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It is the object of this note first to present a general theorem (Theorem 1)

on maxima and superior limits of sequences of analytic functions; this is es-

sentially a result in the theory of subharmonic functions, presumably of some

interest in itself. Second, Theorem 1 is employed to establish a sharper theo-

rem (Theorem 2) on the precise degree of convergence of general sequences of

analytic functions. Finally, these general results are used to establish a quite

specific result (Theorem 3) on the degree of convergence of certain sequences

of analytic functions in an annular or more general region. Parts of Theorem 3

have previously been established, but in a more restricted form and by an-

other method. The present Theorem 3 is sufficiently general to dominate

results established elsewhere by the author on maximal convergence of se-

quences of polynomials,! on approximation by functions analytic in a given

region,{ on interpolation by functions analytic in a given region,§ and on

maximal convergence of sequences of rational functions.|| Various other ap-

plications of Theorem 3 seem to suggest themselves and will presumably ap-

pear in the future.]j

The following treatment is chosen rather for elements of simplicity than

for ultimate generality. Some extensions present themselves at once as obvi-

ous; others are scarcely less immediate. But even in its present form, Theorem

* Presented to the Society, December 30, 1938, under the title Maximal convergence of sequences

of rational functions; received by the editors October 2, 1939.

t Interpolation and Approximation by Rational Functions in the Complex Domain, American

Mathematical Society Colloquium Publications, vol. 20, New York, 1935. All references in the present

note not otherwise indicated are to this book.

X Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 477^186.

§ These Transactions, vol. 46 (1939), pp. 46-65.

|| These Transactions, vol. 47 (1940), pp. 254-292.

H In particular the writer hopes later to apply these methods to the study of such questions as

overconvergence, gap theorems, and the analogues of Jentzsch's theorem.

No general study of these questions seems as yet to have been made for sequences fn(z) of the

type considered in Theorem 3, as contrasted with the partial sums of a series 2~2anpn(z) when the

asymptotic character of the p„(z) is known. But certain results on this general study for the special

case of maximal sequences of polynomials have recently been obtained by Dr. Z. I. Mosesson in his

1937 doctoral dissertation at Harvard University. Mosesson's results are still unpublished, but were

obtained prior to those of the present note; for the special case of sequences of polynomials, they over-

lap slightly our Theorem 3. Mosesson employs a new form of the two-constant theorem.

293



294 J. L. WALSH [March

3 seems to be of sufficient power and importance to deserve a systematic and

independent exposition.

The following theorem is largely an application of known principles;

nevertheless the present form is highly convenient for reference:

Theorem 1. Let R be a region whose boundary B consists of a finite number

of Jordan arcs Jk, mutually disjoint except possibly at end points A,-. Let the

function V(z) be harmonic and bounded in R, continuous in the corresponding

closed region R except in the points A,, constant on each Jk.

Let the functions Fn(z), n=\, 2, ■ ■ , be uniformly bounded in R, locally

analytic except perhaps for branch points although not necessarily single-valued

in R, but let \ Fn{z) \ be single-valued in R and continuous in R except perhaps in

the points Af, and suppose we have for each k

(1) lim sup [l.u.b. I Fn(z) |, z on Jk] ^ [er<*>, z on /»].
n—♦«

Then on every closed set Q in R containing no point Awe have

(2) lim sup [max | Fn(z) |, z on Q] g [max erU), z on Q].
n—»«

In the proof of Theorem 1 let us suppose for the moment that V(z) and

|F„(z)| are continuous in R. If r/>0 is arbitrary, we have from (1) for n

sufficiently large

(3) log |F»(*)| £ V(n) + zonü.

To be sure, the function Fn(z) may vanish in R, so here and below the value

— =o is contemplated as admissible in the first member of (3). The sub-

harmonic character of the function log | Fn(z) | in R now yields from (3)

(4) log \Fn(z)\ g V(z) +n, *iaX,

for n sufficiently large, and (2) therefore follows.

If V{z) and |Fn(z)| are no longer assumed continuous in the points A,-,

the reasoning just given is to be modified slightly. It is no loss of generality

to assume, as we do, that R is a finite region bounded by analytic Jordan

curves; for this situation can be obtained by transforming the original con-

figuration by a suitable conformal map. Let r/ > 0 be arbitrary. Denote by M

a common upper bound for log |F„(z)| and V(z) in R, and denote by Wf{z)

a function which is harmonic in R, continuous in R, equal to 2M+77 in each

point A,-, never greater than 2M+?? on B, and equal to zero on B except in

the neighborhood of diameter v of each point A,-. When the diameters v of

these neighborhoods approach zero, the function Wv(z) approaches zero at

every interior point of R, as follows from the representation of Wv(z) in R
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by Green's formula involving Green's function for R. For n sufficiently large

we have from (1)

[l.u.b. log I F„(z) |, s on Ja ^ [F(z) + q, z on/*].

The function V'„(z) =log | Fn(z) \ — F(z) — r/ is subharmonic in R. When z in 2?

approaches 73, the function V'n{z) — IF„(z) has a superior limit not greater

than zero, whether z approaches a point A,- or an interior point of Jk; it

follows that the superior limit of this function in R is not greater than zero:

Vi{z) £W,(z), zinR.

This inequality is true for each v, so we have by allowing v to approach zero,

F„' (z) ^ 0, z in R,

which is equivalent to the inequality (4), valid for n sufficiently large at every

point of R ; by allowing z in R to approach B, we see that inequality (4) holds

throughout R, except in the points A, where F(z) is not continuous. In-

equality (2) follows, so Theorem 1 is completely established.

Theorem 1 persists if the functions Fn(z) are not required to be continuous

on the arcs Jk except in the points As, provided (1) is valid, where the square

bracket in the first member of (1) is interpreted as the least upper bound of

the set of limit values approached by | Fn(z) | when z in R approaches an arbi-

trary point of Jk, end points of Jk excepted. Similarly, if Q contains points

of B, the square bracket in the first member of (2) is to be interpreted as the

least upper bound of the set of values approached by |F„(z)| as z in R ap-

proaches an arbitrary point of Q. The proof just given is valid in this more

general case.

In a similar manner we may interpret and establish (2) even when the

F„(z) are not required to be continuous on the arcs /* except in the points A,-

and when Q in R is allowed to contain points A}.

A result complementary to Theorem 1 is now to be proved:

Theorem 2. Under the conditions of Theorem 1 suppose the equality sign

holds in (2) for a particular continuum Q0 in R (Q0 may be a single point):

(5) lim sup [max | F„(z) |, z on Q0] = [max eVM, z on Qa].
n—*»

Then on every continuum Q in R consisting of more than one point and contain-

ing no point A, we have the corresponding equality:

(6) lim sup [max | Fn(z) |, z on Q] = [max eVU), z on Q\.
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Our proof of Theorem 2 is indirect. Let us suppose first that Q lies in R.

If (6) is not valid we may assume

(7) lim sup [max | F„(z) \ , z on Q] = M,
n—»oo

(8) M < [max ev^\ z on Q].

We are to show the impossibility of (7) and (8). Replacing Q by a proper

subset of Q (still a continuum not a single point) without altering the second

member of (6) leaves us with a stronger statement to be proved and hence is

allowable. Thus it is no loss of generality, since V(z) is continuous in R except

in the points A,-, to assume that we have

(9) V(z) > log M, zonQ.

We assume also, as we may do, that the complement of Q is simply connected.

Denote by Vi(z) the function harmonic and bounded in the region Rii

R — Q, continuous and equal to V(z) on each Jk except in the points Aj, and

continuous and equal to log M on the boundary points of Ri which belong

to Q. Theorem 1 in generalized form applies to the region Ri; for the conformal

map z=<5f{w) of the complement of Q onto the interior of a circle C maps R

onto a region satisfying the original hypothesis of Theorem 1. On the circle C

we have by (7)

(10) lim sup [max | Fn[$(w)] |, w on C] ^ M,
n—»oo

provided the square bracket in the first member of (10) is interpreted as the

least upper bound of all limit values of |.F„hF(w)]| as w approaches C. For

the region R\ no point Aj lies on Q. From Theorem 1 follows by (2) the in-

equality

lim sup [max | Fn(z) |, z on Q0Ri] 5= [max eViM> z on Q0-Ri\;
n—»oo

a glance at the proof of Theorem 1 shows that the possible lack of one-to-one-

ness of the transformation z = ^f(w) on Q and C plays no role; the relation (4)

valid on an open set in R is valid also on the corresponding closed set. By

virtue of (7) and (8) the corresponding inequality holds also in points of

Qo Q, provided we define Fi(z) as equal to log M in the interior points of Q:

lim sup [max | Fn(z) \, z on Qo Q] ±= [max eFl(z), z on Qo-Q].
n—»oo

Combination of these two inequalities gives us

(11) lim sup [max | F„(z) |, z on Qo] ^ [max eVlU), z on Q0}.
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However, the function V(z) — V\{z) is harmonic and bounded in con-

tinuous in the corresponding closed region except in the points A,, zero on

the Jk, and by (9) is positive in the boundary points of R\ which belong to Q.

Consequently we have throughout Ri

(12) V(z)>V1(z).

Inequality (12) is also valid in the points of Q, hence throughout R. The

functions V(z) and V\(z) are continuous on the closed set Q0 in R, so we have

[max V(z), z on Qa] > [max Vi(z), z on QeJ.

Thus inequality (11) contradicts (5), and thereby equation (6) is established

provided Q lies in R.

The proof just given may require modification if Q intersects B, as we

now suppose. If Q is identical with R, the proof is immediate, for no point Aj

can exist and the function V(z) is identically constant on each component

of B; the negation of (6) yields a majorant Vi(z) defined throughout R and

which may replace V(z) in Theorem 1. We require that Vi(z) shall be har-

monic in R, continuous in R, equal to log M as defined by (7) on the compo-

nent or components of B on which V(z) takes its maximum value in R, and

equal to V(z) on the remaining components of B. In R we have (12) as before.

It follows from Theorem 1 that when Q0 lies in R the first member of (5) is

not greater than [max eVlU\ z on Q0], which is less than the second member

of (5); this contradicts (5) and thereby establishes (6).

If Q in R is not identical with R but intersects B, the set Q separates R

into one or more subregions each containing no point of Q. Denote by Ri an

arbitrary one of these subregions. At least one boundary point of R} is a

point of Q. Of course we suppose (7), (8), and (9) valid on Q as before; we are

to reach a contradiction.

We assume as before that the complement of Q is simply connected, and

assume also that Q intersects but one component of B. Let Bi be the boundary

of Ri. We denote by V\(z) the function bounded and harmonic in Ri, con-

tinuous and equal to log M in the points of Bi which belong to Q, and continu-

ous and equal to V(z) in the points of Bi not points A ,• and not belonging to Q.

Whether or not Bi lies entirely in B, some component of Bx contains some

point D of Bt such that every point of Bi in a neighborhood of D belongs to Q.

Map onto the interior of a circle C the complement of that component of Bx

(there can be but one such component) which contains points of Q. In this

conformal map the boundary elements (prime ends) of Ri which consist of

points of Q correspond to precisely an entire arc of C, possibly the entire

circumference. From this map it becomes clear that Theorem 1 in generalized
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form applies to the region Rh and that (12) is valid in Ri. Consequently we

have (compare (11))

provided merely that Qi is an arbitrary continuum which lies in Ri. Then Qi

also lies in R, and inequalities (12) and (13) contradict (6) as already estab-

lished for a continuum which lies in R. Theorem 2 has now been completely

proved.

It is to be noted that under the conditions of Theorem 2 the conclusion (6)

may fail if we do not suppose Q to consist of more than one point. This is

illustrated by the example R: \z\ <1, Fn(z)=zlln, V(z)=0. On every con-

tinuum Q in R consisting of more than one point the first member of (6) has

the value unity; but if Q reduces to the single point z = 0, the first member of

(6) is zero.

We shall now apply Theorems 1 and 2 to a configuration in which the

function V(z) takes on only two distinct values on B, and in which the loci

V(z) = const, in R have especially simple topological properties. This con-

figuration occurs rather frequently in various studies on interpolation and

approximation (loc. cit.).

Theorem 3. Let R be a region bounded by a finite number of mutually dis-

joint Jordan curves K0 and a finite number of mutually disjoint Jordan curves

K_i disjoint with K0. Let the function U(z) be harmonic in R, continuous in the

corresponding closed region R, equal to zero and — 1 on K0 and respectively.

Denote generically by K„ the locus U(z) = a, 0 >cr > — 1, in R, by R„ the open set

a > U(z) > — 1 in R bounded by Kc and ; then R„ is a sum of regions; the

closure of R, is denoted by R„.

Let the function f(z) be analytic throughout Rp but (considered with its possi-

ble analytic extensions) not be analytic throughout any Rp> with 0>p'>p, and

let f(z) be continuous in the two-dimensional sense on with respect to the

domain R. Let the functions fn(z) for n = 1, 2, ■ • • be analytic in R, continuous

in R, with

(14) lim sup [max | /„(z) |, z on KB]lln g e* > 1,

(13) lim sup [max [ Fn(z) [, z on Qi] | []max eVlU), z on Qx\,

(15) lim sup [max | /(z) - /„(z) |, z on £_i]1/n = e3 < 1.

Then we must have

(16) a 4- ap — ßp ^ 0:

moreover we have
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(17) lim sup [max | /»(*) |, z on K„]lln ^ e«+«"-^,
n—>«

provided a+ap.—ßß'ZzO (this inequality is satisfied if we have 0 ^ 2: p), and we

have

(18) lim sup [max | f(z) - fn(z)\, z on K.]1'" ^
n—*w

provided a+aa—ßa <0 (this inequality is satisfied for a sufficiently near — 1).

If the equality sign holds in (16):

(16') a + ap - ßP = 0,

then the equality sign holds also in (17) and (18):

(17') lim sup [max | /„(z) |, z on K^]1'* = #(f-«.Jr-rt,        0 ^ m gS p,
«—»oo

(18')    lim sup [max | f(z) - /„(z) |, z on ÜT,]1'" = ^«-O<"-<>>,    p > <r ̂  - 1.
n—*eo

Indeed, if Q„ is a continuum in R consisting of more than one point and lying

in Rc but having at least one point in common with K„, then we have

(19) lim sup [max | /„+i(z) - /„(z) |, z on 0>]1/n = e<«-«<*-rf,
n—»»

(20) lim sup [max | f(z) - f„(z) \, z on Q.-J1/n = if cr < p,
rc—»so

(21) lim sup [max | fn(z)\, z on = c(««-<»)(»-p) if <7 ̂  p.
n—»oo

From the general properties of harmonic functions it follows (as in op. cit.,

§§3.3 and 4.1) that each Ka in R consists of a finite number of disjoint ana-

lytic Jordan curves, except that for each of a finite number of values of a the

curves may have a finite number of multiple points. At such a multiple point

the tangents to the various branches of K„ are equally spaced. Each Kc sepa-

rates each point of K0 from each point of K-i. The open set R„ is not neces-

sarily connected, but consists of one or more regions, each bounded by points

of K, and points of K^\.

It is not the intention in Theorem 3 to demand that/(z) shall be a mono-

genic analytic function. The function/(z) shall be single-valued and analytic

at every point of R„, but there shall be no function single-valued and analytic

throughout the interior of any Rp>, p'>p, which coincides with/(z) in R„.

Thus (a) some branch of f(z) found by analytic extension in Rp from the

neighborhood of -fiT_i has a singularity on K„; or (b) the locus K„ in R has a
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multiple point, and the monogenic functions defined at that multiple point

by analytic extension in the various separated parts of Rp from the neighbor-

hood of K-i are not identical; or (c) both (a) and (b) occur.

Of course a+aa — ßa is merely a linear function of a, which for <r=0 re-

duces to a and for cr = — 1 reduces to ß*

From inequality (14) we may write for arbitrary e >0 and for n sufficiently

large

I /.(«) I ^ e»<°+<>,       I /„+1(z) I ^ en(«+<), z on K0,

I M*) ~ Mz) I ̂  2e»<«+<>, z on Ka,

(22) lim sup [max | /„+i(z) - /„(z) |, z on /?0]l/" ^ e«.
n—»w

From inequality (15) we may similarly write

(23) lim sup [max | /„+1(z) - fn(z) |, z on K^i]lln ^ ea.
n-*oo

We are now in a position to apply Theorems 1 and 2, identifying the re-

gion R of Theorem 1 with the region R of Theorem 3, setting

F„(z) =- [/„+1(z) -/n(z)]1'",

and setting

F(z) ■ « + (*- ß)U(z).

Inequality (2) yields at once (0><j> —1)

(24) lim sup [max | /„+i(z) - /„(z) |, z on ü:„]l'B ^ e«+«»-*».
n—»«

We are now in a position to establish (16). It follows from (15) that/„(z)

approaches/(z) uniformly on K-i. If (16) is not true, we have a+ap—ßp <0,

from which it follows that we have a+api—ßpi<0 for a suitably chosen pi,

0>pi>p. Then by (24) for o- = pi, the sequence/„(z) converges uniformly on

Kn, hence converges uniformly in the closed set RPl, to some function which

we denote by F(z), analytic in RP1 and continuous in RP1. The function

F(z) —/(z) is analytic in R„, continuous on with respect to the region R,

and vanishes on K-i. Consequently (see for instance op. cit., §1.9) the func-

tion F(z) —f(z) vanishes identically in the neighborhood of K_i interior to R,

and vanishes identically whenever defined by analytic extension from that

neighborhood. The function F(z) is single-valued and analytic throughout

* It may seem to the reader somewhat clumsy to employ the values zero and —1 for U(z) on

the two parts of the boundary of R. Such choice is, however, rather convenient in the applications

of Theorem 3. If any other two constants are used instead, conditions (16) and (16') are easily trans-

formed into the new notation by means of the linearity property.
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RP1; hence/(z) can be defined so as to be single-valued and analytic through-

out Rfu contrary to hypothesis. This contradiction completes the proof of

(16).
Inequality (24) implies for arbitrary e>0 and for n sufficiently large

(25) I /„+1(z) - /«(«) I ^ ei«+«-ik+.)nt z on K.,

so merely by writing

/»+i(z) ■ Mz) + [fs+i(z) - Jn(z)] + [fif+iiz) - /jv+i(z)]
(.26) r

+ • • • + [fn+1(z) -fn(z)], n^N,

we deduce from (25) inequality (17), for all values of n for which a+afi—ßfj, is

nonnegative, hence certainly for all n satisfying the inequality 0^/x=P-

If we have a-\-aa— ßcr <0, and if e>0 is chosen so small that also

a+ao-— ßcr + e <0, then by (25) the sequence fn(z) converges uniformly on K„,

hence by (15) converges uniformly in Ra to some function F(z) which by

the reasoning used above is identical with/(z) in R,. Inequality (25) holds

for n sufficiently large, and the identity

(27) /(«) - /„(z) m []n+l{z) - fn(z) ] + [fn+2(z) - /n+1(z) ] + • • •

then gives us inequality (18).

If the equality sign holds in (16), that is to say if (16') is valid, we proceed

to establish

(28) lim sup [max | /B+1(z) - fn(z)\, z on Kp]l'n = 1.
n—*<o

If (28) does not hold, it follows from (25) that we have

(29) lim sup [max | /n+i(z) - fn(z) |, z on Kp]l'n | eK 1;
n—»»

we show that (29) leads to a contradiction. Apply Theorem 1 to the region

or regions in R between and bounded by K0 and Kp, setting as before

Fniz) -  [/n+l(2) -/n(z)]1'",

and now with the choice

V(z) ma + (y- a)U{z)/P.

By virtue of (22) and (29), Theorem 1 applies here. On Kp we have

V(z) =7<0, so on a suitably chosen KPi with 0>pi>p we also have V{z) <0.

The corresponding inequality (2) for each component of KPl implies uniform
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convergence of the sequence/„(z) on R~P1, which we have already shown to be

impossible. This contradiction establishes equation (28).

Theorem 2 now applies to the original region R, with V{z) = a + (a — ß) U(z),

thanks to (28) as a consequence of (16'), and establishes from (22) and (23)

the equation

(30) lim sup [max | /„+i(z) - /„(*) |, z on k„]l'n = <>("-«<*-/•>,   0 ^ <r ̂  - 1.
n—»«

By use of (26) and (27) respectively, equation (30) implies

(31) lim sup [max | /„(z) |, z on k„]un £ eCa-^>("-">, 0 ^ m ü p,
n—»oo

(32) lim sup [max | /(z) - fn(z) \, z on i?„]1/n ^ e<«-0><'-'>,      p > <r ̂  - 1.
»—»00

On the other hand, elementary inequalities show that the inequality sign in

(31) or (32) would contradict (30). Consequently equations (17') and (18')

are established.

Equation (19) follows from equation (28) and Theorem 2 applied to the

original region R by use of (22) and (23). Equations (20) and (21) follow from

(19) precisely as we have derived (17') and (18') from (30). Theorem 3 is

completely proved.

In connection with Theorem 3 it may be noticed that inequalities (17)

and (18) may both be expressed in essence in the form

(33) lim sup [max | /„+i(z) — fn{z) |, z on k,\xln ^ g«+*»-0» ,
H—»00

with no restriction that a+acr—ßa should be positive, negative, or zero. But

(18) is more specific than (33), in the sense that (18) exhibits the limit/(z)

of the sequence fn(z) if the second member of (18) is less than unity. Similarly,

inequalities (17') and (18') may be combined in the single form (30), which

is true for every a, 0 Sio- 5: — 1, provided (16') is valid. We formulate

Corollary 1. Under the hypothesis of Theorem 3, inequality (33) is valid

for every er, O^o-^ — 1; if equation (16') holds, then equation (30) is valid for

every a, 0 ^ a ^ — 1.

In the nature of a converse to Corollary 1 we have

Corollary 2. Let R and f(z) satisfy the hypothesis of Theorem 3. Let the

sequence of functions fn(z) analytic in R and continuous in R converge uniformly

to f(z) on K-i, and satisfy the inequalities (22) and (23), with a>0, ß<0. Then

the conclusions of Theorem 3 and of Corollary 1 are fulfilled.

The proof of Corollary 2 is contained in our previous discussion, for we
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have used essentially (22) and (23) rather than (14) and (15) in the proof of

Theorem 3.

For the sake of simplicity we have assumed in Theorem 3 and its corolla-

ries that R is bounded by a finite number of mutually disjoint Jordan curves

K0 and a finite number of mutually disjoint Jordan curves R~-i disjoint with

R~0; and have assumed/(z) to be continuous on ÜT_i in the two-dimensional

sense with respect to R, and/„(z) to be continuous in R. Theorem 3 and its

corollaries persist if these requirements are somewhat weakened, namely replaced

by the requirement that R be bounded by two disjoint sets KQ and K-\, each of

which consists of a finite number of components none of which is a single point;

and the requirement that fiz) is bounded in the neighborhood of K-.\ in R, and

that fn{z) is bounded in R. Under these new conditions on R it is no loss of

generality to assume that R fulfills the original conditions, for the method of

successive conformal mapping onto the interior of a circle of simply-con-

nected regions containing R each bounded by a single component of the

boundary of R maps R onto a region fulfilling the original requirements on

R and which is even bounded by a finite number of analytic Jordan curves.

The function U(z) is invariant under such transformation. In such expres-

sions as appear in (14), (15), (22), (23), the term "max" is now to be inter-

preted as the least upper bound of the limit values as z in R approaches K0

or K_i. We may also take here not least upper bound of all limit values, but

least upper bound of boundary values for normal approach in the sense of

Fatou; these values exist almost everywhere (we assume R bounded by ana-

lytic Jordan curves), and may be used also in Theorem 1; the least upper

bound of limit values cannot exceed the least upper bound of Fatou boundary

values. With the new hypothesis and this new interpretation of notation, the

previous reasoning remains essentially valid.*

It is fairly obvious that Theorem 3 extends to the case that K0 and

may have a finite number of points in common. But here the topological

nature of the loci K„ may become rather complicated. Indeed, Theorem 3

extends also to the case that U(z) is no longer piecewise constant on the

boundary B of R, but is bounded in R and continuous in R except at a finite

number of points. Under these conditions we replace inequalities (22) and

(23) of Corollary 2 by such a relation as

* We need, however, some such proposition as the following: // the function 4>{z) is analytic and

bounded for r S | z | < 1, and if the boundary values of <p(z) for normal approach to \ z \ = 1 vanish almost

everywhere on \ z | = 1, then <f>(z) vanishes identically. Form Cauchy's integral for z in the annular region

r S I z I ̂  ri < 1, the sum of an integral over | z | = r and an integral over | z | = n; as n approaches unity

the Cauchy integral for <£(z) over |z| =n approaches zero and therefore vanishes identically; hence

<j>(z) can be extended analytically across |z| =1 so as to be analytic for every z with |z| är. Since

0(z) has the value zero almost everywhere on the circle |z| =1, that function vanishes identically.



304 J. L. WALSH

lim sup {l.u.b. [eu^ - | /„+1(z) - /„(*) |»'»J, z on B \ ^ 0,
n—>»

where as before the square bracket refers to limiting values on B. Theorems 1

and 2 admit a corresponding extension, where V(z) is merely harmonic and

bounded in R, and continuous in R except at a finite number of points.

We establish still another corollary to Theorem 3:

Corollary 3. Under the conditions of Theorem 3 with (16') fulfilled, the

sequence fn(z) converges throughout no region lying in R but not in R„.

If the sequence f„(z) converges in a region which lies in R but not in Rp,

that sequence converges uniformly in a region Q which lies in R but not in Rp,

for it follows from a theorem due to Osgood that every region of convergence

contains a region of uniform convergence. For the particular region Q we have

lim sup [max | /„+i(3) - fn(z) \ , z on Q]1'" ^ 1,
n—*»

in contradiction to (19).

The two-constant theorem can be employed with ease in the proof of

Theorem 3. Indeed, the conclusions (16), (17), (18), (17'), (18') can be estab-

lished by the method used for the preliminary results (in the papers already

mentioned) which suggested Theorem 3 and are contained in it. Also the

conclusions (19), (20), (21) can be proved by the two-constant theorem pro-

vided cr> — 1, by an extension of that same method. These proofs are less

immediate than the present ones, namely applications of Theorem 2. The

writer doubts that (19), (20), (21) can be proved by the two-constant theorem

if <r= — 1, that is to say, if Q„ is an arc of K-\.

Harvard University,

Cambridge, Mass.


