constant.

Without loss of generality we may take a0 = b0 = c0 = 0 and as a, b, c the

triples

(55) 0, 2, 2i,      - i, 0,0,      0, - I, \i.

Equation (54) then assumes the normal form

(54a) (z2 - 2ixl)V + (z3 - Zix^z + fz)2 = 0,

where z = x24-ix3 and z = x2 — ix3.

If in (53) we set 1+m2 = l/y3, we find that

dy
U

(l - y3) 1/2

Thus, the function U involves an elliptic integral. The surfaces U = const,

are, however, obviously algebraic.

C. THE MINIMAL SURFACES

9. The imaginary surfaces Ha. We have to do here with equations (28)

where a0 = &o = Co = 0 and a, b, c have the values (30). When we set U = u,

1/C = v, B/C2 = w, these equations become*

(56)   xi = i(2uvw 4- v),   z = vw,   z = 4u2vw + 4uv + cot-1 (w/v),   vw 0,

and represent a transformation from the coordinates (xi, x2, x3), or (x, z, z),

to curvilinear coordinates (u, v, w). Corresponding to a generic point (x, z, z)

* Throughout the paper, z = x2-\-i%3 and z=x2—ix».
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there are two sets of values of the curvilinear coordinates, namely, (u, v, w)

and (u+l/w, — v, —w). In other words, the transformation u' = u + l/w,

v'= —v, w''= —w has the effect of the identity.

From (56) we find, as the equations of the three families of parametric

surfaces,

S:   (ixi 4- 2uz)2 = z tan (4iux\ + 4m2z 4- z),

(57) S': z = v2 cot ((* | x)/z + v2/z),

S": z = w2 tan ((x \ x)/z 4- z/w2).

Since u = U, the surfaces 5 are actually the minimal surfaces U = const., and

inasmuch as v = 1/C and C is, according to §6, a function of V, the surfaces 5'

are actually the surfaces V = const. Moreover, since

(58) I •X'v) — Ö)       (%u [ 2Cvd) — 2zj^ j I <^w)     0,

the surfaces S' cut the surfaces S", as well as the surfaces S, orthogonally.

The curves u = const., v = const, are, then, the curves C3, and the curves

u = const., w = const, are the curves C2. The curves v = const., w = const.,

which, according to (57), are the parabolic circles in which the isotropic planes

z = const, intersect the spheres (*|x) *> const., are not, however, the curves G.

Theorem 2. The system of surfaces S, S', S" admits the one-parameter

group of rigid motions into itself for which the parabolic circles v = const.,

w = const, are the path curves. Each surface S', and each surface S", admits

this group of motions into itself, and the minimal surfaces S, which are permuted

by it, are all congruent to the surface S0: u = 0, namely, x\-\-z tan § = 0.

The surfaces S all contain the isotropic line L: xx = z = 0 and are tangent

all along L to the isotropic plane II: z = 0. The group of motions in question

consists of the "rotations" about L and may be represented by the equations

x( = %i 4- licz,      z' = z,      z' = — 4icxi 4- 4c2z 4- z,

where c is the parameter. Since (x'\ x') = {x\x) and z' = z, the path curves of

the group are actually the parabolic circles described.

The equations of the group in terms of the curvilinear coordinates, as

found from (56), are, to within the identical transformation u' =u + l/w,

v' = —v, w' = —w,

u' = u 4- c,      v' = v,      w' = w.

Hence, the theorem is proved.

From (56) follows the relation

ixi 4- 2wz 4- v = 0.
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Hence, the curves G are plane curves, and those on a specific surface 5 lie

in parallel planes. In particular, the curves C3 on the surface So lie in the

planes x\ = iv and have in these planes the equation z = v2 cot z, and those on

an arbitrary surface S are congruent to them.

Inasmuch as

iwx-y + (1 + 2uw)z = 0,

the curves G are plane curves lying in the Euclidean planes which pass

through L. The general curve G on S0 is the intersection of the plane

iwxi+z = 0 with the cylinder z = w2 tan z and the curves C2 on the general

surface S are congruent to those on So.

Using (58) and the formulas

(59) (xu \ xu) = — 4v2w2,      (*, I xv) = (xw \ xw) = — v2/(v2 + w2),

we find that the curves G are the curves v = const., 2m>+cot-1 (w/v) = const.

Since, by (6), C is the torsion of these curves, it follows from (19) that they

are twisted curves of constant torsion, and that this torsion is the same for

all of them which lie on a given surface S'.

According to (59), the curves C2 and C3 on a surface S form an isometric

system and v, w are isometric parameters.

10. The imaginary surfaces Hb. Consider the equations (40), where B

and K are given by (43) in terms of U and V, a, b, c have the values (45),

and a0 = öo = Co = 0. According to (31), B/2A = +i. We may take B/2A=i,

since, if B/2A = —i, changing the sign of W would yield the same results.

If, then, U, V, W are replaced by l/u, v, w, the equations become

(60) Xi = uvw,      z — — wo,      z = uvw2 + v3/3u3> uv ^ 0.

According to the last paragraph of §7, the parametric surfaces for the

curvilinear coordinates (u, v, w) form a triply orthogonal system whose curves

of intersection are the curves G, G, G. Corresponding to a generic point

(x, z, z) of space there are six sets of values of the curvilinear coordinates,

of the form (ku, vfk, w), where k takes on in turn the sixth roots of unity.

Thus, the transformations u' = ku, v' = v/k, w'=w, k6 = \, have the same ef-

fect as the identity.

We find from (60), as the equations of the three families of parametric

surfaces,

5:    z4 + 3u«(x \ x) = 0,

(61) S':    3z2(x\ x) + v6 = 0,

S": Xi + wz = 0.
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The minimal surfaces 5 are algebraic surfaces of the fourth order. Each

surface contains the isotropic line L: z = Xi = 0 and is tangent all along L to

the isotropic plane II: z = 0. The line at infinity in II is a cuspidal edge of the

surface with the plane at infinity as the cuspidal tangent plane; in particu-

lar, the point at infinity on L is a triple point at which the plane at infinity

counts twice, and the plane II once, as tangent planes. The origin 0 (on L)

is a conical point with the isotropic cone at O as the tangent cone.

The surfaces S' are also surfaces of the fourth order. For each of them

the line at infinity in LT is a cuspidal edge with the plane II as the cuspidal

tangent plane; in particular, the point at infinity on L is a triple point at

which II counts three times as tangent plane. There are no other singular

points.

The surfaces S" consist of the Euclidean planes through the line L.

Theorem 3. The triply orthogonal system of surfaces admits a two-parameter

group of rigid motions into itself, consisting of the «1 one-parameter groups of

rotations about the lines of the pencil of lines which lies in the plane II and has

its vertex at 0. Each surface of the system admits at least a one-parameter group of

rigid motions into itself and each two surfaces of the same family are congruent.

The one-parameter group of rotations about L has the equations

x{ = Xi — cz,      z' = z,      z' = 2cx\ — c2z + z,

where c is the parameter. The corresponding equations in the curvilinear co-

ordinates, to within one of the identical transformations, are

(62) u' = u,      v' = v,      w' = w + c.

Hence each surface S, and each surface S', is carried into itself by the group

of rotations about L. The path curves are the curves C3 in which the surfaces 5

and S' intersect, namely, the parabolic circles in which the planes z = const,

cut the sphere (x\x) = const.

The parabolic circles C3 are the orthogonal trajectories of the planes S".

Since w= —Xi/z is a harmonic function, these planes, too, constitute a family

of harmonic minimal surfaces. The lines of flow are the curves C3 and hence

are the path curves of a one-parameter group of rigid motions.

One of the Euclidean lines through 0 in the planeLT is the Xi axis. The one-

parameter group of rotations about this axis has the equations x{ = X\, z' = e$iz,

z' = e~6iz, or, in terms of the curvilinear coordinates, to within an identical

transformation,

(63) «' = e^mHu,      v' = eam6iv,      w' = e^w.

The product of the general transformation (63) and the general trans-
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formation (62) is the two-parameter group of rigid motions,

(64) v! = ewo'u,      v' = e(ll3)eiv,      w' = e~Hw + c,

which we shall think of as consisting of the rotations (62) about L and the

transformations

(65) u' = eV'3)eiu,      v' = e^l3)Hv,      w' - a = e^iw - a).

For a fixed value of a these transformations are simply the rotations about the

line through 0 with direction components 1, a, ai. For, they leave 0 and the

plane w = a, or Xi + az = 0, fixed and hence leave fixed every point of the line

in question.

Thus the two-parameter group (64) actually consists of the qo1 one-

parameter groups of rotations about the oo1 lines passing through 0 and

lying in the plane II. Obviously, every transformation of the group carries

each family of surfaces of the triply orthogonal system into itself. Moreover,

it is clear from (65) that, if two surfaces S, or two surfaces S', are given,

there exists one rotation about each Euclidean axis which carries the one sur-

face into the other. Thus, the theorem is completely established.

Theorem 4. The curves G are plane quartic curves which lie in the planes S"

and are all congruent to the curve z3z = 1 in the plane Xi = 0. The curves G are

plane cubics which lie in the planes S" and are all congruent to the curve z3 = z

in the plane X\ = 0. The curves G are the parabolic circles in which the isotropic

planes parallel toll cut the spheres with center at 0.

The curves G, which are the lines of flow in the physical problem, are the

intersections of the planes S" with the surfaces S' and hence are plane quar-

tics. Since they are given by v = const., w = const., and since v^O, there exists

a unique rigid motion (64) which carries a given one of them into a second.

They are, then, all congruent to the particular one i> = ( — 3)1/6, w = 0, which

lies in the plane Xi = 0 and has the equation z3z = 1.

Since each of the surfaces 5 contains the line L, the curves G in which

they are met by the planes S" are plane cubics. These curves are given by

w = const., w = const., where u^O. It follows from (64) that they are all con-

gruent to the particular one u = (— 1/3)1/6, w = 0, which lies in the plane X\ = 0

and has the equation z3 = z.

The facts concerning the parabolic circles G have already been estab-

lished. Each two of them which lie on the same sphere are congruent, while

two lying on different spheres are not.

It should perhaps be remarked that the plane cubics and the parabolic

circles are the lines of curvature on the minimal surfaces S.
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11. The imaginary surfaces Ilia. We are concerned in this case with equa-

tions (51), where #o — ̂0 — Co = 0 and a, b, c have the values (55). When we set

2B/A =u, 1/C=v2, L = w/2, the equations become

(66) Xi = — %i (v2 + w2),   z = w,    z = \wv% + v2w + \wz,    1 +

For a generic point of space there are two sets of values of the curvilinear co-

ordinates thus introduced, namely, (w, v, w) and (—u, —v, w). Thus, the

transformation u'= —u, v'= —v, w'=w is in effect the identity.

The equations of the three families of parametric surfaces are found to be

S:    u2(2ix! - z2)3 = (z3 - 3ixiz + p)2,

(67) S': 2i*i - 22 = v2,

S": z = w.

According to §8, u is a function of U. Hence, the surfaces S are actually

the minimal surfaces U = const. The surfaces S' are not, in this case, the sur-

vaces V = const.

The surfaces S' are parabolic cylinders which are tangent to the plane at

infinity along the ideal line in the isotropic plane LT: z = 0 and whose rulings

are parallel to the isotropic line L: z=xi = 0. The surfaces S" are the planes

parallel to II.

The w-curves are parabolic helices* lying on the parabolic cylinders S',

except for the curve v = 0:

(68) Xi = — \iw2,      z = w,      z = \w3,

which is an isotropic cubic. The ^-curves are plane cubics lying in the isotropic

planes parallel to II except for those for which u = 0, which are Euclidean

straight lines. Finally, the M-curves are the isotropic lines parallel to L.

The surfaces 5 for which «5^0 are algebraic surfaces of the sixth order.

For each of them, the isotropic cubic K defined by (68) is a cuspidal edge,

with the isotropic osculating planes of K as the cuspidal tangent planes, and

the points of the line at infinity in the plane IT are all singular points, with the

plane at infinity counting at least three times as tangent plane. The paramet-

ric curves on these surfaces are the parabolic circles and plane cubics just

mentioned.

The surface u = 0 is the cubic surface

z3 — 3ixiZ + -fz = 0,

counted twice. The cubic surface has the line at infinity in II as a double

* A parabolic helix is a curve whose curvature and torsion are constant and in the ratio + i.

The tangent indicatrix is a parabolic circle, lying in this case in a plane parallel to II.
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line, the two tangent planes at the ideal point in the direction a, 1, i being

iaz — l and the plane at infinity. Furthermore, it contains the isotropic cubic

K as an asymptotic line. The remaining asymptotic lines are parabolic circles

(w-curves) and straight lines (the special ^-curves described above). Thus,

this surface S is a ruled minimal surface, a parabolic helicoid.

The surfaces 5 for which 1 +u2 = 0 have been excluded. They are the same

surface, namely, the isotropic developable which is the tangent surface of the

isotropic cubic K.

The differential coefficients of the general surface S, referred to v, w as

parameters, where D2 = EF—G2, are found to be

(69) E = - v2,    De = uv2,    F = uv2,    Df = v2,    G = v2,    Dg = - uv2.

Since these coefficients are independent of w, the surface S admits the one-

parameter group of rigid motions

(70) u' = u,      v' = v,      w' = w 4- c

into itself. In terms of the coordinates (x, z, z), the equations of this group are

(71) x{ = Xi — icz — \ic2,    z' = z 4- c,    z' = 2icx\ 4- c2z 4- z 4- fc3.

Since each of these motions leaves fixed only the point at infinity in the direc-

tion of the isotropic line L and the tangent to the absolute at this point, the

group may properly be described as the group of screw motions about the

tangent to the absolute in question. Since 2ix\ — z2 is an absolute invariant,

the path curves lie on the parabolic cylinders v = const. The path curves on

the cylinders for which v^O are the parabolic helices (the w-curves), whereas

those on the cylinder v = 0 are isotropic cubics similar to the curve K.

Theorem 5. Each surface of the family of minimal surfaces is carried into

itself by the group of screw motions about the tangent to the absolute at the ideal

point of the isotropic line L. The path curves are the parabolic helices on the sur-

face and the isotropic cubic K.

From §8 and the relation \/C = v2, it follows that u, v are functions of

U, V. Hence, the w-curves (the parabolic helices and K) are actually the

curves C%.

The curves C2 are the orthogonal trajectories of the w-curves on the sur-

faces 5. As such, they are found to have the equation uv-\-w = const. Those

on a specific surface S are all congruent, inasmuch as they cut the path curves

of the rigid deformation of S into itself orthogonally. Hence, it suffices to

consider the family of curves, one on each of the surfaces S, which is defined

by the equation w= — uv. It is found that these curves are helices which lie
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on cubic cylinders all congruent to the cylinder z = z3 and have on these cyl-

inders varying pitches. When the curves are moved along the surfaces 5 by

the group of screw motions, the point at infinity in the direction of the rulings

of the cylinders on which they lie traces the axis of the group (the ideal line

in the plane LT), since in its original position it is the ideal point in the di-

rection 1, 0, 0, and hence a point on this axis. Finally, it may be shown that

the curves C2 are all tangent to the isotropic cubic K*

On each surface S there is a single family of lines of curvature which covers

the surface twice, and all of its members are tangent to the isotropic cubic K.

For, the lines of curvature on an arbitrary surface S are the curves r = const,

and 5 = const., where w+iv = r, w—iv = s, and since the identical transforma-

tion u' = —u, v' = —v, w' =w interchanges r and s, the two families coincide.

Furthermore, the locus r = s is the curve v = 0 or K, so that the tangency of

the lines of curvature with K is indicated and readily verified.

Inasmuch as the lines of curvature on a specific surface S1 are all con-

gruent, it suffices to consider those lines of curvature, one on each surface S,

which are given by r = 0 or s = 0. It turns out that these lines of curvature

are plane cubics all lying in the plane Xi = 0 and all congruent to the cubic

z = z3 in this plane. When they are moved along the surfaces 5 by the group

of screw motions, their common plane envelopes the invariant parabolic cyl-

inder 2ixi — z2 = 0, since in its original position it is a tangent plane to this

cylinder. All the lines of curvature on the surfaces S are, of course, congruent.

Employing the method of §9, we find as the parametric representation of

the curves C3, in terms of the parameter y of §8,

(1 - y)i/2 k  . ydy
u-1      v = ky112,      w = — I-H t,

yi/2 *   » 2 J (1 - y*)1'2

where k and / are arbitrary constants. Thus, though the equipotential sur-

faces are algebraic, the lines of flow of the physical problem are transcenden-

tal.

D. Solution of the differential system

12. First special case. Change of variables. The crux of our problem,

namely, the deduction of the solutions (I), (II), (III) of equations (12) and

the proof that these are the only solutions, must finally be met. The three

conditions of integrability on the derivatives of A given by (12a) yield two

new relations, namely the finite relation

(72) 4ACE - 4ABF + 4B(B2 + C2) = A2B,

* In this discussion we have tacitly excluded the curves C% on the surface u = 0. As we have al

ready seen, these curves are straight lines.
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and the differential equation

d (dE dF\
(73) 2-(B2 + C2)-A(-1-)=4E(B2 + C2).

ds3 \ds2 ds3/

First special case. Suppose that B2+C2 = 0. Differentiating with respect

to Si and using (12b), we find that ACE—ABF = 0, and therefore conclude,

from (72), that 5 = 0 and hence C = 0. It follows from (12b) that £ = 0 and

F = 0. Thus, solution (lb) is obtained.

Change of variables. We may assume henceforth that B2-\-C2?*Q. Equa-

tions (12b) and (73) suggest the substitutions

(74) 2B = N112 sin <j>,     2C = N1'2 cos <t>,     4{B2 + C2) = N.

Relation (72) becomes

4AE cos <t> — 4AF sin <j> + N sin <f> = A2 sin <f>,

and, when we adjoin the equation

4AE sin <f> + 4AF cos <j> — N cos <j> = M,

the two relations yield values for E and F:

(75) 4AE = M sin 4> + A2 sin <j> cos <j>,   4AF = M cos <j> - A2 sin2 <j> + N.

Thus, we have introduced the new set of unknowns A, M, N, 4>, in terms of

which B, C, E, F are given by (74) and (75).

Equations (12a) become

dA
4-= - 2AN112 sin <f>,

dsi

dA
(76a) 4—■ = A2 sin2 4> - M cost + 4A2 + N,

dA
4-= (M + A2 cos 4>) sin 4>,

ds3

and the equations resulting from (12b) are

cW d<S>
(77a) -= A2N112 sin 0,      2N1'2-= - M - 2A7 cos <t>,

dsi dsi

d<i>     dN d(j) dN
(77b) 2N-1-= 4NE,       2N-= 4NF,

dSi     ds3 ds3 dsi

where E and F are given by (75).



1940] harmonic minimal surfaces 199

From the relations obtained by making the foregoing substitutions in the

first two equations in (12c), we obtain the equations

cW
(78) 2A —- = M2 + A2M cos 0 + 2N(A2 — N),

ds2

dM dN
(79) 2iV1'2-h 2A-=-A2M sin <t>.

dsi ds3

It is clear from (77) and (78) that, in order to find finite values for all

the derivatives of N and <b, we need the value of dN/ds3. This derivative en-

ters into the condition of integrability (N; si, s2), which is found to reduce to

dN dN
(80) (M - N cos 0)-1- (A2 - N) —- sin 0 + 4AN2 sin 0 = 0.

ds3 ds2

Evidently, two cases arise, according as M — N cos <b vanishes or not.

13. Second special case. If

(81) M - N cos 0 = 0,

it follows immediately from (78) and (80), since iWO, that

sin 0(,42 + N)[(A2 - N) cos2 0 + 2(A2 + N)] = 0.

(i) If A2+N = 0, we have from (75) and (81) that £ = 0 and F= -A/2.

Substitution to these values in equations (12) leads immediately to solution

(III).
(ii) If sin 0 = 0, the second equation in (77a), in conjunction with (81),

yields N = 0, a contradiction.

(iii) Suppose, finally, that

(82) (A2 - N) cos2 0 + 2(A2 + N) = 0.

Differentiating this relation with respect to si, we find, since N sin 05^0, that

(A2 - 3N) cos2 0 = 0.

If cos 0 = 0, it follows from (82) that ^42+jV = 0 and we are thus led to

solution (Illb).

If A2 — 3N = 0, differentiation with respect to Si gives rise to an immediate

contradiction.

14. The derivatives in the general case. We assume henceforth that

AN(M — N cos 0)^0, and introduce the quantity

5 sin 0
(83)

M — N cos 0
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where

(84) 5 = M2 — 2Y2 — A4 cos2 </>,

and

(85) Y = A2+ N = A2 + 4(B2 + C2).

Since M—N cos^^O, equations (77), (78), and (80) may be solved for the

derivatives of N and <b. From (79) follows then a finite value for dM/dsi.

Finally, when the substitutions (74) and (75) are carried out in (73) and the

last equation in (12c), values for dM/ds2 and dM/ds3 result. Thus, the values

of all twelve derivatives of the four unknowns A, M, N, cb are obtained, and

from them may be computed the derivatives of Y and 5.

The derivatives of A are already listed in (76a). Those of the other quanti-

ties are

dN

dSi
A2N112 sin <j>,

dN
(76b)    2A-■ = M2 + A2M cos <f> + 2N(A2 - N),

ds2

dN
2A -= - A2(M + A2 cos cb) sin <t> + P,

ds3

d<f>
2N1'2-= - M - 2N cos <t>,

dsi

deb
(76c) 4AN-= (A2 + 2N)(M + A2 cos <j>) sin 0 - P,

ds2

d<t>
4AN-= M2 + {A2 + 2N)M cos <t> + 2A2N cos2 0,

ds

dM
2N112-       = A4 sin <f> cos <j> - P,

ds

dM
4AN-= (3A2 + ION + A2 cos2 <j>)A2M

ds2
(76d)

+ (5A2 + 4N + A2 cos2 <j>)A* cos <j>

+ [M + 2(A2 - N) cos <t>]S + sin <t>(2N - A2)P,

dM
4AN-= - A\M + A2 cos 4>) sin 0 cos <j> + (3M + A2 cos <t>)P,

ds
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dY                      dY BY
(76e) -= 0,       2A-= S + 1A2Y,        2A-= P,

dS
N112-= - MP,

dsi

dS
(76f)  2AN-= [6A2(M + A2 cos 0) cos 0 + (6A2 - SN)Y]A2Y + kS + IP,

dst

as
2AN-= (3M2 + A2M cos 0 - 4NY)P,

ds

where k and I are functions of A, N, M, 0 whose explicit values we shall not

need.

We distinguish two cases, according as P is, or is not, zero.

15. Third special case. If P = 0, it follows from (83) that 5 sin 0 = 0.

(i) If sin 0 = 0, then 5 = 0 and since N^0, CV0. From (75), £ = 0, and

from (12b), AF+C2 = 0. We are thus led to solution (la).

(ii) If sin 0=^0 and 5 = 0, it follows from the equation dS/ds2 = 0 that

YZ = 0, where Z may be read off from (76f).

Suppose that 7 = 0. From S=0, it follows, since M — N cos 0^0, that

M=A2 cos 0. Hence, it is found from (75) and (74) that AE= -2BC and

AF = 2B2, and we arrive at solution (II).

If F^0, then

Z m 3A2(M + A2 cos 0) cos 0 + (3A2 - 4N)Y = 0.

Eliminating M from this equation and the equation 5 = 0, we obtain the rela-

tion

T = {3A2 - 4N)2Y - 42A4N cos2 0 = 0.

By means of 5 = 0, Z = 0, T = 0, it follows from the equation dT/ds2 = 0 that

3A2—4N = 0 or 3A2+10N = 0. But differentiation of either of these equations

with respect to si leads to the contradiction sin 0 = 0. Thus, the discussion of

this special case is complete.

16. General case. Conclusion. When P^O, then F^0, for if F were zero,

it would follow from (76e) that P = 0. Consequently we have in the present

case ANSY(M-N cos 0) sin 0^0.

The integrability conditions on A we know to be satisfied. Those on N

may be replaced by the conditions on Y. The conditions (F; Si, s2) and

(0; Si, s3) are found to be identities, and the conditions (F; si, s3) and

(0; s<. Si) both reduce to the equation
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(86a)

which, when P is replaced by its value from (83), can be written in the form

(86b)   P sin 0 = M2 cos 0 + (N - 2A2 sin2 0)M + A* sin2 0 cos 0 - 2iV2 cos 0.

The condition of integrability (0; s2, s3) reduces, by (86b), to

d log P
AN sin 0 = M2 cos 0 + (N - 42 sin2 0)M - 2N2 cos 0.

On the other hand, we find that the value of d log P/dsz, computed from (83),

becomes, by virtue of (86b),

d log P

If we differentiate (86b) with respect to $%, remembering that dP/dsi = 0,

and eliminate P from the resulting equation by means of (86b), we get

M3 cos 20 - 8A2 sin2 0 cos 0 M2 - (3N2 cos 20 + A2r)M

where r and 5 are polynomials in A, N, cos2 0.

When the value of P from (83) is substituted in (86b) and the resulting

equation is cleared of fractions, there is obtained an equation of the form

H = 0, where H is a cubic polynomial in M whose leading term is M3 cos 0.

Subtraction of this equation from (87) yields the simple relation

Lemma 1. The condition on A and N that the three equations (87), (88), (89),

considered as equations in M and <j>, be compatible is not an identity in A and N.

Lemma 2. There exists no functional relation between A and N.

Once these contradictory lemmas are proved it will follow that no further

solution of the differential system exists.

To prove Lemma 2, we assume that A and N are functionally related:

<&{A, N)=0. Inasmuch as d$/dsi = 0 and dY/dsi = 0, it follows, since

dA/ds^O, that <f>=f(Y). But, if we differentiate the relation/(F) = 0 with

respect to s3, we get P = 0, a contradiction.

in2 0 + 2iV3 = 0.

(88)
+ (2^3 + A2s) cos 0 = 0,

(89) M2 - YM cos 0 - 2NY = 0.
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To prove that the condition on A and N described in Lemma 1 is not an

identity in A and N, it suffices to show that it is not an identity in N when

^4=0. In this case, the expressions on the left-hand sides of (87), (88), and

(89) become

a = M3 cos 0 — 3N2M cos <b + 2N3,

b m M3 cos 2<b - 3N2M cos 20 + 2N3 cos 0,

c = M2 — NM cos 0 - 2N2,

and satisfy the relations

(90a) a cos 20 - b cos 0 m - 2N3 sin2 4>,

(90b) a = (M cos <t> + N cos2 <b)c + N2d,

where

d = M(cos2 4> - 1) cos <j> + 27V(cos2 0 + 1).

From (90a) it follows that, if the equations a = 0, b = 0 have a common

solution in M and <p, the solution must be M = M, sin 0 = 0. If this solution is

also to satisfy the equation c = 0, it must, by (90b), satisfy d = 0. But, when

sin 0 = 0, then d=4./V, and the condition iV = 0 is not an identity in N. Thus,

Lemma 1 is established.

E. Special cases

17. The special case AiF = 0. When AiF = 0 and V is not a constant, VF

is an isotropic vector field which, since Ai(t/, F)=0, is "orthogonal" to a.

There then exists a second isotropic vector function 77 such that the three vec-

tor fields

V£7
(91) a =-.      £ = VF, 77

(AiUy2

enjoy the relations

«|9 = o, (,|,)-o,
(«|{) - 0,      (aI,) - 0,      <|I,) - - i,

provided merely that, to insure +1 as the value of (a £ 77), we are permitted,

if necessary, to change the sign of U.

The nonholonomic derivatives corresponding to the three vector fields

a, 77, £ are
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In terms of them, the gradient of the function / has the form

df       df df
(94) v/= « — + if — + »ij —»

dti dti dts

as is readily shown by means of the relations

£17 = a,        af = if,        77a = ir;.

It follows from (91) and (93) that

dU dU dU
— = ev, -= 0, - = 0,
6V1 dti dti

(95)
dV dV dV
—■ = 0, -= - i, -= 0.
dti dti dtz

The equations of variations of a, £, 77, in terms of the nonholonomic deriva-

tives, have, in view of relations (92), the general form

da df Ö77
(96) - = A£ + Bp], - = iBja + C,f, - = iAja — C,17,

dtj dtj dtj

where/= l, 2, 3.

From these equations are obtained the conditions of integrability for the

nonholonomic derivatives. When these conditions are applied to the deriva-

tives of U and V given in (95), the following relations result:

B3 = 0, C3 = 0, B, + d = 0,

At = l,     Bi = 0,     A3 - Bi - 0.

To these is to be added, in accordance with (1), the condition A3+B2 = 0

which guarantees that AiU = 0. Consequently, all of the functions A,-, Bj, Cj

vanish except A2 and Ct, which we shall henceforth denote by A and C.

Equations (96) now become

da da da
-= f, -= Ai, — = 0,
dti oh dh

df df df
(97) — = 0, — = Cf, -= 0,

dt\ dti dt3

dt] drj      m dri
- = ia, - - iAa — C77, - — 0,
dh d/2 d/3

and the conditions of integrability reduce to
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J_  df_ _ J_  df_ = _ ,df_ 9f_>
dt2   dti      dt\   dt2 dti dts,

d    df       d    df df
(98)-- = - C — .

dti   dt2      dt2   dtz dti

d    df       d df

dti   dti      dti dti

Equations (97) are completely integrable if A and C satisfy the differen-

tial equations

dC dC '    dA dA
(99) . —- = 0, -= 0, -= C+i, -= 0,

dti dh dti dh

and this system of equations, unlike the corresponding system in the general

case, is readily integrated. In fact, C is an arbitrary function of V which we

choose to write in the form C = iF'(V), where the prime denotes differentia-

tion, and A has, then, the value A = i(l +F')e~rU+eF^', where &(V) is a

second arbitrary function of V.

It follows from (97) that

(100) a - (e~rU + ieF$)t = a,      eF£ = b,

where a and b are constant vector fields, which, on account of (92), must

satisfy the relations

(101) (a\a) = l,       {b\b) = 0, (a\b)=0.

The nonholonomic derivatives of the functions whose gradients are the

expressions on the left-hand sides of equations (100) are obtainable by com-

parison of these expressions with (94). Thus, the integrals of the equations

are found to be

rU I j efQdV = (a I x) + a0,       J e"dV = (b\x) + b0.

Denoting (a\x)+a0, (b\x)+b0 by a(x), b(x), and eliminating V, we ob-

tain the equation

(102) U = f(b(x))a(x) + <b(b(x)),

where, since F(V) and #(F) are arbitrary functions, f(y) and <p(y) are arbi-

trary functions, the first of which is not a constant. This equation, subject

to the attendant conditions (101), defines the general solution U in this spe-

cial case. For, it is readily found that
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(103)    VU =fa+[f'a(x) + 4>'}b,    A*U = 0,    V = log/,    VF = (f/f)b,

whence the conclusion follows.

It is clear from (101) that there exists a rigid motion which transforms

— a(x) and 2b(x) respectively into xi and x2-\-ixi. By means of this rigid mo-

tion or, what is the same thing, by setting a0 and bo equal to zero and taking a

and b as the triples —1, 0, 0 and 0, 1/21'2, i/21'2, we reduce equation (102) to

the normal form

where /i and <bi are arbitrary functions, the first of which is not a constant.

The surfaces U = const, defined by (102a) are cylinders with isotropic rul-

ings parallel to the line L : #i = 0, z = 0, except in the case/i(z) = 1/z, </>i(z) =0,

when they consist of the Euclidean planes through L. The surfaces V = const,

are always the isotropic planes z = const, parallel to L, and the lines of flow—

the orthogonal trajectories of the surfaces U = const.—are parabolic circles

lying in these planes and cut by them from spheres whose centers are in the

plane z = 0. The group of rotations about L, or that about any line parallel

to L, carries the totality of surfaces of all the families U = const, into itself.

We have thus far excluded the case in which V is a constant, and conse-

quently have demanded that/i(z) be not a constant. As a matter of fact, the

function

where g(z) is arbitrary, is a solution of our problem, as is clear from (103).

Moreover, it gives a normal form for all solutions in the case V = const. For,

since in this case AiU is a constant, not zero, the surfaces U = const, are geo-

desically parallel and, inasmuch as they are minimal, they must be Euclidean

planes or non-isotropic minimal developables. A minimal developable has iso-

tropic rulings and hence, if it has Euclidean tangent planes, must be a cyl-

inder with isotropic rulings. Therefore, in any case, the parallel surfaces are

given by U = const., where U is of the form (102a) subject to the condition

fx(z)^0. But, since AiU must be constant, it follows from (103) that (102a)

reduces to (104) and the proof is complete.

Hence, in case AXU is constant, not zero, the minimal surfaces U = const,

consist of parallel planes or special parallel cylinders with isotropic rulings.

There are no surfaces F = const., and the lines of flow in both cases are

straight lines.

Harvard University,

Cambridge, Mass.

(102a) U = /i(z)«i + 0i(z),

(104) U = xi + g(s),


