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Nilpotent finite groups may be denned by a great number of properties.

Of these the following three may be mentioned, since they will play an im-

portant part in this investigation. (1) The group is swept out by its ascending

central chain (equals its hypercentral). (2) The group is a direct product of

^-groups (that is, of its primary components). (3) If S and T are any two sub-

groups of the group such that T is a subgroup of S and such that there does

not exist a subgroup between S and T which is different from both S and T,

then T is a normal subgroup of S. These three conditions are equivalent for

finite groups; but in general the situation is rather different, since there exists

a countable (infinite) group with the following properties: all its elements not

equal to 1 are of order a prime number p; it satisfies condition (3); its com-

mutator subgroup is abelian; its central consists of the identity only.

A group may be termed soluble, if it may be swept out by an ascending

(finite or transfinite) chain of normal subgroups such that the quotient groups

of its consecutive terms are abelian groups of finite rank. A group satisfies

condition (1) if, and only if, it is soluble and satisfies condition (3) (§2); and

a group without elements of infinite order satisfies (1) if, and only if, it is the

direct product of soluble /'-groups (§3); and these results contain the equiva-

lence of (1), (2) and (3) for finite groups as a trivial special case. If a group

without elements of infinite order may be swept out by an ascending chain

of subgroups such that each is a normal subgroup of the next one and such

that the quotient groups of its consecutive terms are cyclic, then (2) and (3)

are equivalent properties, though they no longer imply (1) (§4). If a group

satisfies condition (1)—or suitable weaker conditions—then the elements of

finite order in this group generate a subgroup without elements of infinite

order which is a direct product of /'-groups.

A seemingly only slightly stronger condition than (3) is the following

property: (3') If S and T are any two subgroups of the group such that T

is a subgroup of S and such that there exists at most one subgroup between

5 and T which is different from both S and T, then T is a normal subgroup

of S. Clearly (3') implies (3), though there exist groups which satisfy (3),

but not (3')- A closer investigation reveals however that (3') is a much

stronger imposition than it seems to be, since it is possible to prove the fol-

lowing theorem: A group, that either does not contain elements of infinite
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order or else is swept out by its ascending central chain, satisfies condition

(3') if, and only if, all its subgroups are normal subgroups, that is, if it is

either abelian or hamiltonian (§6).

In an appendix we have given a list of properties which may serve as a

definition of nilpotent groups, provided the group in question is finite; and

since these properties are in general no longer equivalent, we have added a

chart, indicating their interrelations.

0. In this section we state some notations and facts which will be used in

the course of this investigation.

O.A. Z(G) is the central of the group G.

Z0(G) = 1; Zr(G)^Z,+1(G)^G and Z{G/Z,{G))=Zv+l{G)/Zv{G); if X is a

limit-ordinal, then Z\{G) is the join of all the ZV(G) for v<\, so that the as-

cending central chain ZV{G) is defined for every finite or infinite ordinal v.

C{G) is the commutator subgroup of G.

C0(G) — G, Ci+i(G) =C(d(G)) so that d(G) is defined for every integer i.

C°(G) =G, Ci+1(G) is the subgroup generated by all the elements gcg_1c_1

for gin G, c in C^G), so that the descending chain C'(G) is defined for every

integer i.

O.B. Every subgroup of the group G is a normal subgroup of G if, and only

if, x_1yx is a power of y for every pair x, y of elements in G. If every subgroup

of G is a normal subgroup of G, then there are two possibilities:

(A) G is abelian, that is, C(G) = 1, Z(G) =G.

(H) G is hamiltonian. Then C(G) is of order 2, Z(G) consists of those ele-

ments whose order is not divisible by 4, G/Z(G) is a direct product of two

cyclic groups of order 2, so that C2(G) = C2(G) = 1 and G = Z2(G). Furthermore

G is a direct product of three groups Q, T, U where Q is a quaternion group,

T an abelian group all of whose elements not equal to 1 are of order 2, and U

an abelian group all of whose elements are of odd order so that in particular G

does not contain elements of infinite order.

O.C. If p is a prime number, then a group G is said to be a p-group if all

its elements are of order a power of p, and primary components are [greatest]

/>-subgroups which contain all the elements of order a power of p.

O.D. If A is an abelian group, then its elements of finite order form a sub-

group F(A) which is the direct product of its primary components; and

A/F(A) does not contain any element not equal to 1 of finite order. The

group A may now be said to be of finite rank, if

(i) the elements in A which satisfy x" = 1, p a prime number, form a finite

group,

(ii) there exists a finite number of elements a(l), •   • , a(n) in A so that
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for every element * in A for which modulo F(A) there exist integers

m^O, m(i) satisfyingU"_xa(i)"•<»'>=£»> modulo F(A).

If F(A) = 1, that is, if the identity is the only element of finite order in

the abelian group A, then the smallest integer n, meeting the requirement

(ii), is termed the rank of A. The rank of such a group A is at the same time

the greatest number of linearly independent elements in A. If B is a proper

subgroup of A, then either the rank of B is smaller than the rank of A ; or if A

and B have the same rank, then there exists an element win A, but not in B,

and a positive integer i so that wl is an element in B.

O.E. If G is a group with abelian central quotient group, then CiG) ^Z(G);

and all the properties we are going to use are simple consequences of the fol-

lowing well known formulas:

x(yz)x~1(yz)~1 = (xyx^y-^ixzx^z-1),

{xyY = (yxy~1x^1)i(-i~1)2~''xiyi.

0. F. In the introduction we have mentioned a condition, concerning

greatest subgroups, which will play a fundamental part in the course of our

investigations. For future reference this property may be restated here as

follows.

(G) If S and T are any two subgroups of the group G so that S <T and so

that there does not exist any subgroup B between S and T which is different from

both S and T, then S is a normal subgroup of T.

We mention furthermore that the subgroup 5 of T is said to be a greatest

subgroup of T, whenever 5 is a proper subgroup of T and there does not exist

any subgroup between 5 and T which is different from both 5 and T. Thus

(G) implies, in short, that greatest subgroups are normal subgroups.

1. In this section we are going to prove several auxiliary theorems which

will be needed in the future. Most of them are concerned with the existence

of central elements not equal to 1 which lie in prescribed subgroups, provided

the group satisfies the condition (G), enunciated in O.F.

The crosscut of all the greatest subgroups of a group G is always a char-

acteristic and, therefore, a normal subgroup M(G) of G.

(1.1) If there exist greatest subgroups of the group G, and if every greatest

subgroup of G is a normal subgroup of G, then G/Miß) is an abelian group not

equal to 1.

For if 5 is a greatest subgroup of G, and if at the same time 5 is a normal

subgroup of G, then G/S is a cyclic group of order a prime number, so that

C(G)^S.
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(1.2) If the group G is different from 1, if G is generated by a finite number

of elements, and if every greatest subgroup of G is a normal subgroup of G, then

G*C(G).

Proof. Since G is generated by a finite number of elements, there exists a

smallest set N of generators of G (so that no proper subset of N generates G).

If u is some element in N, then there exists a greatest subgroup U of G which

does not contain u but contains all the other elements in N, since the sub-

group of G which is generated by the elements different from u in N is differ-

ent from G and hence cannot contain u. If V is a subgroup of G such that

U < V, then V contains u and is therefore equal to G; that is, U is a greatest

subgroup of G. Hence M{G) <G. But it follows from (1.1) that C(G) ^M{G),

and this shows that C{G) <G.

(1.3) If G is generated by a finite number of elements, if C is a normal sub-

group of G, and if G/C is finite, then C is generated by a finite number of ele-

ments.^

Remark. That the hypothesis of the finiteness of G/C is really needed

may be seen from the fact that the commutator subgroup of a free group with

two generators is not generated by a finite number of elements.

Proof. Denote by T some finite set of generators of G and by R a complete

set of representatives of G/C so that both R and T are finite sets. If X is any

element in G/C, then denote by r(X) the uniquely determined element in R

which satisfies X = Cr(X). The elements

(X, Y) = r(IF)f(F)-'f(I)-1

for X and Y in G/C and the elements

s(t) = tr{Ct)~l

for t in T are in the normal subgroup C of G and so are the elements

r(X)s{t)r(X)~l. Since R and T are finite sets, it follows that the set D con-

sisting of all the elements (X, Y) and r(X)s(t)r(X)~1 for X, Y in G/C and t

in T is a finite subset of C. Let D* be the subgroup generated by D.

D* is clearly a subgroup of C; and G is generated by adjoining the ele-

ments r(X) to D*, since t=s{t)r(Ct). We have

r(X)(Y,Z)r(X)-1 = r(X)r (FZ)r(Z)-1r(F)"V(Z)-1

= (X, YZ)r{XYZ)r{Z)-h(XY)~l{X, F)"1

= (X, YZ){XY, Z)-\X, Y)-\

f The proof is an obvious application of the Schreier-Reidemeister method.
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so that every transform of some (F, Z) by some r(X) is in 77*. Also

r(X)r(Y)s(t)r(Y)-h(X)-1 = (X, Y)r{XY)s{t)r{XY)~KX, F)_1,

so that every transform of any element in 77 by any of the r(X) is in 77*.

Since G is generated by adjoining the elements r{X) to 77*, this shows that 77*

is a normal subgroup of G. Since the (A, F) are in 77*, and since D* is a sub-

group of C, the finite groups G/C and G/77* are essentially the same; and this

implies 77* = C. Thus it has been proved that the finite set D of elements is a

set of generators of C.

Lemma 1.4.f If G is generated by a finite number of elements, if G does not

contain elements of infinite order, then every d{G) is generated by a finite num-

ber of elements; and if, furthermore, condition (G) is satisfied by G, then Ci(G) 9^ 1

implies Ci+i(G) <d{G).

Proof. C0(c7) =G is generated by a finite number of elements. Hence as-

sume that it has already been shown that C,(G) is generated by a finite num-

ber of elements. Then d(G)/d+i(G) is generated by a finite number of ele-

ments and all its elements are of finite order, since all the elements in

d(G)^G are of finite order. Hence d(G)/d+i(G) is finite. Since CVi(G)

= C(d(G)), it follows now from (1.3) that Ci+i(G) is generated by a finite

number of elements; and hence every C,(G) is generated by a finite number of

elements. It is now a consequence of (1.2) that C,-(G) ̂  1 together with condi-

tion (G) imply Ci+i(G) <Ct(G).

(1.5) If every greatest subgroup of G is a normal subgroup of G, if the com-

mutator subgroup of G is abelian, if G is generated by a pair of elements a, b so

that b is in the commutator subgroup of G, then G is cyclic.

Proof. G may be generated by adjoining a to C(G). If c = aba~1b~l, then

the elements aicari for integral i generate a normal subgroup of G which is

contained in C(G)—since b permutes with every element in C(G)—and mod-

ulo which G is abelian, since it contains c, and since G is generated by a and b.

Hence C(G) is generated by the elements axa~\ This implies however that G

is generated by a and c. If c is not a power of a, then there exists a greatest

subgroup of G which contains a, but not c. This subgroup V is a greatest sub-

group of G so that C(G) g V. Since V contains both a and C(G), it follows

that V = G so that V would contain c in contradiction to the choice of V.

Hence c is a power of a so that G is the cyclic group, generated by a.

(1.6) Suppose that the commutator subgroup of the group G is abelian and

that G is generated by two elements a, b where bc = cb for every c in C(G). Let

I Cf. Corollary 3.7 below which improves this result in certain respects.
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b0 = b, bi+i = abid~1br1; and let Go=G and G,-+i be generated by adjoining a to

C(G»). Then Gi is generated by a and bi, C(Gi) by the elements a'bi+ia~' for in-

tegral j, and C(Gi) = Ci+1(G).

Proof. Since G0 = G,bo = b,G0 is generated by a and b0. Assume now that Gi

is generated by a and bi. Let Vi be the subgroup generated by the elements

a'bi+ia-i for integral/. Then F;gC(G<). Since b permutes with every element

in C(G) and therefore with every element in Vi, since the set of generators

of Vi is transformed into itself by a, and since G is generated by a and b, it

follows that Vi is a normal subgroup of G and therefore of G,. Since finally

Gi/Vi is abelian, as bi+i is in Vi, it follows that C(G;) g V{, that is, C(G.) = F<.

Since Gi+i is generated by adjoining a to C(Gt) = Vi, it follows that Gi+i is

generated by a and bi+i.

Since C(G0) =C(G) =^(0), we may assume that F, = C(G<) =Ci+1(G).

Since b permutes with every element in Ci+1(G), it follows that Ci+2(G) is

generated by the elements a'xa~'x~1 for integral / and x in Ci+1(G). Since

Ci+1(G) is an abelian group which is generated by the elements a'bi+\a~r for in-

tegral r, it follows that Ci+2(G) is generated by the elements arffs&t+ia~87>1T(11a_r

for integral r and s. If s <0, then

(a bi+ia bi+i)    = bi+1a 6i+1a

= a (a bi+ia oi+i)a ;

and if O^s, then

«+l —1—« —1 » — 1 — 1    —s  s — a — 1

a   bi+\a     o,-+i = a ao;+ia  o,+ia a Oi+ii o.+i

= a bi+2a  a Z>t+ia

and it follows by complete induction with regard to s that we have

a bi+ia bi+i = 11 a bi+2a for 0 < s.

Hence Ci+2(G) g F,-+i = C(Gi+1) gCi+2(G), and this completes the proof.

Lemma 1.7. If the commutator subgroup C(G) of the group G is abelian, if G

is generated by two elements u and v so that vc = cv for every c in C{G), and if G

satisfies (G), then either C*(G) = 1 or Ci+l(G) <C;(G).

Proof. As in (1.6) we use the following notations: v0 = v, vi+\ = uviu~1vT1;

G0 = G, Gi+i is the subgroup generated by adjoining u to C(G,). Then it fol-

lows from (1.6) that G,- is generated by u and vt, and that C(Gi) =Ci+x(G).

Assume now that for some integer i we have C{(G) =Ci+1(G). Then

C(Gi_i) =C(Gt) and therefore Gi = Gi+i. Hence G, is generated by u and vi+i,
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where Vi+i is contained in the abelian commutator subgroup C{G%)^C{G)

of Gi. Since G satisfies (G), so does G,. Hence it follows from (1.5) that d

is a cyclic group. Consequently C(G,) = 1, »<+i = l, so that Gt is the cyclic

group generated by u. Thus it follows that 1 = C(G,) = Ci+1(G) =C*(G), and

this completes the proof.

(1.8) If B is an abelian group all of whose elements not equal to 1 are of

the same order, if B possesses a countable basis ■ ■ ■ , b{i), b(i + l), ■ ■ ■ , and if

the group G is generated by adjoining an element g to B that is subject to the rela-

tion g~1b(i)g = b(i+l), then condition (G) is not satisfied by the group G.

Proof. B is a normal subgroup of G, and G/B is an infinite cyclic group.

The elements not equal to 1 in B are either all of order a prime number p

or they are all of infinite order. Accordingly three cases are distinguished.

Case 1. The elements not equal to 1 in B are of order 2.

Denote by U the subgroup of B which is generated by all the elements

b(i)b(i+l)b(i+2), and by S the subgroup of G which is generated by

6(1)6(2)6(3) and g. Then U is the crosscut of B and 5.

If x^l is any element in U, then it begins with some b(i) and ends with

some b(i+j) where 1 <j. Thus U does not contain 6(1)6(2). Since 6(l)g6(l)_1

= 6(l)6(2)g, this shows that S is not a normal subgroup of G.

Suppose now that S <T^G. Then T contains elements w which are in B but

not in U. Such an element has a certain "length," so that T contains an element

w in B but not in U which is of shortest length. Suppose that w begins with b{i)

and ends with b(i+j). Since U contains b(i+j — 2)b(i+j— l)b(i+j), it follows

that 0 £ 1. For; = 1 we would find however that b (i) b (i +1) b(i)b(i +1) b (i + 2)

= b(i + 2) would be of shorter length. Hence w = b{i) and T = G, so that 5 is a

greatest subgroup of G though not a normal one.

Case 2. The elements not equal to 1 in B are of order a prime number

Denote by U the subgroup of B which is generated by the elements

b(i)b(i + l) and by 5 the subgroup of G which is generated by g and 6(1)6(2).

Then U is the crosscut of 5 and B.

Any element x^l in U contains at least two elements b{i) and b(J) ^b{i)

as factors. Thus 6(1) is no element in U. Since 2 is relatively prime to p, it

follows that 6(1)2 = 6(l)6(2)-16(l)6(2)is not an element in U. Hence 6(1)6(2)"!

is not contained in U. Since b{\)gb{\)~1 =6(l)6(2)~1g, this shows that S is not

a normal subgroup of G.

Suppose now that S<T^G. Then T contains elements w which are con-

tained in B but not in U. Amongst these there are some of shortest "length";

and since U contains b(i)b(i+l), it follows that such an element of shortest
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length has the form b(i)n where n is relatively prime to p. Hence T contains

b(i) and therefore every b(j), so that T = G. Thus 5 is a greatest subgroup

of G but not a normal one.

Case 3. The elements not equal to 1 in B are of infinite order.

Then let p be some prime number. Clearly the subgroup Bp which is gen-

erated by the elements b(i)p is a normal subgroup of G. The group G/Bp is

then just of the type discussed under Cases 1 and 2. Hence G/Bp does not

satisfy (G), so that G itself cannot satisfy (G).

Lemma 1.9. If condition (G) is satisfied by the group G,if H?±\ is a normal

subgroup of G, if H is abelian and G/H cyclic, then the crosscut of Z(G) and H is

different from 1.

Proof. Let g be an element that generates G modulo 77. Then the crosscut

of Z(G) and 77 consists of exactly those elements x in 77 which satisfy xg = gx.

Case 1. 77 contains elements not equal to 1 of finite order.

Then 77 contains an element u of order a prime number p. Denote by 77

the subgroup generated by u and g. The crosscut V of 77 and H is generated

by the elements u(i) =g~'ugi for integral i.

If there did not exist any relation between the elements u(i), then 77

would be a group of the type discussed in (1.8). This is impossible, since G

and 77 satisfy condition (G). Hence there exists a relation between the u(i).

This proves that V is generated by a finite number of elements, so that V

is a finite abelian group not equal to 1.

There is nothing to prove if V^Z(U). If this is not the case, then

1 <C(U) g V. Since V is finite, it follows that the chain of subgroups C'(77)

ends, so that there exists an integer i satisfying Ci+1(U) = Ci(U) <Ci_1(77)

g V. Since G and 77 satisfy (G), it follows from Lemma 1.7 that C'(U) = 1.

Hence 1<C*-1(Z7) &Z(U) so that the crosscut of Z(77) and V is different

from 1. Thus the crosscut of Z(G) and 77 is different from 1.

Case 2. All the elements not equal to 1 in H are of infinite order.

Then there exists for every element x in 77 and for every integer n at most

one element y in 77 so that x=yn.

Let u be an element not equal to 1 in 77. Denote by 77 the subgroup gen-

erated by u and g. The crosscut V of 77 and 77 is generated by the elements

b(i) =g~iugi for integral *.

If there did not exist any relation between the elements b{i), then 77

would be of the type discussed in (1.8). This is impossible, since G and 77

satisfy condition (G). Hence there exists some relation between the b{i), and

we may assume without loss in generality that this relation has the following

form:
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71-1

(a) Ii 6(i')m(i) = b{n)m with m(\)m ^ 0;
i=l

though there does not exist any relation between 6(1), ■ • • , b(n — l). Denote

now by p some prime number that does not divide m or w(l) and denote by

Vp the subgroup of V which is generated by the elements xp for x in V.

Clearly Vp is a normal subgroup of U.

One verifies that b(n+i)mi+1 for 0<i is contained in the subgroup gen-

erated by 6(1), • • ■ , bin — 1). Since

n-l

HO)™« = II Ki - l)-m(i)6(» - l)m,
i=2

as follows on transforming (a) by g-1, one verifies too that 6(0)™cl),

6(—z)m(1>,+1 (for 0<i) are elements in the subgroup generated by 6(1), • • • ,

b(n-l).

Suppose now that r=Y\ff~11b{i)r'-i) = \ modulo Vp. Hence there exists an

element s in V so that r = sp. Then s may be represented as a product of ele-

ments 6(j) with — i^j^iior 0<i. Thus smmi+lmi+1 is certainly an element in

the subgroup generated by 6(1), ■ • ■ , bin — 1). If we put t = m{\)i+1mi+1, then

/ is relatively prime to p; and r' = stp. Suppose that st=YL*Iib(i)'li''. Then

n-l n-l

n 6(*)'*(ö = n bay^.i—i t=i
Since there does not exist any relation between 6(1), ■ ■ • , bin— 1), it follows

that tr(i) = ps(i). Since t is relatively prime to p, this implies that r(i)=0

modulo p. Thus we have proved that 6(1), • • ■ , b(n — 1) form a basis of V

modulo Vp. This shows in particular that V/Vp^ \ is a finite abelian group.

Hence it follows from what has been proved under Case 1 that the crosscut

of Z(U/VP) and V/Vp is different from 1, since G and therefore U/Vp satisfy

(G), since U/V is cyclic, and since V/Vp is abelian.

The automorphism which is induced by g in V/Vp has therefore fixed-

elements not equal to 1; and it may be represented by the matrix

0 10 0

0 0 10

0 0 0-

[m{l)m~1 m(2)m~l m(3)m~1

so that the determinant

0 0

0 0

0 1

min — 2)m~1 min — X)mrx)
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0

0

0 0 0

w(l)w_1 m{2)m~1 m(3)m~1

0

0

0

0

-1 1

min — 2)m~1 min — \)m~l — 1

whose coefficients are rational numbers with denominators prime to p, is di-

visible by p; that is, the integer Dmn~l is divisible by p. Since this holds true

for every prime number p that does not divide m or m(l), and since there

exists an infinity of such prime numbers, it follows that D = 0. Consequently

there exists an element different from 1 in V which is a fixed-element under

the automorphism induced by g in V, so that the crosscut of Z(U) and V is

different from 1. It follows that the crosscut of Z(G) and H is different from 1.

Lemma 1.10. If the normal subgroup H of the group G is different from 1,

if H is dbelian and of finite rank, if there exists for every subgroup K^l of H

and for every element g in G such that gK = Kg an element h^l in K such that

gh = hg, and if there exists an ascending chain* of subgroups Bv such that

(1) H = B2;
(2) By is a normal subgroup of Bv+\;

(3) By+i/Bv is abelian;

(4) Bv is for limit-ordinals v the set of all the elements contained in subgroups

B„ for\x<v;

(5) G = Br,

then the crosscut of H and Z(G) is different from 1.

Proof. It is possible to well-order the elements in G in such a way:

g(l), g(2), ■ • • , g(/c), g(/c+l), • ■ • that all the elements in B, precede all the

elements that are not contained in B„.

If H contains elements of finite order that are different from 1, then there

exists a prime number p such that H contains elements of the exact order p.

The subgroup generated by these elements is finite, since H is of finite rank;

and this subgroup shall be denoted by Bi. If however H does not contain ele-

ments of finite order which are different from 1, then we put H = BiSO that B\

is an abelian group different from 1 which is either finite or does not contain

any element of finite order except 1 and which is a normal subgroup of G,

since it is a characteristic subgroup of the normal subgroup H of G.

Denote by H(v) the set of elements x in Bi which satisfy g(v)x=xg(v).

* If we use the terminology introduced in §3, this amounts to saying that G/H is metacyclic.
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Then it follows from our hypothesis concerning H and G that every H(v) is a

subgroup, different from 1, of B\.

If 1 <p, then denote by K(p) the crosscut of all the H{v) for v<p. The

K(p) are subgroups of Bx too.

If Bi is finite, then the K(p) form a descending chain of finite abelian

groups. If B\ is infinite, then 1 is the only element of finite order in Bi so that

there exists to every integer i and to every b in B\ at most one solution x of

x* = b in Bi. If g is an element in G, b an element in Bi, i an integer, then it

follows that gb^b'g implies bi = gbig-i = (gbg-1)i and hence gb = bg too. The

K{p) form therefore a descending chain of subgroups of the group B\ of finite

rank with the property that K{p) <K(a) if, and only if, the rank of K(p) is

smaller than the rank of K(a).

Thus it follows that there exists in both cases a smallest ordinal r so that

K(t)=K{v) for t<?, that is, K(t)^Z(G). Since K(t) <K(p) for p<r, it fol-

lows that t cannot be a limit-ordinal so that t = p + 1, and so that K(p)^l.

There exists furthermore a uniquely determined ordinal 8 so that g(p) is an

element in Bs+1, but not in Bs. Then all the g(v) for v<p are contained in

Bi+U so that all the commutators g(")~1g(p)~1g(»')g(p) are elements in Bs;

that is, they are elements g(p) for p <p. If # is an element in A(p), and if

v < p, then

g("k(p)*g(/°)-1 = g(p)g(")gW"1g(p)"1gWg(p)*g(p)"1

= g(p)gO) «g(f )-1g(p)-1g(f)g(p)g(p)-1

= g(p)xg(i')g(i')-1g(p)-1g(i')g(p)g(p)-1

= g{p)xg{o)-1g{v)

so that g(p)K(p) =K(p)g(p). Hence it follows from K{p) ^ 1 that there exists

an element     \ in K(p) satisfying g(p)v = vg(p) and this proves that K(t)

Since K(t) ^Z(G) and since K(r) ^Bi^H, it follows that the crosscut of H

and Z(G) is different from 1.

Lemma 1.11. Suppose that the property (P) of groups satisfies the following

conditions:

(i) If (P) is satisfied by the group H, then (P) is satisfied by every quotient

group of H ;

(ii) If (P) is satisfied by the group H^l, then Z(H) 5*1.

Then there exists for every group G, satisfying (P), an ordinal f such that

G = Zf(G).

Proof. If (P) is satisfied by the group G, then (P) is satisfied by G/Z,(G).

If Z„(G) <G, then it follows from (ii) that the central of G/ZV{G) is different



404 reinhold baer [May

from 1, that is, Z„(G) <Z„+i(G). Since the Z„(G) form an ascending chain of

subgroups, there exists an ordinal f such that Zf(G) =Zf+i(G) and conse-

quently G = Zf(G).

2. In this section we shall give a characterization of the groups G which

satisfy G = Zf(G) for some ordinal f.

Lemma 2.1. If G — Zr{G), and if S is a subgroup of G, then S = Zt(S).

For one verifies by complete (transfinite) induction that the crosscut of 5

and Z„(G) is part of Z„(5).

It is a consequence of Jordan-Holder's theorem that a finite group G is

soluble if, and only if, the series of subgroups Cj(G) ends with 1. Thus the

following definition of solubility coincides for finite groups with the classical

concept.

The (finite or infinite) group G is termed soluble whenever there exists an

ascending chain of subgroups Bv for ordinals v with 0g v^ß so that

(a) A-l;
(b) Bv is a normal subgroup of G;

(c) Br+i/By is an abelian group of finite rank;

(d) By is for limit-ordinals v the set of all the elements contained in groups Bu

for p<v;

(e) Bß = G.

If G^l, then there exists a first By9*1, so that we may assume without

loss in generality that Bi9* 1.

Theorem 2.2. There exists an ordinal f so that G = Z((G) if, and only if,

G is a soluble group, satisfying condition (G).

Proof. We assume first the existence of an ordinal f so that G = Zf(G).

Since every Z„+i(G)/Z„(G) is abelian, there exists an ascending chain of sub-

groups By,„ so that Zy(G) =By,o^Bytl,^By,„^By,r=Zy+i(G) for p < o, and

ByiP+i/By,p is a cyclic group, and so that condition (d) is satisfied by the Bv,„.

Since every subgroup of the central of a group is a normal subgroup, it fol-

lows that all the By, „ are normal subgroups of G; and this proves the solubility

of G.

Suppose now that 5 is a subgroup of G and that T is a greatest subgroup

of 5. Since Z0(5) = 1, and since T contains Z„(S) whenever v is a limit-ordinal

and T contains all the Z^(S) for n<v, there exists a greatest subscript r so

that ZT(S) i£ T; and since T <S and S = Z{(S) by Lemma 2.1, it follows that

Zr(S) <S. Hence there exists an element w in ZT+\{S) that is not contained in

T. If 5 is any element in S, then wsw^s-1 is an element in ZT(S) and therefore

in T, so that wT = Tw. Since T is a greatest subgroup of S, S is generated by
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adjoining w to T; and this shows that T is a normal subgroup of G, so that (G)

is satisfied by the group G.

Assume now conversely that G is a soluble group and (G) is satisfied by G.

Let the B, form an ascending chain of subgroups of G which satisfies condi-

tions (a) to (e) and in addition Tii^l. B\ is a normal abelian subgroup of G.

Suppose that A' is a subgroup not equal to 1 of B\ and g an element in G

so that gK=Kg. Then it follows from (G) and Lemma 1.9 that there exist

elements s^l in Z so that gv = vg. Hence it follows from Lemma 1.10 that

If G is a soluble group satisfying (G), then every quotient group of G is a

soluble group satisfying (G), as may be seen by applying, to the ascending

chain Bv, the homomorphism which defines the quotient group. Since soluble

groups not equal to 1, satisfying (G), have a central different from 1, it fol-

lows from Lemma 1.11 that there exists an ordinal f so that G = Zf(G).

Corollary 2.3. If G is a finite group, then each of the following properties

implies the others:

(1) There exists an integer h so that G = Zh(G).

(2) Gis a direct product of p-groups.

(3) Condition (G) is satisfied by the group G.

The equivalence of (1) and (2) is a well known theorem.* That (3) is a

consequence of (1), follows from Theorem 2.2. If finally (3) is satisfied, then

it follows from the finiteness of G and from condition (G) that G is soluble

by Lemma 1.4; and it follows from Theorem 2.2 that (1) is satisfied by G.f

Corollary 2.4. If (G) is satisfied by the group G, and if there exists a

finite ascending chain of subgroups Bi so that

(i) B, = \,

(ii) Bi-i is a normal subgroup of Bi and Bi/B^ is an abelian group of

finite rank,

(iii) Bk = G,

then G=Zt(G) for some (finite or trans finite) ordinal f, and each quotient group

ZV+\(G)/ZV(G) is an abelian group of finite rank.

* Cf. for example, Burnside, Theory of Groups of Finite Order.

t It is known (cf. for example H. Wielandt, Mathematische Zeitschrift, vol. 41 (1936), pp. 281-

282, orH. Zassenhaus, Lehrbuch der Gruppentheorie, vol. 1, p. 108) that for finite groups condition (G)

is a consequence of the weaker condition that every greatest subgroup of the whole group be a normal

subgroup. Such a condition would be fairly ineffective in the case of infinite groups, since infinite

groups need not possess any greatest proper subgroups.

A fact that amounts essentially to the equivalence of (1) and (3) has been proved recently by

H. Wielandt, Mathematische Zeitschrift, vol. 45 (1939), pp. 209-244, (16). His condition that every

subgroup be "subnormal" (nachinvariant) implies (G) and is equivalent to (G) only in case a suitable

chain condition is satisfied; cf. also Theorem 4.13 and Corollary 4.15 below.
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Proof. We show by complete induction with regard to * that each of the

subgroups Bi fulfills the assertions of our statement. This is clearly true for

B\, since B\ is an abelian group of finite rank. Thus we may assume that it

holds true for Since 73;_i is a normal subgroup of B(, and since the

Z,(Bi-i) are characteristic subgroups of jB<_i, they are normal subgroups of

B{. Since Z,+1(Bi-i)/Z,(Bi-i) and Bi/Bi-i = Bi/Zf(Bi-1) are abelian groups of

finite rank—by the induction hypothesis—this shows that Bi is a soluble

group which satisfies (G); and it follows from Theorem 2.2 that Bi = Zr(Bi)

for some ordinal a. The subgroup of those classes of Z,+i(Bi)/Z„(Bi) which

are represented by elements in Bi-i is isomorphic with a subgroup of

Zr+i(Bi-i)/Z,(Bi-i) and is therefore an abelian group of finite rank; and

Zy+i(Bi)/Z,(Bi) is modulo this subgroup isomorphic to a subgroup of J3,-/.B,-_i

—an abelian group of finite rank. Thus Zv+\(Bl)/Zv(ßi) is an abelian group

of finite rank; and this completes the proof.

That it is impossible to prove G = Zh(G) for integral h may be seen from

the following:

Example 2.5. Let B be an abelian group of type px, that is, B is generated by

a sequence of elements b(i) so that b(\) is an element of order p, b(i)p = b(i — l).

An automorphism y of B is defined by xf=x1+p.

Let G be the group which is generated by adjoining to B an element u, sub-

ject to the relation u~1xu = x"< for x in B.

B is the commutator subgroup of G, and G/B is an infinite cyclic group.

If i is a positive integer, then Z,(G) is generated by b(i), so that B =Za!(G),

G = Zu+i(G). Thus it follows from Theorem 2.2 that (G) is satisfied by G.

Finally it may be of interest* to note that B = C(G) = C2(G).

Lemma 2.6. Suppose the subgroups W,for O^v^t of the group G satisfy:

(a) IFo = l;

(b) W^WJorvKp;

(c) Wv is for limit-ordinals v the set of all the elements contained in Wß for

p<v;

(d) W„ is a normal subgroup of G;

(e) if the subgroup S of G contains Wv, and if w is an element in W,+i, then

wS = Sw.

* For one proves easily, using an argument of Philip Hall, that if G = Zk{G) for some integer h,

then C*(G) = 1; and if Ck(G) = 1 for some integer k, then G = Zt(G). That neither part of this statement

holds true when infinite indices are admitted, may be seen from the following example that has been

discussed in the proof of (1.8). Let G be the group generated by elements b(i) for integral i (positive

or negative or zero) and by an element g, subject to the relations b{i)b{j) = b(j)b{i), b(i)2=l,

g~lb{i)g = b(i-\-\). C{G) is abelian, Z(G) = 1, (G) is not satisfied by G, but the crosscut of the groups

C*(G) for positive integers i consists of the identity only.
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Then (G) is satisfied by the group G, if (and only if) (G) is satisfied by the

quotient group G/WT.

Proof. Suppose that S is a subgroup of G, and that T is a greatest subgroup

of S. Denote by 5„ the crosscut of S and Wv, and by T, the crosscut of T

and Wv. If v is a limit-ordinal, and if Sp = Tß for every p<v, then5„ = Tv

by (c). Since 5o = 2~o = l, there exists therefore a greatest ordinal p so that

SP=TP. If p =t, then T/Tr is a greatest subgroup of S/ST, and S/SV is essen-

tially a subgroup of G/WT—a group which satisfies (G)—so that T is a normal

subgroup of 5. If p<r, then there exists an element w in Sp+i which is not

contained in T. It is a consequence of (e) that there exists for every element g

in G an integer i and an element v in W„ so that w~1gw = giv. If g is in particu-

lar an element in S, then v is an element in S, and therefore an element in

SP = T„^ T. Thus wT = Tw. Since w is not in T, S is generated by adjoining w

to T, and hence T is a normal subgroup of 5.

The norm N(G) of the group G has been defined* as the set of all the ele-

ments g in G which satisfy gS = Sg for every subgroup S of G. The iterated

norms N,(G) may be defined as usual. An obvious consequence of Lemma 2.6

is the fact that (G) is satisfied by a group G, whenever G = NK(G) for some

ordinal k. Using Corollary 2.3 this implies the following statement:

If G is a finite group, then properties (1) to (3) of Corollary 2.3 are equiva-

lent to the following condition:

(4) G = Nr(G) for some integer r.

If 5 is a greatest abelian subgroup of the group G, then it is clear that 5

equals its centralizer in G. It is furthermore knownf that every greatest nor-

mal and abelian subgroup of G equals its centralizer in G, if only G = Zh(G)

for some integer h. This may be generalized as follows.

If S is a greatest normal and abelian subgroup of the group G, and if

G=Zt(G) for some (finite or infinite) ordinal then the centralizer of S in G is

equal to S.

Proof. Denote by T the centralizer of S in the group G. Since S is normal

and abelian, S g T and T is a normal subgroup of G. Denote by Sv the crosscut

of 5 and Z,(G); and denote by Tv the crosscut of T and Z,(G). Since

So = r0 = Z0(G) = 1, we may assume that 5M = TM has been proved for every

p<v.

Case 1. v = p + l.

Then SP=TP. If u is any element in T,, s an element in G, then usu~xs~x

* Cf. Compositio Mathematica, vol. 1 (1934), pp. 254-283.

t Cf. H. Zassenhaus, Lehrbuch der Gruppentheorie, vol. 1, p. 108.
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is an dement in ZP(G) as well as in T; and therefore it is an dement in Tp.

Hence it is an dement in 5. Thus the subgroup 77, generated in adjoining u

to S, is a normal subgroup of G. Since u is an element in 77, 77 is abelian.

Hence 77=5 so that T,£SorSr^T,.

Case 2. v is a limit-ordinal.

Then S, is the join of the Sß for n<v; and T, is the join of the Tß for ju<v;

and this implies that S, = TV.

Thus it follows in particular that S=S( = T$ = 77, since G=Zf(G).

3. In this section we are going to apply the results of the preceding sec-

tions on groups without elements of infinite order; in particular we shall be

interested in the possibility of decomposing a group into a direct product of

/"-groups.

3.A. For some of our purposes it will be sufficient to assume instead of

solubility a somewhat weaker property. A group G may be termed metacyclic,

if there exists an ascending chain of subgroups Bv with the properties r

(a) 50 = 1;

(b) By is a normal subgroup of 73„+i and Bv+\/B„ is abelian;

(c) Bv is for limit-ordinals v the set of all the elements which are contained in

groups 73 M for n<v;

(d) 73^ = G.

If G^l, then there exists a first 73v^l, so that we may assume without

loss in generality that iJi^l. One verifies readily that every abelian group

possesses an ascending chain of subgroups 73„ satisfying (a), (c), (d) and in-

stead of (b) the stronger condition that B,+\/B, be cyclic. This shows that

there is no loss of generality in assuming that the chain Bv which defines G

as a metacyclic group satisfies (a), (c), (d) and

(b") By is a normal subgroup of 73„+i and B,+i/By is cyclic.

If there exists a chain of subgroups By satisfying (a), (b"), (c) and (d),

then G is said to be metacyclic of length less than or equal to ß.

Soluble groups are metacyclic; and these two concepts coincide for finite

groups. But it is easy to construct examples of infinite metacyclic /»-groups

which are not soluble, though they satisfy condition (G); cf. Example 3.4

below.

Lemma 3.1. Every metacyclic group without elements of infinite order which

is generated by a finite number of elements is finite.

Proof. If G is metacyclic, then there exists an ascending chain of sub-

groups By which satisfies the above conditions (a) to (d). We may assume

without loss of generality that Bß<Bv for p<v. If the length of the chain
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is 1, then the group is abelian; and abelian groups without elements of infinite

order are finite, if they are generated by a finite number of elements. Hence

we may assume that our statement holds true for metacyclic groups possessing

a chain of shorter length. Since G is generated by a finite number of elements,

it is impossible that the length ß be a limit-ordinal, since otherwise there

would exist an ordinal y<ß so that all the elements in the finite set of gen-

erators of G are contained in By and so that therefore Bß = G=By for y<ß

which contradicts our hypothesis concerning the chain Bv. Hence ß = a + l

and Ba is a normal subgroup of G. Since G/Ba is an abelian group without

elements of infinite order which is generated by a finite number of elements,

it is a finite group; and it follows from (1.3) that Ba is generated by a finite

number of elements. It is therefore a consequence of the induction hypothesis

that Ba is finite; and G is finite, since its quotient group, modulo a finite nor-

mal subgroup, is finite.

Theorem 3.2. Each of the following three properties of a group G without

elements of infinite order implies the others.

(1) G — Z((G) for some ordinal £.

(2) Cr is a direct product of soluble p-groups.

(3) G is soluble and satisfies condition (G).

Remark. It may be verified easily that all the elements of a soluble group

are of finite order if, and only if, there exists an ascending chain of subgroups

B, satisfying conditions (a) to (e) of §2 and in addition:

(c') Bv+i/Bv is a finite abelian group.

Proof. The equivalence of (1) and (3) has been established as Theorem 2.2.

In order to prove the equivalence of (1) and (2) we show first

(3.2.1) If G satisfies (1), and if the subgroup S of G is generated by a finite

number of elements, then S is a finite group and a direct product of p-groups.

It is a consequence of Lemma 2.1 that there exists an ordinal <x so that

S = Z„{S); and it is a consequence of Theorem 2.2 that 5 is soluble and meta-

cyclic. Hence it follows from Lemma 3.1 that S is finite; and it is a conse-

quence of Corollary 2.3 that S is a direct product of /^-groups.

Denote now by u and v two elements of order a power of the same prime

number p. The subgroup S, generated by u and v, is by (3.2.1) the direct

product of its primary components and is consequently a />-group. Hence uv

is an element of order a power of p. This shows in particular that the set Gp

of all the elements in G whose order is a power of p is a subgroup of G; and

one verifies now as usual that G is the direct product of its primary compo-

nents Gp.
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Since Gp is a subgroup of G, there exists by Lemma 2.1 some ordinal a

so that Gp = Za(Gp). This implies by Theorem 2.2 that Gp is soluble. Thus (2)

is a consequence of (1).

In order to prove that (1) is a consequence of (2) we show first

(3.2.2) If G is a soluble p-group, then there exists an ordinal f so that

G = ZS{G).

Since Gt*\ is a soluble ^-group, there exists an ascending chain of sub-

groups By which satisfies conditions (a) to (e) of §2 and in addition the condi-

tion that Bx is a finite abelian />group not equal to 1.

Suppose now that K 9* 1 is a subgroup of Bi, and that g is an element in G

so that gK = Kg. Then g induces in K an automorphism whose order is a

power of p; and one proves as usual* that such an automorphism of K pos-

sesses fixed-elements not equal to 1; that is, there exist elements V9*\ in K

so that gv = vg. Hence the central of a soluble ^-group is different from 1

whenever the group is different from 1, as follows from Lemma 1.10.

Quotient groups of soluble ^-groups are soluble ^-groups. Hence (3.2.2)

is a consequence of Lemma 1.11 and the fact just proved.

Suppose now that (2) is satisfied by (G). Then G is the direct product of

soluble ^-groups Hv. To every Hv there exists by (3.2.2) an ordinal f iy) so

that Hv = ZtM{Hy). Let f be some ordinal which is greater than all the %{v).

Since it may be proved by complete (transfinite) induction that ZP(G) is the

direct product of the groups ZP{HU), it follows in particular that G = ZS{G)

so that (1) is a consequence of (2).

The theorem that nilpotent groups without elements of infinite order are

direct products of their primary components has been proved by deriving

(3.2.1) and by applying Corollary 2.3, that is, by reduction to the finite case.

An alternative proof may be offered which does not make use of this reduction

and which consequently includes a proof of the theorem for finite groups too.

We have verified before that groups G satisfying G = Z{(G) are metacyclic

so that the absence of elements of infinite order implies the existence of an

ascending chain of subgroups Bv with the following properties:

(a) £0 = 1;

(b) B, is a normal subgroup of Bt+i]

(c) By+X/Bv is a cyclic group of order a prime number;

(d) Bt is for limit-ordinals v the set of all the elements which are contained

in groups Bp for y.<v;

(e) Bß = G.

* The elements g~'xg* for integral i form a set containing pn(-*> elements. Since n(l) = 0, there

exists at least one element y^l such that n{y) =0, since the number of elements in K is a power of p.
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Since B0 is the direct product of its primary components, we may assume

that it has already been proved that every Bß for p < v is the direct product of

its primary components Bpu.

Case 1. v = p + \.

The index of B„ in B, is a certain prime number p; and Bp is the direct

product of its primary components Bqp so that we may represent B„ as the

direct product of Bpp and of the direct product H of all the BQP for q not

equal to p.

Let u be any element generating Bv modulo Bp. The order of u has the

form ip> where i is relatively prime to p and 0<j. Then ul generates By

modulo Bp, so that there exists an element v of order a power of p which

generates Bv modulo Bp.

If h is an element in H, then we are going to prove that hv = vh. This is

certainly true if h is an element in Z0(G). Hence we may assume that this has

been proved for all those elements in H which are contained in groups Z\(G)

for \<(t. If h is an element in the crosscut of H and Z,(G) which is not

contained in any Z\(G) for X <a, then c = vhv~1h~1 is an element in some ZK(G)

for k <<r. Since H is a characteristic subgroup of BP) and since Bp is a normal

subgroup of Bv, H is a normal subgroup of Bv and c is an element in H.

Hence it follows from the induction hypothesis that cv = vc, and consequently

we find that v'hv~' = cth for integral t. If t is in particular the order of v,

then c* = l. Since the order of v is a power of p, and since the orders of the

elements in H are all relatively prime to p, it follows that c = \ or vh = hv.

Since G = Z({G), this implies that hv = vh for every h in H.

If x is any element in Bpp, i a positive integer, then

(xv')p = xvixv~iv2ixv~2i ■ ■ ■ v'-p~1)ixv~<-p~1)ivpi,

and all the factors in the expression on the right are elements in Bpp, so that

(xv*)p and therefore xv< itself is an element of order a power of p. The group K,

generated by adjoining v to Bpp, is therefore a />-group.

If / is an element in K, h an element in H, then fh = hf, since this holds

true both for/ = v and for/in Bpp. This shows that K contains all the elements

of order a power of p in By, and that H contains exactly those elements in By

whose orders are prime to p, since Bv is generated by the elements in K and

in H. Hence By is the direct product of K and H, that is, By is the direct prod-

uct of its primary components.

Case 2. v is a limit-ordinal.

If u and v are two elements in By whose orders are powers of the same

prime number p, then the order of uv is a power of p too, since both u and v

are contained in some Bp for p < v. The elements of order a power of p in By
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form therefore a subgroup of Bv; and now it follows that B„ is the direct prod-

uct of its primary components.

Accordingly every B, is the direct product of its primary components; and

this holds true in particular for Bß = G.

This proof shows slightly more than we intended to prove. For our argu-

ment contains a proof of the following statement.

Corollary 3.3. If all the elements in G are of finite order, if uv = vu for

elements u and v in G whose orders are relatively prime, and if G is metacyclic,

then G is the direct product of its primary components.

Remark. If G is a finite group of order WvPnip\ then it contains a Sylow

subgroup Sp of order pn(-p); and G is generated by any such system of Sylow

representatives. If G satisfies the condition

(5) uv = vu, if the orders of u and v are relatively prime,

then the subgroup generated by a system of Sylow representatives is their

direct product. This shows that a finite group is a direct product of p-groups if,

and only if, it satisfies condition (5).

It should however be noted that for the proof of this fact we needed the

existence of Sylow subgroups, a fact that is comparatively much deeper than

the fairly elementary means employed in the proof of Corollary 3.3.

Example 3.4. There exist infinite p-groups whose central is 1, though their

commutator subgroup is abelian.

This example shows in particular that it is impossible to omit the solu-

bility in (2) of Theorem 3.2.

Let B be a countable abelian group all of whose elements not equal

to 1 are of order the prime number p, so that there exists a basis

6(1), 6(2), ■ • • ,b{i-Y),b(i), ■■■ olB.

As is well known, there exists for every non-negative integer a unique

/>-adic expansion /^"LnCiV* where 0^d<p and where all the c;—apart from a

finite number of exceptions—are 0.

An automorphism y(j) for 0 <j of B is defined by

zZ dp')   = •* {2Z cap')

for

dj = Ci, if i 7* f — \ ,

Cj-ij = Gj-i + 1   for        C ;_i < p — 1,
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These automorphisms y are all of order p and generate a commutative group

of automorphisms. Hence there exists a group G which is generated by adjoin-

ing to B elements u(j), subject to the relations

u(j)» = 1, u(j)u(h) = u(h)u(j),      &(*>(/) = u(j)b(i)y^.

B is the commutator subgroup of this group G; and all the elements not equal

to 1 in G are of order p.

If 77 is the subgroup generated by the elements u(j), then 77 is an abelian

subgroup of G, the crosscut of B and 77 is 1, and every element in G may be

represented uniquely in the form bu for b in B and u in 77.

If Uy*\, then u does not permute with 7>(1). If b?*l, then there exists an

integer i so that b is a product of elements b(j) for 0^j<pl; and hence

f?5=&tci+1), so that b does not permute with u(i+l). Thus the central of G is 1.

If b is an element in B, u in 77, then 7>m77 = Ubu if, and only if, 7>77 = 777>.

If br*l, then there exists an element v in 77—as has been pointed out just

now—so that vb^bv. Since the commutator of b and of v is an element not

equal to 1 in B, this shows that bU=Ub implies 6 = 1; and we have proved

that the normalizer of 77 in G is just 77.

Any finite number of elements in G generates a finite subgroup of G. It

is a consequence of Theorem 4.1 below that this implies that (G) is satisfied

by G, since finite ^-groups satisfy (G).

If the subgroup 5 of G is generated by adjoining a finite number of ele-

ments u(i) to B, then S is a normal subgroup of G, so that S=Z«(S) for some

ordinal a. But the join of these subgroups is G, and Z(G) = 1.

3.B. A characteristic property of the groups without elements of infinite

order which satisfy condition (G) is given in the following theorem:

Theorem 3.5. Suppose that G be a group without elements of infinite order;

and denote by W(G) the crosscut of Z(G) and of the iterated commutator sub-

groups d(G). Then condition (G) is satisfied by G if, and only if, G/W(G) is the

direct product of its primary components, and if these primary components sat-

isfy (G).

Remark. It is still an open question whether or not all ^-groups satisfy

(G), and whether or not there exist groups G without elements of infinite

order which satisfy (G), though they are not direct products of />groups.

Proof. We assume first that (G) is satisfied by the group G; and we derive

from this hypothesis that

(3.5.1) uv = vu, if the orders of u and v are relatively prime.

For, denote by 77 the subgroup generated by u and v. Since all the ele-

ments in G are of finite order, and since (G) is satisfied by G and therefore
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by U, it follows from Lemma 1.4 that all the quotient groups U/d(U) are

finite, and that either C,(£7) = l or d+i(U) <d(U). Hence it follows from

Corollary 2.3 that every U/d(U) is a direct product of /'-groups, so that in

particular: uv=vu modulo d(U), since the orders of u and v are relatively

prime. Hence every U/d(U) is abelian, so that C(U) =d(U) and conse-

quently C(U) = 1. Hence U is abelian, and this proves our statement.

Denote now by S the subgroup generated by two elements x and y both

of order a power of the same prime number p. The order of xy is a positive

number ip> for Of^j and i relatively prime to p. Put z = (xy)v'. Then z is an

element of order i. If 5 is an element of order a power of p, then sz = zs by

(3.5.1). If the order of s is relatively prime to p, then it follows from (3.5.1)

that sx = xs and sy = ys; and this implies sz = zs, so that z is an element in

Z(G).

It is a consequence of Lemma 1.4 that S/Ck(S) is a finite group. Since

this quotient group is generated by two elements of order a power of p, and

since it satisfies (G), it follows from Corollary 2.3 that S/Ck(S) is itself a

/>-group. Hence z is an element in Ck(S) ^Ck(G) for every k so that z is an

element in W(G). The element xy is therefore modulo W(G) an element of

order a power of p; and this proves that G/W(G) is a direct product of p-

groups each of which satisfies (G).

Suppose now that the group H is the direct product of its primary compo-

nents Hp, and that (G) is satisfied by each Hp. Every subgroup 5 of H is the

direct product of its primary components Sp, since Sp is the crosscut of S and

Hp. If T is a greatest subgroup of S, then there exists a prime number q so

that the primary component Tq<Sq. If p^q, then the join of T and Sp is a

subgroup between T and S which is different from S, since it contains only a

proper subgroup of Sq, as T is the direct product of its primary components.

Hence Sv g T or Sp = Tp. UTq<K^ Sq, then the join of T and K is a subgroup

between T and 5 which is different from T and which is therefore equal to 5.

Hence K = Sq so that Tq is a greatest subgroup of Sq. Since Sq satisfies (G),

it follows that Tq is a normal subgroup of S„, so that T is a normal subgroup

of S.

Assume now that G/W(G) is the direct product of its primary compo-

nents, and that these primary components satisfy (G). Then we have proved

just now that G/W(G) satisfies (G), and it follows from Lemma 2.6 that G

satisfies (G), since W(G) ̂ Z(G).

3.C. If a group G contains both elements of finite and of infinite order,

then it may happen that the elements of finite order do not form a subgroup

(example: the group generated by two elements u and v, subject to the rela-
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tions u2=v2 = l, where uv is of infinite order). Thus it is of interest to find

criteria excluding this possibility.

Lemma 3.6. If (G) is satisfied by the group G, if G is generated by a finite

number of elements each of which is of finite order, if there exists a normal sub-

group H of G so that H is abelian and so that G/H is a finite group, then G is a

finite group.

Proof. Our statement is certainly true if the index of H in G is 1, since in

this case G = H, that is, G is an abelian group generated by a finite number of

elements each of which is of finite order. Thus we may assume that our state-

ment is true for all the pairs G', H' which satisfy the hypothesis of the

lemma, provided the index of H' in G' is smaller than the index of H in G;

and we may assume G9*H.

Suppose furthermore that K is a subgroup of H and that K is a normal

subgroup of G. Then G/H and [G/K]/ [H/K] are essentially the same groups;

and all the hypotheses of the lemma concerning G and H are satisfied by

G/K and H/K.

It will be convenient to put G/K = G* and H/K = H*, though the con-

clusions we are going to arrive at now will later be applied to different sub-

groups K.

Since G* is generated by a finite number of elements, and since G*/H*

is a finite group, it follows from (1.3) that H* is generated by a finite number of

elements.

Since G* satisfies condition (G), it follows from Lemma 1.9 that there

exists for every element g in G* and for every subgroup R of H*, satisfying

gR = Rg and Ry*!, an element r9*\ in R so that gr = rg. Since G*/H* is a

finite group satisfying (G), it follows from Corollary 2.3 that G*/H*

=Zk(G*/H*) for some positive integer k; and consequently it follows from

Lemma 1.10 that the crosscut of Z(G*) and H* is different from 1, if H* 9*1.

Since H is an abelian group, the elements of finite order in H form a sub-

group F of H. Our lemma will be proved as soon as we know that H = F, since

H is generated by a finite number of elements. Thus let us suppose that

F <H. If K is a subgroup of H so that H/Ky*! and does not contain elements

of finite order not equal to 1, and so that K is a normal subgroup of G, then

F^K; and the crosscut K" of the central of G/K and of H/K is different

from 1, and modulo K" there are no elements not 1 of finite order in H/K.

If K' is the subgroup between K and H so that K" = K'/K, then the rank of

H/K' is smaller than the rank of H/K, since both ranks are finite; and the

same hypotheses that applied to K apply to K'. Thus we find after a finite

number of steps that F9*H implies the existence of a subgroup N of H with
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the following properties: N is a normal subgroup of G; H/N does not contain

any elements not equal to 1 of finite order; N <H; H/N is part of the central of

G/N.
Denote by Z the subgroup between H and G so that Z/H is the central of

G/H. Since G/H is a finite group—which we may assume now to be different

from 1—and since G/H satisfies (G), it follows from Corollary 2.3 that

Z/73V1. The group H/N is part of the central of G/N and is therefore part

of the central of Z/N. Since Z/H and [Z/N]/ [H/N] are essentially the same,

and since the first of these groups is abelian, it follows that Z/N is a group

with abelian central quotient group. Since Z/H is a finite abelian group, it

follows from the well known properties of groups with abelian central quo-

tient group that all the commutators of elements in Z/N are elements of

finite order which are contained in H/N. Since all the elements not 1 in

H/N are of infinite order, this proves that Z/N is an abelian group.

If G'=G/N, H'=Z/N, then (G) is satisfied by G', G' is generated by a

finite number of elements each of which is of finite order, H' is a normal

abelian subgroup of G', and G'/H' is a finite group whose order is smaller

than the order of G/H. Hence it follows from the induction hypothesis, stated

in the first paragraph of the proof, that G' is a finite group; and this implies

in particular that H' = Z/N is a finite group. But this is impossible, since H

is between Z and N, and since 7Y has been determined in such a fashion that

H/N is an infinite group. Thus we find that the assumption 7*V77 leads to a

contradiction, that is, F =H is a finite abelian group; and G is a finite group*

Corollary 3.7. If (G) is satisfied by the group G, ifGis generated by a finite

number of elements each of which is of finite order, then G/Ct{G) is a finite group,

Ci(G) is generated by a finite number of elements; and C;_i(G)=^l implies

C^KCi^G).

* The classical theorem that a finite group G is a />-group if it satisfies G = Zk{G) and is generated

by elements whose orders are powers of p, may be proved by the same method as follows.

Since the theorem certainly holds true for groups of order 1, we may assume that it holds true

for all quotient groups of G whose orders are smaller than the order of G. Thus in particular G/Z{G)

is a /i-group. If Z{G) itself is a ^-group, then our theorem has been proved for G. Otherwise Z(G) is

the direct product of two groups P and Q where all the elements in P are of order a power of p, and

where the orders of the elements in Q are prime to p. P is a normal subgroup of G, since it is a char-

acteristic subgroup of Zip). If P^l, then the order of G/P is smaller than the order of G, so that

G/P would be a />-group and Q = l, that is, G itself would be a ^-group. Thus assume that P=l.

Then Q = Z(G) is part of the central of Zi{G) = R, and R/Q is an abelian ^-group. Now it follows from

the well known properties of groups with abelian central quotient group that the commutators of

elements in R are elements in Q whose orders are powers of p. Hence they are all equal to 1, and

Z2(G) = R is an abelian group. As R/Q is a /»-group, R is the direct product of Q and a ^-group 5.

If S=l, then Z(G) = Z?,(G) and G is an abelian group and as such a />-group. If 5^1, then G/S is

of lower order than G and is therefore a ^>-group. Since Q is isomorphic with a subgroup of G/S, it

follows that Q = 1 so that G is a ^>-group in every case.
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Remark. This statement is an improvement upon Lemma 1.4.

Proof. Since our statement is certainly true for i = 0, we may assume that

it has been verified already for i — 1. Thus G/Cj_i(G) is a finite group, Ct_i(G)

is generated by a finite number of elements, and CVi(G) 9* 1 implies

C4(G)<C4-i(G). If G' = G/Ci(G), 77' = Ci-1(G)/Ci(G), then G'/77' and

G/C,_i(G) are essentially the same finite groups, so that Lemma 3.6 may

be applied to G', 77'. Hence G' is a finite group. Since therefore G/C,(G) is

a finite group, and since G is generated by a finite number of elements, it

follows from (1.3) that C,(G) is generated by a finite number of elements;

and it follows from (1.2) that either C;(G) = 1 or Ci+i(G) <C,(G).

Corollary 3.8. If condition (G) is satisfied by the group G, and if u, v are

elements of relatively prime finite orders in G, then uv = vu.

Remark. This statement improves upon (3.5.1).

Proof. If W is the group generated by u and v, then it is a consequence of

Corollary 3.7 that W'/C2(IF) is a finite group. Since 147/C2(l4y) satisfies (G),

and since the orders of u and v are relatively prime, it follows from Corollary

2.3 that uv=vu modulo C2(1F), so that W/Ci(W) is abelian, since this quo-

tient group is generated by u and v. Hence C(W) = C2(1F); and it follows from

Corollary 3.7 that C(W) = C2(JF) = 1, so that W is abelian and in particular

uv = vu.

3. D. For the following considerations it will be convenient to have a con-

cept intermediate between "metacyclic" and "soluble." A group G shall be

termed weakly soluble if there exists an ascending chain of subgroups 73 „ with

the following properties:

(a) 730 = 1;

(b) B, is a normal subgroup of G;

(c) Bv+\/Bv is abelian;

(d) 73, is for limit-ordinals v the set of all the elements contained in subgroups

B^for n<v;

(e) 73r = G.

One verifies that soluble groups are weakly soluble, and that weakly solu-

ble groups are metacyclic. If Gr*\, then there is no loss of generality in as-

suming that 73M <73„ for ß < v.

Theorem 3.9. If (G) is satisfied by the weakly soluble group G, and if G is

generated by a finite number of elements each of which is of finite order, then G

is finite.

Remark. Finite groups, satisfying (G), are, by Corollary 2.3, soluble

groups.



418 REINHOLD BAER [May

Proof. Since G is weakly soluble, there exists a properly ascending chain

of subgroups By, satisfying (a) to (e). The ordinal t may be represented

uniquely in the form r = a+n where a is either 0 or a limit-ordinal, and where

n is a non-negative integer. We are now going to prove that G/BT-i is a finite

group for O^i^n. Since this is certainly true for i = 0, we may suppose that

it holds true for i — 1. If we put J = G/BT_i, H = BT-i+1/BT_i, then H is abelian,

J/H = G/BT-i+i is finite, and J is generated by a finite number of elements

each of which is of finite order. Hence it follows from Lemma 3.6 that / itself

is finite.

Thus in particular G/B, is a finite group. Since G is generated by a finite

number of elements, it follows from (1.3) that Ba is generated by a finite num-

ber of elements. If a were a limit-ordinal, then this would imply B, — B„ for

some p<a. This is impossible, since the Bv form a properly ascending chain

of subgroups. Hence B<, = B0 = l, so that G/B„ = G/Bfs = G is a finite group.

Corollary 3.10. If condition (G) is satisfied by the weakly soluble group G,

then the subgroup, generated by the elements of finite order in G, is a direct prod-

duct of p-groups [and does not contain elements of infinite order].

Remark. It would be sufficient to assume that subgroups of G which are

generated by a finite number of elements of finite order satisfy (G) and are

weakly soluble. The group generated by two elements u and v, subject to the

relations u2 = v2 = l, is soluble though uv is an element of infinite order. This

shows that condition (G) cannot be omitted. Whether or not the weak solu-

bility is really needed is still an open question.

Proof. If u and v are two elements of finite order, then it follows from the

hypothesis and from Theorem 3.9 that they generate a finite group, so that uv

is an element of finite order. The elements of finite order in G form therefore

a subgroup F without elements of infinite order. It follows furthermore from

Corollary 3.8 that xy = yx, if x and y are elements in H whose orders are rela-

tively prime. Since G is weakly soluble, F is metacyclic, and it follows now

from Corollary 3.3 that F is a direct product of ^-groups.

4.A. In this section "properties in the large" will be derived from "prop-

erties in the small."

Theorem 4.1. Condition (G) is a consequence of the following property:

(G*) If T is a greatest subgroup of the subgroup S of G, and if S is generated

by a finite number of elements, then T is a normal subgroup of S.

Remark. This theorem has two important, immediate consequences,

(i) In every group there exists at least one greatest subgroup satisfying

condition (G).
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(ii) In every group there exists at least one greatest normal subgroup sat-

isfying (G).

Proof. Suppose that 5 [<T] is a greatest subgroup of the subgroup T

of G. Let t be any element in T which is not contained in S, let s be some ele-

ment in S, and put c = sts~1t~1. If c were not contained in S, then T would be

generated by adjoining c to S. Hence there would exist a finite number s, of

elements in 5 so that t is contained in the subgroup V generated by the ele-

ments ciS and Si. Since the s<, s are contained in the crosscut U of S and V,

and since t is not contained in S, there exists a greatest subgroup W of V

which contains [s, s,- and] U, but not t. If W<M^ V, then / is in M, so that

c is in M, since s is in W. Hence M contains s, s<, c, that is, M=V. V is gen-

erated by a finite number of elements. W is a greatest subgroup of V. Conse-

quently W is a normal subgroup of V. Since / is in V, and since s is in W, this

implies that c is in W, so that t itself belongs to W. This is impossible. Thus it

follows that every tst^s^1 for / in T and ^ in 5 is an element in S, that is, S is a

normal subgroup of T. Hence (G) is satisfied by G.

Corollary 4.2. The group G satisfies (G) and has at the same time the prop-

erty that any finite subset generates a finite subgroup if, and only if, G is the

direct product of p-groups with the property that their finite subsets generate finite

subgroups.

Remark. It is a consequence of this fact that the group constructed as

Example 3.4 satisfies condition (G).

Proof. Suppose first that G satisfies (G) and has the property that finite

subsets generate finite subgroups. Then all the elements in G are of finite

order. Let u and v be elements both of order a power of the prime number p.

The subgroup generated by u and v is finite and satisfies (G). Hence it follows

from Corollary 2.3 that this subgroup is a finite /'-group, so that uv is of order

a power of p. Now it follows again that G is the direct product of its primary

components, and their finite subsets clearly generate finite subgroups.

. Suppose conversely that G is the direct product of its primary compo-

nents Gp and that finite subsets of GPi generate finite subgroups of Gp. Let

now R be a finite subset of G. Then there exists clearly a finite set 5 whose

elements are each of them of prime power order so that the subgroup T,

generated by S, contains all the elements in R. T is easily verified to be the

direct product of finite p-groups. R generates therefore a finite group which,

by Corollary 2.3, satisfies (G). Now it follows from Theorem 4.1 that G itself

satisfies (G), and this completes the proof.

The following statement is an immediate consequence of Lemma 3.1,

(3.5.1) and Corollary 4.2.
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Theorem 4.3. A metacyclic group without elements of infinite order satisfies

condition (G) if, and only if, it is the direct product of its primary components.

Combining this result and Corollary 3.10, the following may be proved.

A weakly soluble group is generated by elements of finite order and satisfies

condition (G) if, and only if, it is a direct product of p-groups.

4.J3. It is possible to derive stronger results, if one restricts the length of

the ascending subgroup-chaihs which exhaust the group (cf. Corollary 2.4).

Lemma 4.4. Suppose that (G) is satisfied by the group G, and that there exists

a finite ascending chain of subgroups Bi with the following properties:

(i) Bi is abelian;

(ii) Bi is a normal subgroup of Bi+i and Bi+i/Bi is a cyclic group;

(iii) Bn = G.

Then G = Zt(G) for some suitable ordinal f.

Proof. Suppose that the group G satisfies the hypothesis of the lemma

and that Gr* I. Then we may assume that Bi 9* 1.

Clearly Z(Bi) =Bir*\. Hence assume that it has already been proved that

Z(Bi)9*\. Since Bi is a normal subgroup of Bi+1, and since Z(Bt) is a char-

acteristic subgroup of Bi, it follows that Z(B{) is a normal subgroup of Bi+i.

Since Bi+i/Bi is a cyclic group, there exists an element b which generates

Bi+i modulo B(. Since Z(Bt) is an abelian group not equal to 1, since

bZiBi) =Z(Bi)b, and since the subgroup generated by b and by ZiBt} sat-

isfies (G), it follows from Lemma 1.9 that there exists an element Vr*l in

Z(Bi) so that bv = vb. Clearly v is an element in Z(Bi+i), so that this latter

subgroup is different from 1. Hence it follows by complete induction that

Z{G)9*\, if Gr*l.

The last result and Lemma 1.11 imply finally that G = Zt(G).

Corollary 4.5. A group G with abelian commutator subgroup satisfies con-

dition (G) if, and only if, its finite subsets generate subgroups S so that S = Z,(5)

for suitable ordinals a.

Proof. The sufficiency of the condition is a consequence of Theorems 2.2

and 4.1. If conversely (G) is satisfied by G, and if the subgroup S of G is gen-

erated by a finite number of elements, then C(S) is abelian and S/C(S) is

generated by a finite number of elements. Hence Lemma 4.4 may be applied

to S, and this proves the necessity of the condition.

Corollary 4.6. A metacyclic group of length less than or equal to w satisfies

condition (G) if, and only if, its finite subsets generate subgroups S so that

S = Z„(S) for suitable ordinals a.
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Proof. The sufficiency of the condition is a consequence of Theorems 2.2

and 4.1. If conversely (G) is satisfied by the metacyclic group 77 of finite

length, then it is a consequence of Lemma 4.4 that 77 = Z„(77) for suitable

ordinals v. If G is a metacyclic group of length less than or equal to co, then

the subgroups of G are metacyclic groups of length not exceeding co, so that

finite subsets generate metacyclic groups of finite length; and this proves the

necessity of the condition.

4.C. We return now to the analysis of condition (G*) of Theorem 4.1.

Theorem 4.7. If the group G is generated by a finite number of elements,

then the following two conditions are equivalent:

(a) Every greatest subgroup of G is a normal subgroup of G.

(b) A set of elements in G generates G if, and only if, it generates G modulo

C(G).*

Remark. Since G = C(G) implies that the identity generates G modulo

C(G), it follows that Gr±\, G = C(G) and condition (b) are incompatible.

Proof. Suppose first that the set W of elements in G generates G modulo

C(G), but does not generate G. Denote by V the subgroup generated by W,

so that V <G. Since G is generated by a finite number of elements, it is possi-

ble to generate G by adjoining a finite number of elements to V. Let 77 be a

smallest (finite) set of elements in G so that G is generated by V and 77. Since

V <G, it follows that 77 does not contain the identity and that it contains at

least one element u. Denote by T the subgroup of G which is generated by

adjoining all the elements not equal to u in 77 to V. It follows from the mini-

mum-property of 7/ that T <G, and that T does not contain u. There exists a

greatest subgroup S of G which contains T but not u. If B is a subgroup of G

so that S<B, then u is an element in 73, that is, B=G, so that 5 is a greatest

subgroup of G. Since G is generated by adjoining W to C(G), every subgroup

of G that contains both W and C(G) is equal to G. Thus a proper subgroup

of G cannot contain both W and C(G). 5 is a proper subgroup of G which

contains W g V 5= T g S. Hence C{G) is not part of S. Hence S is not a normal

subgroup of G, since otherwise G/S would be a cyclic group and C{G) ^S.

Thus S is a greatest subgroup of G which is not a normal subgroup of G; and

(b) is a consequence of (a).

Suppose now that (b) is satisfied by G and that 5 is a greatest subgroup

of G. Then 5 cannot generate G modulo C(G), since S <G. The subgroup T,

generated by S and C(G), is therefore a proper subgroup of G, that is,

* This is a generalization of Burnside's minimal basis theorem for groups of order a power of a

prime number; cf. for example, Philip Hall, Proceedings of the London Mathematical Society, (2),

vol. 36 (1933), pp. 29-95; in particular, pp. 35-36. Also H. Wielandt, Mathematische Zeitschrift,

vol. 41 (1936), pp. 281-282.
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S^T^G; and since 5 is a greatest subgroup of G, this implies S = T or

C(G) <S; and 5 is consequently a normal subgroup of G, so that (a) is a

consequence of (b).

Corollary 4.8. The following property of groups G is a necessary and suffi-

cient condition for the validity of condition (G):

(G**) If the subgroup S of G is generated by a finite number of elements, and

if the subset 77 of S generates S modulo C(S), then S is generated by 77.

This is a consequence of Theorems 4.1 and 4.7.

4.D. The following property deserves at least a short discussion in this

context, since it may be used as a definition for finite nilpotent groups.

(M) If S is a subgroup of the group G, and if T is a proper subgroup of S,

then there exists an element s in S so that sT = Ts though s is not an element in T.

In other words, proper subgroups are proper subgroups of their normal-

izers.

Lemma 4.9. If (M) is satisfied by the group G, then G is metacyclic and satis-

fies (G).

Remark. Example 3.4 shows that metacyclic groups satisfying (G) need

not satisfy (M).

Proof. If 5 is a proper subgroup of the group G, then there exists in G an

element g so that gS = Sg and so that 5 is a proper subgroup of the group T,

generated by adjoining g to S. Clearly S is a normal subgroup of T and T/S

is a cyclic group; and this implies the metacyclicity of G. If furthermore K

is a greatest subgroup of the subgroup H of C7, then the normalizer of TT in 77

is different from K and therefore equal to 77, so that K is a normal subgroup

of 77, that is, (G) is satisfied by G.

Corollary 4.10. A group satisfies (M) and does not contain elements of

infinite order if, and only if, it is a direct product of p-groups, satisfying (M).

This is a consequence of Lemma 4.9 and Corollary 4.2, since a metacyclic

group without elements of infinite order is by Lemma 3.1 finite, when gen-

erated by a finite number of elements.

Lemma 4.11. If G = Zt(G) for some ordinal then (M) is satisfied by the

group G.

Proof. Suppose that S is some subgroup of G, and that 7 is a proper sub-

group of S. There exists by Lemma 2.1 an ordinal cr so that S — Z„(S); and

there exists therefore an ordinal t so that Zr(S) g T but it is not true that

Zr+i(S) g T. There exists therefore an element v in Zr+i(5) which is not con-
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tained in T. If g is any element in S, then vgv~lg~l is an element in ZT(S) g T;

and this implies vT = Tv, so that (M) is satisfied by the group G.

Corollary 4.12. Properties (M) and (G) are equivalent properties of solu-

ble as well as of finite groups.

This is a fairly immediate consequence of Lemmas 4.9 and 4.11, Theorem

2.2 and Corollary 2.3.

Generalizing a concept introduced by H. Wielandt, op. cit. (second para-

graph of the second footnote on page 405), we say that the subgroup 5 of

the group G is a subnormal subgroup of G whenever there exists an ascending

chain of subgroups B„ with the following properties:

(i) B0 = S;
(ii) By is a normal subgroup of Bv+i;

(iii) By is for limit-ordinals v the set of all the elements contained in groups Bß

for p<v;

(iv) By=G.

Theorem 4.13. Each of the following three properties of a group G implies

the others:

(a) Condition (M) is satisfied by the group G.

(b) If T is a proper subgroup of G, then T is a proper subgroup of its normal-

izer in G.

(c) Every subgroup of G is a subnormal subgroup of G.

Proof. Condition (b) is a trivial special case of condition (M), so that (a)

implies (b). That (b) implies (c) is a consequence of the fact that every sub-

group of G is a normal subgroup of its normalizer in G. Suppose finally that

(c) is satisfied by the group G, that S and T are any two subgroups of G and

that 5 is a proper subgroup of T. Since 5 is a subnormal subgroup of G, there

exists an ascending chain of subgroups Bv, starting with S and satisfying the

above conditions (i) to (iv). Denote by T, the crosscut of T and Bv. Then we

have 5 = T„, and there exists some ordinal p so that S = TP<Tp+i, since 5 is a

proper subgroup of G, since the By sweep out the whole group G, and since

S = T\ whenever X is a limit-ordinal and S=TP for every p <X, as follows from

(iii). If u is any element in Tp+i, then uTpu~1 = Tp, since u is both an element

in T and in Bp+i, so that uTpu~x is both a subgroup of T and, by (ii), of

Bp — uBpW1. Thus 5 = Tp is both a normal and a proper subgroup of Tp+i g T,

so that 5 is a proper subgroup of its normalizer in T, that is, (a) is a conse-

quence of (c).

We are going to discuss properties f of group elements which are subject

to the following condition.
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(S) If all the elements of the subgroup U of the group G satisfy property f,

if g is an element in G which satisfies property f, and if gU = Ug, then every ele-

ment in the subgroup generated by U and g satisfies property f.

The two examples of properties satisfying (S) which interest us are:

(a) that of being an element of order a power of the prime number p; and

(b) that of being an element of finite order.

If/is a property of group elements so that (S) is satisfied by/, and if the

group unit satisfies/, then there exists always a subgroup all of whose elements

satisfy / though it is not a proper subgroup of a subgroup with this property.

Such a greatest subgroup of the group G is termed an f-component of G.

If U is an/-component of G, and if V is a subgroup of G such that U is a

normal subgroup of V, then it follows from (S) that U is exactly the set of all

the elements in V which satisfy property/.

The properties/ we are going to discuss are subject to another condition.

(J) If the element g in G satisfies property f, and if a is an automorphism

of G, then g" satisfies property f too.

If property/ satisfies (J), then a characteristic subgroup of G is generated

by the elements satisfying/.

Lemma 4.14. If the property f of elements in the group G is satisfied by the

group unit, if the property f is subject to the conditions (S) and (J), and if con-

dition (M) is satisfied by the group G, then there exists one and only onef-compo-

nent F of G ; and F contains all those elements of G which satisfy property f, so

that F is a characteristic subgroup of G.

Proof. As has been remarked before, there exists always at least one/-com-

ponent U of G. Denote by U' the normalizer of U in G, and denote by U"

the normalizer of 77' in G. Clearly 77 is a normal subgroup of 77', and 77' is a

normal subgroup of 77". Since 77 is a normal subgroup of U', it follows from

condition (S) that 77 contains all the elements in 77' which satisfy property/;

and it follows from (J) that 77 is a characteristic subgroup of 77'. Since 77'

is a normal subgroup of 77", this implies that 77 is a normal subgroup of 77",

so that 77" is part of the normalizer of 77. Hence 77' = 77". Since however (M)

is satisfied by the group G, no proper subgroup of G equals its normalizer

in G, so that 77'=G. Hence 77 is a normal subgroup of G; and 77 contains con-

sequently all the elements of property / in G, since 77 is at the same time an

/-component and a normal subgroup of G.

Corollary 4.15. If property (M) is satisfied by the group G, then the set

F(G) of the elements of finite order in G is a subgroup of G; and F(G) is the di-

rect product of its primary components.



1940] NILPOTENT GROUPS 425

Remark. This is not a consequence of Corollary 3.10, since in Corollary

3.10 the group G is supposed to be weakly soluble; and Lemma 4.9 assures

only the metacyclicity of the group G. That F(G) is the direct product of its

primary components could be derived from Corollary 4.10, since F(G) satis-

fies (M). But Corollary 4.10 has been proved by reference to an analogous

theorem on finite groups whereas the following proof contains a direct proof

for the "finite case."

It may be pointed out furthermore that these considerations furnish a

simple proof of a theorem proved by H. Wielandt, op. cit. (second paragraph

of the second footnote on page 405), since groups satisfying condition (M)

are metacyclic, and since metacyclic groups are finite if, and only if, they do

not contain elements of infinite order and their length is finite.

Proof. If / is the property of being an element of finite order, then it follows

from Lemma 4.14 that there exists one and only one/-component of G; and

that this/-component contains all the elements of finite order. Thus F(G) is

the uniquely determined/-component of G, and as such F(G) is a subgroup of

G. Similarly it follows from Lemma 4.14 that there exists for every prime

number p one and only one ^-component of G (and of F(G)) which contains

all the elements of order a power of p in G; and this implies that F(G) is the

direct product of its primary components.

4.E. At the end of §2 we mentioned the ascending norm chain of a group

G. A more systematic treatment of the condition that G = N,(G) for some suit-

able ordinal v may be given here.

One verifies readily that if a group is swept out by its ascending norm

chain, then so are its subgroups and quotient groups. It is furthermore not

difficult to verify that a group is swept out by its ascending norm chain when-

ever the group is swept out by its ascending central chain. But it is still an

open question whether or not N(G) 9* 1 implies Z(G) 9* 1. In this respect only

the following facts are known.

(a) Z(G)^N(G).

(b) If Z(G) contains elements of infinite order, then Z(G)=N{G).*

(c) If N{G) is hamiltonian, then Z(G) 9*1.]

Since hamiltonian groups are groups with abelian central quotient group,

and since the iterated norms are characteristic subgroups, the following is

true:

(4.16) G is weakly soluble, if G = N „(G) for some ordinal p.

It is a consequence of Lemma 2.6 that

* Cf. op. cit. (see the first footnote on page 407) Theorem 3, p. 259.

t R. Baer, Compositio Mathematica, vol. 2 (1935), pp. 241-246.
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(4.17) Condition (G) is satisfied by the group G whenever G = NP{G) for

some ordinal p.

As a consequence of these last two statements it may be inferred from

Lemma 1.9 and Lemma 1.10 that the following assertion holds true.

(4.18) If G = ND(G) for some ordinal p, and if N(G) is an abelian group of

finite rank, then Z(G) 9*1.

The following fact from the theory of groups with cyclic norm quotient

groups will be needed.*

(a) If B is an abelian and normal subgroup of the group G, if G/B is a

cyclic group, if B S N(G), if 77 is the crosscut of B and Z{G), and if 73 9* 1, then

77^1 and B/D is a cyclic group.

Theorem 4.19. A group G which is generated by a finite number of elements

satisfies G = Z{(G) for some ordinal f if, and only if, G = N„{G) for some ordi-

nal p.

Remark. Whether or not the condition that G be generated by a finite

number of elements is really needed for the truth of this statement is still

an open question. The interest of the above theorem lies in its connection

with facts like Corollaries 4.5 and 4.6.

Proof. It is a consequence of facts already related in the course of this

discussion, and of Lemma 1.11, that it suffices to prove the following fact.

(4.19.1) If the group G is generated by a finite number of elements, and if

N(G) is an abelian group of infinite rank, then Z(G)9*1.

To prove this statement, let Mj, • • • , «* be some finite set of generators

of G; and denote by 77, the set of elements y in N(G) so that yUi = Uiy. In

applying (a) to the subgroup generated by N(G) and «,-, it follows that

N(G)/Ui is a cyclic group. Denote now by Vi the crosscut of the groups 77,-

for l^j^i. Then Fi = 77i, so that N(G)/Vi is a cyclic group; and F,_i/F, is

a cyclic group, since Vt is the crosscut of and 77,. Thus it follows finally

that N(G)/Vk is of finite rank. Hence Vk9*l, since N(G) is of infinite rank.

But Vk^Z(G), since G is generated by the elements u(; and this completes

the proof.

(4.20) If G = NP(G) for some ordinal p, then condition (M) is satisfied by

the group G.

Proof. If S is a proper subgroup of G, then there exists an ordinal a so

that N„(G) ^S, but so that Nc+i(G)      does not hold. If u is any element in

* Cf. op. cit. (see the first footnote on page 407).
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7V,+i(G) which is not contained in S, and if s is any element in S, then there

exists an integer i and an element / in N„(G) so that usu-1 = uH, and this shows

that uS = Su. Hence 5 is a proper subgroup of its normalizer in G; and our

statement is a consequence of Theorem 4.13.

(4.21) If G = NP(G) for some ordinal p, then the elements of finite order in G

generate a subgroup without elements of infinite order which is the direct product

of its primary components.

This is an immediate consequence of (4.16), (4.17) and of Corollary 3.10.

4.E. If a certain property is not satisfied by the group G, then it may still

be possible that G possesses a uniquely determined greatest subgroup with

this property. Questions of this type shall occupy us now.

Theorem 4.22. In every group G there exists one and only one subgroup

P(G) with the following properties:

(i) P(G) is a normal subgroup of G;

(ii) P(G) is the direct product of its primary components;

(iii) if the normal subgroup S of G is the direct product of its primary compo-

nents, then S^P(G).

Proof. It clearly suffices to prove the existence of some group P(G).

Suppose first that the normal subgroup 5 of G is the direct product of its

primary components Sp. Then Sp is exactly the set of all the elements of order

a power of p in S. Since 5 is a normal subgroup of G, and since Sp is a charac-

teristic subgroup of S,SP is a normal subgroup of G. If Z7is a p-group contained

in G, V the subgroup generated by 77 and Sp, then Sp is a normal subgroup of

V, and V/Sp is isomorphic to some subgroup of 77. Hence V is a p-group too.

This implies in particular that Sp is a subgroup of every greatest p-subgroup

of G; or if we denote by P(G; p) the crosscut of all the greatest ^-subgroups

of G, then SP^P(G; p).

P(G; p) is by its very construction both a normal subgroup of G and a

p-group. The subgroup P(G) of G which is generated by the subgroups

P(G; p) is therefore a normal subgroup of G and—as is readily verified—the

direct product of the P(G; p). Thus (i) and (ii) are satisfied by Piß). That

(iii) is satisfied by P(G) has been shown in the first part of the proof.

It is an immediate consequence of this theorem that a finite group pos-

sesses a uniquely determined greatest normal and nilpotent subgroup.

If 77* (G) is the crosscut of all the greatest subgroups without elements of

infinite order, then F*(G) is a characteristic subgroup of G which does not

contain elements of infinite order. If S is a normal subgroup of G which does

not contain elements of infinite order, then S^F*(G), since the subgroup
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generated by a subgroup without elements of infinite order and by a normal

subgroup without elements of infinite order is itself a subgroup without ele-

ments of infinite order.

There exist in every group G normal subgroups 5 which satisfy 5 = Z„(5)

for some ordinal a—for example, 5 = 1. Thus the subgroup R(G) of G which

is generated by all the normal subgroups 5 of G which satisfy 5 = Z„(5) is a

well-determined characteristic subgroup of G. Example 3.4 however shows

that R(G) need not satisfy R(G) = Z„ [R(G)].

(4.23) R(G) is weakly soluble.

If T is a proper subgroup of R(G) and a normal subgroup of G, then there

exists a normal subgroup 5 of G so that 5 g T does not hold and so that

5 = Z„(5) for some ordinal a. Hence there exists a greatest ordinal t so that

ZT(5)gr, and clearly Zr(5) <5. The subgroup U which is generated by T

and ZT+i(5) is a normal subgroup of G, contains T as a proper subgroup, and

U/T is abelian. Now it is clear how to finish the proof of (4.23).

It is a consequence of (4.23)—at least if G or R(G) satisfies condition (G)—■

that the elements of finite order in R(G) generate a subgroup which is a di-

rect product of ^-groups (Corollary 3.10).

There exist in every group G normal subgroups 5 which satisfy

(i) 5 = Z„(5) for some ordinal <r;

(ii) Z„+i(5)/Z„(5) is an abelian group of finite rank.

The subgroup R*(G) which is generated by all the normal subgroups 5 of G

that satisfy (i) and (ii) is a well-determined characteristic subgroup of G; and

clearly R*(G)^R(G).

(4.24) R*(G) is soluble.

This statement may be proved in essentially the same manner as (4.23).

It is a consequence of (4.24) and Theorem 2.2 that

R*(G) = Za[R*(G)]

for some ordinal a, if only G or R*(G) satisfies condition (G).

5. In this section we are going to prove the equivalence of the following

three properties, provided the groups under consideration are subject to suit-

able restrictions.

(N) The subgroup 5 of the subgroup T of the group G is a normal subgroup

of T whenever there exists at most one subgroup B so that S <B <T.

(N*) Every subgroup of G is a normal subgroup of G.

(F) If 5 is some subgroup of G, and if T is a normal subgroup of 5, then

S/T is not isomorphic to any of the groups Gp,e.
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Here p is a prime number, e a non-negative integer and GPie the group

generated by two elements u and v, subject to the relations

(a) u and c = uvu~1v~1 are both of order p;

(b) uc = cu, vc = cv, v" = ce.

Both the central and the commutator subgroup of this group Gp,e are gen-

erated by the element c of order p. If p = 2, then all the groups G2,e are iso-

morphic; if pr*2, then Gp,0 and Gv,\ are not isomorphic and all the other

groups Gp,e are isomorphic to one of these two groups.

(5.1) G„,e satisfies (G), but not (N).

Proof. Gp,e is a group of order p3 and every subgroup of order p2 contains

the element c. Thus (G) is satisfied by Gp,e.

Denote now by 5 the subgroup generated by the element u. S is of order p.

There exists one and only one subgroup of order p2 which contains u, namely

the subgroup generated by u and c. Thus there exists one and only one sub-

group, different from U and G, between U and G. On the other hand U is

not a normal subgroup of G, so that (N) is not satisfied by 6>,c.

Lemma 5.2. If G is a group with abelian central quotient group, then each

of the three properties (N), (N*) and (F) implies the others.

Proof. It is obvious that (N) is a consequence of (N*); and it follows from

(5.1) that (F) is implied by (N). Assume now that the group G with abelian

central quotient group does not satisfy (N*). Then there exists a pair of ele-

ments u, v so that uvu~l is not a power of v. Denote by W the subgroup gen-

erated by u and v. The central Z(W) of W contains c = uvu~xv~1, and c too is

not a power of v. There exists furthermore some prime number p so that c is

not a power of cp. (If c is of infinite order, any p will do; if c is of finite order,

any prime divisor p of the order of c may be chosen, since c^l.) Since c is

an element in the central of W, the subgroup D generated by cv is a normal

subgroup of IF. Put W = W/D and x'=Dx for x in W. Then c' is an element

of the exact order p which is contained in Z(W), and c' is not a power of v'.

It follows now from the well known properties of groups with abelian central

quotient group that W'/Z(W) is a direct product of two cyclic groups of

order p, that both u'p and v'p are in Z(W'), and that Z(TF') is generated by c',

u'p and v'p. Since c' is an element of order p which is not a power of v', Z(W)

is the direct product of two groups R' and S' so that R' is cyclic and contains

c' and so that S' contains v'p. If 5 is the subgroup of W which contains D

and satisfies S' = S/D, then W'/S' and W/S are essentially the same groups.

On the other hand W/S is generated by the elements Su and Sv which are

just subject to the defining relations of groups Gv,e. Hence G does not satisfy

(F), so that (F) implies (N*), and this completes the proof.
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Corollary 5.3. If the group G satisfies G = Zh{G) for some integer h, then

each of the three properties (N), (N*) and (F) implies the others.]

Proof. Again it suffices to show that (N*) is a consequence of (F). This

is a direct consequence of Lemma 5.2 if G=Z2(G). Hence assume that 2 <h,

that ZÄ_i(G) <G, and that (F) be satisfied by G. We put G' = G/Zh_3(G). Then

KZ(G')<Zt(G')<Zl(G')=G' and (F) is satisfied by G' as well as by

G" = G'/Z(G'). The latter group is a group with abelian central quotient

group, and it follows from Lemma 5.2 that (N*) is satisfied by G". If u' and

v' are any two elements in G', then it follows that c' = u'v'u'-lv'~l is modulo

Z{G') both a power of u' and of v', so that there exist integers i, j and ele-

ments z, w in Z(G') satisfying u'iz = c' = v'1'w. Since u' permutes with z, and v'

with w, it follows that c' permutes with both u' and v'. The group W gener-

ated by u' and v' is therefore a group with abelian central quotient group,

satisfying (F); and it follows from Lemma 5.2 that IF satisfies (N*), so that c'

is actually a power of both u' and v'. Consequently G' satisfies (N*), and this

implies G' = Z2(G'), a contradiction. This completes the proof.

Corollary 5.4. If C*(G) 9* 1 implies Ci+1(G) <Ci(G), then each of the three

properties (N), (N*) and (F) implies the others.

Remark. Condition (N*) implies C2(G) = 1.

Proof. It suffices again to prove that (N*) is a consequence of (F). Thus

assume that (F) is satisfied by G. Put G' = G/C3(G). Then G' satisfies (F) and

G'=Z3(G'); and it follows from Corollary 5.3 that G' satisfies (N*). Hence

C2(G') = 1 and therefore C2(G) =C3(G), and this implies from our general hy-

pothesis concerning G that C2(G) =C3(G) = 1, so that G = G' satisfies (N*).

6. In the discussion of the preceding section condition (G) was always a

consequence of the other hypothesis involved. This will be different in the

present section. Whenever we assume that a group satisfies both the condi-

tions (G) and (F), we shall express this shortly by saying that the group satis-

fies condition (FtG).

Lemma 6.1. 7/ there exists a normal, abelian subgroup H of G so that G/H is

abelian, then each of the three properties (N), (N*) and (F-G) implies the others.

Proof. We note first that (N*) implies (N), that (N) implies (G) and, by

(5.1), (F),so that (F-G) is a consequence of (N). Hence it suffices to prove that

(N*) is a consequence of (F-G).

Let g be some element in G, but not in H; and let h be some element in H.

Denote by Q the group generated by g and h. Since C(Q) g C(G) i£ H, it follows

that C(Q) is abelian, and that hc = ch for every c in C(Q). Since (G) is satisfied

f This is a special case of Theorem 6.5 below.



1940] NILPOTENT GROUPS 431

by G and by Q, it follows therefore from Lemma 1.7 that Ci(Q) = l or

Ci+1(Q) <Cl(Q). Hence it follows from Corollary 5.4 that (N*) is satisfied by

Q. This implies in particular that either gh = hg—in case Q is abelian—or that

ghg~xhrx is an element of order 2—in case Q is hamiltonian. If in particular h

were an element of order 2, then Q would be abelian: gh = hg; for if Q were

hamiltonian, Z(Q) would contain the elements of order 2 anyway, so that

gh = hg and Q would be abelian.

Since C(G) ^77, and since 7/7 is abelian, it follows from the previous argu-

ment that C2(G) contains only elements of order 1 and 2, and that therefore

C3(G) = 1. Hence it follows from Corollary 5.4 that (N*) is satisfied by the

group G.

Corollary 6.2. If d(G) 9* 1 implies Ci+i(G) <d(G), then each of the three

properties (N), (N*), (F-G) implies the others.

Note that condition (N*) implies C2(G) = 1.

Proof. It suffices again to prove that (A*) is a consequence of (F-G). Then

G/C3(G), G/d(G) and C(G)/C3(G) satisfy condition (F-G) too. Since the com-

mutator subgroups of both the groups G/C2(G) and C(G)/C3(G) are abelian, it

follows from Lemma 6.1 that these two quotient groups satisfy (N*). If

G/C2(G) is abelian, then C(G) = C2(G) and therefore C{G) = C2(G) = 1, so that

G = G/d(G) is abelian. If G/C2(G) is hamiltonian, then its commutator sub-

group C{G)/d{G) is of order 2. Since d(G)/C3(G) is the commutator sub-

group of C(G)/C3(G), and since the commutator subgroup of a hamiltonian

group is not of index 2 in the hamiltonian group, it follows now that

C(G)/C3(G) is abelian, so that C2(G) = C3(G) and therefore C2(G) =C3(G) = 1,

so that G — G/difJ) is hamiltonian, and this completes the proof.

Theorem 6.3. If G is a group without elements of infinite order, then each of

the three properties (N), (N*) and (F-G) implies the others.

Proof. Again it suffices to derive (N*) from (F-G). We prove first the fol-

lowing somewhat more general statement.

(6.3.1) If the group 7/7 is generated by a finite number of elements of finite

order, and if 77 satisfies (F-G) (or (N)), then 77 is a finite group all of whose

subgroups are normal.

It is a consequence of our hypothesis that H/C(H) is a finite group, and

it follows from (1.3) that C(77) is generated by a finite number of elements.

If 77 is not abelian, then C(77)^l and it follows from (G) and (1.2) that

C2(77) <C(77) <77. But 7/7/C2(77) is not abelian, and it follows from Lemma

6.1 and (F-G) that 77/C2(7/7) is hamiltonian. This implies that 77/C2(77) is a

finite group, since 77 is generated by a finite number of elements of finite order.
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Hence it follows from (1.3) that d(H) is generated by a finite number of ele-

ments; and if C2(/J)^l, then it follows from (G) that C3(H) <&(H). How-

ever it has been proved in Corollary 6.2 that (F-G) and C»(S) <C2(H) are

incompatible, so that Ci(H) = l, and H = H/Ci(H) is a finite hamiltonian

group. This completes the proof of (6.3.1).

If a and v are now any two elements of a group G without elements of

infinite order which satisfies (F-G), then the elements u and v generate by

(6.3.1) a finite subgroup which satisfies (N*). Hence uvw1 is a power of v, so

that G itself satisfies (N*).

Corollary 6.4. If the group G satisfies (F-G) (or (N)), then the set of ele-

ments of finite order in G is a subgroup of G which satisfies (N*).

This is a consequence of (6.3.1) and Theorem 6.3.

Theorem 6.5. If there exists an ordinal f so that G = Zt(G), then each of the

properties (N*), (N) and (F) implies the others.

Note that property (N*) implies G = Z2(G). Whether or not there exist

groups G which satisfy (N) (or (F-G)), though not all their subgroups are

normal subgroups, is still an open question.

Proof. It suffices to prove that (N*) is a consequence of (F) and G = Zt(G).

It is a consequence of Theorem 2.2 that G = Z{(G) implies property (G). In

order to prove (N*) it suffices to prove that every Z,(G) satisfies (N*). This

will be done by complete (transfinite) induction.

Z0(G) = 1 satisfies (N*). Hence we may assume that every Zß(G) for p <v

satisfies (N*).

Case 1. v—pA-\.

Then ZP(G) satisfies (N*) so that the group Z,(G) =G' satisfies C3(G') = 1,

since C2 [Z„(G) ] = 1, and since C(G') gZp(G). Hence it follows from Corollary

6.2 that G' satisfies (N*).

Case 2. v is a limit-ordinal.

If u and v are two elements in Z,(G), then they are already contained in

some Zß(G) for p<v. Since (N*) is satisfied by Zß(G), this implies that uvw1

is a power of v; and consequently Z,(G) satisfies (N*). This completes the

proof. Actually we have proved

Corollary 6.6. If the group G satisfies (N) (or (F)), then every subgroup

Z,(G) satisfies (N*).

Appendix. In §§2-4 several conditions have been mentioned which were

all of them characteristic properties of nilpotent groups, provided the group

in question is a finite group. If it is not assumed that the groups are finite,
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then those properties are no longer equivalent. It will therefore be conven-

ient to have a list of these properties together with a chart indicating their

interrelations.

(A) If S and T are subgroups of the group G, and if S is a proper subgroup

of T, then there exists a normal subgroup N of T so that S^N <T.

(A') If S is a proper subgroup of the group G, then there exists a normal sub-

group NofGso that S^N<G.

(G) If S and T are subgroups of the group G, and if S is a greatest subgroup

of T, then S is a normal subgroup of T.

(G*) If the subgroup S of the group G is generated by a finite number of ele-

ments, and if T is a greatest subgroup of S, then T is a normal subgroup of S.

(G**) If the subgroup S of the group is generated by a finite number of ele-

ments, and if the subset U of S generates S modulo C(S), then S is generated by

the set U.

(G') Every greatest subgroup of the group G is a normal subgroup of G.

(K) G = N„(G) for some ordinal p.

(K') If the subgroup S of the group G is generated by a finite number of ele-

ments, then S = N„(S) for some ordinal a.

(L) CT(G) = 1 for some ordinal r.

(M) If S and T are subgroups of the group G, and if S is a proper subgroup

of T, then S is a proper subgroup of the normalizer of S in T.

(M*) If S is a proper subgroup of the group G, then S is a proper subgroup

of the normalizer of S in G.

(M**) Every subgroup of G is a subnormal subgroup of the group G.

(P) The group G is a direct product of p-groups.

(P') The elements of finite order in the group G generate a subgroup F(G)

of G which does not contain elements of infinite order and which is a direct prod-

uct of p-groups.

(R) If u and v are elements of finite order in the group G, and if the orders

of u and v are relatively prime, then uv = vu.

(Z) G=Ze(G) for some ordinal f.

(Z') If the subgroup S of the group G is generated by a finite number of ele-

ments, then S = Za(S) for some ordinal a.

That a finite group, satisfying (L), is a nilpotent group seems to be some-

what accidental if one considers Example 2.5 and the footnote on page 406;

and for this reason (L) has not been discussed in this investigation.

In the following chart of inferences we denote by CW(G) the crosscut of

the subgroups Ci(G) for integral i; and whenever a group is supposed to con-

sist of elements of finite order only, we indicate this by (0).



434 REINHOLD BAER

Note finally that "arrow crossed out" is used to mean "not implying."
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