A THEOREM ON QUADRATIC FORMS AND ITS
APPLICATION IN THE CALCULUS
OF VARIATIONS*

BY
M. R. HESTENES AND E. J. McSHANE

1. Principal result. Let P(z), Q:(2), - - -, Q-(2) be quadratic forms in the
real variables z;, - - -, 2. with real coefficients having the following prop-
erties: the form P(z) is positive at each point (z) = (0) at which the forms
Q:(2), - - -, 0.(2) vanish simultaneously; for every set of constants Sy, - - -, S,
not all zero, the quadratic form S;Q:(2)t is indefinite; for every linear sub-
space L on which the quadratic forms Q, - - - , Q, do not vanish simultane-
ously, save at (z) =(0), there is a linear combination S:Q:(z) of these forms
which is positive definite on L. The principal result given in the present note
is given in the following:

THEOREM 1. Under the above hypotheses there exists a set of comstants
Sy, - - -, S, such that the quadratic form

P(z,S) = P(z) 4+ SQ:(2) (i=1,---,7)

is positive definite in the variables 2., - - - , 2. The last two hypotheses may be
dropped whenr=1.

This theorem was proposed in a somewhat different form by Bliss in 1937
in a seminar on the calculus of variations. It is useful in sufficiency proofs for
multiple integral problems. Proofs of the theorem for the case r =1 were given
in the seminar by Albert,} Reid,§ McShane and Hestenes, each using a differ-
ent method. The last two of these proofs have not been published. The proof
of Theorem 1 here given is due to McShane and is an immediate extension of
the one given by McShane for the case r=1. In the next section Theorem 1
will be applied to the case in which (2) =(x1, - - -, %a, ¥1, - - -, ¥») and the
forms Qy, - - - , Q- are the two-rowed minors of the # X 2-dimensional matrix
(% y&). If n =2 then =1 and Theorem 2 below is an immediate consequence
of Theorem 1. If #>2 the further result described in Theorem 3 below is

* Presented separately to the Society, by McShane on April 8, 1939, and by M. R. Hestenes
on December 29, 1939; received by the editors November 29, 1939.

t A repeated index denotes summation.

1 A. A. Albert, A quadratic form problem in the calcudus of variations, Bulletin of the Amencan
Mathematical Society, vol. 44 (1938), pp. 250-252.

§ W. T. Reid, A theorem on quadratic forms, Bulletin of the American Mathematical Socxety,
vol. 44 (1938), pp. 437-440.
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needed. This further result for the case #=3 has been established by Mc-
Shane.* The proofs of Theorems 3, 4 and 5 here given are due to Hestenes.t

The proof of Theorem 1 is based on two lemmas, the first of which is the
following:

LemMA A. Let m(S) be the minimum of the quadratic form P(z, S) on the
unit (m—1)-sphere 2.2, = 1. There exists a set of constants (So) which maximizes
the function m(S).

For a set of constants Sy, - - -, S, let M(S) be the maximum of the quad-
ratic form —S;Q; on the unit sphere z3,=1. We have M(S) >0 if (S) = (0)
since the quadratic form —S:Q; is indefinite by hypothesis. Moreover
M(hS) =hM(S) for every positive number 4. Let M, be the minimum of
M(S) on the set S.S;=1. Since this minimum is attained, we have M,>0.
Finally let N be the maximum of P(z) on the set 22, =1. Then for every set
of constants (S) there is a point (2) such that z;2: =1, —S:0:(2) =M (S) = hM,,
S:S:=Fh*and

m(S) < P(z,S) < N — M(S) £ N — hM,.

It follows that there is a positive constant 4, such that when %>/, we have
m(S) <m(0) for every set (S) with S;S; =42 There is accordingly a set (S)
such that the relation m(S) <m(S,) holds for every set (S), as was to be
proved. ‘

LeMMA B. Let (Sy) be a set of constants which maximizes the function m(S)
and set mo=m(S,). The set of points (2) satisfying the equation P(z,So) =mozi2:
forms a linear space L. There is no quadratic form S:Q; which is positive definite
on L.

The set L consists of all points z at which the function P(z, So) —mozi2
attains its minimum value 0. Hence the partial derivatives of that function
vanish on L, and therefore the equations

(1) P,k(z, So) = 2mozk

hold for all z in L. Conversely, if we multiply equations (1) by z; and sum
on k we see that every point z which satisfies (1) lies in L. Thus L is the set of
solutions of the linear equations (1), and is therefore linear. Suppose now that
there exists a quadratic form Q =S5.Q; that is positive definite on L. Let K be
the unit sphere 2,2, =1 and L, the set of points in L on K. Choose >0 such

* E. J. McShane, The condition of Legendre for double integral problems of the calculus of varia-
tions, Bulletin of the American Mathematical Society, abstract 45-5-209.

t M. R. Hestenes, 4 theorem on quadratic forms and its application in the calculus of variations,
Bulletin of the American Mathematical Society, abstract 46-1-83.
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that Q(z) >b on Ly, and let N be a neighborhood of L; relative to K on which
Q(z) >b. Let m, be the minimum of P(z, So) on the closed set K —N. Then
m1>my. It follows that for a sufficiently small positive constant % one will
have

P(z,So + hS) = P(z, So) + hQ > mo

on K—N. But P(z, So+hS) >me+hkb on N, and hence m(Sy+A4S) >m(S,),
contrary to our choice of the set (S,). This proves Lemma B.

In order to prove Theorem 1 we note that there is a point (z)  (0) on the
set L described above at which the forms Qy, - - - , Q, vanish simultaneously.
Otherwise by virtue of the last hypothesis made in Theorem 1 there would
exist a quadratic form S;Q:(z) which is positive definite on L, contrary to
Lemma B. At this point (z) we have accordingly mozz, = P(z, So) =P(z) >0
in view of the first hypothesis of the theorem. It follows that m,>0 and hence
that P(z, Sy) is positive definite. This proves the first statement in the theo-
rem. The second statement is readily verified. It should be observed that the
hypotheses of Theorem 1 imply that there is a point (z) #(0) at which the
forms Q, - - -, Q, vanish simultaneously. Otherwise the last hypothesis
would imply the existence of a positive definite form S;Q;, contrary to the
second hypothesis.

The last sentence in Theorem 1 remains to be established. It is easy to
see that if =1 the last hypothesis in §1 is automatically satisfied. Suppose
then that »=1 and that Q is not indefinite. Let K be the sphere ziz,=1. If
Q. is positive definite, the sum P(z, S) is positive on K, hence is a positive
definite form, provided that S, is large. If Q, is negative definite, P(z, S) is
positive definite provided that —.S; is large. If Q is semi-definite, say positive,
let L be the set on which Q; vanishes. As in Lemma B, this is linear. On LK
the form P(2) is positive; it then remains positive on a neighborhood N of
LK relative to K. On K — N the form () is positive. Choose S large enough
so that P(z, S) is positive on K —N. On N we have P(z, S) = P(z) >0, so that
P(z,S) is positive on K, and is therefore a positive definite form.

In the proof of the first part of Theorem 1 made above we have estabhshed
essentially the following more general result:

COROLLARY. Suppose the last two of the hypotheses made in Theorem 1 hold,
and let m be the minimum of the form P(z) on the set of points (3) satisfying the
conditions Q1(z) = - - - =Q.(2) =0, sz =1. There exists a set of constants S;
such that the inequality P(z, S) = mziz, holds for all points (2).

2. A further result. Consider now the case in which the space of points (z)
described in the last section is of dimension 2#. For the purposes of this sec-
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tion it will be convenient to denote the ith (:<#) and the (z-+3)th coordi-
nates of (z) by x; and y; respectively. Thus the points of our space will be
denoted by the symbol (x, ). To each point (x, ) there is associated a 7 X 2-
dimensional matrix (x; y:;) whose ith row is composed of the coordinates x;, y;
of the point (x, ). This matrix will be used below to classify the points (x, ¥)
of our space. By a quadratic form in the variables (x, y) will be meant an ex-
pression of the form

Rixsxr + Saxiye + Tinyive.

In particular the expression Si.x:yx is a quadratic form in the variables (x, y).
Finally by a linear space L of points (x, y) is meant a subspace such that if
(x,¥) and (x’, ) belong to L so also does the point (ax+bx’, ay+by’), where
a and b are arbitrary real constants.

The results described in the last section will be used to prove the follow-
ing:

THEOREM 2. Let P(x, y) be a quadratic form in the 2n real variables
X1, **cy Xny Y1, 0, Ya With real coefficients. Suppose that the inequality
P(x, y) >0 holds whenever the nX2-dimensional matrix (x; v;) has rank 1.
Then there exists an n-rowed skew-symmetric matrix S = (Si) such that the quad-
ratic form P(x, y)+Saxiyr (3, k=1, - - - | n) is positive definite.

To prove this result let Q.. (<k) be the quadratic form x,y: —xy:. A
linear combination S:Qu (summed with 7 <Z) is easily seen to be equal to
Sax:yr (summed for all 7, &) if we set S;;=0, Sii= —Su (1 <k). Thus we see
that the theorem will be established if we show that the hypotheses of Theo-
rem 1 with Q; replaced by Q. are satisfied. The first hypothesis holds since
the matrix (x; ;) (0 0) has rank 1 if and only if the forms Q.; vanish simul-
taneously. Moreover a linear combination S:ixQ: with S0 is indefinite.
Finally the last hypothesis of Theorem 1 holds by virtue of the following:

THEOREM 3. Let L be a linear set of poinis (x,y) such that the n X 2-dimen-
sional matrix (x; y;) has rank 2 at each point (x,y) (0, 0) on L. There exists a
skew-symmetric matrixz S = (Si) such that the quadratic form Sux:yx is positive
definite on L.

Let m be the dimension of L and let (Xia, -+ +, Xna, Yiay -+, Vo)
(a=1, - - -, m) be abasis for L, that is, a set of m points (X., ¥,) in L such
that the coordinates of each point (¥, y) in L are expressible uniquely in the
form

(2) % = Xiale, Yi = Viglha (a=1,--+,m).
Since the matrix («; y;) has rank 2 at each point (x, y) > (0, 0) on L, the matrix
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NX +pY, where X =(X;,) and ¥ =(¥,,), has rank m for every pair of real
numbers A, u, not both zero. Conversely for every pair of matrices X, V,
having NX +uY of rank m when (X, u) (0, 0), the corresponding linear space
L defined by equations (2) is such that the matrix (x; y;) has rank 2 at each
point (x, ¥) (0, 0) on L. Moreover by the use of equations (2) it is seen that
Sy = Rapthatts, where R=X'SY and X' is the transpose of X. Here and
elsewhere it is understood that the symbol for an element of a matrix is ob-
tained by adding a pair of subscripts to the symbol for the matrix. Theorem 3
is accordingly equivalent to the following theorem on matrices:

THEOREM 4. Let X, YV be two n X m-dimensional matrices such that the matrix
AX +uY has rank m for every pair of real numbers N, u, not both zero. There
exists an n-rowed skew-symmetric matrix S such that the matrix R=X'SY is
positive definite, that is, the quadratic form Rogu.us (o, B=1, - - -, m) is positive
definite. Here X' is the transpose of X. The matrix R in general will not be sym-
metric.

In order to prove Theorem 4 we first observe that in the proof of the
theorem we may replace the matrices X, ¥ by X1 =AXB, ¥,=AY B, where 4
and B are arbitrary nonsingular matrices of dimensions # and m respectively.
For, the matrix AX;4uY has rank m when (A, u) % (0, 0). Moreover, suppose
there exists a skew-symmetric matrix S such that the matrix X{ S:Y is posi-
tive definite. Let S be the skew-symmetric matrix 4’514, and set R=X'SY.
Then the matrix B’RB = X{ S,Y is positive definite. It follows readily that R
is positive definite and hence that the matrices X, ¥ can be replaced by
X1, Y, respectively. In fact X, ¥ can be replaced by matrices of the form

() ()

where I is the m-rowed identity matrix, C is an m-rowed matrix and O is the
zero matrix. Suppose that X, ¥ are of this form. Then the condition that the
matrix AX 4+uY be of rank m for all real numbers A, u, not both zero, is equiv-
alent to the condition that the matrix

N —-C
4
® - (5)
be of rank m for all real values of \. Moreover the equation 4 XB =X holds
for two nonsingular matrices 4 and B if and only if 4 is of the form

)
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When A4 is of this form we have

B-(C + ED)B)‘

(6) AYB = ( DB

In the sequel we shall assume that the matrices X, ¥, 4 are of the forms (3)
and (5). It will be understood that if #=m the matrices O, D, E, F do not
appear in these matrices. Theorem 4 will be established by replacing ¥ by a
matrix 4 Y B having special properties. This will be done with the help of
three lemmas, the first of which is the following:

LemmA 1. Let ¢:(N), - - -, dx(N) be the elementary divisors of the matrix
M —C and let € be an arbitrary constant different from zero. With an elementary
divisor of the form ¢:(N) = [(N—a;)?+B; 1™ (8:50) associate the 2m-rowed ma-
trix

N; O O ---- 0)
el N, O ---- O 8 Lo
0 Mi=|0 e N;---- O], N.-=(a' .>’ I=( )
B: a; 01

O O O ---¢e N;

With an elementary divisor of the form ¢;(\) = (N —a;)™i associate the matrix

a; 0 0 ---- 0
1 o 0---- 0
(8) Mi=|0 1 a;---- 0

0 0 0---1 a;

* There exists a nonsingular m-rowed matrix B such that B-*CB =C,, where
M0 O ---0
O M0 ---0
(9) Ci=|0 O M; -0

O O O ---M;

For it is clear from the special forms (7) and (8) that ¢.(\) = |\ —M.].
If M, is of the form (8), the (m;—1)-rowed minor obtained by deleting the
first row and last column has determinant unity. Hence ¢:(X) is the only non-
trivial invariant factor of N — M in this case. Suppose next that M is of the
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form (7) and let ¢(\) be the determinant of the minor of N/ — M ; obtained
by deleting the first row and the last column. The values ¢ (a:+18:) ¢ (c: —6:)
are different from zero since €50, as one readily verifies. It follows that ¢(\)
and ¢;(\) have no common factors and hence that ¢:(X) is the only non-trivial
invariant factor of A\l —M; when M is of the form (7). The matrices NI —C,
and M —C accordingly have the same elementary divisors and hence the same
invariant factors. The matrix C, is therefore similar to C, that is, C, is of the
form B-'CB, where B is nonsingular.f

LEMMA 2. If the equation |\ —C| =0 has no real roots, there exists a matrix
C* similar to C and a skew-symmetric matrix S such that the matrix SC* is
positive definite. The matrix SC* is not in general symmetric.

For in this case the diagonal blocks in (9) are of the form (7). Consider C,
as a function Ci(a, B, €) of the values a;, B:, € described in Lemma 1. Let
R(e) =Ci(0, B, €), S=—R(0) and T =Ci(a, 0, 0). Then S and ST are skew-
symmetric, .S is nonsingular and C;=R(e)+T. Since ST is skew-symmetric
one has #oSasTs,4,=0 (o, B,y=1, - - -, m) and

UaSap(Roy + Tpy)thy = UaSagRaythy

for arbitrary values of (). Since R(0) = —S and S is nonsingular, the last
quadratic form is positive definite when e=0 and hence for a value €' 0.
The matrices S and C*=R(e’)+7T have the properties described in the
lemma.

LEMMA 3. Let C, D be the matrices appearing in the matrix (4) and suppose
the matrix (4) has rank m for all real values of \. There exists an m X (n—m)-
dimensional matrixz E such that the equation

(10) [Nl —C—ED| =0
has no real roots if the dimension m of C is even and a single real root if m is odd.

Let us begin by disposing of the case m =#. If m =n, the conclusion of
Lemma 3 is that |\] —C| 50 for all real \. This is an immediate consequence
of the hypothesis that matrix (4) has rank m =# for all real . Incidentally,
if m=n, both m and # must be even; otherwise the equation |A\[—C | =0
would be of odd degree, and would therefore have a real root.

Suppose then that m <n. We shall consider first the case in which m =2
and C, D are of the form

W en( D () e

t A. A. Albert, Modern Higher Algebra, University of Chicago Press, 1937, pp. 84-85.
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If D is the two-rowed identity matrix, let

0 —1
G=( ), E=G-C.
1 0

Then the equation (10) takes the form A\241 =0 and has no real roots. Sup-
pose next that D =(d ¢). We may suppose that b =0 since this can be brought
about by replacing N by A+b. Since the matrix (4) has rank 2 for A=0 and
A =a, we have ¢>#0 and ad+ec0. Choose numbers «, 8 such that

ace — fae = — 1, ad + Be + a = 0.

Then equation (10) with E’ = (a 8) as the transpose of E reduces to A2+1=0.
The lemma is accordingly true for the matrices (11).

To prove the lemma as stated, let % be the number of real roots of the
equation [N/ —C| =0, each root counted a number of times equal to its multi-
plicity. We may suppose that #=2. It is sufficient to show that the matrix E
can be chosen so that the equation (10) has exactly z—2 real roots. In view
of equation (6) it is sufficient to prove this result when C, D are replaced re-
spectively by matrices of the form C;=B-'CB, D,=FDB, where B and F are
nonsingular. By virtue of Lemma 1 we may select B so that C, is given by (9).
In fact B may be chosen so that the matrices (8) corresponding to real roots
of [N\ —C| =0 have higher subscripts than the matrices (7) corresponding to
roots that are not real. It follows that, after a suitable choice of the matrix F

in Dy, one has
M O U O
0l D) o= 2)
N C2 | 4 D2

where the matrices Cq, D, are the matrices C, D in (11). The matrix (4) with
C=C;, D=D, has rank 2, since otherwise the corresponding matrix with
C=Cy, D=D, could not have rank m. It follows that there exists a matrix
E, such that the equation (10) with C =C,, D =D,, E = E, has no real roots.

Choosing
(0NN
2= (o )
O E,

the equation (10) with C=C,, D =D, reduces to the product
| My — M| - | Ny — Cy — EsDy| = 0,

where the subscript on I denotes its dimension. This equation has 2 —2 real
roots and the proof of Lemma 3 is complete.

We are now in position to prove Theorem 4. As was seen above we can
assume that the matrices X, ¥ are of the form (3). Since we can replace ¥V
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by the matrix (6) we can suppose, by virtue of Lemma 3, that the equation
|AT—C| =0 has no real roots if the dimension 7 of C is even and one real
root if m is odd. Consider first the case in which m is even. Then by Lemma 2
there is a nonsingular matrix B and a skew-symmetric matrix S such that
the matrix SC* with C*=B-!CB is positive definite. Replace ¥ by AV B,
where 4 is defined by equation (5) with E=0 and F=I. Then C is replaced
by C* so that the matrix SC is now positive definite. Let S; be the n-rowed

.

The product X'S:Y is then equal to SC and is accordingly positive definite.
This proves Theorem 4 for the case in which m is even.

The case in which m is odd will be reduced to the case in which  is even.
As was seen above we can assume that the equation |3 —C | =0 has only
one real root A =a. Choose nonsingular matrices B, F such that the matrices
Ci=B’CB, D, =FDB are of the form

c—(M O) D—(U ”) (b = 0)
" \o o T \r oo '

This choice is possible by virtue of Lemma 1 with M} = (a) and the fact that
the matrix (4) has rank m when A =a. We can suppose that C=C;, D =D,
since this result can be brought about by replacing ¥ by 4V B, where 4 is
given by (5) with E=0. Clearly m <z since D has at least one row. Let X1,V
be the matrices

I 00 M O O

o010 0] a —b
X1= , Yl=

001 U b a

000 vV o O

obtained by adding a suitable column to each of the matrices X and Y. Since
the equations |\ —M| =0, (\—a)?+52=0 have no real roots, the matrix
AX,— Y, corresponding to (4) has rank m+-1 for all real values of N. As was
seen in the last paragraph, there exists, since m+1 is even, a skew-symmetric
matrix S such that the matrix X{ SY; is positive definite. The matrix X'SY,
being a principal minor of X{ SV, is also positive definite. This completes
the proof of Theorem 4 and hence also of Theorem 3.

Incidentally, by an argument similar to that just made, it can be shown
that if L is a maximal linear space having the properties described in Theorem
3 then its dimension is # if # is even and #»—1 if # is odd.



510 M. R. HESTENES AND E. J. McSHANE [May

3. Application to the calculus of variations. Consider the problem of mini-
mizing the double integral

I=fff(x:y,zl,"‘,ZmI’h"',Pn,QI,"',Qn)dxdy,
A

where p:=09z:/9x, ¢;=02:/9y, in a class of subspaces
(12) 2%, y) ((x,9) on A+ B;i=1,---,n)

having a common boundary, where B is the boundary of 4. The integrand
f(x, 9, 2, p, ¢) is assumed to be continuous and to have continuous first and
second partial derivatives on a region R of points (x, ¥, 2, p, ¢). The subspaces
(12) are assumed to be continuous, to have continuous second partial deriva-
tives and to have their elements (x, ¥, 2, p, ¢) in R. The boundary B of A
is supposed to be a simply closed continuous curve having a piecewise con-
tinuously turning tangent. Weaker differentiability assumptions could be
made.

LEMMA 4. Let Su(x, y) = —Swi(x, y) (¢, k=1, - - -, n) be arbitrary continu-
ous functions having continuous first and second derivatives in a neighborhood of
the set A+ B. Then the integral

J=ff g(x, vy, 3, p, q)dxdy
A

= fj;(l/z) {Piaiy(sikzk) — g 56; (Sikzk)}dxdy

has the same value for all subspaces (12) here considered.

(13)

For by virtue of Green’s theorem the value of 2J is given by the formula

9 d
2J = ff {—' (Sikpsze) — — (Siinzk)}dxdy = f 265 kid2:,
A ay dox B

and hence is completely determined by the common boundary of the sub-
spaces (12).

Let E be a minimizing subspace. Then E must satisfy the condition of
Legendre,* that is, at each element (x, y, z, p, ¢) on E the inequality

(14) P&, 1) = fombike + 2 piadone + foamme Z 0
must hold for every set (£, n) whose # X 2-dimensional matrix has rank 1. If

* Graves, The Weierstrass condition for multiple integral variation problems, Duke Mathematical
Journal, vol. 5 (1939), pp. 656-660. Graves proves only the Weierstrass condition. The condition of
Legendre is a well known consequence of that of Weierstrass.
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the condition (14) with the equality excluded holds on E for every set (£, 1)
whose matrix (£ ;) has rank 1, then E will be said to satisfy the strengthened
condition of Legendre. It should be emphasized that in this strengthened con-
dition of Legendre we require that the inequality P(£, ) >0 hold only for
sets (£, n) whose # X 2-dimensional matrix (¢; #;) has rank 1 and not for all
sets (£, n) (0, 0). We have the following:

THEOREM 5. Let E be a subspace (12) satisfying the sirengthened condition
of Legendre. There exists an invariant integral of the form (13) such that for the
Sfunction F =f+g the inequality

(15) Fpimbibe + 2F piqbime + Foqmine > 0
holds at each element (x, y, 2, p, q) on E for every set (£, )= (0, 0).

For by Theorem 2 there exists for each point on E a skew-symmetric
matrix (Si) such that the quadratic form P(, ) +Su&imx is positive definite
at this point and hence in a neighborhood of this point. It follows readily
that the set 44 B can be covered by a finite number of circles Cy, - - - , Cn
having a common radius 7 such that to the circle C. of radius 27 concentric
with the circle C, there is associated a skew-symmetric matrix (Sg) of con-
stant elements such that the form P,(&, n) = P(&, 7) +SuEimx is positive defi-
nite at each point on £ whose projection in the xy-plane is in C/ . We propose
now to construct a set of functions S(x, ¥) = —Si:(x, ¥) having continuous
second derivatives on a neighborhood of A+B and such that the form
P(&, n)+Su(x, ¥) £ is positive definite on E. To this end let %(¢) be a func-
tion having continuous second derivatives and such that %(f) =0 when ¢<vr,
h(t) =1 when {=2r, and 0</(f) <1 when r <t <2r. Let (x., y.) be the center
of the circle C,, and let d.(x, ¥) be the distance between the points (x, y)
and (., ¥a). Set k.(x, y) =k[d.(x, y)]. It should be observed that the product
hhs - - - ha is identically zero on the set A+ B. This follows because %, =0
on C, and the circles Cy, - - - , C., cover 4 +B. Denote by S;i(x, y) the func-
tion

(1= m)Si+ In(1 = h)Si 4« -+ + ke -+ hna(l — k) ST,
where S (a=1, - - -, m) are the constants described above. The quadratic

form P(&, ) +Sau(x, y)£imi determined by these functions is easily seen to be
identical with the sum

(I = k)Pi(g,m) + (1 — k) Poll,m) + - - - + Maha - - - hws(1 — hm) Pu(E, 1),

where P, (£, ) is the quadratic form associated with the circle C’. Each term
in this sum is positive or zero, since for each integer « the product
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(1 —1a)Po(£, 1) is positive definite at points on E corresponding to points
in C; and identically zero elsewhere. Moreover the terms do not vanish simul-
taneously when (£, ) > (0, 0). The quadratic form P(%, 1) +Su&ms is accord-
ingly positive definite on E. ‘

We now use these functions S;; to define the function g of equation (13).
From the definition of g we at once obtain

g%, ¥, 3, , 9) = (1/2)[(8S:/0y)piz + (3Ski/0%)qize] + Sirpige.

This shows that the Legendre quadratic form (15) for g is Suéimx. Hence if
F =f+g¢ the Legendre form (15) for F is exactly the positive definite form
P(&, 1) +Siéme. This establishes Theorem 5.
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