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BY

REINHOLD BAER

In this note we continue the investigation of symmetry-properties of nets,

in §8 of a previous paper.f We make free use of the results and definitions of

the first five sections of this paper to which reference will be made by prefix-

ing I.

11. In this section we analyze the following property of division-systems

with unit.

(S) x(yz) = 1 if, and only if, (xy)z = 1.

This property may clearly be divided into the following two properties.

(S') If x(yz) = 1, then (xy)z = 1.

(S") If (xy)z = \,thenx(yz) = \.

However the following proposition holds true.

Theorem 11.1. If D is a division-system with unit, then each of the proper-

ties (S), (S'), (S") implies the others.

Proof. Clearly it suffices to show that (S") is a consequence of (S')- Thus

let us assume that (S') holds true, and that (uv)w = l. Since D is a division-

system with unit, there exists one and only one element r so that r [u(vw) ] = 1.

Applying (S') twice we find that

1 = r[w(»w)] = (ru)(vw) = \fru)v\w.

Since there exists one and only one solution of the equation xw = 1 in D, it fol-

lows that uv = (ru)v, and that therefore u = ru, r = l, that is, u(vw) = 1.

Theorem 11.2. Suppose that D is a division-system with unit, and that

(S<G; r(X)) is a canonical representation of D. Then (S) is satisfied by D if,

and only if, r(Z)-1r(Y)~1r(YZ) is an element in S for any two elements Y and

ZofD.

Remark. r(YZ)r(Z)-1r(Y)~1 is always contained in S. Thus our condition

amounts to saying that D is not changed, if we consider left-cosets instead of

right-cosets.

Proof. Suppose that X, Y, Z are three elements in D. Then (XY)Z is

* Presented to the Society, April 13, 1940; received by the editors November 30, 1939.

t These Transactions, vol. 46 (1939), pp. 110-141.

435
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represented by r{X)r(Y)r(Z); and A (FZ) is represented by r(X)r(YZ)

= r(X)r(Y)r(Z)r(Zyir(Y)-1r(YZ).

Suppose first that (S) is satisfied by D, and that F, Z are any two elements

in D. Since D is a division-system with unit, there exists one and only

one element X in D so that A(FZ) = 1; and this implies by (S) that both

r(X)r(Y)r(Z) and r(X)r(YZ) are elements in S. As S is a subgroup of G,

it follows that r(Z)~1r(Y)~1r(YZ) is an element in 5 and this shows the neces-

sity of our condition.

Suppose conversely that the condition of the theorem is satisfied. If

(AF)Z = 1, then r(X)r(Y)r(Z) is an element in S; and it follows from our

condition that r(X)r(YZ) is an element in S, that is, that A(FZ) = 1. Thus

(S") is satisfied by D; and it follows from Theorem 11.1 that (S) is satisfied

by D. This completes the proof.

Remark. That condition (S) is satisfied by the so-called quasigroups has

been proved by Bol.* That the converse does not hold true may be seen from

the following examplef of a division-system with unit which satisfies condition

(S), but which does not satisfy the rule:

(+) if x-1 signifies the solution of xy=l, then (uv)~1=v~1w1.

That this last rule is satisfied by all the quasi-groups has been shown by

Bol.t
Denote by H the abelian group of order 4 which is not cyclic; and denote

by Z a (cyclic) group of order 2. Then H contains apart from 1 three elements

u, v, w of order 2; and Z contains 1 and z. We put 1 =/(l, x) =/(x, 1) for every

x in H; 1 =/(«, u) =f(v, v) =f{u, v) =f(v, u) and z=f(w, w) =/(«, w) =f(w, u)

=f(v, w)=f(w,v).
The system D consists of all the (ordered) pairs (h, k) for h in H and k

in Z; and multiplication in D is defined by the rule

(x, x'){y, y') = (xy, x'y'f{x, y)).

It is easily verified that D is a division-system with unit (1, 1), and that D

is commutative. We have

(1, 1) - («, l)2 - (t, l)2 = (w, i)(», z),

though (u, l)(v, \) = (uv, \) = (w, \)r*(w, 1)-*, that is, the rule (+) is not

satisfied in D.

In order to prove that (S) is satisfied in D, it suffices to consider prod-

* G. Bol, Mathematische Annalen, vol. 114 (1937), pp. 414-431; cf. p. 425.
t This example belongs to a class of systems discovered by Zassenhaus; cf. Bol, op. cit., p. 530.

% Cf. Bol, op. cit., p. 425.
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ucts of the form (r, r')[(s, s')(t, t')] for rst = \. This product is equal to

(1, r's't'f(s, f)f(r, r)) and we find furthermore that [0, r')(s, s')](t, t')

= (1, r's't'fir, s)f(t, t)). But one verifies that/0, r)f(s, t) =f(t, t)f(r, s) when-

ever rst = l, since all these products are equal to z, whenever none of the ele-

ments r, s, t is equal to 1. Thus (S) is clearly satisfied by 77.

If D is a division-system with unit, and if x is an element in 77, then we

denote by x~l the right inverse of x, that is, x-1 is uniquely determined as a

solution of the equation xx_1 = 1.

Theorem 11.3. If D is a division-system with unit, and if D satisfies condi-

tion (S), then each of the following properties implies all the others.

(i) (xy)(y~1x~1) = 1 for every pair x, y in 77.

(ii) y(y_1x) = x for every pair x, y in D.

(iii) [xy)y~x =x for every pair x, y in D.

Remark. The example, discussed just now, shows that these conditions

are not consequences of (S).

Proof. Suppose first that (i) is satisfied by 77. Then it follows from (S) that

1 = {xy)(y~lx~l) = ^[^(y-1*-1)] = [(xy)y_1]a;_1;

and this implies, since 77 is a division-system, that x-1 = y(y_1x~1) and

x = (xy)y~1 so that (ii) and (iii) are both consequences of (i).

If (ii) holds true, then y(y_1x-1) =x~l and consequently

1 = xx~x = x[y(y-1x-1)] = (xy)(y~1x~1)

by (S) so that (i) is a consequence of (ii); and if (iii) is true, then

1 = xx-1 = [(xy)y~1]x~1 = (xy)(y~1x~1)

by (S) so that (i) is a consequence of (iii).

The following remark may be of some interest. Condition (iii) is obviously

a special case of the following condition:

(iv) wx = [w(xy) Jy-1 for any three elements w, x, y, in 77.

Substituting w = l, x=y~x we find y1 = (y-1y)y~\ that is, y-1y = l; and

w = 1 alone gives (iii). Thus we find

(wx)y = { [w(xy)]y~1} y = { [w(xy)]y_1} (y-1)-1 = w(xy),

so that (iv) implies the associative law; that is, a division-system with unit,

satisfying (iv), is a group.

12. In this section we shall need the following special case of the property

R-S.
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Property R-S-e. If bt, b2 are points on T(e), ci, di on R(e) and a2, d2 on S(e),

and if R(üi) =R(bi), R(ct) =R(dt), S(at) =S(di), S(b,) T(ai)=T(a2),
T(ci) = T(c2), then dx and d2 are points on the same T-line.

This property is illustrated by Fig. 6,1, p. 134.

Theorem 12.1. Each of the following properties of a point e in a net N im-

plies the other properties.

(a) The system M(R/S; e) satisfies condition (S) of §11.

(b) The net has Property R-S-e.

(c) An anti-isomorphism of M(R/S; e) upon M(S/R; e) is defined in map-

ping G(R/S; e)r(R/S; T(e)-A) upon G{S/R; e)r(S/R; T(e)-X).

Remark. The author is indebted to Dr. Max Zorn for pointing out that

the above property (c) is satisfied whenever the system M(R/S; e) is a quasi-

group—as has been remarked in § 11, condition (S) is satisfied by every quasi-

group, though the converse does not hold true. The statement of I, Theorem

8.1, that (2) is equivalent to each of the other conditions is thus erroneous.

Regarding its proof the following may be said. The paragraphs preceding I,

Fig. 7, p. 135, contain a nearly complete proof of Theorem 12.1, the para-

graph containing this figure does not prove anything; and the remaining

paragraphs contain a proof of the facts that (3) implies (4), (4) implies (5)

and that (5) implies (1). As has been remarked before, it may be verified by a

simple computation that (1) implies (3).

The following proof of Theorem 12.1 is slightly different from the one sug-

gested by the discussion in I.

Proof. If Z is any T-line whatsoever, then we shall write for brevity r(Z)

instead of r(R/S; T(e)—Z)—if X and F are any two T-lines, then there

exists one and only one T-line TF so that er(-W) = er(X)r(Y) and there exists one

and only one T-line V so that e =er(y)~lr(X)_lr(F), as follows from I, Theorem

4.4. Using the notations of I, Fig. 6, we have W = T(dy) and V = T(d2). Thus

the net has Property R-S-e if, and only if, TF = V, that is, if, and only if,

e=er(Y)-1Hxr1r(W)! that jS) jf; ancj oniy jf; r(F)-V(A)-V(TF) is an element in

G(R/S; e) for any two T-lines A and F, that is, by Theorem 11.2, if, and only

if, M(R/S; e) satisfies condition (S) of §11; and thus we have proved the

equivalence of the properties (a) and (b).

Using again the notations of I, Fig. 6, and applying I, Theorem 4.3, it

follows that r(R/S; T(e) —X)r(R/S; T(e) — Y) maps e upon the same point

as r(R/S; T(e)-T(d1)) and that r(S/R; T(e) -Y)r(S/R; T{e)-X) maps e

upon the same point as r(S/R; T(e) — T(d2)). Thus condition (c) is satisfied

if, and only if, T{d^) = T(d2), that is, if, and only if, the net has Property

R-S-e; and thus we have proved that (b) and (c) are equivalent properties.
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If D is a division-system with unit, then a net K(D) may be derived from

D in the following fashion. The points of this net K(D) are all the triples

(r, s, t) of elements r, s, t in D which satisfy r(ts) =1. All the points with the

same first coordinate r lie on the same i?-line which shall be denoted by r;

and the S- and T-lines are defined accordingly. That K(D) is really a net un-

der these definitions is readily derived from the fact that D is a division-sys-

tem with unit.

Theorem 12.2.* Suppose that D is a division-system with unit, that N is the

net K(D),just defined, and that e = (1, 1, 1). Then an isomorphism of D upon

M(R/S; e) is defined in mapping the element x in D upon the element

G(R/S; e)r(R/S; T(e)—x) in M(R/S; e) if, and only if, condition (S) of §11
is satisfied by D.

Proof. It is a consequence of I, Theorem 4.3, that r(R/S; T(e) —x) maps

the point p = (r, s, t) upon the point R(p)S{xR[T{e)S{p)\}. As T(e)=l,

S(p)=s, we have T(e)S(p) = (s', s, 1) where s' is the uniquely determined

left inverse of s, that is, s's = l. Hence s' =R[T(e)S(p)] and xR[T(e)S(p)]

= (s', y, x) where y is uniquely determined as the solution of s'(xy) = 1—the

y is the uniquely determined solution of xy = s. Thus S\xR[T(e)S(p)} =y and

the image of p under r(R/S; T(e) —x) is exactly (r, y, v) where v is the uniquely

determined solution of r(vy) = 1 or vy = r_1 where r^1 is the right inverse to r.

Thus in particular e = (\, 1, 1) is mapped by r(R/S; T{e)—x) upon the

point (1, x~l, x).

If u is some other element in D, then it follows furthermore that (1, xr1, x)

is mapped by r(R/S; T(e)—u) upon the point (1, w, w') where w' is the left

inverse of w and where w is uniquely determined as the solution of the equa-

tion uw=x~l. The product r(R/S; T(e)-x)r(R/S; T(e)-u) consequently

maps the point e = (l, 1, 1) upon the point (1, w, w') where w is determined

as the solution of x(uw) = 1 and w' as the solution of w'w = 1.

Note now that r(R/S;T(e)— xu) maps the point e = (1,1,1) upon the point

(1, (xu)-1, xu) so that r(R/S; T(e)-xu) and r(R/S; T(e)-x)r(R/S; T(e)-u)

have the same effect upon the point e if, and only if, w' =xu. An isomorphism

of D upon M(R/S; e) is consequently defined in mapping the element x in

D upon the element G(R/S; e)r(R/S; T(e) —x) if, and only if, x(uw) = 1 im-

plies (xu)w = l, that is, if, and only if, D satisfies condition (S') of §11; and

now our theorem is a consequence of Theorem 11.1.

* This theorem shows that just the nets whose coordinates are taken from a division-system

with unit, satisfying (S), admit properly of a Kneserian representation; cf. Bol, op. cit., p. 424.

University or Illinois,

Urbana, III.


