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Let / vary in any simply ordered set, and let {xt} be a family of chance

variables. We shall say that the chance variables have the property £ if when-

ever *!<••• </„+],

E[xtu • ■ ■ i xt„; xtn+1] = xin,\

with probability 1. The subscript n here is any positive integer. It will always

be supposed that the given chance variables have expectations, so that the

conditional expectations involved in the definition of the property £ will al-

ways exist.

We shall first make a few introductory remarks on the general family of

chance variables with the property £. Then in §1 it will be supposed that t

takes on integral values, and the convergence properties of such sequences of

chance variables will be discussed in detail. In §3 it will be supposed that /

runs through the real numbers. Before discussing this case, it is necessary to

investigate the justification for the use of such descriptive terms as continuity,

boundedness, and so on, as applied to the random function xt. This investiga-

tion is made in §2, in the general case, without the hypothesis of the property

£, and it is found that the above terms can always be made meaningful, and

given their usual meanings, at the cost, however, in some cases, of introducing

infinite-valued functions.

In the following, we shall always suppose that the xt are measurable func-

tions defined on a space Q, on certain sets of which a measure function is de-

fined. That this can always be done, and how this is to be done, was shown

by Kolmogoroff [5, pp. 27-30]. The space fl, following Kolmogoroff, will be

taken to be the space of real-valued functions of t. Integration in terms of

probability measure will be denoted by f ■ ■ ■ dP, and integration will be over

all space, unless the domain of integration is otherwise specified. The quali-

* Presented to the Society, December 28, 1939, under the title On a certain type of family of

chance variables; received by the editors December 11,1939.

t We shall use the notation E[y] for the expectation of the chance variable y, and E [yi, ■ ■ -,yn;y]

for the conditional expectation of y for given yi, ■ ■ ■ , yn, a function of yi, • ■ ■ , yn. If the y, are not

finite in number, the notation will be modified accordingly. We shall assume the definitions of

Kolmogoroff [5, pp. 41-44] for these conditional expectations. (References in brackets are to the

bibliography at the end of the paper.)
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fication "with probability 1" will be used interchangeably with "almost every-

where on fl." Let I be any set of /-values. A P-measurable set A (that is, an

fi-set whose probability is defined) will be said to be an x(-set with t e I, or a

set depending only on / for / in I, if it is in the Borel field of ß-sets determined

by the sets of the form

{**, < kfi j = 1, • • ■ , n)

in any integer, ki, • ■ ■ , kn any n numbers, any n distinct /-values)

or if it differs from an fl-set in this field by an ß-set of P-measure 0. If I

includes all /-values, the O-sets in question are all the P-measurable sets.

Theorem 0.1. Let {xt} be a family of chance variables with the property £.

If I is any t-set, and if t^ Si, s2 for all t in I, then

(0.1.1) E[xt, til; xn] = E[xt, 111; xS2],

with probability I. If I has a last element s, and if <r>s,

(0.1.2) E[xt, t e/; x„] = xs,

with probability 1.

This theorem extends the defining property 6, which states the conclu-

sion of Theorem 0.1 for / a finite set. By definition of conditional expecta-

tions, E[xt) t e I; x,j],j=l, 2, is a function measurable with respect to the

P-measurable fl-sets depending only on xt for / in I, and such that, if A is an

ß-set of this type,

(0.1.3) f E[xhtzl; xSj]dP = f xSjdP, i=l,2.

Suppose that the P-measurable set M depends only on / for t = h, ■ ■ ■ , in,

with e I,jSn, h< ■ ■ <tn. Then, using the fact that the chance variables

x'v " ' ' > x'n> x»j nave tne property £,

(0.1.4) J   x3jdP = \   E[xh, ■ ■ ■ , xtn; xSi]dP = \   xtndP,      7 = 1,2.
J m J m J m

Thus

(o.i.5) r xsidp = r Xs2dp,
J m J m

and therefore, using (0.1.3),

(0.1.6) f E[xt, t tl; xSl]dP = f B[xt, tzl; x,t]dP.
J m J m
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Since any P-measurable set which depends only on / for t11 can be approxi-

mated arbitrarily closely by a set M, (0.1.6) must hold with the general A in

place of M. Since the integrands are measurable with respect to the field of

sets A, the integrands are necessarily equal, with probability 1, as was to be

proved. If I has a last element s, E[xt, ttl; x,] =xs, with probability 1, from

the definition of conditional expectations, so in that case both terms of (0.1.1)

are equal to E[xt, t z I; xs] = x„ with probability 1. The last statement of the

theorem is merely a rewording of this fact.

Theorem 0.2. Let x, y be chance variables whose expectations exist, and sup-

pose that E[x; y] =x, with probability 1. Then E[x] =E[y], and E\x\ ^E\y\.

If E[x; y]=x, with probability 1, the expectations of the two chance

variables E[x; y], x are equal: £[y]=£[x]. Moreover \x\ ^E[x; \y\ ] with

probability 1, and, taking expectations of the two sides of this inequality, we

obtain E\x\ ^E\y\.

Corollary. If {xt} is a family of chance variables with the property £,

Ext is independent of t, and E\xt\ is a non-decreasing function of t.

Theorem 0.3. Let \xt\ be a family of chance variables with the property £.

Then for each t0, the xt with t^t0 are uniformly integrable*

We show first that

(0.3.1) lim P{ I xt\ t k} = 0,

uniformly for / S ta. This fact is implied by the following inequality (in which

kP{ I xt \ t k} ̂  I        xtdP - I xtdP

(0.3.2)

= f       xhdP - f xt„dP ̂  \ \xtt,\dP.

We are using here the fact that if t^t0, E[xt; xh]=xt with probability 1.

Now if t^to,

I I xt I dP = I        xtdP - f xtdP

= I       xhdP- I xhdP ̂  f \xH\dP,
•7 {xt£k} «7 lxt^-k\ •7||iil^*l

(0.3.3)

* This means that limju„ / (\x,\^k\ \ xt\dP=0 uniformly in / for <g/«.
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and, as the right side goes to 0 uniformly in t (from (0.3.1)), so the

left side goes to 0 uniformly in /, as was to be proved.

1. Sequences of chance variables with the property £. We first prove the

following theorem.

Theorem 1.1. Let ■ ■ ■ , X-%, x0, ■ ■ ■ , x be chance variables with the property

£.* Let m, n be integers with m^n, and define the sets A, M by

A = iL.U.B. Xir = k\ ,       M = < G.L.B. xs = k\ .

Then ifN is any P-measurable ( ■ • • , xm-i, xm)-set,

(1.1.1) f    xdP t kP{A-N} , I     xdP ^ kP{M-N\.]
«/a n J m-n

To prove (1.1.1), define the sets Am,   -    as follows:

Am = { xm t k \ ,

Am+i = ji, < k, xm+1 t k\, ■ ■ ■ ,

Then the A,- are disjunct with sum A, and A, depends only

Since E[ ■ ■ ■ , xf, x\=xj} with probability 1 (Theorem 0.1),

xdP = zZ I     xdP = zZ I XjdP
a -n m  J a,- -n m  w a; -n

(1.1.2) n

^ kzZ P(ArN) = £P(A-N),

giving the first inequality of (1.1.1), and the second can be proved in the same

way, or by changing the x to their negatives, and applying the result al-

ready obtained.

Theorem 1.2. Let ■ ■ ■ , x0 be a sequence of chance variables with the

property £. Then lim„,_M xn=x exists with probability 1, and the chance varia-

bles x, ■ ■ ■ ,x_i,x0 have the property £. The chance variables {x, } are uniformly

inte gr able, and E\x0\ ^E\x-i\ ^ • • • ; E\xn\ —>E\x\.

Unless lim inf„,_M x„ = Tim sup,,,-*, xn with probability 1, there are num-

bers kh k% with h>kh such that

* The Xj may be finite or infinite in number, and if infinite in number may be finite in one direc-

tion. The essential fact is that there is a last one x.

t The inequalities (1.1.1) are implicit in the work of Ville [9, pp. 100-101 ] who discussed se-

quences of non-negative chance variables with the property £. The method of proof we use was used

by Levy [8, p. 129], in a related discussion.
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(1.2.1) lim inf xn < ki < &2 < lim sup xn,

with positive probability rj. Let the ( • • • , x0)-set on which (1.2.1) is true

be A. We can choose — #i so large that L.U.B.niS,- {x,} _&2 on an ( • • • , #„)-

set Ai with P(A-Ai) >r;(l — 2-1). We can choose «2<«i such that

G.L.B.„2gjgn, on an ( ■ ■ ■ , x0)-set A2 with P(AA2) >t?(1 — 2-2). In

general, if »i, ■ ■ • , nr-i have already been chosen, and if r is odd, we can

choose nr<nr-i such that L.U.B.Brs,s»r_, {#,-} ^£2 on an ( • • • , x0)-set

Ar with P(A'A,)>ij(1-2"'); or if r is even, we can choose wr<wr_i such

that G.L.B.„rg,Snr_, [x,} ^iionan( • ■ • ,x0)-setArwithP(A-Ar) > 17(1 — 2~r).

Then if A,' =n„"A„

(1.2.2) P(A„) > 77 - tj2-" - 772-"-1 - • • ■ = )/(l - 2-"+1).

According to Theorem 1.1, if r is odd,

(1.2.3) f   XorfP ̂  £2P(A'r)
j a,

and if r is even

(1.2.4) f   acorfP ̂ kiP(Ar).

As r—>oo, A/ increases to a set A' of measure not less than 77; (1.2.3) and

(1.2.4) become

(1.2.5) *i-P(A') = f  xBdP ̂  krPiA'),
J a'

which is impossible, because ki<k2. We have thus proved that limn,_„ xn=x

exists, with probability 1. According to Theorem 0.3, the are uniformly in-

tegrable. Then their limit x is integrable, and term by term integration of

X,- or \x,-\ is legitimate. This means that E\xn\ —>P|x\. The fact that

E\x0\ ^P|x_i| = • • • follows from the corollary to Theorem 0.2. To show

that the chance variables x, ■ ■ ■ , x-i, x0 have the property £, it is only neces-

sary to show that if m^n^r^O, E[x, xm, ■ ■ ■ , xn; xr] =xn, with probability

1, and that E[x; xT]=x, with probability 1. To prove the first, we must

prove that if A is a set depending only on x, xm, ■ ■ ■ , xn, then

(1.2.6) j    xndP =  I xrdP.
J a J a

Now A evidently depends only on • • • , x„_,, xn; so (1.2.6) follows from the

fact that E[ ■ ■ ■ , xn; x, ] =xn, with probability 1 (Theorem 0.1). If A is a set
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depending only on *, (1.2.6) is true for all n^r, and becomes, if n—>— oo,

JxdP = I xrdP,
A J A

that is, E[x; xr] =x, with probability 1.

Theorem 1.3. Let x\, x2, ■ ■ ■ be a sequence of chance variables with the prop-

erty £. Then E\xi\ HkE\x2\ ^ • • ■ . //lim,,..,» E\ x„\ =l< oo, then lim,,,» xn = x

exists, with probability 1, and E\x\ ^l. If the x,- are uniformly integrable,

lim»,«, xn=x exists, with probability 1, and the chance variables %%, x2, ■ ■ ■ , x

have the property £.

Ville has studied sequences of non-negative chance variables with the

property £. Since, by the corollary to Theorem 0.2, Ville's hypotheses imply

that

Exi = Ex2 = ■ ■ ■ = E I #i I = E I x21 = • ■ • ,

the hypotheses of the first part of Theorem 1.3 are satisfied, in Ville's case.

Ville proved* that in his case L.U.B.,ai | x,\ < oo, with probability 1 (implied

by our conclusion that lim«,» x„ exists with probability 1, and that the limit

is integrable), and applied this fact to the study of certain games of chance.

Proof of Theorem 1.3. According to the corollary to Theorem 0.2, E\xn\

is monotone non-decreasing. Suppose that lim,,,« E\xn\ =l< co. Unless

lim inf„„„ xn = lim sup,,,*, x„, with probability 1, there are numbers h, k2, with

ki<k2, such that

(1.3.1) lim inf xn < kx < k2 < lim sup xn
n—»oo n—+ oo

with positive probability -n. Let the (xi, x2, ■ ■ ■ )-set on which this is true be

A. We can choose wi so large that L.U.B.,g„, {x,} tk2 on an (xi, x2, ■ ■ ■ )-set

Ai with P(A Ai) >»7(1 — 3_1). We can then choose w2>»i so large that

G.L.B.„lSjg„2 {xj} ^^lOnan (xi, x2, ■ ■ ■ )-set A2 with P(A-A2) >77(1 — 3-2). In

general if n1; ■ ■ ■ , have already been chosen, and if r is odd, we can find

nr>nr-i so large that L.U.B.„r_lS,g„r {#,■} tk2 on an (xi, x2, ■ • ■ )-set Ar

with P(A'Ar) > 77(1 — 3-r); or if r is even, we can find wr>wr_i so large that

G.L.B.„, _,g,g„r {xj) g^onan (xi, x2, • ■ ■ )-set Ar with P(A Ar) >r)(l — 3~r).

Then if Af =HiA„

(1.3.2) P(A'n) > v - t,/3 - t,/32 - ■ ■ ■ = ,/2.

According to Theorem 1.1, if mtn2r,

* [9, chaps. 4,5. ]
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(1.3.3) f  xmdP S kiP(A'2r),        f     xmdP = hPihkr-i).

Then if Mr=A£r_i-A2,

(1.3.4) f xmdP 2: ksP(AL-i) - hP(A,») = (h - ki)P(A<tr-i) + AiP(Mr).

Now the Mr are disjunct, so if m is sufficiently large (depending on q),

£   f   x.£  {h ~  h) £ P(A2r-l) + klZZ P(Mr)
r_l J Mr                                  r=l r-1

(1.3.5)
C7(*2 -  *l) , ,

= -2-

But this is impossible, since then

(1.3.6) J ̂  f I *»| <£P ̂ £ f ^ — (*2 - *i) - I
J r=l «7 Mr 2

that is,

(1.3.7) i £ (l/2)«^(*i - *0 - I Ai I,

for all q. We have thus proved that lim«,» xn = x exists with probability 1. By

Fatou's lemma, E\x\ ^l, and the fact that E\x\ < oo implies that x is finite,

with probability 1. If the x, are supposed uniformly integrable, it follows that

the sequence {i?|x,| } is uniformly bounded. Then lim„,» xn = x exists with

probability 1. Because of the uniform integrability, term by term integration

of the sequence {xn} is allowed on any P-measurable set, and we can readily

verify that the sequence of chance variables Xi, x2, ■ ■ ■ > x has the property £.

In fact, all that need be proved is that E [xai) ■ ■ ■ , xa„; x] = xa„ with probabil-

ity 1, if ai< ■ ■ ■ <an. This will follow if it can be shown that whenever A is

an (xi, x2, • • ■ )-set depending only on xa„ ■ ■ ■ , xan, then

(1.3.8) f xdP = f xaJP.
•7 a «7 a

Since the chance variables %\, x%, • • ■ have the property £, (1.3.8) is true if x

is replaced by xm with m>an. Then if m—we obtain (1.3.8).

Corollary. Let yh y%, ■ ■ ■ be a sequence of chance variables whose expecta-

tions exist, and suppose that £[yi, • ■ • , y„; y„+i]=0, n = \, 2, ■ ■ ■ , with

probability 1. Then E\^"yj\ is monotone non-decreasing with n, and if

limn,„ £|2Z"y,| < °c ,the series^™yjis convergent, with probability 1.



462 J. L. DOOB [May

For if x„=Ei7„ » = 1, 2, • • • , the xn have the property £, and Theorem

1.3 is applicable, giving the result of the corollary.

Levy [8, pp. 247-248] has discussed series of chance variables ]Ci°y,-, Wlin

^-[yi> ' ' ' j y«> J"+i]=0, w = l, 2, ■ • • , with probability 1, relating the con-

vergence of the given series to that of their conditional dispersions.

An important particular case of this corollary is that in which the y3- are

mutually independent. The hypothesis on the conditional expectations be-

comes in this case the hypothesis that Eyx = Ey2 = • • • = 0, and the corol-

lary has been deduced in this case.* In this special case it has also been shown

that the partial sums {x,) are necessarily uniformly bounded by a chance

variable whose expectation exists. It follows that in this case the al-

ways uniformly integrable.

The following example shows that the hypotheses of the first part of

Theorem 1.3 do not imply that the sequence Xi, x», • • • , x has the property £.

Let x0 = l with probability 1. Let Xi = l/2 with probability (1—4_1) and

*i = 5/2 with probability 1/4. In general if Xi, ■ • • , xr have already been de-

termined, we determine follows. The values of xr+i depend only on

those of xr, and if xr = a, we set xr+,=2~r~1 with probability (1—4~r_1) and

xr+i = £ with probability 4~r~1, choosing £ to make the expectation of xr+i

(with xr = a) equal to 0:

Then it is easily verified that x„ = 2~n with probability (1— 4~n), if w2:l,

so that xri-^>x = 0, with probability 1. The chance variables are all positive

and the hypotheses of the first part of Theorem 1.3 are satisfied. The sequence

Xi, Xi, ■ • • , x certainly does not have the property £.

The following theorem is essentially the converse of the second part of

Theorem 1.3.

Theorem 1.4. Let ' be chance variables with the property £.

(a) lim,,,» xn = E[xi, x2, ■ ■ ■ ; x'] with probability 1;

(b) the chance variables X\, x2, ■ ■ ■ , x, x' have the property £;

(c) if x' is a function of xx, x2, ■ ■ ■ , lim,,,» xn=x', with probability 1.

Levy [8, p. 129] proved part (c) of this theorem, under the hypothesis

that x only takes on the values 1 and 0. His proof can be extended to cover

Theorem 1.4. He puts the result in the following form (we are dropping his

restriction on the values taken on by x'); let yi, y2, • • ■ be a sequence of

Then

* Doob [2].
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chance variables and let x' be a chance variable dependent upon them. Then

if xn = E[ji, ■ ■ ■ , y„; x'], he proves that xn—>x' with probability 1. Since

Xi, X2, • ■ • , X ' have the property £, this is exactly our Theorem 1.4(c).

Proof of (a), (b). According to Theorem 0.3, the uniformly integra-

ble. Then Theorem 1.3 states that lim„,«, xn=x exists with probability 1, and

that the chance variables x%, • • • , x have the property £. If we show that

the chance variables ' have the property £, it will follow (because

of Theorem 0.1) that x = E[xi, • • • ; x'] with probability 1. To show that the

chance variables ' have the property £ it is sufficient to show that

if «i< • • ■ <an, then E[xat • • • , x„n, x; x']=x with probability 1, that is,

that if A is any set depending on «„„ • • • , x„„, x,

(1.4.1) f x'dP = f xdP.

Now A is a set depending on Xi, x2, • • ■ (because xn—>x with probability 1).

Equation (1.4.1) is certainly true for A depending only on a finite number of

the Xj (because if x„ is the last of these x,-, both integrals are equal to the in-

tegral of x„ over A: Xi, ■ ■ ■, x' and Xi, • ■ • , x have the property £). Then

(1.4.1) is true in the general case because the general A can be approximated

arbitrarily closely by the special ones.

Proof of (c). If x' is a function of xx, x2, ■ • • , E[xx, x2, ■ • ■ ; x'] =x' with

probability 1, so that x = x' with probability 1.

Theorem 1.5. Let Xi, x2, • • • , x be chance variables with the property £.

Suppose that E \ x log | x | | < oo. There is then a number K depending only on

E\x log |x| I, and such that E [L.U.B. „£i |x„| ] <K.

Let £ = L.U.B.„fei {x„}, and let A= \£tk\, k>Q. According to Theorem

1.1,

(1.5.1) f xdP t kP(A).
J A

Now

/' kI x I dP ^ — P(A),
A.{|*|<i/j)

so

2

(1.5.3)      f \x\dPtf xdPt—P{A)=—P{itk}.
J {\x\^,kl2\ J A-||xia*/S) 2 2

k k
tdP t

This inequality, together with the fact that £|x log |x| [ < oo, has been
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used in an analogous discussion (Wiener [10, pp. 17-18]) to show that

E^Ki, where K\ only depends on E\x log \ x\ |. Applying this result to

0C\ j     0C%) ' ' ' J     Oil j completes the proof of the theorem.

We have seen above in the discussion of the corollary to Theorem 1.3 that

if the Xj are the partial sums of a series of mutually independent chance varia-

bles having zero expectations, the hypothesis that E\x log | x\ \ < oo is unnec-

essary in Theorem 1.5.

2. One-parameter families of chance variables. In this section we shall

consider a one-parameter family of chance variables {xt\, — °° <t< <*>, or

0 ^ t < oo. The probability relations are those derived from certain elementary

probabilities: if h, ■ ■ ■ , tn are distinct /-values, and if h\, • ■ • , kn are any real

numbers, P{xtj <k,-, j^n} is given. The mathematical setup appropriate to

the study of the probability relations of the xt is the following. Let ft* be

the space of all real-valued functions of /. A probability measure is determined

on ft* by the measures of certain elementary sets, which we shall call neigh-

borhoods: a set A of functions x(t) satisfying

aj < x(tj) < bj, j = 1, ■■•,»,— co <S dj < bj ^ + c° ,

will be called a neighborhood, and we define a measure of A, P*(A), setting

P*(A) = P{ai < xtj < bhj £ »}.t

If xs(co) is the function of w e ö* which for w =co0: x0(i) assumes the value x0(s)

(so that we can write, somewhat loosely, xs(w) =x(s)), xs(co) is a P*-measura-

ble function (s fixed), and the probability relations of the {xt) become meas-

ure relations of the corresponding {**(«)}. The outer measure P*(A) of an

r2*-set A is defined as the lower limit of P*(A') where A's A and A' is P*-meas-

urable.J The inner measure of an fl*-set A is defined as 1—P*(Ai), where Aj.

is the complement of A. It is usually convenient to use a subspace £2 of Q*

(with P*(ß)=l) instead of ft* itself. The P*-measure on ft* determines P-

measure on ft, and

P*{x(tj) < kj, j = 1, • • • , n\ = P{x(ts) < kh j = 1, • • • , «}.

We are using x(t,) to denote the P-measurable function xtj(u>), which in turn

represents the original chance variable xtj, and we shall continue to use this

notation where there is no danger of confusion. The symbol x(t) thus may

represent either a point o> of ft*, that is, a function of t, or, if we are fixing /,

a function of u>: xt(u).

In discussions of continuity and related questions, it is desirable to con-

t Cf. Doob [l,pp. 107-110].
J We can even suppose that A' is restricted to be a denumerable sum of neighborhoods.
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sider L.U.B., E i xt, G.L.B.( e T xt, where I is a /-interval. It was pointed out

by Kolmogoroff [5, p. 26] that the probability that L.U.B., zi xt^k or that

G.L.B.( e i xt S k cannot be derived from the given probabilities. Since we are

giving a complete treatment of the problem here, we shall prove a somewhat

stronger result, pointed out to the writer by Dr. P. R. Haimos.

Theorem 2.1. Let ß* and P*-measure be defined as explained above. Then

the co-set {L.U.B.(Er x(t)^k] has inner measure 0,for any nondenumerable set I

and real number k.

This theorem shows that the co-set {L.U.B.(t/ x(t) } ,if it is p*-measura-

ble, must have measure 0, irrespective of the p*-measure. If the complement

of the w-set in question is A, it will be sufficient to show that p*(A) = 1. The

ß*-set A is the set of all x(t) with x(t0) >k for some /0 in /. Let fCß* be any

denumerable sum of neighborhoods, with T s A. It will be sufficient to show

that p*(r) = 1, and in fact we shall show that V = ß*. Let th h, ■ ■ ■ be the

/-values used in defining the T,. Let x0(t) be any element of ß*. There is surely

a function Xi(t), with Xi(//) = #<>(//) for all/, and such that for some 5 in I,

Xi(s)>k. Then x-i(t) eAcT, so x0(t) eT also, because Xi(tj) =x0(tj) (jltl).

Thus T = ß*, as was to be proved.

Two ways have been suggested, to define p{L.U.B.( ei xt^k} and

p{G.L.B.( ej Xttzk}. Khintchine [4, pp. 68-69] considers a sequence {/,■} of

/-values in I. The probability p{L.U.B.xtj^k} is already determined, and

Khintchine defines p{L.U.B.« E/ xt^k] as the greatest lower bound of these

probability numbers, for all denumerable sets {/,■} in I; p{ G.L.B.( ej xt^k\

can be defined similarly. With this definition, the "L.U.B." in "L.U.B.t s i x"

is not taken literally, necessarily not, since xt is not a single function of / and

since the problem has not been reduced to one of studying functions of /. The

second way is to find a subspace ß of ß*, of outer measure 1, such that there is

a denumerable set {s,} for which, if x(t) e ß, and if I is an open interval,

(2.1.1) L.U.B. x(t) = L.U.B. x{s{),       G.L.B. x(t) = G.L.B. x(sj).
ie/ sj c I t t I gj £ /

If there is such an ß, the x(t)-set {L.U.B.,E/ x(t) ^k} becomes a p-measurable

set:

(2.1.2) p{l.U.B. x(t) = k\ = pIl.U.B. x{sj) £ k
{    t e I ) \   sj e /

and similarly for the G.L.B. Evidently the two methods of definition give the

same numerical values to p{L.U.B.f ti xt^k}. It must be stressed that in

(2.1.2) the set {L.U.B., E i x(t) Sk] is a subset of ß, whose p-measure is equal

■
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to that of the set on the right since the sets are identical. The P-meas-

ure of the set on the right is equal to the P*-measure of the Q*-set

{L.U.B.8;. 11 x(sj) fsk} ,by the definition of P-measure, and may be any num-

ber between 0 and 1, depending on k and the particular characteristics of

the given P*-measure. On the other hand, Theorem 2.1 shows that the ß*-set

{L.U.B.( ej x(t) t^k} necessarily has inner measure 0.

A process with a space ß as just described is called quasi-separable. Let I

be any open /-interval (of length containing the point s. Define x*(s),

x*(s) by

(2.1.3) x*(s) = lim G.L.B. x(Sj),       x*(s) = lim L.U.B. x(sf),
«ti l/|->0    sj £ I

Then the condition that ß be the space of a quasi-separable process is equiva-

lent to the condition that if x(t) t S2, and if {s,-} is an everywhere dense de-

numerable /-set,

(2.1.4) «*(*)

for all /.f It has been shown (Doob [l ]) that many given probability measures

on Q,* are such that there is a quasi-separable process. It will be shown below

that every probability measure has this property, if infinite-valued functions

are allowed. Applications will then be made in §3 to P*-measures in which the

chance variables {xt \ have the property £.

In order to treat the problems below it will sometimes be necessary to

allow our functions x(i) to take on the values + ». Kolmogoroff's proof [5,

pp. 27-30] that the elementary given probabilities determine a probability

measure needs no change to cover this case. All distributions will be finite:

for each /, \x(i) \ < oo with probability 1. It is easily shown that the set of

everywhere finite-valued functions x(t) has outer measure 1, and inner meas-

ure 0.

Let 7 be an open /-interval, and let {/,■} be a sequence in 7. Then

L.U.B.,ai x(tj) is a chance variable, that is, a P*-measurable function on Q*.

We shall show below that there is a sequence {} in I such that if {/,•} is any

sequence in 7,

£ = L.U.B. x(if) t L.U.B. x(t,)

with probability 1. The (possibly infinite-valued) chance variable £ will be

called the generalized upper bound of x(t) in 7, and will be denoted by

Ui[x(t)]. The generalized lower bound 7j [x(t) ] is defined in a similar fashion.

To demonstrate the existence of the {t}■}, we note that the values of

t Cf. Doob [l,pp. lio-lll].
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Ejarc tan L.U.B.,gi x{tf) ]f for {t, } a sequence in 7, have a least upper bound

M. There are sequences {ty}, k = l, 2, ■ ■ ■ , such that

pjjirc tan L.U.B. j -» M.

Let ti, h, ■ ■ ■ be the tf\j, k^l, arranged in some order. Then evidently

E arc tan L.U.B. x(ij)   = M.
JH J

Now let {/,•} be any sequence in I. We shall show that it is impossible that

L.U.B.)äi x(tj) >L.U.B.)äi x(tj) with positive probability, that is, on an £2*-set

of positive P*-measure. If this inequality were possible with positive proba-

bility, the inequality would still be true if the sequence {t,-} were augmented

to include the tj. Then, supposing this has been done,

arc tan L.U.B. x{t,) ^ arc tan L.U.B. x{t,)

for all co, and there is actual inequality with positive probability. This implies

that

E^arc tan L.U.B. 3<%)j > pj^arc tan L.U.B. = M,

contradicting the definition of M. Thus the tj have the required property.

Evidently U~i[x(t)] is not a uniquely determined function, but is determined

up to an ß*-set of P*-measure 0, in the sense that two generalized upper

bounds are equal almost everywhere on Q*.

Theorem 2.2. There is a sequence {s, }, independent of the open interval I,

such that, for each I,

(2.2.1) L.U.B. x{sj) = Ui[x(t)],        G.L.B. x(s1)=LI[x(t)},
sj el si £ I

with probability 1.

We have seen that to each I correspond sequences {if }, {//'}, such that

(2.2.2) L.U.B. x(t'j) = Ui[x(t)],        G.L.B. x(t'j) — Lr[x(t)],

with probability 1. Let {s/} be any sequence including all these tf, for

every 7 with rational end points. Then evidently (2.2.1) is true, with probabil-

ity 1, if 7 is such an interval. Let I be any open /-interval, and let Ii, 72, • • ■

f We define arc tan+ °o as +x/2.
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be intervals with rational end points, such that h c 72 c • • •  and that

Then

(2.2.3) L.U.B. *(jf) = Uu[x(t)\,
Sj e In

with probability 1. Let {<r, } be a sequence of /-values, including the Sj. This

inclusion implies that

(2.2.4) L.U.B. x(sf) = Uin[x{t)] = L.U.B. «(«r*)
Sj £ /n 07 e In

with probability 1. Let the {cr, } also be so inclusive that

(2.2.5) Ui[x(t)] = L.U.B. xUi)
<Tj e z

with probability 1. Then if n—»<» in (2.2.4), we find that

(2.2.6) L.U.B. «(s,-) = L.U.B. &(«-,-)

with probability 1, and (2.2.5), (2.2.6) taken together imply the first part of

(2.2.1). The second part is proved in the same way.

Lemma 2.3. If a sequence {sj} is chosen as described in Theorem 2.2, and

if x*(t), #*(/) are the upper and lower limiting functions of x(t) on {sj}, as de-

fined in (2.1.3), then for each value of t,

(2.3.1) *##tj£ *(#)-jg

with probability 1.

For if x*(s0) <x(s0) for some /-value sB, on an 0*-set of positive measure,

and if I is an open interval containing s0,

(2.3.2) Ui[x(t)] = L.U.B. x(sj) < x(s0)

on an ß*-set of positive measure, if I is sufficiently small, contradicting the

definition of Ui[x(t)]. Thus the second half of the inequality is proved, and

the first is proved in the same way.

Corollary. For each value of t, «*(/) < °°, x*(t) > — », with probability 1.

It has not been necessary, as yet, to utilize a subspace f2 of fl*, rather

than ß* itself. As Theorem 2.1 shows, such a transition is necessary, in dis-

cussing quasi-separable processes.

Theorem 2.4. Whatever the given P*-measure, there is a space Q of a quasi-

separable process. In some cases it is necessary to allow infinite-valued functions

in ß.
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This theorem states that we can find a space on which the generalized

upper and lower bounds become actual upper and lower bounds. It will be

utilized to show that a regularity property of x(t) known to be true when t

is restricted to denumerable sets implies the same type of regularity for all t,

for the functions of a suitably chosen space ß. (Compare Theorems 2.7, 2.8,

2.9.)
Proof of Theorem 2.4. Let {s,} be a sequence as described in Theorem

2.2. Define x*(t), x*{t) as in (2.1.3). Let ß be the space of all x(t) with

(2.4.1) x*(t) ^ *(*) ^ x*(t)

identically in /. If x*(i) = + °°, this means that x(t) = + <x>, and if x*(t) = — °°,

this means that x(t) = — oo. To prove the theorem, we need only show that

P*(ß) = l. Let r=Xa"rn be any denumerable sum of neighborhoods with

r 3 f2. It will be sufficient to show that P*(T) = 1. Let h, h, ■ ■ ■ be the /-values

used in defining the V,. Let ßx be the space of all x(t) satisfying (2.4.1) for

t = k, h, ■ ■ ■ ■ Then by Lemma 2.3, P*(ßi) = 1, so it will be sufficient to prove

that T d ßi. Let £(/) be any element in ßj. We show that £(/) e T. We have,

since £(/) e ß1;

(2.4.2) &,(fA £{*(*»), i=l, 2,

Now there is an x0(t) in ß such that x0(/;)=£(/;), j = 1: we need only define

x0(t) so that

(2.4.3) Ut) = xa(t) ^ ?{t), tt{t,}.

Then x0(t) e ßcT so %(t) is in T (because £{t,)=x(t,), i^l), as was to be

proved. An example will be given below to show that the introduction of

infinite-valued functions may be essential in some cases. Evidently it must

be known that x*(t), —x*{t) are (simultaneously for all /) not equal to + «,

with probability 1, if infinite-valued functions are to be avoided.

We pass to the discussion of measurable processes. A process with space ß

is said to be measurable if the function xB(co) (=x(s)) is measurable as a func-

tion of the two variables s, co, with co e ß.f

Theorem 2.5. Let P*-measure be such that there is a measurable process.

Then there is a space SI of a quasi-separable measurable process. In some cases

it is necessary to allow infinite-valued functions in ß.

Define the function cp„(t) by

obn(t) = kit*,   if   (k - 1)2-" < t g k2~n,       k = 0, ± 1, • • • ,

t Cf. Doob [l,p. 113].
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Then since there is a measurable process with the given P*-measure, there is a

constant c, and a sequence of integers {an}, such that for t fixed, not in some

set e of Lebesgue measure 0,

(2.5.2) lim x[c + </>„„(/)] = x(c + t),
7l~*0O

with probability l.t Let {ex,} be the sequence of all numbers {c-\-k2~n},

k = 0, ±1, • • • , n = \, 2, • • • . Define ***(*), ***09 by

(2.5.3) x**(t) = lim sup x [c + <t>an(t) ],      »**(/) = lim inf x [c + <ban(t) ].
n—*oo n—► oo

Then for each t not in e, «**(/) =x(t) =x**(t), with probability 1. Let {sj} be a

sequence of numbers with the properties described in Theorem 2.2. We can

suppose that the sequence \s, } includes the {c,-}, since any sequence includ-

ing the sequence {s,} also has the properties described in Theorem 2.2. De-

fining x*(t), x*(t) as in (2.1.3),

(2.5.4) *.(*) ^ x^(t) ^ x**(t) ^ x*(t),

and for each t, we have seen that

(2.5.5) *„(/) ^ x{t) ^ x*{t),

with probability 1. Let ß be the set of all functions x(t) satisfying

(2.5.6) ^ x{t) ^ x**(t)

for t^e, and (2.5.5) for 11 e. (We are allowing x(t) to take on infinite values.)

Then if x{t) t ß, x(t) satisfies (2.5.5) identically in t. This means, according to

the definition of quasi-separability, that if P*(ß) = l, ß is the space of a

quasi-separable process. To prove the theorem, it will therefore be sufficient

to prove that P*(ß) = 1 and that the function x,(w) is a measurable function

of (s, w), (to t 12). Let T=X)15rn be any denumerable sum of neighborhoods

with ruß. To show that P*(ß) = l, we shall show that P*(T) = 1. Let

h, h, ■ ■ ■ be the /-values used in defining the neighborhoods. Let ß be the

space of all x(t) such that (2.5.6) is true for the t,-^ e, and (2.5.5) for the

tj c e. Then P*(ßi) = 1, so it will be sufficient to show that T => ßj. Let £(/)

be any function in ßx:

£*('/) = m ^ ?(tf), tjte.

Now there is an x0(t) in ß such that x0(tj) = £(*/)> / = we need only have

x0(t) satisfy

t Doob [l,p. 115].
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(2.5.8) £*>(*)S *»(0 £ $**£<),

ThenxoW £ 12 c T. This means that £(/) c T (because x0(O -£(</),./ = 1). Then

r d 12x: P*(T) = 1. To complete the proof we must show that xs(co) is (s, co)-

measurable (co e 12). It is readily verified that x [c+</><,„ (s) L which is «„(co) with

a = c+<pan(s) is (s, co)-measurable, and it follows that xs**(co), x,**(co) (defined

in terms of «**(/), «**(/) as xs(co) is in terms of «(/)) are (s, co)-measurable.

Then since if 5 £ e, and if co e 12 (rewriting (2.5.6))

«,**(&>) S= xs(co) ^ x**(co),

and since the extremes are equal (s £ e) for almost all co e 12, the extremes are

equal for almost all (5, co). Then «,(co) =x**(u) = xs**(co) for almost all (s, co)

(co e 12), and so x„(co) is (s, co)-measurable (co e12), as was to be proved.

Corollary. The hypotheses of Theorem 2.5 imply the following stronger con-

clusion. There is a space SI of a stochastic process, and a denumerable everywhere

dense t-set {s,} such that, defining «*(f), x*(t) by (2.1.3), and y*(t), y*(t) by

(2.5.9) y*(f) = lim inf x(sj),       y*(t) = lim sup x(s,),
9j It Sj I t

ifx(t) e 12,

(2.5.10) **(<) ̂  fit) ^ x*{t)

for all t, and, except for a t-set e\ [independent of the function x(t)) of Lebesgue

measure 0,

(2.5.11) y*(t) ^ x(t) ^ y*(t).

The set e\ contains no point t' with the property that whenever {t„} is a sequence

converging to t' from above: tn it', then

(2.5.12) lim inf x(tn) = x{t') = lim sup *(/„)
n—*oo rt—»co

with probability 1.

The proof of Theorem 2.5 actually proves most of the corollary. Using the

notation of that proof, we have

y*«) ^ ^ x**(t) ^ y*(t).

This means that, to prove the corollary, we need only modify the definition of

12, as follows. The space 12 is now to include all functions x(t) satisfying

(2.5.6) for all / £ e, as before, and also for t=t' c e, if t' is as described in the

statement of the corollary; otherwise x(t) is to satisfy (2.5.5) for t t e. The

proof then goes through essentially as before.
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The following example of a stochastic process illustrates the application

of the preceding theorem. We shall restrict / to be non-negative. Define P*-

measure as follows. Let x(0)=0 with probability 1. The chance variable

x(t+l) — x(t) (7>0) has a distribution taking on only integral values, and

are to be mutually independent. According to Theorem 2.4, there is a space ß

of a quasi-separable process. Let {s, } be the denumerable set involved in the

definition of quasi-separability, so that (2.1.4) is true for all t, if x(t) t ß. We

can assume that t = 0 e {s,-}. Evidently x (J), considering t only in {Sj} is mono-

tone non-decreasing, starting from 0, and increasing only by jumps of unit

magnitude, with probability 1. Then except for an ß-set of P-measure 0, the

functions in ß are monotone non-decreasing, and continuous except for jumps

of magnitude 1, these jumps being the only points of increase. It is easily

verified that ß is the space of a measurable process.t According to the corol-

lary to Theorem 2.5, there is even a space ßi of a stochastic process all of

whose functions are continuous on the right. In fact the set ei of that corollary

is empty, because for any t,tn\t implies that x(Z„)—>x(/) with probability 1.

In this case infinite-valued functions need not be introduced, but we shall

use this example to derive another, in which the introduction of infinite-

valued functions is essential, in discussing quasi-separable processes. For each

x(t) e ßj, as defined above, we define a function %(t), to be 0 at t = t0 if x(t) has

a jump there, and otherwise to be 1/| fa —10 \, where fa is the closest point to t0

where there is a jump. The probability relations for the £(/) are derived from

those of the x(t). For each t, £(/) =£((a>) is a P-measurable function, and the

one-parameter family of chance variables {£((co)} determines a new stochastic

process. The particular functions £(/) we have defined above form a space ß{,

which can be shown to be of outer measure 1 in terms of the new probability

measure, J but we shall not need this fact. Evidently if £(/) e ßj, £(/) is continu-

ous except at an isolated denumerable set. If {s,-} is any everywhere dense

denumerable set, and if £*(/), £*(/) are defined as usual, £*(/) = + » at some

point in any given interval of length I with probability (1 — e~l). Thus

P*{x{t + I) - xQ) = v}
e-H"

v = 0, 1, 2, • • • .

If 0^/0< • ■ • <tn, the chance variables

x(ti) — x(t0), • ■ • , x(tn) — x(tn-i)

t This fact also follows from Theorem 2.5 (ii) of Doob [l ].

X Ambrose-Doob [3].
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and the introduction of infinite-valued functions is necessary to obtain a

quasi-separable process for the £(/). The space fi{ is not that of a quasi-separa-

ble process, but it can be shown that if each £(/) in £2{ is altered to + =° where

it vanishes, the resulting      are the functions of a quasi-separable process.

Theorem 2.6. Suppose thai there is a t-set E such that whenever tn[tzE

x(tn) approaches a limit in probability. Then there is a denumerable set D cE

such that if t zE — D, x(t-\-h)—*x(t) in probability as ä—>0.

Define a metric on the space of P*-measurable functions/(co), by defining

the distance between/i and/2 to be

so that d(f, /„)—»0 means /„—►/ in probability, and conversely, iff is finite-

valued. Then for each t, the co-function xt{w) becomes a point of this space,

and as t varies we obtain a function of t. This function of t, <p(7), has the prop-

erty that if / e E, lim(ni( exists. Then if t s E, linvw $(t') exists. It is

well known that a function with this property can have at most a denumerable

number of discontinuities on E, and this set of discontinuities is the D of the

theorem.

Theorem 2.7. Suppose that there is a t-set E such that whenever tn [ t e E

lim,,,« x(tn) exists, with probability I. Then there is a denumerable set 77' cE,

such that if t zE — D', tn—>t implies that x(tn)—>x(t) with probability 1. If Q is the

space of a quasi-separable process, each x(t) in f2 is continuous almost everywhere

on E with probability 1, and if t0 z E—D', x(t) is continuous at t0, with proba-

bility l.f

Since convergence almost everywhere on ti* implies convergence in meas-

ure (that is, in probability) on Ö*, Theorem 2.6 implies that there is a de-

numerable t-set DcE, such that t z E — D, tn j1 implies that x(tn)-*x(t) in

probability, and since lim,,.,« x(tn) exists with probability 1, this limit must

be x(t). Let 5 be an everywhere dense denumerable t-set. The hypothesis of

Theorem 2.7 implies that HtzE—D, \imt>ux(t') exists with probability 1, if t'

is restricted to lie in S.t Let v be any positive integer. Then if t0 z E—D,

there is an open interval I(t0) with t0 as left-hand end point, such that the

oscillation of x(t) (t z S) on I(t0) is not greater than l/v, neglecting an ß*-set

of measure not greater than l/v. The intervals I(t) cover E except possibly

t Both in this theorem and in the preceding one, convergence to an infinite limit can be allowed.

The definition of convergence in probability to an infinite limit is made in an obvious way.

t Doob [1, p. 111].

arc tan fx — arc tan /21 dP,
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for an at most denumerable set 77 (-p): for the I(t) with i z E, and t not covered,

are nonoverlapping intervals, and so are at most denumerable. Moreover if

to zE — D^, the oscillation of x(t) (t z S) at t0 is not greater than l/v, neglect-

ing a possible ß*-set (depending on /0) of measure not greater than 1/V. Then

if t0 z E — Di, whereDl=zZi D^, the oscillation of x(t) (t zS) isO, neglecting a

possible ß*-set of measure 0. This means that if t0 z E — 77', where 77' = 77+7?,,

lim,,,0x(/) =x(t0) (tzS), with probability 1. Now let ß be the space of a quasi-

separable process (Theorem 2.4 states that there always is such a space), and

let S he a set of /-values such that (2.1.4) is satisfied for all t. It follows that

if t z E — D',] x(t) (in ß) is continuous at t, with probability 1. This means, in

particular, that if /„—>t z E — D', then «(/„)—>«(/) with probability 1 in ß, and

therefore in ß*. The theorem will be completely proved when it is shown that

x(f) (in ß) is continuous almost everywhere in E, with probability 1. To show

this, let x*(co) [xs*(co) ] be the function of co: x{t) which for co=co0: x0(t) takes

on the value x0*(-s) [«o*(s)]. We can then write x*(u>) =x*(s), xs*(co) =x*(s).

The functions xs*(co), xs*(co) are easily seen to be measurable functions of

(s, co) for co £ ß, and for s z E — D' are equal almost everywhere on ß. Then

by Fubini's theorem, they are equal almost everywhere on E — D' (that is,

almost everywhere on E) for almost all co: x(t). The equality of x*(t0), x*(t0)

means the continuity of x(t) at t0; so the theorem is now completely proved.

Theorem 2.8. Suppose that P*-measure has the property that, whatever the

denumerable set S, almost every x{t) in ß* has the property that limt w0 x(t) (t z S)

exists for all t0. Let Di (Z>2) be the t-set on which it is not true that tn 11 {tn 11)

implies that x(tn)—>x(t) with probability 1. Then D\, 772 are denumerable. Let ß

be the space of a quasi-separable process. Then for almost all x(t) in ß,

limA40 x(t+h) exists, for all t, and x(t) is continuous except perhaps for a de-

numerable number of discontinuities (varying with the function x(t) in ß). There

is a quasi-separable process with space ßi, for which, in addition to the above,

x(t) in ßi is continuous on the right: x(t+0) =x(t)for alltftDi.

The hypotheses imply that if tn 11, lim«,« x(tn) exists with probability 1.

Then according to Theorem 2.7, A and A are denumerable. Let ß be the

space of a quasi-separable process, and let 5 be a sequence of /-values such

that (2.1.4) is satisfied for all /. Then since, according to the hypotheses,

lircUto x*(t+h), lim/Ho x*(t+h) exist and are equal for all /, with probability 1,

it follows that if x(t) z ß and is not in an exceptional co-set of probability 0,

lim;lt0 x(t+h) exists, for all /. A function with this property has at most a

denumerable number of discontinuities. According to the corollary to Theo-

rem 2.5 there must be a space ßi, of a stochastic process, that is, with

f The set D' depends on S.



1940] CHANCE VARIABLES 475

P*(ßi) = l, all of whose elements are functions continuous on the right if

This theorem, which sounds somewhat clumsy, has been phrased with the

applications in mind. It is applicable, for example, to any differential process:

one in which if tp<h< • ■ • <t„, the chance variables

Xt,       Xt0,    • ■ , X(„ xtn-i

are mutually independent.f The first example given above was one of such a

process.

Theorem 2.9. Suppose that P*-measure has the property that, whatever the

denumerable t-set S, almost every x(t) in ß* coincides on S with an everywhere

continuous function fa(t). Then there is a space Q of a (quasi-separable) process,

whose functions x(t) are everywhere continuous.

According to Theorem 2.4, there is a quasi-separable process. Evidently

almost all the functions involved in this process are everywhere continuous,

so the continuous functions themselves can be taken as the functions of a

process.

In many applications, the following situation arises. There is given a

P*-measure, and a one-parameter family of P*-measurable functions {/((co)},

— oo <t<-\- oo. Let ß* be the space of all functions y(t). We define a P*-

measure on ß * by setting

Pf{yih) < kj, j = l, •••,«} = P*\j-,,.(«) < kjj = l, ■••,»}.

In other words, we use the family of chance variables {/((co)} to define a new

stochastic process. The y(t) of ß* are the elements of a stochastic process

whose measure relations are those given by the x(t),. It is frequently desirable

to restrict the x(t) to some space ß (to obtain a quasi-separable or measurable

process) and to consider only the y(t) given by

y(t)   = /(("), CO £ Q,   —   CO    <  <  <   CO .

It is known that the space ß„ of these y(t) has outer P*-measure 1, and so is

the space of a stochastic process,% but it is also desirable to know that this

process has further properties, such as quasi-separability or measurability.

In the application to be made in the next section, ft(u) is only determined,

for each t, up to an co-set of measure 0, and this is the usual case. We can then

vary ß„ by changing ft(o>) for each / on an co-set of measure 0. We shall show

that by doing this we can (i) make ß„ the space of a quasi-separable process, or

t Cf. Doob [l, pp. 134-137]; the theorems of the present paper make possible considerable sim-

plification of this paper.

X Ambrose-Doob [3].
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(ii) (if the P*-measure is such that there is a measurable process) we can make ßy

the space of a quasi-separable measurable process.

Proof of (i). Let {sn\ be a /-set with the properties described in Theorem

2.2, using P*-measure. Define/**(«),/*(co) by

/„(») = lim GXJ|./,»,      /?(«) = lim L.U.B. /,;(»),
|/|->o   s, e I \1 |-.o   «, e /

where 7 is an open interval, containing /, of length |/|. Then according to

Lemma 2.3, for each /,

almost everywhere on 12. There is a subspace ß0 c ß of P-measure 1, such that

these inequalities are satisfied for all co z ß0 if / e {s, } . If/(o(w0) does not satisfy

this inequality for co0 e ß0, redefine f*0(co0) as any number between /(o*(coo)

and/*(co0). We thus change /io(co) on at most an co-set of measure 0, and inci-

dentally may introduce some infinite values. The new function g<(co) has the

properties

gs,(co) = /s,(co), j £ 1, CO ZÜ0,

= gf*(u) = gt(u) ^ g*(co) = /*(co).

Let g((co) =0 if co e ß— ß0- Then the functions y(t): y(t) =g((co), co e ß, deter-

mine a space ß„ of the desired quasi-separable process.

The proof of (ii) is along the same lines, and will be omitted. The result

can be extended in the same way that Theorem 2.5 whs extended in its corol-

lary.

3. One-parameter families of chance variables with the property 6. In

this section, we shall apply the results of §2 to the special case in which the

chance variables {x((co)} defined in §2 have the property £.f An important ex-

ample of the kind of process being considered here is the following. Let Ext ex-

ist for all / S: 0, and suppose that Ext=0; suppose also that if 0 ^ t0 < ■ ■ ■ <tn,

the chance variables

xh ~ *t» ■ ■ ■ , *t„ - *(„-,

are mutually independent. The chance variables {x,(oj) }, t^O, then have the

property £ if x0 is set identically 0 at Z = 0. In this case, the qualitative char-

acteristics of the random function xt, as given by P. Levy [6, 7], are well

known: xt can be considered continuous except for discontinuities of the first

kind (jumps), or, in the terminology of the present paper, there is a space ß

f Ville [9, pp. 111-130] has discussed families of non-negative chance variables, depending on

the parameter t ranging from 0 to + °°, with the property £. His discussion of the meaning of a con-

tinuous process, and of generalized upper bounds is somewhat obscure.
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of a stochastic process with the given P*-measure, whose functions x(t) are

continuous except for jumps.t It will be seen below that much of this regular-

ity is true in the more general case now under discussion.

Suppose that the chance variables {xt(u)} have the property £. Let tn—*t

and suppose that the sequence {/„ J is monotone increasing. Then the chance

variables xh x2, ■ ■ ■ , x', with x„=x(tn), x'=x(t) satisfy the hypotheses of

Theorem 1.4, so lim„,„ x(t„) = xi(t) exists, with probability 1, and the varia-

bles x(t{), x(t2), ■ ■ ■ , Xi(t), x(t) have the property £. The limit Xi(t) is inde-

pendent of the sequence [tn] (neglecting fi*-sets of zero P*-measure), since

two sequences can be combined into a single one, and evidently tn T t implies

that x(tn)—*xi(t) with probability 1, even if the sequence {/„} is not monotone.

Similarly, using Theorem 1.2, /„ J, / implies that lim,,,« x(tn) =xr(t) exists,

with probability 1, and is independent of the sequence {t„\, neglecting On-

sets of zero P*-measure. By Theorem 2.7, xt(t) = xr(t) =x(t) with probability

1, if / is not in some set 7? which is at most denumerable. It also follows from

Theorem 1.2 that there is a chance variable x( — co) such that if /„—» — oo then

«(/„)—>x( — oo) with probability 1. The family of chance variables {x(t)\

= {xt{(is)} augmented by the newly defined Xi(t), xr(t), x(— oo), and ordered

in the natural way, has the property £. By the corollary to Theorem 0.2,

7?|#(/)| is a monotone non-decreasing function of /. If £|x(/)| is a bounded

function, Theorem 1.3 shows that there is a chance variable «(+ oo) such that

if /„—->+ oo, x(tn)—>x(-T- oo), with probability 1. Theorem 0.3 states that the

chance variables xt(u), for / in any set bounded on the right, are uniformly

integrable.

Theorem 3.1. Let \xt), — ̂  <t< + ^>, be chance variables with the prop-

erty £. Define A, M by

A = { Ui[xt] > k) ,       M = {Li[xt] < k} ,

where I is the interval a^Lt^b. Then if stb,

(3.1.1) \xsdPtkP{\),        j xsdP^kP(M).t

IfE\xb\og \xh\ I < oo,£|r7/[|x,| ]} < oo.

We have shown that

Ui[x,\ = L.U.B. x,t,       Li[xt] = G.L.B. xtj
jai fei

t Cf. Doob [l, pp. 134-135], and also [2] where the above specific case, involving Exi is dis-

cussed. The hypothesis of the existence of Ext is unnecessary to obtain the above regularity properties

of Xt\ it is the independence condition that is essential.

t Cf. Ville [9, pp. 113-119].



478 J. L. DOOB [May

for a suitably chosen sequence s} in the interval I. By Theorem 1.1, if

A„ =   L.U.B. xSj ^ k + 1/n ,
L i&n

it follows that

f xsdP ^ kP(An), s t b.

If n becomes infinite, this becomes the first inequality in (3.1.1), and the sec-

ond is proved in the same way. If E\xb log \xb\ \ < <x>, there is, according to

Theorem 1.5, a constant K, depending only on this expectation, such that

E {L.U.B.,g„ \xSj\ } ̂ K. If n—->=° we find that E{ Ui\xt\ } ̂ K, as was to be

proved.

If the chance variables \xt(ui)} have the property £, we have seen that

/„—H implies that x(/„)—>«(/) with probability 1, unless / is in an exceptional set

which is at most denumerable. There is then a measurable process.t Accord-

ing to Theorem 2.5, there is a quasi-separable measurable process. By Theo-

rem 3.1, if 7 is any finite interval, 77/[|«(/)| ] < with probability 1. Then

it is unnecessary to use infinite-valued functions in discussing quasi-separable

processes. Let 7?i c 7? be the (at most denumerable) set of /-values where

x(t), xr(t) are different on ß*-sets of positive measure. The main result of this

section is that there is a space SI of a stochastic process with the given proba-

bility measure whose elements are continuous except possibly on a denumera-

ble /-set, and everywhere continuous on the right, except perhaps at points

of 77i (the limit lirnnt «(/') existing even on Z>i). In order to prove this, we

shall need several preliminary results.

Lemma 3.2. Let ua(of) be a measurable function of co, where co varies on some

space on which a measure function is defined. The subscript a ranges through

the ordinals of the first and second classes. Suppose that for each co if a2>ai,

«„2(co) >ma,(co) unless Uß(co) =ma,(co) for all ß>a. Let m(co) =L.U.B.„^i w«(co).

Then there is a subscript v such that m„(co) =w(co) for almost all co.

We shall only need this lemma if the {w„(co)} are uniformly bounded and

if the co-measure is finite-valued, so only this case will be proved, but the ex-

tension to the general case can easily be done. Let e be any positive number.

We shall prove first that there is a subscript ß = ßt such that if y >ß, uy — u$ < e

except possibly on a set (depending on y), of measure less than e. If this is not

so there are pairs (ft, y,), (ft, y2), • • • with ft<yi<ft<72< ■ • ■ such that

ßyn(co) —Uß„(w) ̂  t on an co-set A„ of measure not less than e. The set of points

A in infinitely many A„ has measure at least e. Now this is impossible, since

t Doob [1, p. 118].
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then w(co) = + » on A„, and we have supposed that the ua are uniformly

bounded. There are therefore subscripts ft, ft, ■ ■ ■ , ft<ft< ■ ■ ■ such that

(we are choosing e successively as 1/2, 1/3, • • • in the above result) if y>ßn

uy - uß„ < 1/n,

except possibly on a set of measure less than 1/n. The sequence {fXß„(u) } is

monotone; let lim„,M %„ = m0O. Let v be any ordinal of the second class, be-

yond ß\, ß2, ■ ■ ■ . Thenß„tßß„, »^1, soa»^«„ for almost allco. On the other

hand, uv^Ußn+l/n, except possibly on a set of measure not greater than 1/n.

Therefore w„ _ ux for almost all co. It follows that uv = u„ for almost all co and,

since v was any ordinal of the second class beyond ft, ft, • ■ • , uv+1 — uK, for

almost all co also. Thus except for an co-set A0 of zero measure, uy+1 = ux. This

implies that if co £ A0, uv = ur+i = ■ • ■ = u, as was to be proved.

Lemma 3.3. Suppose that P*-measure has the property that for almost all t,

tn—*t implies that x(t„)—>-x(t) with probability 1. There is then a space SI of a

quasi-separable measurable process. Let c/>(co) be an Sl-measurable function and

let <p„(co) = v/n, where

(v - V)/n ^ c6(co) < v/n, v = 0, + 1, • • • , n = 1, 2, • ■ • .

Then x[s-\-(pn(oi)], x|s-f-<p(co)]t are measurable (s, us)-functions (co e St) and

x[s+<p„(co)]—>x[s+<p(cx))] almost everywhere on (s, oo)-space (co e SI).

According to Theorem 2.4, there is a quasi-separable process with the

given P*-measure. The hypotheses have been shown to imply that any quasi-

separable process is measurable.t Let St be the space of a quasi-separable

measurable process. To show that x[^-|-0(co)] is (s, co)-measurable (co e St),

we must show that for any k, \x[s-\-cp(o})] >k) is an (s, co)-measurable set.

Since xs(co) is (s, co)-measurable (co e Si), because of the measurability of the

process with space SI, we need only show that if A is an (s, co)-measurable set,

the points (s, co) with (s+c6(co), co) e A constitute an (s, co)-measurable set.

Denote this image of A by Ai. We shall show that the transformation A—>Ai

takes measurable sets into measurable sets. Suppose first that Ä = 7XA: the

direct product of an ^-interval a^s^b and a measurable Sl-set A. Then Äi is

a simple ordinate set: the (s, co) points "over" A determined by the inequalities

a — (j>(w) ̂  s ^ b — <p(u),

and an ordinate set of this type is known to be measurable. It follows that if A

f The function a:[i+0(a!)] is the function x„(oi), where a = s-\-<t>(u), and x[s+0„(w)] is defined

similarly.

tDoob [l,p. 118].
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is in the Borel field J of sets determined by the sets which are direct prod-

ucts of s-intervals and Q-measurable sets, the corresponding Ai is (s, co)-meas-

urable. In particular suppose that Ä e J and that A has measure 0. Then for

almost all co0 the s-set {(s, co0) e Ä} is of measure 0. This same fact will cer-

tainly be true of the s-set {(s-\-(p(u0), co0) e Ä} so the set Ai will have measure

0. Since any (s, co)-measurable set of measure 0 can be included in some set

of J which is of measure 0, it follows that whenever A is measurable and has

measure 0, the same is true of Ai. Now the most general (s, co)-measurable

set A differs from some set M of J at most by a set of measure 0, so the corre-

sponding Ai will differ from Mi by at most a set of measure 0: Ai is measurable,

as was to be proved. We have thus proved that a; [s+$(«)] (and therefore

x\s+tpn(w) ]) is (s, co)-measurable (co e Q). According to Theorem 2.7, if x(t) t Q,

x(t) is continuous for almost all t, with probability 1. Then if co is fixed,

x[s+(pn(u>)]—*x[s+<p(o))] for almost all s, with probability 1. This implies

that x[s+(ßn(u)]—>*[s+<p(co) ] for almost all (s, co), which is the final conclu-

sion of the lemma.

Lemma 3.4. Let u(cc) be an u-measurable function, defined on the space ß

of a stochastic process whose chance variables {xt(u>)} have the property £. 5"«^-

pose that «(co) takes on only a finite number of values: w(co)=X,- on A,-,

y=l, 2, • • ■ . Suppose that for each j, {u(of) =X,| is an oi-set depending on co:

x(t) for t <X,-. Then the chance variables {yt}, yt = x [t-\-u(u) ] (that is, yt = x„(co),

f = /+«(«)), have the property £,for t>0.

To prove this fact, we need only show that if M is a P*-measurable set

depending on the y(t) for t = h, ■ ■ ■ , U, 0</i< • • • <tr<t,+h, then

(3.4.1) f yK+hdP = f ytdP.
J m v m

Now

(3.4.2) f ytr+hdP = Z f     yt,+xdP = Z f     *(*> + h + X,)dP.
J m ,'   J Aj ■ m ,■   J Aj ■ m

The conditions on the y(t%) determining M are, on A,, conditions on x(ti+\j),

i=*l, • ' ■ , v, so A/ M is a set depending on /-values for t^tv-\-hj. Because of

the fact that

E[xt, t ^ t, + X,-; xtr+\j+h] = xty+\j,

with probability 1 (Theorem 0.1), we find that

(3.4.3) j      x(tv + X, + h)dP = I      x(tr + \j)dP = \ yt,dP.
J Aj-M «7 a, • m #7 a, • m



1940] CHANCE VARIABLES 481

Summing over j gives

(3.4.4) f yt+hdP = f *(*, + u+ h)dP = f ytdP,
J M J M •/ M

or (3.4.1), as was to be proved.

Lemma 3.5. Let w(co) be a bounded (^-measurable function, defined on the

space SI of a stochastic process whose chance variables xt(co) have the property £.

Suppose that for each number c, (w(co) tc} is an co-set depending on co: x(t) for

t<c. Let S be any everywhere dense denumerable set. Then lim,,0 £[$+«(«)]+

(s c S) exists with probability 1.

Let w„(co) = v/n where

(v - l)/n ^ m(co) < v/n, v = 0, + 1, ■ • • , n = 1, 2, • • • .

Then w„(co) satisfies the hypotheses of Lemma 3.4. Let yn(s) =x[s+un(co)],

y(s) =x[s-\-u(co)]. We show first that, f or fixed n and s>0, ifr>5+L.U.B.um(w),

then

(3.5.1) E[yn(s);x(T)} = yn(s),

with probability 1, that is, that the ordered pair of chance variables yn(s),

x(T) has the property £. Let A be any w-set depending on yn, that is, deter-

mined by some condition imposed on y„. It must be shown that

(3.5.2) f yn(s)dP = f x(T)dP.
J A. J a

Let A„,,- = { m„ =j/n}. Then

(3.5.3) fyn(s)dP=zZf x(s+j/n)dP.

Now the co-set A„,,- depends only on /-values less than j/n, and on A„,,- the con-

dition on y„ determining A becomes one on x(s+j/n), so A-A„,,- depends only

on /-values not greater than s+j/n. This means that, using the property £,

(3.5.4) f yn(s)dP = £ f      x{T)dP = f x(T)dP,

or (3.5.1), as was to be shown. Now if n varies, it follows that the yn(s) are

uniformly integrable, from the proof of Theorem 0.3: in fact, the proof of

that theorem did not use the full property £, but only the fact that, for

f The function is the function x„(oi), where <r=s+u(,a).



482 J. L. DOOB [May

t^t0, E[xt; xto]=xt with probability 1. This corresponds to the fact that

E[yn; x(T)]=y„, n= 1, 2, • • • , with probability 1.

Having these preliminary facts in mind, we proceed to prove Lemma 3.1.

We enlarge S to include the rational numbers, and so that S contains the

number si+s2 if it contains Si and s2. Let 8h 82 be positive numbers, with

5i<52. According to Lemma 3.4, the yn(s) for s>0 (w fixed) have the prop-

erty £. Then it can be verified at once that the chance variables yn(s) — y„{8i),

for s>8i (n fixed) have the property £. Using Theorem 3.1, we find that

(3.5.5) pIl.U.B. [yn(s) - yn(6A] > «1 = — f [y„(o,) - y»(«i) ]<*p, s s S,

where A is the set on the left, and

(3.5.6) p{g.L.B. [yn(s) - y„(0l)] < - 4 ^ — f [y»(«») - y»(«i)]«iP, je5,

where M is the set on the left. Then surely

pIl.u.b. [y.(i) - y.(«x)] > A = _L f I y»(«i) - y»(«i) I dP,
lJi<s<ä> Je./

(3.5.7)

p/g.L.B. [yn(s) - yB(«0] <-«}=— f I ~ I ̂ >

so that

(3.5.8) pIl.U.B. I yn(s) - yn{h) | > A = ~ f I ?»(«») ~ Vnih) \ dP,stS,
\s,<s<s, ;       e J

which implies that

(3.5.9) p\ l.U.B.  I yn(s>) - yn(s") \ > 2*1 ̂  — f | yn(52) - yn(5x) | <7P,

s', s" tS.

Now if £„ denotes the quantity on the left in (3.5.9),

£» = Z W L-u-B-  I *<** + */») - *(*" + "/») I > 2e; «„ = x/«}

(3.5.10) = 2Z P{       l.U.B.       I »(s') - x(s") I > 2«; «» = f/« 1,

= P<;        l.U.B.        I x(s') - >2t\, s',s"tS.
i+w+l/n<s',s "<os+«
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It is easily verified that all the sets involved are co-measurable. When n be-

comes infinite, we obtain

(3.5.11) lim inf    ^ P\     L.U.B.      | x(s') - x(s") \ > 2e\ ,      5', s" tS.

It was shown in Lemma 3.3 that y„(s)-^-y(s) for almost all (s, co). Then except

for some s-set e of measure 0, yn(s)—*y(s) for almost all co. Choose Si, S2 not

in e. Combining (3.5.9), (3.5.10), (3.5.11), we find that

(3.5.12) p\    L.U.B.     I x(s') - x(s") \ > 2e\ ^ — f \ y(fo) - y(8{) | dP,

s , s tS.

We can integrate to the limit because the y„ have been shown to be uniformly

integrable. Now let ch—»0 along a sequence of values remaining out of the

set e. By Theorem 1.2, y(S) approaches a limit with probability 1, say y(0+),

and we can integrate term by term, so that

(3.5.13) pi   L.U.B.    I x(s') - x(s") | > 2el g — f | y(«,) - y(0 +) | dP,
(«<s',s"<Ji+u ) € J

s', s" tS.

If now 52—>0 along the same sequence of values, the integral goes to 0. This

means that the oscillation of x(t) at t = u(co) on the right (only considering the

function x(t) defined on S) is not greater than 2e, with probability 1. Since e

is arbitrary, the lemma follows at once from this fact.

Theorem 3.6. Suppose that the chance variables {xt} have the property £.

Let Di be the (at most denumerable) set of t-values for which x(t), xr(i) are not

identical with probability 1. There is a space SI of a quasi-separable measurable

stochastic process whose elements x(t) have the following properties: each element

x(t) is continuous except possibly at a denumerable set of t-values (which may

vary with the element x(t)); limA|0 x(t-\-h) exists for all t, and the limit is x(t)

if ti.Di, limao x(t+h) =xT(t), Km;, to x(t+h) =Xi(t) with probability 1, at each

t-value.]

The results obtained in this theorem are less strong than those obtained

in the case of a differential process, discussed above, in which the increments

of x(i) in nonoverlapping intervals are independent chance variables. In the

differential case, the only discontinuities are jumps, whereas here the ele-

ments x(t) can apparently have complicated discontinuities on the left (of

probability 0 at any fixed /-value, however, except where xt(t), x(t) are not

f The exceptional ß-set depends on t. It will be remembered that except for a denumerable /-set,

xi{t) = xr(t)=x(t) with probability 1 (t fixed).
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equal with probability 1, and there the discontinuity is a jump, with proba-

bility 1). Some such difference might have been suspected, since the property

£ is essentially unsymmetric in /.

Proof of Theorem 3.6. Let 5 be any everywhere dense denumerable set,

and let e be any positive number. Consider the /-set E[x(t) ] where the oscilla-

tion of x(t) (/ £ S) is not less than e. This is a closed set. The co-set

(3.6.1)   f[ E {\x(s')- x(s")\te-l/V], s',s"tS,
v=\ \s'—8"\<l/v,a—l/v<t',8"<b+l/i>

is the set of elements x{t) for which E has at least one point in <z ?£/?£&. This

set is evidently immeasurable. Let k be any positive integer. For each x(t)

define m[x(/)] as the first value of / with —k^t^k in E[x(/)] at which the

discontinuity on the right is greater than 0;f if there is no such point, let

u = k. The points s of -£[#(/)] with — k^s <u[x(t)] define a set F [#(/)] with

the following properties: there is no sequence Si, s2, ■ ■ ■ in F[x(/)] with

Ji>i2> • • • ; F[x(t)] is at most denumerable. Then if F[x(/)] is not empty,

and is ordered from left to right, it is a well-ordered set, whose ordinal num-

ber is in the first or second class. If a is any ordinal number in the first or

second class, define ua [x(t) J as the ath point of F[x(t) ] (or ua = u, if there is no

cvth point). Then if ß>a, Uß[x(t)]>ua[x(t)] unless «„[#(/)] = ua+i[x(t)]

= ■ ■ ■ =u[x(t)], and for each function x(/) there will be an a such that the

above equalities are true. Concluding this preliminary discussion, we come to

the proof of the theorem, which we shall divide into three parts.

I. Let ki, k2 be any numbers with ki<k2. Let v [x(i)] be the first point of

£[x(/)] in the interval ki^t^k2, or if there is no such point let fl[x(/)] =kt.

Then we prove that

(i) z>[x(/)] is a measurable function of co,

(ii) the co-set vtc, for any number c, depends only on / for t<c, and

(iii) the oscillation of x(t) (/ £ S) on the right at v [x(t) ] is 0.

To prove (i) it is sufficient to note that ki = v = k2 and that the (measura-

ble) co-set (3.6.1) with a = ki, ki<b<k2, is the set {v^b}. To prove (ii) we

note first (from (3.6.1) with a = ki, b = c — rj) that the co-set {v^c — 77}

(ki<c<k2) depends only on /-values less than c — v/2, for any 77>0. Letting

77—>0, we find that the co-set {v<c} and therefore also {vtc} depends only

on /-values less than c. It then follows that (ii) holds for all c. Lemma 3.5

can now be applied to show that lim, j„ x(s) (s t S) exists with probability 1,

that is, that (iii) is true.

t The discontinuity on the right at to is defined as limj,o L.U.B.<„<»',s"<<„+s \ x(s')—x(s")

(s',s"tS).
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II. We next prove that for each a

(i) ua \x(t) ] is a measurable function of co and

(ii) {m„[x(/)]^c}, for any number c, depends only on /-values for t<c.

The proof will be given by transfinite induction. Consider the case a = l.

Let z>[#(/)] be the first point of E[x(t)] in the interval — k^t^k, or let v = k

if there is no such point. Then I shows that v = ui with probability 1, and

that Ui has the properties (i) and (ii) since v has. Suppose that (i) and (ii)

are true for some a. We shall show that they are then true for a+1. Let

w[#(/)] be the first point of -Ejx(/)] in the interval ua[x(t)]<t^k; let w=k,

if there is no such point or if ua = k. We can obtain w as follows: for each

rational number r<k determine the co-set {ua<r}; on this set w is the first

point of £[#(/)] beyond r, and not greater than k, or w = k if there is no such

point; if ua = k,w = k also. This makes it obvious, using I, that w = ua+i with

probability 1. Properties (i), (ii) are true for ua+i since they are true for w

(as can be seen using I and the fact that (i), (ii) are known to be true for ua).

To finish the induction proof of (i), (ii), we must show that if ai<a2< • • • ,

and if a is the first ordinal beyond the a,-, then (i), (ii) are true for ua if they

are supposed true for . Let ffi=lim,^ uaj. Then w is a /^-measur-

able function, w^u, and if w[x(t) ] <k, w[x(t)] is certainly a point of E[x(t) ].

Moreover, since (ii) is true for «„„ ua„ • • • , it follows easily that (ii) is true

for w [#(/)]. Lemma 3.5 now shows that x(t) has 0 oscillation on the right

(/1 S) at w, with probability 1, so that w[x(t) ] =ua [x(t)], with probability 1.

Therefore ua has the properties (i) and (ii), since w has. We have thus proved

that (i), (ii) hold for all a.

III. The functions {m„(co)} satisfy the hypotheses of Lemma 3.2, so there

is an index v such that w„ = L.U.B.a ua = u except possibly on an co-set of meas-

ure 0. It is impossible that uv = u<k on an co-set of positive measure, because

ti, is a point with 0 oscillation of *(/) (/ e S) on the right, with probability 1

(Lemma 3.5), whereas u is by hypothesis a point where the oscillation on the

right is positive, if u<k. Then u, = u = k almost everywhere on £2*. The in-

dices a S v are denumerable, at most, so we have proved that if an co-set of

measure 0 is excluded, lim^i« x(t') (/' t S) exists for all /, with |/| ^k, where

the oscillation of x(f) (t t S) is at least e. If we apply this result letting e run

through the values 1, 1/2, 1/3, • • • and k through the values 1, 2, ■ • ■ , we

find that neglecting some co-set of measure 0, linv 11 x(t') (/' e S) exists for all /.

Theorem 2.8 can now be applied to give the conclusion of the present theo-

rem, except that part involving lim^o x(t+h), linuto x(t+h) (t fixed),

lim^M x(t), lim^«, x(t). We have seen above, in our preliminary discussion

of continuous stochastic processes whose chance variables {xt(u>)} have the

property £, that if tn | /, x(tn)—*x,(t) with probability 1. This implies that if S
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is any denumerable set,lime 11 x(t') =xr(t) (f e S), with probability lf;so if the

process is quasi-separable, linu j 0 x(t+h) = xT(t), with probability 1. The other

cases are treated similarly.

Theorem 3.7. Let P*-measure be arbitrary, and let x be any chance variable

depending on the xt (that is, a P*-measurable function) whose expectation exists.

Let ö be the space of a stochastic process with this P*-measure. Then if y(t)

= E[xs,s^t; x],\ these conditional expectations can be defined so that for co fixed,

in Q,, not in some set of probability 0, y(t) is continuous except possibly on a

denumerable set, and even on this set linu j 0 y(t+h) exists; moreover lim^« y(t)

exists, and limu+x y(t) =x.

The chance variables y(t) have the property 6. This theorem follows read-

ily from Theorem 3.6, using the discussion of families of immeasurable func-

tions at the end of §2. The fact that the limit as t—*+ » is x follows from

Theorem 1.4.
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