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The writer has recently studiedf the convergence of certain sequences of

rational functions of the complex variable, under the hypothesis that the

poles of these functions are prescribed and satisfy certain asymptotic condi-

tions. The rational functions are determined either by interpolation to a given

analytic function, or by some extremal property of best approximation to

such a function. Degree of convergence and regions of uniform convergence

of the sequence of rational functions are then obtained (op. cit.). It is the

object of the present paper to go more deeply than hitherto into properties

of degree of convergence of sequences of rational functions, to make more

precise the previous results, and especially to introduce and study the con-

cept of maximal convergence of a sequence of rational functions with pre-

assigned poles; this is a generalization of the corresponding concept for

sequences of polynomials. The analogy between convergence properties of

sequences of polynomials and convergence properties of sequences of more

general rational functions is strong, but has hitherto not been sufficiently

strong to justify the use of the term maximal convergence in the latter case

(compare op. cit., p. 258). We show now that maximal convergence is charac-

teristic of various sequences of rational functions determined by interpolation

and by extremal properties. The present results would seem to be more or less

definitive in form.

1. Introductory results. We choose as point of departure the following

relatively simple but typical formulation (op. cit., §8.3):

Theorem 1. Let R be an annular region bounded by two Jordan curves C\

and C2, with C2 interior to d. Let the points a„\, a„2, • • • , ann lie exterior to C\,

and let the points ßn\, ßn2, • • • , ßn,n+i He on or interior to C2.+ Let R denote the

* Presented to the Society, December 30, 1938, under the title Maximal convergence of sequences

of rational functions; received by the editors September 22,1939.

f Interpolation and Approximation by Rational Functions in the Complex Domain, American

Mathematical Society Colloquium Publications, vol. 20, New York, 1935. See especially Chapters

VIII and IX. Unless otherwise indicated, all references in this paper are to this work, to which the

reader should refer also for terminology.

X It is a matter of taste whether or not to allow points a„k to lie on Ci and points ß„k to lie on &,

and whether or not to require that (1) should hold in R or on suitably restricted closed sets in R.

There are a variety of allowable choices here. The one we have adopted seems to the writer the most
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closure of R. Let the relation

(1) lim
n—*<x>

(Z - P\»l)(z - ßni) ' • •  (Z - ßn,n+l)

(z — a„i)(z — an2) • • • (z — a„„)

l/n

hold uniformly on any closed set in R containing no point of C2. Let the function

€>(z) be continuous in the closed region R, and take constant values 71 and y2 <ji

on Ci and C2 respectively. Denote generically* by Cy the curve $(z)=y in R,

72=7=7i-

If the function f(z) is analytic throughout the interior of Cy but is not analytic

throughout the interior of any Cy>, with y' >y, then we have (y2 <X <y)

(2) lim sup [max | /(z) - rn(z) |, z on Cx]1/n g X/7,
n—*oo

and we have also the limiting case of (2):

(3) lim sup [max | /(z) — rn(z) |, z on C2]1/n 5= y2/y,
n—*»

where rn(z) is the rational function of degree n whose poles lie in the points

<xni,an2, ■ ■ ■ ,ann, and which interpolates to f(z) in the points ßni,ßn2, ■ ■ ■ ,ß„,n+i.

Inequality (3) is a direct consequence of (2), by means of the relation

[max I /(z) — f„(z) I, z on C2] ^ [max | f(z) — rn(z) |, z on C\],

and by allowing X in (2) to approach y2.

The form (1) obviously breaks down whenever a point ank is infinite, a

highly important case which we do not intend to exclude. We therefore use

the convention (op. cit., §§8.1, 8.2, 8.5) that in such an expression as the

left-hand member of (1) one or more of the points ank may be infinite; under

convenient in view of the applications. If other choices are made, the conclusions corresponding to

Theorem 1 can be read off at once from the present Theorem 1. In later parts of the present paper

other choices seem more desirable. There is an obvious asymmetry in Theorem 1 relative to a„t

and Ci on the one hand, and ß„k and C2 on the other hand. This is due to the fact that we assume /(z)

analytic on C2 but not on &, and desire to study degree of convergence of r„(z) to /(z) on C2. It is

then desirable to allow the points ßnk to lie on (not merely within) C2; on occasion the points ß„k are

to be chosen uniformly distributed on C2. We need, however, a curve C\ or Cll,yi^ß>-y, in such a

relation as (4); it is desirable for explicitness to allow ß to be 71, hence desirable to assume (f) valid

on Ci and undesirable to allow points ank to lie on C\. That is to say, points ßnk are readily and con-

veniently admitted to R, but not points <*„*.

In Theorem 1 the demands on the location of the ank and ßnk may without change in proof be

replaced by the demands that no more than a finite number of the ank shall lie on or within C\, and

that the ßnk shall have no limit point exterior to C2. But if this new hypothesis is used, it may occur

that for small n some of the ßnk lie outside of the domain of definition of /(z); thus r„(z) need not be

defined for sufficiently small n, but nevertheless is defined for n sufficiently large.

* The notation Ci and C2 is exceptional to this, but no confusion should arise; there is double

notation for both Ci and C2.
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those conditions the corresponding factors z — ank are simply to be omitted;

and all of our formulas and conclusions remain correct without other modifi-

cation.

We have hitherto (op. cit.) employed systematically condition (1) with

the restriction An = l. Nevertheless the present more general form has ap-

peared on occasion (for example, op. cit., pp. 206, 235, 261, 266, 274-275)

and requires in the proof of Theorem 1 no change in method over the simpler

form with An = 1. Throughout the present paper we shall adopt (1) as stand-

ard*

Even some elementary situations that are of interest are included in

Theorem 1 but are not included if we require A „ = 1. For instance we may

take Ci and C2 as the circles \z\ =n and \z\ = ri<r1<r0, the numbers

<x„i, ■ ■ ■ , oinn as the «th roots of an arbitrary an whose modulus is not less

than rg, and the numbers ß„i, ■ ■ ■ , ßn,n+\ as the (w + l)st roots of an arbi-

trary bn whose modulus is not greater than r\+x. Equation (1) is valid with

An = an, independently of the behavior of an and bn satisfying the conditions

given; but equation (1) is not valid with An = l unless the numbers | <z„J1/Tl

approach a finite limit.

For the truth of (2) itself we assume/(z) analytic throughout the interior

of Cy, but need not assume /(z) to be analytic throughout the interior of no

Cy with y'>y. Indeed/(z) may be analytic throughout the closed interior

of Cr,. For our later purposes in the present paper, however, we find it desir-

able to make the complete assumption of Theorem 1. For appropriate ex-

amples illustrating convergence and degree of convergence when/(z) is ana-

lytic throughout R, the reader may refer to the book already mentioned, page

239.

An interesting complement to Theorem 1 is

Theorem 2. Under the hypothesis of Theorem 1 we have for arbitrary p,

y<pSyi,

(4) lim sup [max | rn(z) |, z on Cß]i,n ^ p/y.

* Contrary to the situation involving asymptotic conditions for poles, there would seem to be

no advantage in the study of asymptotic conditions for points ß„k of interpolation in replacing the

condition that

(a) lim |0-/3„,)--- (0 -/3„.„+I)|
B Mi

should exist uniformly by the condition that lim».«, | Bn(z—ß„i) ■ ■ • (z —/3n,n+i)|lhl should exist uni-

formly and not vanish identically; for it follows from Theorem 8 with ank= 00 that each of these con-

ditions implies the other—this entire remark is made on the assumption that (a) is studied in the

usual geometric situation, exterior to a curve within which the ßnk lie. On the other hand, such a rela-

tion as (34) is ordinarily considered interior to a curve to which the a„k are exterior.
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A formula for r„(z) is (op. cit., p. 186)

(2 - ßnl) • • • (z

(5)
2wi J r L

ßn.n+\)

(z - a„i) • • • (z

{t — a„i) ■ ■

~ <Xnn)

(t — Ctnn)

(t - ßnl) •••(<- ßn.n+l)J t

f(t)dt
2 7^ «nA

where T is a Jordan curve on and within which /(z) is analytic, and which

contains all the points ßnk in its interior. Equation (5) is valid for all finite

values of z other than the a„k, even exterior to T, provided of course the inte-

grand when not defined for such a value of z is replaced by its limit for that

value of z.

Choose the numbers pi, p2, and p3 with ah>M>7>M2>M3>72, and choose

T in (5) as the locus CM. For z on Cß and / on C„, we have by (1) when n is

sufficiently large

(Z - ßnl)  •  • '  (Z - ßn,n+l)

(z — <*nl) ■ • ■ (z — ann)

(t — a„i) ••■(/!— a„„)

Mi,

= 1/M3
^4«(* - ßnl)  ■ ■  ■  (t~ ßn.n+l)

From (5) we read off at once

lim sup [max | r„(z) |, z on C^]1'™ S M1/M3,
n—♦«

and by allowing pi to approach p and ^3 to approach y we obtain (4).

2. Degree of convergence. We shall shortly obtain inequalities in opposite

senses to (2) and (4), but in order to do this it is important to show how a

certain degree of convergence on C2 of rational functions Fn(z) with poles in

the points ank implies a corresponding degree of convergence on C\. The diffi-

culty here lies in using the relation (1) directly, for the function

r, / N ,     (z ~ • ■ •  (Z - ßn,n+l)

Fn(z) -8- An-
(z — a„i) ■ ■ ■ (z — ann)

may have poles on C2, and cannot be used for immediate comparison.* Never-

theless we shall prove

Theorem 3. Under the hypothesis of Theorem 1 let us suppose

(6) lim sup [max | Fn(z) |, z on C2]1/n = q,

* Condition (44) is a consequence of (1) and applies here directly. Nevertheless condition (1)

is more elementary and more natural; it seems desirable to prove Theorem 3 without using as inter-

mediary Theorem 12, whose proof involves a different order of ideas.
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where Fn(z) is a rational function of degree n with its poles in the points ank.

Then we have (y2 <X SiYi)

(7) lim sup [max | Fn(z) \, z on C\]lln — Xo/72.
n—*»

Let qi >q be arbitrary, so that we have for n sufficiently large [ Fn(z) \ 1kq\,

z on C2. Let us denote by w = <j>(z) a function which maps the exterior of C2

onto I w\ > 1 so that the points at infinity correspond to each other, and de-

note generically by Jn, N>1, the locus \<b(z) \ =N exterior to C2. All the

points ctnk lie exterior to a suitably chosen JA, so for Z<A, Z>1 we have

(op. cit., p. 250, Lemma I)*

.     „ YAZ - vy
F„(z) I ^ 9i  —-—   , z on Jz.

By the principle of maximum for analytic functions we have for z on and

exterior to Jz

„ / ^ ( .     (Z _ •••(**" ßn,n+l)}
Fn(z) H- lAn--->

{       (2 — a„i) ■ • ■ (2 — <*„„) j

nrAZ - v\«   r . l (z- /3»i) ■ ■ • (2- 0„.„+i) -j
^ gi  — v   minUB---,2on/2 ,

LA — Z J       L      I      (z — a«0 • • • (z - ann) J

r        1          I              1               AZ ~ 1       r ,v l
Ihn sup [max | FB(z) |, z onCxJ1/n ^ X01-'— [min $(2), 2 on Jz\.

n—*« -1 — Z

When we allow Z to approach unity, the curve Jz approaches C2, so by allow-

ing <7i to approach q we obtain (7).

Our most important preliminary result is now available:

Theorem 4. Under the hypothesis of Theorem 1 there exists no sequence of

rational functions Rn(z) of respective degrees n with poles in the points ank such

that we have either of the relations

(8) lim sup [max | f(z) — Rn(z) |, 2 on C2]lln = k/y, k < t2,
n—»00

or (72<X<y)

(9) lim sup [max | 7(2) — Rn(z) |, z on Cx]1/n = k/t, k < X.
n—»00

Consequently, in Theorem 1 the equality sign holds in both (2) and (3).

* In the extension (§11) of Theorem 3 to a set C2 composed of several Jordan curves, this inequal-

ity for ^„(s) is established on a level curve Jz corresponding to each of the Jordan curves; the re-

mainder of the proof holds without change.
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If we assume (8) or (9) to hold, we find by means of (3) or (2) for a specific

X,72=A<7,

lim sup [max | r„(z) — R„(z) \ , z on C\]lln = A/7,
n—*«o

whence from Theorem 3 for arbitrary p, 7<m^7i,

lim sup [max | r„(z) — Rn(z) |, z on C„]1/n ^ p/7;
n—

a change of notation is necessary in this application of Theorem 3 if X>y2.

By Theorem 2 we now derive (y<mJs7i)

(10) lim sup [max | Rn(z) |, z on CM] ̂  p/7.
n—»«

The function log <p(z) is harmonic at every point of R, as the uniform limit

of the sequence of harmonic functions

(11) -log
n

t   (z - /3„i) • • • (z - /3„,n+l)

(z — a„i) • • • (z — a„„)

and is continuous in R, equal to log 71 and log 72 on Cx and G respectively.*

In any closed simply connected region interior to R, suitably chosen con-

jugates of the functions (11) converge uniformly to a suitably chosen con-

jugate of the function log "p(z). As z traces a curve C\ in the counterclockwise

sense, the conjugate of (11), which is the argument (that is, angle or ampli-

tude) of the function

T(z - ßmt) • " • (z - ßn.n+0■ ßn,M-l)llln

— Ct„n) J|_ (z — a„i) ■ ■ • (z — ann)

increases by 2w(n+l)/n; so as z traces C\ the conjugate of log $(z) increases

by 2?r. Consequently «^(z) is not identically constant, and we have 71^72.

Theorem 4 is a consequence of the following theorem, a treatment of

which the writer hopes to publish shortly in these Transactions. The theorem

may be proved from the two-constant theorem, in a manner similar to that

previously used by the present writer, f Theorem 5 is much more general than

we need at the moment, and will be applied also later in the present paper.

Theorem 5. Let S be a region bounded by two disjoint Jordan curves K0 and

* We cannot have 72 = 0, for in that case the analytic function exp [log *(z)+i*(3)], where

*(z) is conjugate to log 4>(z) in R, would approach the boundary value zero everywhere on C2, and

would be locally single-valued and analytic in R, hence (op. cit., §1.9) would vanish identically.

f Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 477^486; these Transac-

tions, vol. 46 (1939), pp. 46-65.
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K-i, with K-i interior to K0. Let the function u(x, y) be harmonic in S, continu-

ous in the corresponding closed region S, equal to zero and — 1 on K0 and K^i

respectively. Denote generically by K„ the locus u(x, y)=a, 0>a> — 1, and by S,

the open set cr>u(x,y)> —linS bounded by K„ and ; denote by S, the closure

of S,.
Let the function /(a) be analytic throughout Sp but not analytic throughout

any Sp>, p'>p, and let f(z) be continuous in the two-dimensional sense on K-\

with respect to the domain S. Let the function /„(z) be analytic in S, continuous

in S, with the relations

(12) lim sup [max | /„(*) |, z on Ko\lln = ea > 1,
n—»»

(13) lim sup  [max | f(z) - /„(z) \, z on tf-i]1'" ^ e» < 1.
n—»»

Then we must have

(14) a -t- ap - ßP ^ 0;

if the equality sign holds here we have

(15) lim sup [max |/„(z) |, z on ^J1'" = e(«-f»Hf-P>, 0 = p = p,
n—»»

(16) lim sup [max | f(z) - /„(z) |, z on K,]1" =        (»-#),     p > c ^ - 1.

7/ (3 is a» arbitrary continuum in S not a single point, and if the equality

sign holds in (14), we have

(17) lim sup [max | /n+1(z) - fn(z) |, z on =
n-+oo

where Z7 = max [m(x, y) on q]. Consequently if the second member of (17) is

greater than unity, the first member is equal to

(18) lim sup [max | /n(z) |, z on ()]1/n;
n—»oo

if the second member of (17) is less than unity, the first member is equal to

(19) lim sup [max | f(z) - /„(z) |, z on Q]lln.
n—*»

It is a consequence of (17) and (18) that the sequence fn(z) converges through-

out no region containing in its interior a point of Kß, 0>p'=p.

We apply Theorem 5 to the situation of Theorem 4 by identifying G

and C\ (y2-\<y) with K0 and respectively. Inequalities (10) forp = yi

and (8) or (9) are identified with (12) and (13), so we have
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a = log Yi — log 7 ß = log k — log 7.

We also set

log $(z) — log 7! log 7 - log 71

log X — log 71

Direct substitution yields for (14) the inequality

log 7 — log 71
(log k - log X) = 0

log X — log 71

whence /c^X, and Theorem 4 is established.

Let the equality sign hold in (14), under the conditions of Theorem 5.

If the sequence f„(z) converges throughout some region containing in its in-

terior a point of K„, O^piip, it follows, from Osgood's theorem to the effect

that in a region of convergence subregions of uniform convergence are every-

where dense, that the sequence/„(z) converges uniformly in some closed re-

gion Q containing in its interior a point of some K^, 0>p/>p, contrary to

the equality of (18) with the second member of (17).

The sequence f„(z) can converge like a convergent geometric series on no

continuum in 5 exterior to K„ and consisting of more than one point.

3. Maximal convergence. Theorem 4 is our chief justification for the

Definition. Under the hypothesis of Theorem 1, any sequence of rational

functions Rn(z) of respective degrees n with poles in the points ani, «»2, ■ • ■ ,a«,

is said to converge maximally to f(z) on the set C constituting the closed interior

of C2 provided we have

We mention explicitly that maximal convergence is not defined if f(z) is

analytic throughout the interior of G.

As an immediate consequence of the definition we have from Theorems 1

and 4

Theorem 6. Under the hypothesis of Theorem 1, the sequence rn(z) converges

maximally tof(z) on C.

Of course the condition

(20) lim sup [max | /(z) — R„(z) |, z on C]1'" = 72/7.

lim sup [max | /(z) - Rn(z) |, z on Cx]1/B =§ A/7

holding for all X greater than but sufficiently near y2, is sufficient for maximal

convergence, for we have
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[max I /(a) — i?„(z) |, z on C2]     [max | /(z) — i?„(z) |, z on C\],

and after making the corresponding substitution we may allow X to approach

72-

As an alternative in the definition of maximal convergence we may re-

place (20) by

(21) lim sup [max | Rn+i(z) - Rn(z) |, z on C]1'" ^ 72/7,
a—»00

provided that the sequence Rn(z) is assumed to converge to/(z) on C; under

this assumption we may also replace (20) by (21) with the sign — replaced

by the equality sign. This remark is an immediate consequence of the easily

proved relation

lim sup [max | Rn+i(z) — Rn(z) |, z on C]1/n
n—*«>

= lim sup [max | /(a) — Rn(z) \, z on C]1/n,
n—>oo

provided either of these expressions is less than unity.

Theorem 7. Under the hypothesis of Theorem 1, let Rn(z) be a sequence of ra-

tional functions of respective degrees n whose poles lie in the points ank, and which

converges maximally to f(z) on C. Then we have (y2 = X <7, 7 5Sp. =7i)

(22) lim sup [max | /(z) - Rn(z) |, z on Cx]1/n = A/7,
rt—*»

(23) lim sup [max | Rn(z) |, z on C„]1/n = ß/y.
«-♦CO

If Q is an arbitrary continuum in R not a single point, we have

(24) lim sup [max | Rn+i(z) — Rn(z) |, z on Q]lln = [max *(z), z on Q]/y.
n-*«

Consequently if the second member of (24) is less than unity we have

(25) lim sup [max | /(z) — Rn(z) \ , z on Q]lln = [max €>(z), z on Q]/7;
n—*oo

the second member of (24) is greater than or equal to unity we have

(26) lim sup [max | Rn(z) \ , z on Q]lln = [max $(z), z on <2]/7-
n—♦«

7/ ii a consequence of (26) iAai /Äe sequence Rn(z) converges throughout no

region containing in its interior a point of C„, 71 > n ^ y.

From the assumed maximal convergence of Rn(z) and from the maximal

convergence of rn(z) (Theorem 6) we have
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lim sup [imax rn(z) - Rn{z) \, z on C,]1'» = yt/y,

whence from Theorem 3

lim sup [max | r„(z) — Rn(z) |, z on Ci]1/n ^ Ti/t-

By application of Theorem 2 we may now write

(27) lim sup [max | Rn(z) \ , z on d]1'" ^ Yi/7-

Inequalities (27) and (20) with C replaced by C2 place us in a position to

apply Theorem 5 again. We identify G and C2 with K0 and respectively,

and we set from (27) and (20)

a = log 7i — log y,       ß = log 72 — log y.

Moreover we have

Direct computation shows that the equality sign is valid in (14), and hence

the conclusion of Theorem 7 follows.

Theorem 7 is a generalization and a sharpening of the corresponding re-

sult (op. cit., §§4.7 and 4.8) for the case of approximation by polynomials;

relations (24), (25), (26) are new even in the latter case. For approximation

by polynomials we have ank = °o ; according to the usual convention (op. cit.,

§§8.1, 8.2, 8.5) the corresponding factors z—ank in (1) are simply to be

omitted. With ank = °o there exist (op. cit., chap. 7) various sets of points ßnk

for which the relation (1) obtains; for instance we may take #(2) =A|<p(z)|,

where w=A-<p(z) maps the exterior of C2 onto \w\ >A with <£'(°°) = 1; the

first such set ßnk was exhibited by Fejer, uniformly distributed on C2 with

respect to a suitably chosen parameter.

In connection with Theorem 7 it is worth remarking that maximal con-

vergence of the sequence Rn(z) to f(z) on the closed interior of C2 implies

the maximal convergence of the sequence Rn(z) to/(z) on the closed interior

of every Cx, y2<A<y.

4. Completion of a partial sequence of ank. Theorem 1 is valid if the ank

and ßnk, and hence also the functions rn(z), are defined not for every n but

merely for an infinite sequence of indices n. But in the proof of Theorem 7

we have employed both Rn(z) and Rn+i(z), and thus have made essential use

of the fact that the Rn(z) are defined for every n. It is sufficient for our pur-

poses thus far, even in the study of maximal convergence, as the reader may

u{x, y) =
log $(z) - log 71 log 7 - log 71

log 72 — log 71 log 72 - log 71



264 J. L. WALSH [March

notice, if the ank and Rn(z) are defined not for every n but for an infinite se-

quence of indices «,-, with «,+i>w, and fij+i—»>■ bounded for all j. But if the

ank and Rn(z) are defined only for a sequence of indices »,-, and if is

not bounded, our fundamental conclusions (22) and (23) may fail even for

the specific functions R„(z) =rn(z) of Theorem 1, as we now proceed to show

by examples. These examples, chosen from Taylor's series, are closely related

to gap theorems and to overconvergence in the sense of Ostrowski.

Choose a„k = °°, ßnk = 0, so that we have <t>(z) m | z|. Choose C2 as the circle

\z\ =1/2, Cy as the circle \z\ =1, and C\ as the circle \z\ =2. Choose the

integer «i so that 2ni_1 >3, the integer «2>«i so that 2("2~1)/ni >3, and in gen-

eral the integer nk+i >nk so that 2<-nh+1~1)lnh>3. It is sufficient to choose n0 = 0,

»i = 3, »i+i = 2wt + l. If we set

(28) /(z) = 1 + z"1 + z"2 + zn3 + •

and denote by r„(z) the sum of the first n + l terms of the corresponding series

with all of the powers of z present by indication, we have by Theorem 7

(29) lim sup [max | f(z) - rn(z) |, for | z | = 1/2]1'" = 1/2.

But we have for | z\ =1/2

I /(z) - rnk{z) I =
2»t+i 2nt+2

+ <
1

2»*+i-i

whence

lim sup [max | /(z) — rnk(z) |, for | z | 1/2]1'"» ^ lim sup
2 1) Ink

in contrast to (29).

With the same choice of ank, ßnk, C2, G, and Cy, let us now choose the in-

teger »i so that 21'("i-« <3/2, the integer fh>fii so that 2<"1+1>/<n2-1) <3/2,

and in general the integer nk+i so that 2(ni;+1)/(n*+1~1) <3/2; it is sufficient to

choose «o = 0, nk+1 = 2nk+3. Again we define/(z) by equation (28), and we

denote by rn(z) the sum of the first n + l terms of the corresponding series

with all the powers of z indicated. From Theorem 7 we have

(30) lim sup [max | rn(z) |, for | z | = 2]1/n = 2.

But from (28) we may write for | z\ =2

I r.^^z) I = 1 + 2"i + 2"2 + • • • + 2»*-i ̂ 2»*-»+*,

whence
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lim sup [max | r„4_i(z) |, for | z| = 2]1""*-1'

g limsup2<"*-'+1"(''*-1> = 3/2,
Jfc—»00

in contrast to (30).

The examples just formulated, in connection with such inequalities as (2),

(3), and (4), suggest the following problem. Let G, G, R, *(z) be given so

that the conditions of Theorem 1 are satisfied, including equation (1) but

where the ank and ßnk are defined not for all n, only for an infinite sequence of

indices; naturally, in equation (1) only those indices are admitted. To

define now new numbers ank and ßnk where necessary so that equation (1) shall hold

for all n. We proceed now to the discussion and solution of this problem. In

the solution we need the following preliminary result:

Theorem 8. Let the relation for some infinite sequence of indices n

l/n

= eU(x,y)

be valid uniformly on every closed set interior to an annular region R bounded

by Jordan curves G and G, with G interior to G, where each ßnk lies on or

interior to G and each ank lies on or exterior to G. Then the function U(x, y) is

harmonic* in R and not identically constant in R; indeed we have

C dU
(32) -ds = 2tt,

J r dp

where v indicates the exterior normal, where V is an arbitrary analytic Jordan

curve separating G and G, and where integration is in the counterclockwise

sense. At every finite point exterior to G we have

lim I (z - fta) • • • (z - j3n,n+1) I1'"
n—»oo

(33)
f 1 f /   d log r dU\ 1

= exp  — I   I U-log r-1 ds I,     z = x + iy,
\_2w J r2 \      dv dv / J

uniformly on any closed finite set exterior to G, where T2 is an analytic Jordan

curve in R containing G but not (x, y) in its interior; at every point (x, y) in-

terior to G we have

* The left-hand member of (31) if existent uniformly on any closed set in R vanishes at every

point of R or at no point of R. For the corresponding analytic functions are locally single-valued,

different from zero, and form a normal family in any simply connected subregion of R, By Hurwitz's

theorem any limit function of the family vanishes at every point or at no point of R.

(31) lim A n
(z — Pnl) ' ■ • (z — ßn.n+l)

(z — cx„l) • ■ • (z — ann)
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lim | (z - am) • • • (z - ann)/An |1/n
«—♦00

(34)

z = x + iy,
Mf /   dlogr dU\ I

uniformly on any closed set interior to G, where Ti is an analytic Jordan curve

in R containing (x, y) and G but not G in its interior. In (33) and (34) the limits

are to be taken over the given sequence of indices for which (31) holds. The inte-

grals over Ti and T2 are to be taken in the counterclockwise and clockwise senses

respectively, and v denotes exterior and interior normal respectively.

Theorem 8 is only a slight modification of a previous result (Theorem 18,

op. cit., p. 266), and the proof is therefore left to the reader. In the direction

of a converse we have

Theorem 9. Let R denote an annular region bounded by Jordan curves G

and G with G interior to G. Let the function U(x, y) be harmonic interior to R,

continuous in the corresponding closed region, taking the values gi and g2 <gi on

G and G respectively, and satisfying equation (32), where T is an arbitrary

analytic Jordan curve separating G and G. Then for every n there exist points a'nk

on G and points ßnk on G and constants A „ such that we have

(35) lim
(Z — ßnl) • • •  (Z — ßn,n+l)

1/ti

= eU(x,y)

(z — a„'i) • • • (z — a'nn)

uniformly on any closed set interior to R.

If we replace A„ in equation (35) by qnA„, where q is positive, the equation

persists with U(x, y) replaced by U(x, y) +log q. In particular, then, it is no

loss of generality to assume gi = 0 in the proof of Theorem 9; we make this

assumption.

To exhibit the points a'nk and ß'nk desired it is now sufficient to choose the

a'nk and ß'nk uniformly distributed on G and G respectively with respect to

the parameter a, where

dU dU
der = -ds on G,       da =-ds on C2,

dv dv

for we have the equation for (x, y) in R

(36) U{x, y) = — ^ log r da-f log r da.

These equations for da and U(x, y) still have a meaning in an extended sense

even if the Jordan curves G and G are not analytic, and so also does the con-
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cept of uniform distribution of points on G and G; compare op. cit., §§7.6

and 9.12. Further details of the proof of Theorem 9 are so similar to a proof

given elsewhere (Theorem 9, op. cit., pp. 210-211) that they are omitted

here. Equation (35) is valid with An = \ and with U(x, y) replaced by

U{x, y) —gi, hence is valid in the original form with A„ = engi.

We are now in a position to solve the proposed problem:

Theorem 10. Under the hypothesis of Theorem 8, where U(x, y) takes con-

stant values on G and G, new numbers ank and ßnk can be defined for those values

of n for which the original ank and ß„k are not employed in (31), in such a way

that (31) holds uniformly on any closed set interior to Rfor the entire sequence

« = 1,2,3,

The original sequences a„k and ßnk used in (31) yield by Theorem 8 a

function U[x, y) which assumes constant values gx and gi on G and G, and

which satisfies (32), where V is an arbitrary analytic Jordan curve separating

G and G, and where v indicates exterior normal. It then follows that we have

gi <gi. By virtue of Theorem 9 there exist for every n points and ßnt which

satisfy (35), uniformly on any closed set interior to R. For the values of n

that do not appear in the sequence in the relation (31) of our hypothesis we

now define ank = «4, ßnk =ß'nt for those values of n. Then the points ank and ßnk

are now defined for every n, and equation (31) is valid uniformly on any

closed set interior to R for the complete sequence « = 1,2,3, ■ • • .

Theorem 10 applies directly in the situation of Theorem 1 but where (1)

is assumed merely for a suitable sequence of indices n. But it is to be noticed

that in Theorem 1 equation (1) is assumed to hold uniformly on G, whereas

in Theorem 10 equation (1) holds uniformly merely on any closed set interior

toi?.

Proof of Theorem 10 by means of Theorems 8 and 9 is essentially the exe-

cution of a program previously outlined (op. cit., p. 268 ff.).

5. Determination of the ßnk when C and the ank are given. Our definition

of maximal convergence involves the points ank, the point set C, and the func-

tion $(z), but does not involve the points ßnk directly; of course the ßnk are

intimately related to the function #(z). This raises the question of the de-

termination of <f>(z) and the ßnk when C and the ank are given, a question that

we proceed to discuss.

By Theorem 8, condition (34) is a consequence of (31), so (34) or some

similar relation is the natural hypothesis for us to use on the points <xnk.

Such a condition as (34) is fulfilled whenever the points ank are uniformly

distributed on a Jordan curve with respect to a continuous parameter.

Theorem 11. Let the point set C be the closed interior of a Jordan curve G.
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Let C[ be a Jordan curve containing in its interior the set C but none of the points

a„ic, and let us suppose

(37) lim I (z - «Bl) • ■ • (z - ann)/An |f/" = e^C.ir)

interior to C[, uniformly on any closed set interior to C[. Then there exists a region

R bounded by C2 and by a Jordan curve G containing C2 in its interior, and there

exists a function V(x, y) harmonic in R, continuous in the corresponding closed

region, constant on C\ and on C2; for suitably chosen points ßnu on C2 we have

interior to R

" .    (« ~ ft*) • ■ •  (2 - ßn.n+l) I""
(38) hm  An- = «"<*■»>■,

»-»■ (z — a„i) • • • (z — a„„) I

uniformly on any closed set interior to R.

The function U(x, y) can be written as the limit of the sequence of har-

monic functions

Un(x, y) = (l/n) log I (z — ani) ■ • • (z — ann)/^4n |

uniformly on any closed set interior to C[, so U(x, y) is harmonic interior to

a
Let G(x, y) denote Green's function for the complement K of C with pole

at infinity; thus G(x, y) — % log (x2+y2) is harmonic at infinity, and G(x, y)

vanishes on C2. Let W(x, y) denote the unique function which is harmonic

in K (even at infinity), continuous in the corresponding closed region, and

equal to U(x, y) on C2. Introduce the notation

(39) V'(x, y) = W(x, y) + G{x, y) - U(x, y),

so that V'(x, y) is harmonic in the annular region R' bounded by C[ and C2,

and is continuous with the value zero on C2. If T denotes an arbitrary analytic

Jordan curve separating C[ and C2, and if v denotes exterior normal, we have

c BV        r BW        r  BG r BU
(40) -is = I -ds + I -is - I -ds = 2x;

J r   Bv J r   Bv J r   Bv J r Bv

for the first and third integrals of the second member vanish because W(x, y)

and U(x, y) are harmonic respectively in the closed exterior and closed in-

terior of r.

We shall now show* that V'(x, y) is positive at every point of R'. Consider

* The entire proof of Theorem 11 can be interpreted as the carrying out in detail of a method

previously indicated (op. cit., p. 269). But the inequality V>0 is an indispensable condition for the

validity of that method, and the present proof of that inequality is the first ever given of wide gen-

erality.
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the function (compare (39))

V'n{x, y) = W(x, y) + G(x, y) - Un(x, y),

which approaches V'(x, y) uniformly on any closed set in i?'+C2. The func-

tion V'n{x, y) is defined and harmonic at every point exterior to C2, except

the points ank and except at infinity. When (x, y) approaches a finite point

z = ank, the functions — Un(x, y) and Vn(x, y) become positively infinite. When

(x, y) becomes infinite, the functions W(x, y), G(x, y) — \ log (x2+y2), and

I log (x^+y2) — Un{x, y) approach finite limits, except that \ log (x2+y2)

— Un{x, y) becomes positively infinite if one or more of the points ank are

infinite. Consequently the minimum of the function F„' (x, y) considered in

the entire closed region exterior to C2 exists and occurs for (x, y) on the curve

C2 itself:

[F„(x, y), for (x, y) exterior to C2] = [min V'n(x, y), on C2].

By the uniformity of convergence of V'n(x, y) to V'(x, y) on C2 as n becomes

infinite, this right-hand member approaches the minimum of V'(x, y) on C2;

thus

[V(x, y), for (x, y) in R'] St [min V'(x, y), on C2].

Consequently for (x, y) in R' we have proved V'{x, y)=0. The function

V'(x, y) is zero on C2, can approach no negative value as (x, y) in R' ap-

proaches C[, and is harmonic in the region bounded by C[ and C2. But V'(x, y)

is not identically zero in R', by equation (40). It follows from the well known

properties of the minima of harmonic functions that the inequality V'(x, y)

>0 persists throughout R'.

We shall now exhibit the desired points ßnk. Let us suppose for the moment

that C2 is an analytic Jordan curve. For (x, y) exterior to C2 we have (op. cit.,

p. 266, Lemma IV)

W(x, y) + G(x, y)

(41) 1  f T d log r d(W + G)-\

2ir j c2 L ov dv J

where v indicates the interior normal for C2, and where q is suitably chosen.

For (x, y) exterior to C2 we also have (op. cit., p. 265, Lemma III)

1  r /   dlogr dU\
° = 7"      (U—*-log r—)ds;

tit j a \     ov ov /

this equation is first established with U replaced by Un, and then use is made
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of the uniformity of convergence of U„ and dUn/dv on C2. It follows by sub-

traction from (41) for (x, y) exterior to C2 that

l r /   d log r av'\

-If dV
— I    log r — ds + q.
1% J c. ov

Thanks to the inequality V'(x, y)>0 in R', we have on C2 the inequality

do= — (dV'/dv)ds^0. If now the points ßnk are chosen uniformly distributed

on C2 with respect to the parameter a, we may write from (42) and from

—fCi(dV/dv)ds = 2ir (a consequence of (40)) the relation

(43) lim | (a - ßnl) ■••(*- 0„,„+i)      = •?*<*.»>+«(».»>-«

for z exterior to C2, uniformly on any closed set exterior to C2 (compare op.

cit., §8.7). It follows now from (37) and (43) by the choice V(x, y) = V'(x, y)

— q that equation (38) is valid uniformly on any closed set interior to R'.

In (41) and later equations we have for the sake of convenience assumed

C2 to be an analytic Jordan curve. It is sufficient if C2 is an arbitrary Jordan

curve, provided the integrals are interpreted in an extended sense (compare

op. cit., §7.6). Even if C2 is a still more general set, the integrals may be taken

over analytic Jordan curves near but exterior to C2 on which V(x, y) is con-

stant (which does not alter the validity of (42) or of the other equations),

and the points ßnk may be chosen on these curves by the method of op. cit.,

§4.4; but here we must relax the requirement that the ßnk shall lie on or in-

terior to Ci, and may replace it by the requirement that the ßnk shall have no

limit point exterior to C2.

A region R satisfying the requirements of Theorem 11 is easily defined.

Let gi denote the least upper bound of V'(x, y) in R', and let g be arbitrary,

0<g<gi. Then the locus &: V'(x, y) =g in R' is an analytic Jordan curve;

the annular region bounded by G and C2 fulfills all the conditions of Theo-

rem 11. Our fundamental results on approximation apply only to loci

V'(x, y) = const., so it is no great disadvantage to cut R off along such a curve.

It is not uninteresting to note that if in Theorem 11 we assume equation

(37) to hold merely for an infinite sequence of indices n, then (as in Theorem

10) new points ank can be provided, and also the points ßnk, so that both the

ank and ßnk shall be defined for every n with (38) valid. Indeed, the definition

of U(x, y) and the proof of (43) do not assume the a„k defined for every n;

Theorem 11 can be used to determine the ßnk for the values of n for which

W(x, y) + G(x, y) =

(42)
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the ank are defined, and then Theorem 10 applies. Of course equation (43)

is substantially the same as equation (33) of Theorem 8.

6. Invariant formulation of results. The general problem ofgreatest degree

of approximation to a given analytic function/(z) by rational functions with

prescribed poles <xnk, culminating in Theorem 7, is invariant under linear

transformation of the complex variable. But our fundamental condition (1)

is not invariant, and has no obvious invariant properties. We proceed to

discuss conditions analogous to (1) but having properties of invariance.

Theorem 12. Under the conditions of Theorem 1 (it is sufficient if (1) holds

uniformly merely on any closed set in R) let the function w=<b(z) map the exterior

of G onto \w\ > 1 so that the points at infinity correspond to each other. Then we

have

(44) lim
n-*oo

[^(ainl)0(z) -!]••• [5(a„„)0(z) - l]

- <t>(anl)] • • • [*(«) - *(«»,)]

uniformly on any closed set in R, where $i(z) is a suitable constant multiple of

the function $(z) of (1).

From condition (1) it follows that we have (34) fulfilled; it follows from

(34) (method of op. cit., §9.12) that

lim I [*(*) - <K«nl)] • • • [4>(z) - <*>(«„„) ]A4„ I1'"

exists uniformly on any closed set interior to R. By another method previ-

ously employed (op. cit., §9.4) it follows that (44) is valid uniformly on any

closed set in R, where 4>i(z) is suitably chosen. It is to be noted that the func-

tion whose absolute value appears in (44) can be considered defined even on

G, and to be continuous there, whence <Pi(z) also is continuous on C%:

$i(z) = 1 on G- Then the limit in (44) can be considered uniform on any

closed set in R containing no point of G. The function whose absolute value

appears in (44) is greater than unity at every point exterior to G, so we have

$i (z) ̂  1 in R.

From (1) and (44) we may write

(2 - Art) • • •  (2 - ßn.n+l)
lim

(45)
(2 a„i) • • ■ (z

[*(*) - <p(otnl) . \4>{z) — <£(a„n)]

[0(«„i)*(s) -!]•■ [*(o,„)0(z) - 1]

1/n $(2)

uniformly on any closed set in R. Denote by ^„(z)(z—ßn\) the function whose

modulus occurs in (45). Then "^„(z) is analytic and different from zero at
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every point of the extended plane exterior to G, when the function is suitably

defined in the points ank* Moreover lim„..„|z—ßni\1/n = 1 uniformly on any

closed bounded set exterior to G. Then (45), being valid on an arbitrary C7,

y% >y >y2 when suitably interpreted, is valid at every finite point in the closed

exterior of Cy; the logarithm of the right-hand member of (45) can be con-

sidered defined and harmonic at every point of the extended plane exterior

to C2, is continuous in the corresponding closed region, and has the constant

value log 72 on G- Hence throughout R we have <p(z)/<Pi(z) =-y2, and Theorem

12 is established.

Under the conditions of Theorem 12 it may occur that G is a curve

\<p(z) I = const., say c; under such circumstances the function

log yi — log y2 ,
log $(z)-log j 4>{z) I - log 72

log c

is harmonic in R, continuous in R, zero on G and G, hence is zero in R :

log 7i — log 72       . .
log $(z) = -;- log j <t>(z) I + log 72.

log c

But by (32) we have

X
ö log $(z)

— ds = 27T,
'r Bp

where T is an analytic Jordan curve separating & and G; also (op. cit., p. 71)

d log I <p(z) \
ds = 27

r dv

whence we deduce (log ji — log y2)/log c = l, and for z in R,

<f>(z) = Ta| <?!>(s) I •

This equation is satisfied, it may be added, provided the points ank and ßnk

are distributed on G and G respectively uniformly with respect to the har-

monic function conjugate to log \<p(z) \ ; see op. cit., §4.3.

The converse of Theorem 12 can also be established:

Theorem 13. Let R be the region between and bounded by two Jordan curves

G and G, with G interior to &. Let w=(p(z) map the exterior of G onto the

* When a point a„k lies at infinity, the function [<l>(z) — <t>(a„t) ]/ \4>(ankj<t>{z) — 1 ] in (44) and (45)

is to be replaced by its limit as ot„k—»», namely l/<£(z). In accordance with the convention already

made (§1) concerning factors z—a„k, there is here no exception in the behavior of *„(2) even if points

ank are infinite.
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region \w\ > 1 so that the points at infinity correspond to each other. Let the

points ank lie exterior to C\, and suppose (44) valid uniformly on any closed set

in R not containing a point of &. Then for suitably chosen numbers A „ and suit-

ably chosen points ßnlc on C2, equation (1) is valid uniformly on any closed set in

R, where "p(z) is a constant multiple of <Pi(z).

From equation (44) follows (op. cit., p. 274, Corollary 2) an equation of

type (37), valid uniformly on any closed set interior to C%. By Theorem 11

we now derive a condition of form (1), and inspection of the proof of Theorem

11 shows that equation (1) is valid uniformly on any closed set in R. It fol-

lows now from Theorem 12 that <p(z) is a constant multiple of $i(z), so Theo-

rem 13 is established.

In Theorem 13 the Jordan curve G naturally need not be a locus obtained

by setting $(2) equal to a constant.

We remark (op. cit., p. 274) that condition (44), valid uniformly on any

closed set in R, implies the existence of

(z - a„i) • • • (z - ann) l1/n

lim
0(a„i) ■ ■ ■ 4>{ann)

uniformly on any closed set in R; if a particular ank is infinite, the correspond-

ing quotient (z—«»*)/'<p(anh) is to be replaced by the limit of that quotient

as ank becomes infinite, namely —1/0 '(«>). By virtue of (33), a consequence

of Theorems 13 and 8, it now follows that equation (1) is valid uniformly on

any closed set in R for a suitably chosen 4>(z) provided we have

(46) An = </>(a„i) • • • 0(a„„).

The proof just given, that (44) implies the existence of

(Z - ßnl) • • •  (Z - ßn.n+l)
lim

11*

0(aBi) ■ ' • 0(aBB)
(z — a„i) • • • (z — a„)

shows the uniform existence of this limit merely on any closed set in R; the

limit is different from zero there. But if (1) itself is satisfied under the condi-

tions of Theorem 1, it then follows that for the original A „

lim
n—* °o

0(aBl)  • •  ■ 4>(0inn)

An

lln

exists and is different from zero. Consequently (1) with the substitution (46)

made is valid uniformly on any closed set in R containing no point of C2.

It is not essentially more general to consider (1) in its original form than to

consider (1) with (46) satisfied.
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Let us now consider the function ^„(z) defined in connection with (45),

where A„ is given by (46). We see by inspection that ^„( °°) = 1, from which

it follows that $>(z)/3>i(z) is identically unity. Thus we have proved

Corollary 1. Under the conditions of Theorem 1, we have

,.      I     ,      . ,      , • ' •  (z-/3n,n+l) I1'"
(47)        lim  4>{anl) ■ ■ ■ 4>{ann)

(z — a„i) ■ • • (z — a„„)

uniformly on any closed set in R containing no point of G, where <=Pi(z) is given

by (44).

If z0 is an arbitrary point interior to G, the hypothesis of Theorem 8 im-

plies (34) for z = Zo, so for the given sequence of indices

lim   I (Z0 — «„i) • • • (Zo — OLnn)/An |1/n
n—>w

exists. This limit is different from zero, by the form of (34) itself. It follows

now from (31) that for the given sequence of indices

(z0 - a„i) •••(*♦— a„„)(z -        • • • (z — j3„,„+i) l1/n

lim
n—»oo (z — a„i) • • ■ (z — a„„)

exists uniformly on any closed set in R. Consequently whenever equation (1)

is satisfied, that equation is also satisfied for some function <i>(z) with

An = (Zo — Q!„l) '••(*»— a„„) ,

where z0 is an arbitrary point interior to C%.

As a matter of record we formulate

Corollary 2. Under the hypothesis of Theorem 13, Ze/ i?„(z) 6e a sequence

of rational functions of respective degrees n, whose poles lie in the points ank-

Denote generically by Cy the curve $i(z)=y in R, and let the function f(z) be

analytic throughout the interior of Cy but not throughout the interior of any Cy-,

y'>y.

A sufficient condition for the maximal convergence of the sequence Rn(z) to

f (z) on C (closed interior of Ct) is

(48) lim sup [max |/(z) - i?„(z) I, z on G]1'" ^ l/7;
n—*oo

if the inequality sign holds here, so also does the equality sign.

Condition (44) is invariant under linear transformation of the complex

variable, and in some respects is therefore more advantageous than condi-

tion (1). It is obviously immaterial whether the loci Cy and the right-hand
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members of (22)-(26) are determined from $(z) or from $1(2); in the future

we shall use these functions interchangeably.

The method of proof of Theorem 12, namely the use of such an equation

as (45), yields

Corollary 3. Under the conditions of Theorem 1, suppose also that points

ß'nt exist on or within the curve Cy, 7i>7^72, so that the relation

lim A
, (Z - ßnl) ■ • • (2 - ß'n,n+l)

(2 — Ct„l) • • • (2 — £*„„)

l/»

= $2(2) ^ const.

holds uniformly on any closed set in R' containing no point of Cy, where R' is

the region between and bounded by G and Cy, and where $2(2) is constant on Cy.

Then the quotient $z(z)/$(z) is identically constant in R'.

We remark too that this corollary can be established by the use of Theo-

rem 7 itself.

7. Maximal convergence of extremal sequences. We are now in a posi-

tion expeditiously to treat extremal sequences.

Theorem 14. Under the conditions of Theorem 1, let C denote the closed

interior of d and let Rn(z) be the (or a) rational function of degree n with poles

in the points ank, of best approximation to f(z) on C in the sense of Tchebychef,

or in the sense of least pth powers (p > 0) over d (assumed rectifiable), or in the

sense of least pth powers (p>0) as measured by a surface integral over C, or in

the sense of least pth powers over 7: \w\ =1 when K is mapped onto the exterior

of y so that the points at infinity correspond to each other, or in the sense of least

pth powers over the circumference \ w\ =1 or over the closed region \ w| 5= 1 when

C is mapped onto \ w\ ^l,in every case with a positive continuous weight func-

tion. Then the sequence Rn(z) converges maximally to f(z) on C.

Inequality (48) is established for the present sequence Rn(z) precisely as

in previous cases (op. cit., p. 264, Theorem 17; p. 254, Theorem 12). The de-

tails are left to the reader.

The restriction that the weight function be positive and continuous can

be considerably lightened in the various cases; compare op. cit., §5.7.

8. Necessary conditions on the ßnk for uniform convergence. We have

hitherto presented such conditions as (1) and (47) as sufficient conditions on

the ßnk for maximal convergence. We now consider their necessity as condi-

tions for uniform and maximal convergence.

Theorem 15. Let G and G be Jordan curves, with G interior to G, and let R

denote the annular region between them. Let the points ank lie exterior to G and
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(49) lim
n—*■«

(an„)</>(z) - 1] l/n

= *(*)

fo(s) - «(a»0] • ' ■ [*(*) - *(«--) ]

uniformly in R; such a condition as (49) is satisfied whenever the condition (37)

is fulfilled uniformly on and within C\. Suppose the points ßnk are given on or

within C2, and suppose the corresponding sequence of interpolating rational func-

tions rn(z) of respective degrees n converges uniformly to f(z) on and within C2

whenever f(z) is analytic on and within C2. Then we have uniformly on any

closed set in R the equation

(50) lim \ d>(a„i) ■ ■ ■ </>(a„„)
(z - ft,i) • ■ ■ (z l/n

= *(s).
(z — a„i) ■ • • (z — ann)

Consequently the sequence rn(z) converges maximally tof(z) on the closed interior

of C2 whenever f(z) is dnalytic in that closed region but not analytic throughout R.

This theorem is due to Kalmar for the case ank = oo ; the present method

is due to the present writer (op. cit., §7.3), an extension of the method in the

case ank = w.

We introduce the notation

(Z - j3Bl) • ■ ■  (Z - ßn,n+l)
^n(z) = 4>(a„i) ■ ■ ■ 4>(<X*»)

4>{z){z — a„i) (z Fin)

it is obvious that lim,,.,» | <p(z) \1,n = 1 uniformly on any closed limited set ex-

= $(2)

terior to C2, so (50) is equivalent to

(51) lim |¥»(z)

uniformly on any closed set in R. The relation $(z) ^ 1 in R follows at once

from (49).

The sequence

(z - anl) • • ■ (z - a„„)!l/"

<t>(ani) ■ • ■ <t>{ann)

converges uniformly on any closed set in R to a nonvanishing function (op.

cit., p. 274). Hence the sequence log | ̂ „(z) |1,71 is uniformly bounded on any

closed set in R, and forms a normal family of harmonic functions in R * these

* We are using here easily proved properties of sequences of harmonic and analytic functions,

uniformly bounded and hence equicontinuous on any closed set interior to R.

We also use the fact that a uniformly convergent sequence of nonvanishing analytic functions

converges to a nonvanishing analytic function unless the limit function vanishes identically.
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functions are obviously single-valued and harmonic in R. Denote by

log |^(z)| an arbitrary limit function of the family. We shall prove the

Lemma. Either | ̂ (z) | approaches the constant unity as z in R approaches G

or for some points of R the function | ̂ (z) | has a value greater than unity and

for other points of R this function \ ̂ (z) | has a value less than unity.

A subsequence of the functions | ̂ „(a) | approaches uniformly

on any closed subset of R, so the corresponding sequence

[4>(z) - 0(aBl)] • ■ • [0(a) - 0(anB)] |1/n

(52) *«(*)
[0(aBi)0(z) - 1] • • ■ [0(aBB)0(z) - 1]

approaches |'F(z) |/$(z) uniformly on any closed subset of R. The function

whose modulus appears in (52) is analytic and different from zero exterior to

G, even in the points ank when properly defined there, and has the modulus

l/|0'(co)| at infinity. The sequence (52) therefore converges uniformly on

any closed set of the extended plane exterior to C2, to the modulus of a func-

tion analytic exterior to C2 and which has unit modulus at infinity. Thus

log |^(z)/$(z)| has a meaning and is harmonic in the extended plane ex-

terior to C2, and has the value zero at infinity, even though $(z) and ^(z) are

not properly defined exterior to G.

Of course each of the quantities in (49) whose limit is 4? (a) is greater than

unity in R; the function $(z) is not constant in R, so we have <3?(z) >1 in R

(compare op. cit., p. 229); but $(z) is continuous and equal to unity on G.

The lemma now follows from the well known properties of the maxima and

minima of harmonic functions.

We introduce the notation w„(z) =0(z)1SrB(z). In the expansion of the func-

tion l/(t — z), where t is exterior to G, by interpolating functions rB(z), we

have (op. cit., §8.1)

<oB(z)

(53) /(a) - r„(a) = ' ■
u„{t)(t — z)

If we introduce the notation

(54) Mn = max [ | a>B(z) |, a on G],

our hypothesis implies

(55) lim M»/«„(0 = 0.
n—♦«

If (51) is not satisfied, the normality of the family | ^„(z) |1/n implies that

some limit function |^(z)| of this family is different from <p(z). Then for
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some point which may be chosen in R, we have by the lemma for suitably

chosen indices nk

We may also write

lim I *ni(t) »»» =        < 1.

lim l Unt(t) I1'"* = ¥(*) < 1,

and for suitably large index

(56) I «.,(1)1 < 1.

Choose this point t as the value in (53). From the definition of «„(z) and

from the properties of <p(z) on C2 we have

mn = max [ I «„(z) |, z on C2] = max [ | ^(z) |, z on C2].

From the properties at infinity of the function whose modulus appears in (52)

we have

(57) max [|*«(2) |,z on Cs] g l/|0'(oo)| ,      M« 2S 1/ |V(«>)|-

Inequalities (56) and (57) are in contradiction to (55), so equation (51) is

established. The remainder of Theorem 15 is a consequence of Theorem 6.

A result closely related to Theorem 15, an extension of a result due to

Fekete (op. cit., p. 163), is

Theorem 16. Let G, C2, R, and the ank satisfy the conditions of Theorem 15,

including (49). Let the points ßnk lie on or within C2, and let Mn be defined by

(54). Then

(58) lim mT = 1
n—»oo

is a necessary and sufficient condition that the sequence of rational functions

rn(z) of respective degrees n with poles in the points ank and interpolating to f(z)

in the points ß„k, should converge uniformly to f(z) on and within C2 whenever

f(z) is analytic on and within C2. Thus (58) is also a necessary and sufficient

condition for the maximal convergence of the sequence rn{z) to f(z) whenever /(z)

is analytic on and within C2 but is not analytic throughout R.

If condition (58) is satisfied, the functions

r [0(Z) - <K«nl)] • • •   [0(g) - <K<*nn)] I'7"

L n[z) [0^Ti)0(z) - l] • ■ • [0Ö0OO - i]J

are locally single-valued and analytic in the extended plane exterior to C2 and
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form a normal family in that region in an extended sense (op. cit., p. 162).

No limit function of the family can have a modulus in that region greater

than unity, by (58). But each function of the family has a value at infinity of

modulus I 4>'( oo) Iand each limit function has a value at infinity of modu-

lus unity. Consequently every limit function of the family is of modulus unity

throughout the extended plane exterior to C2, and the sequence (52) ap-

proaches unity uniformly on any closed set exterior to C2. Then by (49) equa-

tion (50) is valid uniformly on any closed set in R, which implies the uniform

convergence of rn(z) to/(z) whenever/(z) is analytic on and within C2, and the

maximal convergence under these conditions if /(z) is not analytic through-

out R.

Conversely, let us now assume that the sequence r„(z) converges uniformly

to/(z) on and within C2 whenever /(z) is analytic on and within C2. If (58)

does not hold, we have from the reasoning used on the functions (59) for a

suitable infinite sequence nk and for a suitable A > 1

(60) Mm, ä A»* > 1.

By Theorem 15 equation (50) is satisfied. Choose t in R with 1 < f>(z) <A. By

(51) we have for sufficiently large n

For the function f(z) = l/(t—z) inequalities (60) and (61) contradict our hy-

pothesis (55). This contradiction proves (58), and implies the maximal con-

vergence of rn(z) to/(z) whenever/(z) is analytic on and within C2 but not

analytic throughout R. Theorem 16 is established.

It should be mentioned that results closely related to Theorems 15 and

16 have been previously established by Shen (op. cit., p. 258); but the hy-

pothesis on the a„k is there geometric, not asymptotic, and the necessary and

sufficient conditions derived, such as (50) and (58), are not for uniform con-

vergence, but for an inequality corresponding to (2).

Theorems 15 and 16 are of interest chiefly in connection with maximal

convergence. Nevertheless under the conditions of both those theorems

(compare the remarks made concerning Theorem 1), whenever/(z) is analytic

throughout the interior of $(z) = T in R, we have

In connection with Theorems 15 and 16 we shall prove the

Corollary. Let G, C2, R, and the ank satisfy the conditions of Theorem 15,

including (49). Let the points ßnk lie on C2. Then a necessary and sufficient con-

(61) «.(0 I g A".

lim sup [max | f(z) — rn(2)|,zonC2]1'" g l/T.
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dition that the sequence of rational functions rn(z) of respective degrees n with

poles in the points ank and interpolating to f(z) in the points ßnk should converge

uniformly to f (z) on and within G whenever f (z) is analytic on and within G,

is that the points ßnk be uniformly distributed on C2 with respect to the function

conjugate to log <p(z) in R, continuous in R.

The sufficiency of this condition (due to Fejer if ank = ») is essentially

contained in the proof of Theorem 11, in the light of the proof of Theorem 13.

To prove the necessity of the condition, which is due to Kalmar if ank = °o,

we note that (50) is a consequence of Theorem 15 and that (33) then follows;

in (33) we may take T2 as identical with C2 if the integral is interpreted in an

extended sense; by the fact that U(x, y) is constant on C2 we may write (33)

in the form

lim
n—><x>

(z - ßnl) - - • (z - jS„lB+1) 11/n - exp [— f log r ^ ds~\..
L 2tt j c, oV J

uniformly on any closed bounded set exterior to C2. The conclusion follows

at once by methods previously set forth (op. cit., §7.6).

On the topic of uniform distribution of points it is appropriate to establish

Theorem 17. Let G, G, R, and the ank satisfy the conditions of Theorem 8,

including (31), and let U(x, y) be constant on G. Let the points ank lie on G.

Then the ank are uniformly distributed on G with respect to the function con-

jugate to U(x, y) in R, continuous in R.

Let z0 be an arbitrary fixed point interior to G. In (34) we take the in-

tegral (in an extended sense) over G; by the fact that U(x, y) is constant on

G we have

lim
ft—.oo

(z — a„i) • ■ • (z — a„„)

(Z0 — öftl)  '  ■  •  (Zo — Ctnn)

rl r      r du "
eXPL2^JCll0g7^.

uniformly for z on any closed set interior to G, where a is a variable on G

and r = | z — a\, r°= | z0—a\. If we set

1 dU
du =-ds,

27t dv

we may then write

lim — zZ log nr = f  lo8 ~7'du>
ft^o. n *_i      rlh     J ci ^°
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By virtue of (32), this integral over G can be considered an integral over the

interval O^m^I. An arbitrary function of a continuous on G can be uni-

formly approximated on G as closely as desired by a suitably chosen constant

plus a linear combination of functions

log [ I zk — a I / I So — a | ],

where the zk are suitably chosen points interior to G; this follows by the trans-

formation z' = l/(z0—a) from a former lemma (op. cit., p. 169, Lemma II).*

An arbitrary function x (a) constant on G has the trivial property

1   i r
lim — X) x(ocnk) = I x(<*)du,

n k=i J d

so it follows from the possibility of approximation that every function con-

tinuous on G has the corresponding property. It follows (compare op. cit.,

§§7.5 and 7.6) that the set ank is uniformly distributed on G with respect to

the parameter u.

9. Maximal convergence of sequences interpolating in the Fekete-Shen

points. Certain sets of points, first introduced by Fekete for the case of poly-

nomials, were used by him as points of interpolation to define polynomials

converging favorably to a given analytic function on a given point set. The

analogous points for the case of rational functions with preassigned poles ank

were introduced and used by Shen (op. cit., §9.7) when the ank are subject

to geometric conditions; Shen's results on degree of convergence, even for the

case <Xnk = 00, are more precise than those of Fekete. These same points were

used subsequently by the present writer (op. cit., §9.10) when the ank satisfy

asymptotic conditions. We are now in a position to prove

Theorem 18. Let G, G, R, and the ank satisfy the conditions of Theorem 15,

including (49). Let the ß„k be the Fekete-Shen points for G. Then conditions (50)

and (58) are fulfilled. Consequently whenever f(z) is analytic on and within G

but not analytic throughout R, the sequence of rational functions rn(z) of respec-

tive degree n with poles ank defined by interpolation to f(z) in the points ßnk

converges maximally to f(z) on and within G.

If /(z) is analytic throughout the interior of the curve CT- 4?(z) =T in R,

we have (op. cit., p. 263, Corollary 2)

lim sup [max | /(z) — r„(z) |, z on G]1/n = 1/T.
n-*»

* It is essential to admit an additive constant, for otherwise no nonvanishing constant could

itself be approximated; a uniformly convergent sequence of approximating functions converges to a

uniform limit in the closed exterior of Ch and each function log j (zk—a)/(zo—a)| is harmonic and

vanishes at infinity: <*= .
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The maximal convergence of the sequence r„(z) follows from Corollary 2 to

Theorem 13, if /(z) is not analytic throughout the interior of any CT-, T' > T.

The remainder of Theorem 18 follows from Theorems 15 and 16.

It is of interest to note that the Fekete-Shen points ßnk lie on G itself,

and hence by the Corollary to Theorem 16 these points are uniformly dis-

tributed on G with respect to the function conjugate to log 4>(z) in R, con-

tinuous in R.

It is of some interest to note that the entire theory of maximal conver-

gence of sequences of rational functions may be developed by taking not (1)

but condition (49) as fundamental, using the Fekete-Shen points (as in op.

cit., §9.10) to obtain a sequence of rational functions rn(z) satisfying the

above inequality; the analogue of (4) is readily proved, so that Theorem 5

applies. The remainder of the theory can then be built up. It seems simpler

and more natural to the writer to make (1) fundamental rather than (49).

10. A general extremal problem on approximation by functions with pre-

assigned poles. The problem of approximation by rational functions with

preassigned poles can be considered a special case of approximation by more

general functions with preassigned poles.

Theorem 19. Let G, G, R, and the points ank and ßnk satisfy the conditions

of Theorem 1, including condition (1). Let Ry denote generically the annular re-

gion bounded by G and Cy. Suppose the function F(z) to be analytic in Ry,

7i >7 >72, but not analytic throughout any Ry>, y' >y; suppose Fiz) continuous

in the two-dimensional sense on G.

Denote by K the region exterior to G. Then there exist functions Fn(z) analytic

in K except for possible poles in the points ank, continuous in the two-dimensional

sense on G, such that we have

(62) lim sup [max | F(z) - Fn(z) |, z on C2]1/n = 72/7;

but there exists no such sequence Fn(z) for which the left-hand member of (62) is

less than 72/7.

Any sequence Fn(z) for which (62) holds possesses also the following proper-

ties:

(63) lim sup [max | F{z) - Fn(z)\, z on G]1/n = X/7,        72 ^ A < 7,
B—»00

(64) lim sup [max | Fn(z) |, z on C„]1/B = p/y,        7 = M = 7i.
n—»oo

If Q is an arbitrary continuum in R not a single point, we have

(65) lim sup [max | Fn+i(z) — Fn(z) \ , z on Q]1,n = [max $(z), z on Q]/y.
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The function F(z) can be written as the sum of its two components:

(661) Ff» zini?7)

1   f F(t)dt
(662) /"i(z) =-       I -1 z interior to C7,

2xi J vl t — z

1 f
(663) ^2(2) =■-■ I -> z exterior to C2,

27TW r2 2 — z

where Tx is a rectifiable Jordan curve in Ry containing z and C2 in its interior,

and where T2 is a rectifiable Jordan curve in Ry containing C2 in its interior

but having z exterior to it; the curves Ti and T2 depend then on z, but the

functions /i(z) and /2(z) are independent of the particular curves chosen.

Equation (661) is valid for z in Ry. Nevertheless the integrals in (662) and

(663) define/i(z) and/2(z) as functions analytic respectively throughout the in-

terior of Cy and throughout the exterior of C2 (even at infinity, by a limiting

process). Equation (661) can be used to define/2(z) on C2; with this additional

definition, the function/2(z) is continuous on C2. The function/i(z) is analytic

throughout the interior of no Cy>, y'>y.

We are now in a position to identify the function/(z) of Theorem 1 with

the present/i(z). If we write

f(z)^Mz), rn(z)^Fn(z)-Mz),

equation (62) is a consequence of (indeed identical with) equation (3) (see

Theorem 4).

The method of proof of Theorems 3 and 4 applies also in the present case,

and shows that there exists no sequence Fn(z) for which the left-hand member

of (62) is less than 72/7.

Let us suppose now Fn(z) to be an arbitrary sequence satisfying (62).

With the aid of the comparison sequence r„(z)+/2(z) just considered, which

satisfies (62) in place of Fn(z), we find as in the proof of (10)

lim sup [max | Fn(z) \, z on Cß\lln 5= p/y, y < ß =s 7i«
n—»«

Theorem 5 now applies, and yields the remaining parts of Theorem 19.

A slight modification of Theorem 19 is of interest. Let us replace the re-

quirement that F(z) be continuous in the two-dimensional sense on C2 by the

requirement that F(z) be bounded in the neighborhood of C2, with the identi-

cal modification in the requirements on Fn(z). The expression

max I F(z) — Fn(z) \,  z on C2,

which occurs in (62) is then to be interpreted as
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(67) lim sup [max | F(z) — F„(z) |, z on C\],
X—»71

which is necessarily finite. With this understanding, also similarly for (63),

(64), and (65), Theorem 5 is valid for the corresponding sequences, and

Theorem 19 is valid in the generalized form.

With this new convention, there exists for each n at least one admissible func-

tion Fn(z) for which (67) is least. By an admissible function Fn(z) we under-

stand here a function analytic in K except for possible poles in the points ank,

and bounded in the neighborhood of C2. Let No denote the greatest lower

bound of all numbers (67) for the class of admissible functions. Let

F^iz), Fn2\z), ■ ■ ■ be admissible functions for which the corresponding

numbers Na), iV(2), • ■ • approach N0:

(68) lim N<-k> = No.

We have

[max j FBl>(z) — Fn \z) \, z on CXJ

(69) g [max | F(z) — FH (z) |, z on Cx] + [max | F(z) — Fnk\z) \, z on CjJ,

lim sup [max | Fn\z) - F™ (z) |, z on Cx] = N™ + N(k).
X->72

The function Fa)(z) —Fnk)(z) is analytic in K except for poles in the points

ank. The function

[Fn1' («)  - FT (Z) ] - *(«.!) ] •  • •   [<1>(Z)  - 4>{ann) }
(70) -: -:-: -:-I

[<b(anl)<t>(z) ~ 1] • • • [4>{ann)<b(z) - 1]

when suitably defined in the points ank, is analytic throughout K and by (69)

is uniformly bounded (independently of k) in K. From any infinite sequence

of functions (70) can be extracted a subsequence which converges throughout

K, uniformly on any closed set in K, to a bounded function of form (70) with

Fnk){z) replaced by an admissible function F^0)(z). The corresponding subse-

quence of the Fik\z) then converges to F^0,(z) throughout K except in the

points ank, uniformly on any closed set in K containing no point ank. Let us

suppose (this supposition involves merely a change of notation) that the origi-

nal sequence Fnk)(z) so converges.

Let n be chosen arbitrarily but fixed, 7>m>72, and let us suppose

72<X<m) where X will be allowed to approach y2. We now apply the two-

constant theorem (or Hadamard three-circle theorem), which is valid under
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the present generalized conditions on the functions involved:

[max I F(z) — Fn ' (z) |, z on C\]

(71) ^ [max I F{z) - P?(z) \, z on C2] (*-x,/(*-^

r       Ism     77(i)/ \ I ^ i(x-t2)/(m-t2)
• [max I F(z) — Fn (z) |, z on CV]

The second square bracket in the second member of (71) has a bound N inde-

pendent of k; the first square bracket in the second member of (71) ap-

proaches No, by (68). Thus we have by letting k become infinite

[max I F(z) — Fn (?) ), z on C\] = lim [max | F(z) — Fnk\z) |, z on Cx]
k—»»

(72) ,T(f.-x)/((i-72) „t(x-72)/(e-72>
^ iV0 -AT ;

the first equality sign is a consequence of the uniform convergence of (z)

to F^iz) on Cx. If we allow X to approach y2 in (72), we have

[max I F(z) — Fn°\z) j, z on C2] ^ N0;

the inequality sign is impossible here by the definition of iV0, so we have

established the existence of at least one extremal function Fn(z). The question

of the uniqueness of this extremal function is still open.

Naturally the extremal functions Fn(z) whose existence has just been es-

tablished satisfy condition (62); and for them the conclusion of Theorem 19

is valid.

We remark too that the requirements of continuity of F(z) and F,t(z) on

C2 need not be replaced by the requirement of boundedness in the neighbor-

hood of C2 but may simply be omitted, without essentially altering our con-

clusions; the square bracket in the left-hand member of (62) is merely

understood as (67); a suitable comparison sequence F„(z) can be obtained

as before from Theorem 1; at least one extreme function Fn(z) exists.

Whether or not this last generalization is allowed, we shall prove

Theorem 20. Let the conditions of Theorem 19 be fulfilled, including equa-

tion (62), and let the respective components of the function Fn(z) be fnl{z) and

fnt(z), defined by equations analogous to (66). Then the function fnl(z) is a ra-

tional function of degree n with poles in the points ank, and the sequence j'nl(z)

converges maximally to /i(z) on the closed interior of C2.

In the region Ry we have the equation

Fn(z) = /„i(z) + /.»(«),

where fni(z) is analytic throughout the interior of Cy, and /n2(s) is analytic
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throughout the exterior of C2, even at infinity. But Fn(z) is analytic through-

out K except in the points ank, so/„i(z) can be extended analytically from Ry,

and can be considered defined and analytic throughout K except for poles in

the points ank. Consequently /„i(z) is a rational function of degree n whose

poles lie in the points ank.

In the defining equations for/i(z) and/„i(z) we may choose I\ as the curve

C\, 72 <X <7, whence

— /ni(z) - — I -dt, z on C2.
2irt J cx      t — z

Then equation (63) yields

lim sup [max | /i(z) — /ni(z) |, z on d\lln ^ X/7.
n-+oo

In this inequality we may allow X to approach 72:

(73) lim sup [max | /i(z) - /nl(z) |, z on C2]1/n ^ 72/7.
n-*oo

The function/2(z) is analytic throughout the region K, and F(z) is analytic

throughout the interior of Cy but not throughout the interior of any Cy>,

y'>y. Then /i(z) also is analytic throughout the interior of Cy but not

throughout the interior of any Cy>. Inequality (73) thus establishes the con-

clusion of Theorem 20.

Results analogous to but less explicit than Theorems 19 and 20 lie at

hand if we replace the original requirement on F(z) by the requirement that

F(z) be analytic throughout R. For instance there exist functions Fn(z)

analytic in K except for possible poles in the points ank such that the first

member of (62) is not greater than 72/71.

We have several comments to make regarding the general significance of

the problem studied in Theorems 19 and 20.

1°. Theorem 19 is a result concerning a problem which is invariant under

arbitrary one-to-one conformal transformation of the region K, even under

some circumstances (compare §11 below) if K is transformed into a region not

bounded by a Jordan curve. But the full import of this invariant property

appears best if the hypothesis (1) is replaced by the equivalent hypothesis

(49).
2°. The two groups, Theorems 1-4 on the one hand and Theorems 19

and 20 on the other, are intimately related to each other, especially in view

of Theorem 5. Theorem 1 can be employed as above to furnish a sequence

F„(z) which converges as rapidly (in the sense indicated by (62)) as does any
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sequence of admissible functions. Reciprocally, Theorem 20 shows that Theo-

rem 19 can be employed to furnish a sequence of rational functions which

converges maximally.

3°. Theorem 1 can be formulated so as to be invariant under arbitrary

linear transformation of the complex variable. Condition (49) has the more

general property of being essentially invariant under arbitrary one-to-one

conformal transformation of the closed exterior of G. Remarks 1° and 2°

serve to explain this latter invariant property, which has been in the past

somewhat mystifying.

4°. Theorem 19 is a companion piece (Gegenstück) to results previously

established by the present writer concerning interpolation by functions ana-

lytic and bounded in a given simply connected region K* Prescribed poles

on the one hand correspond to prescribed points of interpolation on the other,

in each case satisfying asymptotic conditions in an annular region R interior

to K, one of whose boundaries is the boundary of K. In the problem of inter-

polation there are two equivalent conditions on the prescribed points, com-

pletely analogous to (1) and (49). The function approximated to in the one

problem and the function interpolated to in the other are assumed analytic

in respective regions mutually complementary with respect to K, and conver-

gence of approximating and interpolating functions is established throughout

those (suitably chosen) regions of analyticity bounded by loci 4> = const, in R.

Indeed, this entire pair of configurations exhibits a complete duality, in the

sense already defined (op. cit., §8.3), except that the present duality is con-

cerned with functions meromorphic or analytic in a region rather than with

rational functions as in the former duality. Theorem 5 is sufficiently powerful

to apply to both configurations.

11. Generalizations and extensions. In connection with the foregoing re-

sults, there suggests itself the question of extensions to regions of higher con-

nectivity, and to regions not bounded by Jordan curves. We now proceed to

discuss these questions in order.

We have hitherto limited ourselves to a region bounded merely by two

Jordan curves G and C2 instead of two such sets of curves, entirely for the

sake of simplicity and ease of exposition. Our methods are applicable with

only minor modifications in the more general case. For instance we sketch

rapidly the proof of

Theorem 21. Let R be a finite region bounded by two disjoint sets G and C2,

each composed of a finite number of disjoint Jordan curves; let one of the Jordan

curves C\ of the former set contain in its interior all points of G —G°+G. Let

* These Transactions, vol. 46 (1939), pp. 46-65.
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the points a„i, ani, ■ ■ ■ , ann be separated from R by G, and let the points

ßni, ßni, ■ • ■ , ßn,n+i not lying on G be separated from R by G- Let R denote the

closure of R.

Let the relation (1) hold uniformly on any closed set in R containing no

point of C2. Let the function 4>(z) be continuous in the closed region R, and take

constant values yi and y2 <yi on G and G respectively. Denote generically by Cy

the locus $(s)=7 in R, 7^7^71. For yz<y <y\, the locus G consists of a

finite number of mutually disjoint analytic Jordan curves, except that for each

of a finite number of values of y there are a finite number of multiple points,

each common to a finite number of the Jordan curves composing Cy. Denote ge-

nerically by Ry the open set composed of the interiors of the Jordan curves compos-

ing G plus the point set in R on which we have 72 = $(2) <7; thus Ry need not

be connected, but is the sum of a finite number of regions bounded by the entire

locus Cy.

Let the function fiz) be single-valued and analytic on Ry but not single-valued

and analytic on any Ry> with y'>y. Then we have (2), (3), and (4) fulfilled,

where rn(z) is the rational function of degree n whose poles lie in the points anh-

and which interpolates to f(z) in the points ßnk.

There exists no sequence of rational functions Rn(z) of respective degrees n

with poles in the points ank such that either (8) or (9) is satisfied.

Whenever a set of rational functions Rn(z) of respective degrees n with poles

in the points ank satisfies (20), we shall say that the sequence Rn(z) converges

maximally to f(z) on the set C composed of the Jordan curves G and their respec-

tive interiors. Consequences of maximal convergence are equations (22) and (23),

and if Q is an arbitrary continuum in R not a single point, also equations (24)-

(26).

In Theorem 21 the function /(z) need not be a monogenic analytic func-

tion; nevertheless f(z) can be extended analytically from the neighborhood

of G by paths in Ry so as to be single-valued and analytic at every point of

Ry; but this property is shared by no set Ry> with 7'>7. Then (a) for some

path of analytic extension in Ry from G to Cy the function/(z) has a singular-

ity on G, or (b) the locus Cy has a multiple point A and the analytic exten-

sions of/(z) from G along paths in the various regions into which Cy falls

of which A is a boundary point fail to be analytic and identical throughout

a neighborhood of A; or both (a) and (b) occur.

Theorem 5 extends to a region R bounded by two sets of Jordan curves,

and the original proofs already given yield now Theorem 21.

With only minor modifications, which we now mention, the entire dis-

cussion of §§1-10 of the present paper is valid for the more general region R

introduced in Theorem 21.
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Under the hypothesis of Theorem 12 (that is to say, the hypothesis of

Theorem 1), equation (44) may be written

1 "
(74) lim — zZ G(z, ank) = log ffrfs)

B-.«o n k=i

uniformly on any closed set in R, where

<b(ank)<t>(z) — 1
G(z, ank) = log

<Kz) - 4>{ank)

is Green's function* with pole in the point ank for the region exterior to the

Jordan curves G. With this change in the manner of writing (44), the new

formulation of Theorem 12 is obviously valid; theorem and proof extend

without great difficulty to the situation of Theorem 21. But equation (44)

is obviously simpler than (74), and more easily applied. Of course G may

consist of several Jordan curves even when G is a single Jordan curve; under

such circumstances (44) and similar relations need no revision.

Let us be more explicit about the extension of Theorem 12, using now the

hypothesis of Theorem 21 rather than of Theorem 1; it is sufficient if (1) holds

uniformly merely on any closed set in R. On an arbitrary closed set C" in R

the functions G(z, ank) are uniformly bounded, for the points ank are bounded

from C', and the functions G(z, ank) in R depend continuously on z and ank

except in the neighborhood of ank. The functions

(75) - 2 G(z, ank)

are harmonic in R and uniformly limited on any closed set C' in R, hence

form a normal family of harmonic functions in R. Let log $i(z) denote an

arbitrary limit function of the family (75), the uniform limit on any closed

set in R of a suitably chosen subsequence of the family. The functions (75)

are continuous in the two-dimensional sense on C2 and vanish there, so the

subsequence converges uniformly on any closed set in R. containing no point

of G. The limit function log 4>i(z) is continuous in the two-dimensional sense

on G and vanishes there. Consider now the function

(z — a„i) ■ • • (z — ann)

1 [   .    (Z - ßnl) ' • '  (Z - ßn,n+1)
— log I A,
n

(76)
1 1

-log 2^ G(z, «»*)-log G(z, 00 ),
n     k-i ii

* The term Green's function is sometimes used for the negative of the present function.
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which when suitably defined in the points ank is harmonic without exception

in the region exterior to and bounded by the curves G. The sequence (76)

or any subsequence converges uniformly on any closed set interior to R when-

ever that is true of the corresponding sequence or subsequence (75). By es-

sentially the reasoning previously used in the proof of Theorem 12 we now

have <p(z)/$i(z) =y2 throughout R. Then the function $>i(z) is uniquely de-

termined; from every subsequence of the sequence (75) can be extracted a

new subsequence converging uniformly on any closed set in R to the function

log 4>i(z), hence the sequence (75) itself converges uniformly on any closed

set in R to the function log <$i(z); the extension of Theorem 12 to the situation

of Theorem 21 rather than of Theorem 1 is established.

In the extension of Theorem 13 to a region R bounded by more than two

Jordan curves, we naturally replace (46) by

(77) Og^„ = zZG(ank, co);
a-=l

since only the modulus of An is of significance in (1), equation (77) is essen-

tially equivalent to (46) under the hypothesis of Theorem 13. Of course the

validity of (1) with the substitution (77) is to be established by the method

indicated for the proof of (1) with the substitution (46) (op. cit., p. 274). The

indicated extension of the remainder of §§1-10 now presents no difficulty, as

the reader may verify; but in §8 a somewhat unusual convention is desirable

regarding normal families of analytic functions (compare op. cit., §7.3).

We turn next to the question of replacing by more general sets the Jordan

curves in Theorem 21 and in the corresponding results of §§1-10. Theorem 5

extends without difficulty and with only minor modifications to the case that

R is bounded by a finite number of continua, none of which is a single point.

There is no inherent difficulty in extending almost all of the discussion of the

present paper to this more general case. However, with this more general hy-

pothesis, such integrals as appear in (36) no longer have the meaning previ-

ously assigned, and points ank and ßnk cannot be taken or proved uniformly

distributed on G and C2 by the previous methods. There are then two possi-

ble procedures for determining the points a„k and ßnk: (i) consider integrals

not over G and C2 but over sets of curves Ti and T2 in R and approaching C\

and C2 respectively, choosing points ank and ß.lk on the sets 1\ and T2 (as in

op. cit., §4.4); but of course these points ank and ßnk then lie interior to R,

and (1) may not be valid uniformly on G; (ii) if each point of G and G is a

boundary point of the complement of R, the harmonic function U(x, y) in

(36) may be uniformly approximated in R by functions harmonic throughout

R, by Lebesgue's theory of variable harmonic functions; these approximating
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functions may be handled by the original method of uniform distribution of

points, and yield points ank and ßnk exterior to R (compare op. cit., §4.4);

this method can be used also for the appropriate points ank or ßnk if only one

of the sets G and G has the property that each of its points is a boundary

point of the complement of R. It will be noticed that method (i) enables us

to use for C, the point set on which the given function is approximated, any

closed bounded set not separating the plane having only a finite number of

components of which none is a single point. By an extension of Theorem 5

we may here take C an arbitrary closed bounded set whose complement js

connected and possesses a Green's function.

Neither (i) nor (ii) enables us to establish uniform distribution on G or G

of given points, and thus the necessity of the uniform distribution in the

Corollary to Theorem 16, in Theorem 17, and in §9, is still unproved. In this

connection there suggests itself another method: (iii) consider the integrals

in a still more general sense, say in the sense of Stieltjes with respect to a

variable defined on the boundary elements of the region; in the generalization

of (36) this variable would be the conjugate of U, locally single-valued and

continuous in R. It seems to the writer probable that this method would be

completely satisfactory both in determining points ank and ßnk from such an

equation as (36), and in establishing the uniform distribution of given points

as in the Corollary to Theorem 16; but this method has never been completely

carried out.

We have hitherto considered merely a single region R, but it is possible

(op. cit., §§8.7 and 8.8) to have such a relation as (1) valid simultaneously

interior to two mutually disjoint regions of the kind considered in Theorem 1.

Indeed if these regions R are preassigned, if the corresponding closed regions

are mutually disjoint, and if no region separates another from the point at

infinity, suitable harmonic functions can be used as generating functions to

define the sequences ank and ßnk so that (1) is valid on any closed set in each

region R. Then our entire discussion of §§1-10 carries over to the new situa-

tion, with a single exception. The function <p(z) of (1) is harmonic in each R,

and a locus Cy occurs in each R. But it may occur that y as defined from the

function /(z) is limited by the behavior of/(z) in one region R, and not by

the function/(z) in a second region R; for instance/(z) may be analytic

throughout the latter. Theorem 5 then fails to apply to this second region R,

and the conclusions (22)-(26) that we have drawn from Theorem 5 apply to

the first region R but have not been established for the second region R*

* But for a series of interpolation (78) the principal results are valid also for the second region R.

For various other specific examples the corresponding statement is true; the general question is still

open.
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An important special case of Theorem 1 is that in which the ank and ßnk

are independent of n. Under these circumstances the interpolating functions

r„(z) of Theorem 1 are the partial sums of a series of interpolation

z - 0i        (z - ßi)(z - ßt)
(78) /(z)=ß0+ai-ha,-- H-,

z — cl\ (z — ai)(z — 0l2)

and some of the results of Theorem 7 so far as it applies to the sequence r„(z)

can be read off by elementary methods, without recourse to Theorem 5. For

instance under the hypothesis of Theorem 1 we know (op. cit., §8.3) that the

series in (78) converges to/(z) uniformly on any closed set interior to Cy, but

by the definition of 7 can converge uniformly throughout the closed interior

of no Cy>, y'>y. There follows (op. cit., §3.4, Theorem 5) the relation

(79) lim sup I ajAn\Un = l/y.
n—»00

For the series (78) we deduce by inspection inequalities (2)-(4). Impossibility

of the inequality sign in (2) and (4) follows at once from (1) and (79). Much

of Theorem 7 for the series (78) is also a consequence of (1) and (79).

In generalizing the results of the present paper, it is also of interest to no-

tice that points ank and ßnk interior to R may be admitted in restricted num-

bers, and that the equation (1) need not be supposed to hold uniformly on

any closed set in R; under suitable circumstances it is sufficient if (1) holds

uniformly on G and on each C\ for X everywhere dense in the interval

72<X<7i. A sufficiently general instance of this remark has already been

elaborated elsewhere (op. cit., §8.5).

Harvard University,

Cambridge, Mass.


