
ON THE ARITHMETIC OF QUATERNIONS*

BY

GORDON PALL

1. Some fifteen references, beginning with Euler, abstracted in Dickson's

History,] use a connection between the congruence and equation

2 2 2 2 2 2 2

1) vi + v2 + v3 = 0 (mod m),      t0 + h + h + h = m,

in the case where m is a prime, to prove that every positive integer is a sum of

four squares. This connection is made precise, for arbitrary odd m, in Theo-

rem 4. Among our theorems will be found conditions for quaternions to have

the same right or left divisors of given norms. An easy derivation of known

relations concerning binary quadratic class-numbers and representation in

x\+x%-{-x\ concludes the article.

Most of these results were discovered during an investigation of the "ra-

tional automorphs of x\-\-x22-\-x\," and many of them are used in an associated

article of that name. Since these automorphs are connected more simply with

Lipschitz quaternions than with those of Hurwitz in which the coordinates

may be halves of odds, our results are stated for the former type of integral

quaternion, although there is no difficulty in extending them to the latter.

No further mention is made in this article of automorphs. %

Notations. The letters a,b,c,t,u, ■ ■ ■ ,z denote integral quaternions of the

type / = 4+^1+4/2+^3, with rational integer coordinates U. Conjugate and

norm are defined as usual: t — ta— X/X, Nt = it='^lt2f. Except for the quater-

nion units ia, letters with subscripts, and d, e, ■ ■ , s denote rational integers;

p denotes an odd prime, m an odd positive integer. Subscripts a or ß range over

1, 2, 3; i, j,f, or g over 0, 1, 2, 3.

We call / pure (mod m) if m \ t0; proper (mod m) if the g.c.d. of to, ■ ■ ■ , t3,

and m is 1; proper if the g.c.d. of to, ■ • ■ , t3 is 1.

German capitals represent the sets defined as follows:

* Presented to the Society in part April 15, 1933, under the title On the relations between sums of

three and four squares, and in part April 13,1940; received by the editors January 31,1940. This paper

was received by the editors of the Annals of Mathematics July 5, 1939, accepted by them, and later

transferred to these Transactions.

t L. E. Dickson, History of the Theory of Numbers, vol. 2, chap. 8.

X The complications of Lipschitz's article are partly due to their use. (R. Lipschitz, Journal de

Mathematique, (4), vol. 2 (1886), pp. 373-439.) Several papers by the writer, now published, owe

their inception to the study of the rational automorphs, and some of their proofs now stated in terms

of quaternions were originally obtained by automorphs. The associated article mentioned above

will appear soon in the Annals of Mathematics.

487



488 GORDON PALL [May

q: eight left-associate proper quaternions + t, ±ij;

(§: the set obtained from a given proper quaternion t by an even number

of sign-changes or interchanges of the coordinates U;

Wl: m pure quaternions of norm zero, and proportional, (mod m); that is

0, v, 2v, ■ ■ ■ , (m — l)v (mod m), where v is pure and proper (mod m), m\ Nv.

2. If / is a right divisor of *, that is, x = ut in integral quaternions, then the

left-associates + t, + ij are right divisors of x with the same norm.

Theorem 1. If v = Vo-\-iiVi-L-i2V2-L-isVa is proper (mod in), m\ Nv, m odd and

positive, then v has precisely one set q of right divisors of norm m.

This theorem, fundamental in the arithmetic of quaternions, was proved

by Lipschitz* in the case of a prime m by a modification of Euler's method of

proof that every prime is a sum of four squares. Hermitet had an elegant

device for proving the four square theorem, based on the fact that there is

only one class of positive quaternary quadratic forms of determinant 1. The

following proof of Theorem 1 is an adaptation of Hermite's method. An ex-

tension of this proof to generalized quaternions has already been published.%

Lemma 1. If x=y (mod m), x and y have the same right divisors of norm m.

For if v — ut and Nt = m, v-\-zm = (u-\-zt)t.

Lemma 2. If Nx is prime to m, v and xv have the same right divisors of

norm m.

For if v = ut, xv = (xu)t. Conversely if xv = ut, choose k so that kNx = l

(mod m); then v = (kxu)t (mod m), and we apply Lemma 1.

Lemma 3. If Theorem 1 holds for every product m of r—\ primes or less

(r > 1), it holds for products m of r primes.

See the top ten lines on page 702 of the reference just cited.

Lemma 4. If v is proper (mod p), we can choose a pure quaternion x of norm

prime to p, such that xv is pure (mod p).

We assume as we may that p\vu and must choose x to satisfy

2 2 2
(2) XiVi + x2v2 + X3V3 = 0,       xi + x2 + xz     0 (mod p).

Solving (2i) in the form x1 = eX2+fx-i, we reduce (22) to

(1 + e )x2 + 2efx2x3 + (1 + / )x3 ^ 0 (mod p).

* Loc. cit, pp. 416-420.

t C. Hermite, Journal für die reine und angewandte Mathematik, vol. 47 (1854), pp. 343-345;

Oeuvres, vol. 1, pp. 234-237.

t G. Pall, Duke Mathematical Journal, vol. 4 (1938), pp. 696-704.



1940] ARITHMETIC OF QUATERNIONS 489

Since these three coefficients are not all zero (mod p), Lemma 4 follows.

By these lemmas the proof of Theorem 1 reduces to the case where m is a

prime p, and v is a pure quaternion such that

2 2
(3) o = «i — i2v2 — i3v3, 1 + bs + z>3 = pq, q an integer.

How many quaternions / satisfy v = ut, Nt — p, or what is equivalent:

(4) v't = 0,      yV* = p?

Condition (4i) expands into four linear congruences in the tt. In view of

1 + J,2+I,3 = 0 these reduce to the two congruences

(5) to = v3t2 — v2t3,      h = v2h + v-zh (mod p).

We therefore substitute in the condition zZ,t2 = P tne expressions

(6) t0 = pX0 + v»Xt — v2X3, h = pXi + v2X2 + v3Xz, h = X2, t3 = X3,

where the Xi are integers, and, on dividing through by p, obtain

(7) p(xl + Xl) + 2vz(XoXi + Z2Z3) - 2v2(XQX3 -XiXt) + q(xl + xl) = 1.

This form is positive, being derived from XX2> and is of determinant

(p2)2/p4 = l, hence equivalent to Hence (7) has eight solutions

(Xo, • • • , X3). If / is any of the corresponding values (6), its left-associates

exhaust the eight possibilities. Theorem 1 follows.

Corollary 1. Theorem 1 holds with m even [change of notation momen-

tary], provided v is actually proper and Nv/mis odd.

For, if v = ut and u is determined up to a right unit factor, then t is de-

termined up to a left unit factor.

Corollary 1'. If z and xz are both proper (mod m), and m \ Nz, then z and

xz have the same right divisors of norm m.

3. We now consider the left-multiples of a proper quaternion /.

Lemma 5. Let t be proper, p^+tl for some a. No two of the following p2k

quaternions are congruent (mod pk):

(8) (e + fia)t, e,f =Q,\,- ■ ■ ,p* - \.

From (r+sia)t = 0 (mod pk) follows r = s = 0, for

rto - sta = 0,       rta + st0 = 0,       r{tl + tl) = 0 = s(tl + tl).

Theorem 2. Let t be proper, pk \ Nt. Then ut represents precisely p2k residues

(mod pk), each residue for p2k residues u (mod pk).
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We cannot have p \ t20+t2a f or a = 1, 2, and 3; f or then p | £ if0+O = 2f0+Nt,

p \ ti (i = 0, 1, 2, 3). Let k denote the number of solutions x of xt = 0, and p the

number of residues ut (mod pk). The number of solutions x of xt = wt, for a

given 70, is the same as that of (x — w)t = 0, hence equals k; that is, every

residue ut is represented for k residues u, whence np=pik. By Lemma 5,

p^p2k; since x = (e-\-fif)i obviously satisfies xt = 0, K^p2k. Hence K = p=p2k.

Corollary 2. If pk \ Nt the residues (8) in Lemma 5 represent a complete

set of left-multiples of t, (mod pk).

Corollary 3. In Theorem 2 precisely pk of the p2k left-multiples of t

(mod pk) are pure (mod pk).

Theorem 3. Let t be proper, m \ Nt. Then all left-multiples ut (mod m) which

are pure (mod m) form an unique set 90?; that is, all pure left-multiples of t are

proportional (mod m).

For, by Corollary 3 and the Chinese remainder theorem applied with

m=[\_pr, there are precisely m pure left-multiple residues ut (mod m). At

least one, say v, is proper, by Lemma 4. Then 0, v, 2v, ■ ■ ■ , (m — l)v exhaust

the m possibilities.

Theorem 4. To every set q of norm m corresponds one and only one set 99?

(mod m), and conversely, such that 97? contains the pure left-multiples (mod m)

of the quaternions in q, and Q contains the right divisors of norm m of the

proper elements of 9J?.

By taking conjugates we have a similar result for pure right-multiples and

left divisors. Since the various left-multiple sets ÜD? (mod pr) of x and y are

the same and combine, by the C.r.t., into an unique 9J? (mod m) we have

Corollary 4. Let x and y be proper (mod m), Nx = Ny=0. If x and y have

the same right divisors of norm pr, for every pr dividing m, then x and y have the

same right divisors of norm m.

Corollary 5. Let v be proper and pure (mod m),m \ Nv, and let wv be pure

(mod m). Then there exists an integer X such that wv=\v.

4. Conditions for quaternions to have the same divisors will be discussed.

Lemma 6. The largest rational integer factor of m dividing z is not changed

if z is replaced by uz, or zu, where Nu is prime to m.

For let k I m. If k | z, k | uz. If k \ uz, k \ üuz, k \ z.

Lemma 7. If t', t", ■ ■ ■ , tU) are quaternions of odd prime norm p, then

t = t't" ■ ■ • lU) is proper if and only if

(9) />>/>+i>   is proper for   g = 1, 2, • • ■ , / - 1.
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The lemma is trivial if/=2. The necessity of (9) is obvious for every/.

Assume for a given / that (9) holds and t is proper. Consider x = ttlf+1). If x

is not proper, x = yp, y integral; and since p = i{/+lH{f+1), t=ytu+1). Hence

tU) =0F(/+1), since both are right divisors of t of norm p, 6 denoting a unit +1

or ±ia.Thust^t^=dp.

By a similar argument we obtain

Lemma 8. Let u', u", • ■ • , uw be of norm p. If any u(-e)ui"+1'> is improper,

it is of the form dp, 6 a unit; we can remove the factor p from u = u'u" ■ • ■ uw,

absorb the unit 6 into or w("+2), and proceed with the remaining product of

h —2 factors. We obtain finally u = prt' ■ ■ ■ tif),t' ■ ■ ■ f-f) proper as in Lemma!,

f = h-2r.

Lemma 9. If x and y are proper (mod p), and xy = 0 (mod pr), then pr\ Nx

and Ny, and x and y have the same right divisors of norm pr.

For, if pr\xy, pr \ xxy and xyy, whence pr \ Nx and Ay. Hence we can write

x = uu't, y = WV, where Nt = Nt'=pr, Nu'=pe, Nv' = p! (e, /^0), and

P\NuNv. Then xy = uu'tt'v'v = 0 (mod pr), u't and t'v' being proper. By

Lemmas 6 and 8, tt' = 0 (mod pr), that is, t and V are left-associates.

Theorem 5. Let x and y be proper (mod m). Then x and y have the same right

divisors of norm m, if and only if xy m 0 (mod m).

For if x = ut, y — vt, and Nt = m, then xy = utiv = muv=0. Conversely, if

xy=0, we apply Lemma 9 and Corollary 4.

Theorem 6. Let x and y be proper (mod m), m \ Nx and Ny. Then there

exists a factorization m = mim2 in odd positive integers, such that x and y have

the same left divisors of norm mi and the same right divisors of norm m2, if and

only if

(10) m I (x0yQ + xiyi + x2y2 + xsy3).

Necessity. If t' and t" are left and right divisors of x, of norms mi and m2

respectively, then x = ut" where nti \ Nu, and the left divisor of norm mi of u

must be /' (by the uniqueness feature of Theorem 1). Hence we can set

x = l'at",y = t'bt", Nt' = mi, Nt" = m2. The expression in (10) is

i(xy+ yx) = \{t'at"i"li' + t'bt"t"aV)

= iNt"(t'aFt' + t'bat') = \Nt"\t\al + ba)t'\

= \Nt'\ab + ba)Nt' = WiW2Z a<°<>

Ni" and ab+bd being scalars.

Sufficiency. From xy-\-yx = Q and xx = 0 follow
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xyx + yxx = 0, xyx m 0 (mod m).

Let pr be any prime-power dividing m. Then pr\xyx. Let ps be the highest

power of p for which />s| xy. By Theorem 5, as and y have the same right di-

visor of norm p'. If s^r this result suffices as regards p. If r>s, we can set

x = ut, y=vt, Nt = p% whence uv is proper and pr~"\ Nv. Then pr~"\ uvx. Hence

by Theorem 5, vü and x have the same left divisors of norm pr~\ These must

coincide with the left divisors of v with norm pr~s, and hence with those of y.

Corollary 4 now gives us Theorem 6.

The expansion of xy=0 (mod pr) is as follows:

(11) x0y0 + *xyt + x2y2 + x3y3 = 0 (mod pT),

Theorem 5'. Let m\ Ny, y proper (mod m). Then the right divisors of y with

norm m are right divisors of x, if and only if, for each prime-power pr dividing m,

(11) holds along with (12a), where a (= 1, 2, or 3) is such that pllyl+yl- Simi-

larly for left divisors with the +'s in (12) changed to —'s.

Note that p\y^+yt for a = l, 2, or 3, since p\Ny but p\y.

We may assume a — 1. Since pr \ Ny we readily verify that

(- yoy2 + yiy3)(ll) - (yoys + yiy«)(12i) + (y02 + yi)(l22) = 0,

- (yoy3 + yiyO(ll) + (y0y2 - y!y3)(12i) + (yl + yj)(l2.) a 0.

Hence (11)—(12«) imply (12), and the four congruences (11)—(12) have p2r

solutions x (mod pr), m2 solutions x (mod m). But by Theorem 2, if y = vt,

Nt — m, then x = wZ has m2 residues (mod m). Every such residue satisfies

xy = 0. Incidentally, this gives an alternative proof of Theorem 5.

Corollary 6. Let x be pure and proper (mod m), d2-\-Nx = 0=e2-\-Nx,

Then d-\-x and e-\-x have the same right divisors of norm m if and only if d = e.

Corollary 7. If x is pure, and v is pure and proper (mod m), m \ Nv and

m\T*.xava, then there exists an integer x0 such that xa-\-x and v have the same right

divisors of norm m.

For we have only to choose x0 to satisfy any one of

x0vi + x2v3 — x3v2 = 0,  xav2 + x3Vi — Xiu3 m 0,  x0v3 + Xiv2 — x2Vi = 0 (pr),

(12)

(x0yi

(x0y2

(xay3

xiy0) + (x2y3 — x3y2) = 0 (mod pT),

x2yö) + (x3yx — xiy3) = 0 (mod pr),

x3yo) + (xxy2 — x2yx) m 0 (mod pr).

in which p\va, for each prime-power dividing m.
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Corollary 8. If y is proper (mod m), and m\ Ny, then x has the right di-

visors of norm m of y, and the left divisors of norm m of y, if and only if x = ky

(mod m) for some integer k.

For then xfya-xeyf = 0 (mod pr),f, g = 0, 1, 2, 3.

The value of k may sometimes be obtained from the identity

tat = 2(ado — Z aJa)t — äNt.

Corollary 9. If m \ Nx, Ny, and \ZxiJ^ an& x and J are proper (mod m),

then there is a factorization m = mxm2 such that

(x0yi — Xiy0) = + (x2y3 — x3y2),       (x0y2 — x2y0) m + (x3yx — a^y*) ,

(x0ys — x3y0) m ± (xxy2 — x2yx),

•with all the signs + taken as + for modulus mi, and — for modulus m2.

Corollary 10. If m has no square factor greater than 1, x and y are pure and

proper, m \ Nx, Ny, and Z^y*, then x and y are proportional (mod m).

The most interesting special case of Theorem 6 is

Theorem 7. Let x and y be proper (mod p), p an odd prime dividing Nx

and Ny. Then x and y have either the same right divisors or the same left divisors,

or both, of norm p, if and only if

(13) XoTo + xxyi + x2y2 + x3y3 = 0 (mod p).

An independent proof involves interesting lemmas:

Lemma 10. If Nt = p, p cannot divide two of %+tl (ct = 1, 2, 3).

For if p\t20+t2a^p, then f0+t2a = p.

Lemma 11.7/ Nt = p = Nt', then exactly p of the p2 left-multiples of t, (mod

p), are also right-multiples oft'.

For by Lemma 10 we can assume p^ft+tf. and p\ti2 +t{2. By Theorem 5',

t' and (e+fh)t (cf. Lemma 5) have the same left divisors of norm p if and

only if, to modulus p,

e(t0to + Mi' + ht2 + Ml) + /(Mi - Ms + t2ti - t3t2') m 0,

e(Mi - Mo - Ms + Mi) +/(- Mo - Mi + Ms + Ms) ■ 0.

The determinant is easily seen to be zero (mod p) while not all the coefficients

are zero. Hence there are p solutions e,f.

Lemma 12. For a given y such that p\y but p \ Ny, there are precisely 2p2 — p

solutions x0, xx, x2, x3 of
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(14) y0x0 + yiXi + y%x2 + y3x3 = 0,       x0 + X\ + x2 + x3 = 0 (mod p).

Although a direct proof is not difficult, we deduce this from a general in-

vestigation of such congruences.*

The solutions x of (14) must coincide with the 2p2 — p residues having the

same right or left divisors of norm p as y, since those residues satisfy (14).

5. Including the original /, there are twenty-four (not necessarily dis-

tinct) values h+i\ta+i2tß ±i3ty in a set (§, obtained by an even number of

interchanges and sign-changes of h, h, t3. In this way we find a value / in

every subset Q of @. We can easily verify

Lemma 13. The twenty-four notationally distinct elements in a set @, with

fixed to, can be expressed by

vtfi,

(15) r, = 1, ia, (1 + ÜV21'2, (1 - iJ/21'2, (*. - zWi)/21/2, (** + *'«+i)/21/2,

|(1 + ii + H + i3) = v, iav, v, via,

where a = \, 2, 3, and ii = i\.

Consider the relation between divisors of elements x and x' in the same

set (§. We choose the left-associate of x' having the same real part as x. This

left-associate has the same right divisors as x', and is of the form r\xr\, as in

(15) . Fromx = «/ follows

(16) rjxfi = rjltrj ■ 77/77.

This is also evident from the fact that an even number of interchanges and

sign-changes of i\, i2, i3 produces a simply isomorphic system of quaternions.

The factorization of the quaternions obtained from x by an odd number

of permutations and sign-changes of the x< reduces similarly to that of x.

Trivially, x = ut implies x = iu. But the right divisors of x and x are not re-

lated in any obvious way. Some light on this question is exhibited by

Theorem 8. Let x be proper (mod m),m \ Nx. Then x and x have their right

divisors of norm m in the same set (5 if and only if

(17) m divides one of xj, xt ± x„ (/ 9* g), Xo + x\ + x2 + x3.

Set 9 = eij, 77 as in (15), with e — 1, 21/2, or 2 in the respective cases, so that 9

is integral, proper, and of norm e2. Consider

(18) 2so = xd + Bx, So the scalar part of xd.

* R. E. O'Connor, Quadratic and linear congruence, Bulletin of the American Mathematical So

ciety, vol. 45 (1939), pp. 792-798.
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The values of s0 are precisely the expressions in (17), or their negatives. Let

x = ut, Nt = m. We shall see that

(19) x has the right divisor /' = Tjtrj, if and only if m \ s0.

From (18) we obtain

(20) e2x = 26s0 - 6x6 = 26s0 - 6u6i]trj = 26s0 — u't'.

If x = vt', then 2e2s0=yt', m = Nt'\2e2s0t', hence m\s0. Conversely, if m\s0,

/' = 77/77 is a right divisor of 26s0, hence by (20) of e2x, hence of x (e2 being prime

to m).

Theorem 9. Let t be proper, Nt = m. Let ÜDtS and 9Tc2 denote, respectively, the

set of pure left- and right-multiples of t (mod m). Then Wi and 9Ji2 can be ob-

tained from each other by interchanges or sign-changes of i\, i2, i3, if and only if

2    2    2 3

(21) two of ta, h, h, h, 0 are equal.

Necessity. Let v — at, v'=tb, where v and v' are pure (mod m), and v' is ob-

tained from v by permuting or changing signs of vi; v2, v3. Then ±v' = 7]vij

= varj-rjtij, while — v' = v' = M. Since v' is pure, (17) holds trivially withu=x,

so that i and 77/77 are in the same @, whence (21).

Sufficiency. If (21) holds, / and / are in the same (S. By (16), the left-multi-

ples of / are obtained from those of / by permuting and changing signs of

*i, ii, ii. The pure left-multiples of / are right-multiples of /.

6. Let h( — n) denote the number of classes of primitive, positive, binary

quadratic forms c6 = [k, 2x0, l] of determinant — n = x% — hi, and r'(n) the num-

ber of proper pure quaternions x of norm n. Gauss showed that, if n>\,

n 7+ 4/ or 8/+ 7,

r'(n) = 12A(- n),   if   n = 1 or 2 (mod 4),

=   8h(-n),   if   w = 3(mod8).

Assuming that r'in) >0 we demonstrate (22) by means of quaternions.

Let [x] denote the set of four quaternions

(23) *,    — i\xi\ = i\X\ — i2x2 — izxs,    — i2xi2, — i3xi3,

obtained by changing signs of two xa; four, that is, except for Nx = l, when

only two of them are distinct. With <p we associate the following process

whereby: (a) every proper [x] of norm n is carried into a certain proper [y]

of norm n; (b) no two distinct proper [x]'s are carried into the same [y].

Set Xo+x = ut, Nu = l, Nt = k, which confines / to a set Q (Corollary 1).

Define y = (txt)/k = tu — x0. If / is replaced by a left-associate ißt, y is replaced
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by —ißyig, in [y]. If t is changed to —t,y is unaltered. If x is replaced by

x'= —iaxia, Xo+x' = —iautia, and we again obtain y.

Further, y is proper. For if p\y, then p\n = Ny; and p\k, since kx = iyt

and x is proper. Since Xo+M = /e/, p\x0. Hence p\tu = y+x0. Since t is proper,

p\tNu, p \ Nu = l, contradicting the primitivity of [k, 2x0,I].

Reciprocally, since y = — y, — x0+y = — 2?/, whence tyt = kx, and the proc-

ess associated with [k, — 2x0, I] carries [y] back into [x]; hence (b).

Lemma 14. The process associated with the primitive form c6= [k, 2x0, l] is

the same as that for the following forms equivalent to<p:

(24) [k, 2{xa + hk), ■ ■ ■ },       [I, - 2x0, k].

For, if x0+x = ut, then x0-L-hk+x = (u+ht)t; and — x0+x= — tü, (üxu)/l

= y = tu — Xo, since y= — y.

Corollary 11. Any two equivalent forms <j> determine the same process.

Lemma 15. Let C, D denote primitive, positive classes of determinant —n,

CD the product-class under composition. If C carries the proper [x] into [y],

and D carries [y] into [z], then CD carries [x] into [z].

We can choose representative forms in the classes C and D of the types

<b = [k, 2x0, hi], ip = [h, 2x0, kl]. By assumption,

Xo + x — ut, Nt = k, (txt)/k = y = tu — x0,

xq + y = vt',      Nt' = h,      (t'yt')lh = z = t'v - x0.

Hence tu = vt'; since Nu = hl, u = wt',

x0 + x = w(t't),      N(t't) = hk,      (t'txit')/(hk) = z.

By & = ®(y) we mean the set of pure quaternions obtained from a pure y

by permuting and changing signs of yh y2, y3.

Lemma 16. If Nv = 2r, then (vyv)/Nv is in $(y).

For z> is a product of factors +ia, l+ig. Now —iayia is in [y]; and

(1 -Mi)y(l — ii) =2(iiy-l-i2yz+Hy2).

Lemma 17. 7/ x and y are pure and proper, and Nx = Ny, there exists a

proper quaternion t of odd norm m such that, for some y' in ß(y),

(25) txt' = my'.

For, x2 = y2, (x+y)x=y(x+y), (x+y)x(x+y) =yN(x+y). If y=—x, the

theorem is trivial: y'=x, t = l. Hence we can suppose x+y^O, x+y = vt, Nv a

power of 2, Nt odd; txi=m(vyv/Nv).

If a proper [x] can be carried into [y] by the process associated with a
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primitive classC,then txi= (Nt)y must be solvable with / proper and/v"/ prime

to any assignable number. For C contains such forms [Nt, 2x0, I].

Lemma 18. If x is pure, t proper, and Nt = m odd, and if txt = my, then we

can find an integer x0 such that x0-\-x = ut (whence y = tu — x0).

For tx=yt has the right and left divisors of norm m of t. By Corollary 8,

tx = x0t (mod m) for some integer x0. Hence

(x0 + x)t = x0t — xi = Xoi — xft = 0, (x0 + x)i = mu, x0 + x = ut.

Lemma 19. There is at most one primitive class of determinant —n carrying

any given proper [x] of norm n into any given proper [y] of norm n.

For if C and 77 carry [x] into [y], then both F = CD~1 and the principal

class E carry [x] into [x]. From txi=mx, Nt = m, follows tx=xt, or

X2t3 = X3t2, X3ti = Xit3, X\t2 — X2t\.

Since x is proper, ta—gxa for some integer g, (a=l, 2, 3). The condition

Nt = m becomes t\-\-ng2 = m. Thus E represents every integer represented

properly by F, E~F.

Lemma 20. Let x' be obtained from x by r sign-changes and s interchanges of

Xi, Xi, x3. Then a proper quaternion t of odd norm such that

(26) txt = (Nf)x'

exists if and only if: (a) x'=x (2), (ß) r is even if Nx = 3 (8).

On expanding txiwe find txi=(Nt)x (mod 2), whence (a) is necessary. To

prove the necessity of (ß) we have to prove the impossiblity of txt= —mx with

Nt odd, that is, of tx= —xt, Nt odd, X\, Xt, x3 odd. Expanded, these imply

Xih + x2ti + x3tz = 0,       X\h = x2to = x3t0 = 0,

whence /o = 0, /1+/2+/3 is even, Nt is even.

Conversely it suffices to exhibit a solution /. of (26) in the cases

(7) x' = — x, Nx m 1 or 2 (mod 4); (8) x' = iix% + i2Xi + i3x3, xi = x2 (2).

For (y), (x2i3 — x3i2)x(x3i2 — x2i3) = (xl-\-x\f)( — x) suffices, since one of x\-\-x\,

x\-\-x\ is odd. For (6), t = (x\-\-x2)(ii-\-i2)j2-\-i3x3 is effective, and is of odd

norm unless n = 2 (mod 4), in which case 0+x= — (ii+i2)t, where w = ii+z*2

(and hence t by Lemma 14) carries x into iiX2+i2Xi—i3x3, and the sign-change

is seen to in (y). By (a) and (8) we have

Corollary 12. 7/ Nx = l or 2 (mod 4), x can be transformed into precisely

one-third of the vectors in $ (x). If Nx m 3 (mod 8), x can be transformed into

precisely half the vectors in Ä(x).
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Hence the number of primitive classes C is, respectively, one-third and

one-half of the number of proper sets [x], and (22) follows.

7. The relations between the representations of n and p2n as a sum of

three squares are easily derived by quaternions.

Lemma 21. Every proper, pure y of norm p2n is of the form txt, where Nt = p

and Nx = n. Here t and x are unique except that they may be replaced by 8t and

6x6, where 8 = +1 or +ia. If y is changed to —ipyip, we still obtain the same val-

ues x. In this way every proper [y] of norm p2n is derived from an unique proper

[x] of norm n.

For, by Theorem \,y = vt with Nt = p and t in an unique Q. Here p\Nv,

whence v has the same left divisors of norm p as y = — y = tv. Hence v = tx,

and so on. That x is proper follows from y = ixt, y proper.

However, a given proper [x] of norm n gives rise to p — ( — n\p) proper

Sets [y] of norm p2n, since there are p+1 sets Q of norm p and l + ( — n\p)

of them make txt = 0 (mod p). The latter values t (by Lemma 18) are the left

divisors of x0-\-x, where xl+n^O (mod p). If t and t' are not in the same Q,

txt and t'xt' are not in the same [y], by the uniqueness feature of Lemma 21.

Hence we have

(27) r'{p2n)= {p-{-n\p))r'{n).

Using "proper (mod p)" in place of "proper," we obtain

r"(p2n) = \p- (-„\p)}r"(n),

where r"(n) denotes the number of representations of n as a sum of three

squares not all divisible by p. Let r(n) denote the total number of representa-

tions of n as a sum of three squares. Then

r(p*n) = r(n) + r"{p2n) = r(n) +{/>-(- n \ p))r"(n)

= r{n) +{p- (-n\p)}{r(n) - r(n/p2)},

that is,

(28) r(p2n) = \f + 1 - (- n\ p)]r{n) - [p - (-n\ p)]r(n/p2),

for any positive integer n. From this we readily deduce by induction that if h

is quadratfrei and m =Ylp°i in powers of distinct primes,

r(m2h) = r(h)-Xlt(Pi, a,-; h),

(29) p°+* - 1 *« — I
t(P,*\k)=-£——-(-*U)-—-•

p — 1 p — 1

Also, r'(m2h) =r'(h) -Y[<p(pi, a<; h), where <b(p, a; h) =pa-(-h\p)pa-1.
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8. Let h have no square factor greater than 1, m odd and positive. We

shall prove that the general solution of

(30) hm2 = y\ + y\ + y\

in integers ya such that, if p\y = i\y\-\-iiy2-\-izyi, then

(31) (- h\ p) = I,   or   p\h   and p2\y,

is given byy = txi, where

(32) t is proper and Nt = m, x is pure and Nx = h.

If y = txi, Ny = Nx(Nt)2, whence if (32) holds, y satisfies (30). To see that y

also satisfies (31), set y=p'z = txi. Then p2e\Ny = m2h, pe\m = p'm'. Hence

txm = pezt, txm' = zt=\t (mod m)lor some integer X by Corollary 8, m'\\ = x0m'

since tis proper, tx = tx0 (mod pe), pe\ t(x0 — x)(xa+x), p"\x\-\-h; ( — h\p) = 1, or

p\ h and e — 1.

Conversely we have only to see that every solution y of (30) and (31) is

of the required form txi. To do this we write m = prm', r>0, p\m', and show

that y = t'zi', t' proper of norm pr, z pure and of norm hm'2; then no prime p

dividing z can satisfy ( — h\p) — — 1, or p\h and p2\z, since such a prime di-

vides y = t'zi' and contradicts (31). Eliminating in turn each prime-power in m

we finally obtain y = txi, with t = t' ■ ■ ■ tw proper since the norms of t", ■ ■ ■

are coprime in pairs. The proof of Lemma 21 extends to

Lemma 22. Let u be pure, p2' \ Nu, u proper (mod p). Then u = tvi, t proper,

Nt = ps, Nv = (Nu)/p2'.

Case p\y, p\h. By (31), p2\y. Set y = pu, m = pm0, Nu = hm\. Since u is

proper (mod p) and p2r~1\Nu, u = tvi, t proper, Nt=p'~1, Nv = km'2. Since

p\Nv, v=t'w, Nt' = p, and hence pv = t'v'V, where v' = wt'. Hence y = pu

= (tt')v'(i't). Here W must be proper, since tv (a factor of u) is proper (mod p).

Case p\y, (— h \ p) = 1. Set y = peu, u proper (mod p), m = pem0, Nu = hm\.

Then u = tvi, Nt — p'~", Nv = hm'2. There are two solutions +Vo of v%= —hm'2

(mod pe). Since p\v<,, the left divisors of norm p of Vo+v and —v0+v cannot be

the same. Hence we can set v0+v = t'w, Nt' = pe, t' proper, and choose the sign

of v0 to make tt' proper (Lemma 7). Then v'=wt' — v0 = (i'vt')/pe, and

p'v = t'v'V, y = (tt')v'(i't).

Case p\y. Then Lemma 22 applies at once.

The restriction that h be quadratfrei can be removed, if the troublesome

case where p2\ h and p2\y is avoided by reducing to h/p2 and y/p.

9. As an addition to §6 we record the following results which depend only

on n and not on the particular x of norm n:

(a) [l, 0, n] carries x into x;
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(b) [2, 2, (»+l)/2] carries £ into (xi, x3, —x2) if n = \ (mod 4), x2=x3 (2);

(c) [2, 0, n/2] carries x into (xi, x3, — x2) if «=.2 (mod 4), x2=x3 (2);

(d) [4, 2, (ra+l)/4] carries * into (x2, x3, x{) or (x3, Xi, x2) if w = 3 (8), de-

pending on the residue of xi-f-x2+x3 (mod 4), while for the same case,

(e) [4, —2, (»+l)/4] carries x into the other of (x2, x3, xx), (x3, x1; x2).
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