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1. Principal result. Let P{z), Qi(z), ■ ■ ■ , Qr(z) be quadratic forms in the

real variables Zi, ■ ■ ■ , zm with real coefficients having the following prop-

erties: the form P(z) is positive at each point (z)^(0) at which the forms

Qi(z)> ' " ' > Qr(z) vanish simultaneously; for every set of constants 51; • ■ ■ ,Sr,

not all zero, the quadratic form SiQi(z)] is indefinite; for every linear sub-

space L on which the quadratic forms Qi, ■ ■ ■ , Qr do not vanish simultane-

ously, save at (z) = (0), there is a linear combination SiQi(z) of these forms

which is positive definite on L. The principal result given in the present note

is given in the following:

Theorem i. Under the above hypotheses there exists a set of constants

Si, ■ • • , Sr such that the quadratic form

P(z, S) = P(z) + S.Qfz) (i=l,---,r)

is positive definite in the variables zx, ■ ■ ■ , zm. The last two hypotheses may be

dropped when r = \.

This theorem was proposed in a somewhat different form by Bliss in 1937

in a seminar on the calculus of variations. It is useful in sufficiency proofs for

multiple integral problems. Proofs of the theorem for the case r = 1 were given

in the seminar by Albert,% Reid,§ McShane and Hestenes, each using a differ-

ent method. The last two of these proofs have not been published. The proof

of Theorem 1 here given is due to McShane and is an immediate extension of

the one given by McShane for the case r = \. In the next section Theorem 1

will be applied to the case in which (z) = (xi, ■ ■ ■ , xn, y1; • • • , yn) and the

forms Qi, ■ ■ ■ , QT are the two-rowed minors of the wX2-dimensional matrix

(xk yk). If n = 2 then r = 1 and Theorem 2 below is an immediate consequence

of Theorem 1. If n>2 the further result described in Theorem 3 below is

* Presented separately to the Society, by McShane on April 8, 1939, and by M. R. Hestenes

on December 29, 1939; received by the editors November 29, 1939.

t A repeated index denotes summation.

I A. A. Albert, A quadratic form problem in the calculus of variations, Bulletin of the American

Mathematical Society, vol. 44 (1938), pp. 250-252.
§ W. T. Reid, A theorem on quadratic forms, Bulletin of the American Mathematical Society,

vol. 44 (1938), pp. 437-440.
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needed. This further result for the case n = 3 has been established by Mc-

Shane.* The proofs of Theorems 3, 4 and 5 here given are due to Hestenes.f

The proof of Theorem 1 is based on two lemmas, the first of which is the

following:

Lemma A. Let m(S) be the minimum of the quadratic form P(z, S) on the

unit (m — 1)-sphere zkzk = 1. There exists a set of constants (So) which maximizes

the function m(S).

For a set of constants S\, ■ ■ ■ , Sr let M(S) be the maximum of the quad-

ratic form —SiQi on the unit sphere zkzk = 1. We have M(S) >0 if (S) 9* (0)

since the quadratic form —SiQi is indefinite by hypothesis. Moreover

M(hS) = hM(S) for every positive number h. Let M0 be the minimum of

M(S) on the set SiS{ = l. Since this minimum is attained, we have M0>0.

Finally let N be the maximum of P(z) on the set zkzk = 1. Then for every set

of constants (S) there is a point (z) such that zkzk = 1, — SiQi(z) = M(S) ^hM0,

SiSi = h2 and

m(S) ^ P(z, S) ^ N - M(S) ^ N - hM0. .

It follows that there is a positive constant h0 such that when h>h0 we have

m(S) <m(0) for every set (S) with SiSi = h2. There is accordingly a set (S0)

such that the relation m(S) ^m(So) holds for every set (S), as was to be

proved.

Lemma B. Let (S0) be a set of constants which maximizes the function m(S)

and set m0 = m(S0). The set of points (z) satisfying the equation P(z, S0) = mt,zkzk

forms a linear space L. There is no quadratic form SiQi which is positive definite

onL.

The set L consists of all points z at which the function P(z, S0) —m0zkzk

attains its minimum value 0. Hence the partial derivatives of that function

vanish on L, and therefore the equations

(1) Pzk{z, So) = 2m6zk

hold for all z in L. Conversely, if we multiply equations (1) by zk and sum

on k we see that every point z which satisfies (1) lies in L. Thus L is the set of

solutions of the linear equations (1), and is therefore linear. Suppose now that

there exists a quadratic form Q =SiQt that is positive definite on L. Let K be

the unit sphere zkzk = 1 and L\ the set of points in L on K. Choose b >0 such

* E. J. McShane, The condition of Legendre for double integral problems of the calculus of varia-

tions, Bulletin of the American Mathematical Society, abstract 45-5-209.

f M. R. Hestenes, A theorem on quadratic forms and its application in the calculus of variations,

Bulletin of the American Mathematical Society, abstract 46-1-83.
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that Q(z) >b on Li, and let A7 be a neighborhood of Li relative to K on which

Q(z) >b. Let nil be the minimum of P(z, So) on the closed set K — N. Then

mi>m0. It follows that for a sufficiently small positive constant h one will

have

P{z, So + hS) = P(z, So) + hQ>ma

on K — N. But P(z, S0+hS) >m0-\-hb on N, and hence m(S0+hS)>m(S0),

contrary to our choice of the set (So) - This proves Lemma B.

In order to prove Theorem 1 we note that there is a point (z) 9* (0) on the

set L described above at which the forms Qi, • ■ ■ , Qr vanish simultaneously.

Otherwise by virtue of the last hypothesis made in Theorem 1 there would

exist a quadratic form SiQi(z) which is positive definite on L, contrary to

Lemma B. At this point (z) we have accordingly m0zkzk = P(z, So) =P(z) >0

in view of the first hypothesis of the theorem. It follows that m0 >0 and hence

that P(z, So) is positive definite. This proves the first statement in the theo-

rem. The second statement is readily verified. It should be observed that the

hypotheses of Theorem 1 imply that there is a point (2) 9* (0) at which the

forms Qi, ■ ■ ■ , Qr vanish simultaneously. Otherwise the last hypothesis

would imply the existence of a positive definite form SiQi, contrary to the

second hypothesis.

The last sentence in Theorem 1 remains to be established. It is easy to

see that if r = \ the last hypothesis in §1 is automatically satisfied. Suppose

then that r = 1 and that Q is not indefinite. Let K be the sphere zkzk = 1. If

Qi is positive definite, the sum P(z, S) is positive on K, hence is a positive

definite form, provided that Si is large. If Qi is negative definite, P(z, S) is

positive definite provided that — Si is large. If Qi is semi-definite, say positive,

let L be the set on which Qi vanishes. As in Lemma B, this is linear. On LK

the form P(z) is positive; it then remains positive on a neighborhood N of

LK relative to A. On A —A the form Qi is positive. Choose Si large enough

so that P(z, S) is positive on A-A. On A we have P(z, S) ^P(z) >0, so that

P(z, S) is positive on K, and is therefore a positive definite form.

In the proof of the first part of Theorem 1 made above we have established

essentially the following more general result:

Corollary. Suppose the last two of the hypotheses made in Theorem 1 hold,

and let m be the minimum of the form P(z) on the set of points (z) satisfying the

conditions Qi(z)= ■ ■ ■ =Qr(z) =0, zkzk = \. There exists a set of constants Si

such that the inequality P(z, S) ^mzkzk holds for all points (z).

2. A further result. Consider now the case in which the space of points (2)

described in the last section is of dimension 2n. For the purposes of this sec-
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tion it will be convenient to denote the ith (i^n) and the (w-H)th coordi-

nates of (z) by Xi and y,- respectively. Thus the points of our space will be

denoted by the symbol (x, y). To each point (x, y) there is associated a «X2-

dimensional matrix (xi y») whose ith row is composed of the coordinates Xt, yi

of the point (x, y). This matrix will be used below to classify the points (x, y)

of our space. By a quadratic form in the variables (x, y) will be meant an ex-

pression of the form

RikXiXk + SikXiyk + Tikyiyk.

In particular the expression SikXiyk is a quadratic form in the variables (x, y).

Finally by a linear space L of points (x, y) is meant a subspace such that if

(x, y) and (x', y') belong to L so also does the point (ax+bx', ay + by'), where

a and b are arbitrary real constants.

The results described in the last section will be used to prove the follow-

ing:

Theorem 2. Let P(x, y) be a quadratic form in the 2n real variables

Xi, • • • , xn, yi, • • ■ , yn with real coefficients. Suppose that the inequality

Pix, y)>0 holds whenever the nX2-dimensional matrix (x,- y4) has rank 1.

Then there exists an n-rowed skew-symmetric matrix S = such that the quad-

ratic form P(x, y) +SikXiyk (i, k — 1, •••,») is positive definite.

To prove this result let Qa (i<k) be the quadratic form xtyk — xkyi. A

linear combination SikQik (summed with i<k) is easily seen to be equal to

SikXiyk (summed for all i, k) if we set Sa = 0, Ski= —Sik (i<k). Thus we see

that the theorem will be established if we show that the hypotheses of Theo-

rem 1 with Qi replaced by Qik are satisfied. The first hypothesis holds since

the matrix (x,- y.) 9* (0 0) has rank 1 if and only if the forms Qik vanish simul-

taneously. Moreover a linear combination SikQik with .SVO is indefinite.

Finally the last hypothesis of Theorem 1 holds by virtue of the following:

Theorem 3. Let L be a linear set of points (x, y) such that the nX2-dimen-

sional matrix (#,• y.) has rank 2 at each point (x, y) 9* (0, 0) on L. There exists a

skew-symmetric matrix S = (Sa) such that the quadratic form SikXiyk is positive

definite on L.

Let m be the dimension of L and let (Aia, ■ • • , Xna, Y\a, ■ ■ ■ , Yna)

(a = 1, • ■ • , m) be a basis for L, that is, a set of m points [Xa, Ya) in L such

that the coordinates of each point (*, y) in L are expressible uniquely in the

form

(2) Xi = Xiaua,       y{ = Yiaua {a = I, ■ ■ ■ , m).

Since the matrix (x,- y.) has rank 2 at each point (x, y) 9* (0, 0) on L, the matrix
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XX +pY, where X = (Xia) and F = (F,0), has rank m for every pair of real

numbers X, not both zero. Conversely for every pair of matrices X, Y,

having \X-\-pY of rank m when (X, n) 9* (0, 0), the corresponding linear space

L defined by equations (2) is such that the matrix (x{ y.) has rank 2 at each

point (x, y) 9* (0, 0) on L. Moreover by the use of equations (2) it is seen that

SikXiyk=RagUaUß, where R=X'SY and X' is the transpose of X. Here and

elsewhere it is understood that the symbol for an element of a matrix is ob-

tained by adding a pair of subscripts to the symbol for the matrix. Theorem 3

is accordingly equivalent to the following theorem on matrices:

Theorem 4. Let X, Y be two nXm-dimensional matrices such that the matrix

XX+fiY has rank m for every pair of real numbers X, u, not both zero. There

exists an n-rowed skew-symmetric matrix S such that the matrix R=X'SY is

positive definite, that is, the quadratic form RaßUaUß (a, ß = 1, • • ■ ,m) is positive

definite. Here X' is the transpose of X. The matrix R in general will not be sym-

metric.

In order to prove Theorem 4 we first observe that in the proof of the

theorem we may replace the matrices X, Y by Xr=AXB, Yi=AYB, where A

and B are arbitrary nonsingular matrices of dimensions n and m respectively.

For, the matrix XXi +mTi has rank m when (X, u) 9* (0, 0). Moreover, suppose

there exists a skew-symmetric matrix Si such that the matrix X1S1F1 is posi-

tive definite. Let 5 be the skew-symmetric matrix A 'SiA, and set R =X'SY.

Then the matrix B'RB =X{SiYx is positive definite. It follows readily that R

is positive definite and hence that the matrices X, Y can be replaced by

Xi, Yi respectively. In fact X, Y can be replaced by matrices of the form

where I is the w-rowed identity matrix, C is an m-rowed matrix and O is the

zero matrix. Suppose that X, Y are of this form. Then the condition that the

be of rank m for all real values of X. Moreover the equation AXB=X holds

for two nonsingular matrices A and B if and only if A is of the form

(3)

matrix XX+pY be of rank m for all real numbers X, u, not both zero, is equiv-

alent to the condition that the matrix

(4)

(5)
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When A is of this form we have

(6) AYB
<B~\C + ED)B\

FDB

In the sequel we shall assume that the matrices X, Y, A are of the forms (3)

and (5). It will be understood that if n = m the matrices O, D, E, F do not

appear in these matrices. Theorem 4 will be established by replacing Y by a

matrix AYB having special properties. This will be done with the help of

three lemmas, the first of which is the following:

Lemma 1. Let <£i(X), • ■ • , </>*(X) be the elementary divisors of the matrix

\I — C and let e be an arbitrary constant different from zero. With an elementary

divisor of the form $i(X) = [(X—a<)2+/32]"l< (ß.-^O) associate the Imt-rowed ma-

trix

(7)      Mi =

Ni O O

el Ni 0

0    el Nt

O

0

O *-c -::)-=(::>
[O    0    0  ■ ■ ■ el Nii

With an elementary divisor of the form c/>,(X) = (X — af)m> associate the matrix

ctj 0 0 • • • • 0

1 a,- 0 • • ■ • 0

0    1    at • • • • Ö(8) M,- =

0    0    0 •   • 1

There exists a nonsingular m-rowed matrix B such that B~lCB = C\, where

Mx O O

O Mi 0

O    O Mi(9) C, =

0   0 0 Mk

For it is clear from the special forms (7) and (8) that cj>i(\) = |X7 — M{ \.

If Mi is of the form (8), the (w, — l)-rowed minor obtained by deleting the

first row and last column has determinant unity. Hence c/>,(X) is the only non-

trivial invariant factor of X7 — Mi in this case. Suppose next that Mi is of the
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form (7) and let c/>(X) be the determinant of the minor of X7 —M, obtained

by deleting the first row and the last column.The values<p(ai+ißi),<b(ai — ißi)

are different from zero since e^O, as one readily verifies. It follows that c6(X)

and </>i(X) have no common factors and hence that c/>,(X) is the only non-trivial

invariant factor of XT — Mt when Mi is of the form (7). The matrices X7 — C\

and XT — C accordingly have the same elementary divisors and hence the same

invariant factors. The matrix d is therefore similar to C, that is, Ci is of the

form B_1CB, where 73 is nonsingular.f

Lemma 2. If the equation | XT — C\ =0 has no real roots, there exists a matrix

C* similar to C and a skew-symmetric matrix S such that the matrix SC* is

positive definite. The matrix SC* is not in general symmetric.

For in this case the diagonal blocks in (9) are of the form (7). Consider Ci

as a function Ci(cv,. ß, e) of the values a,-, ßi, e described in Lemma 1. Let

R(e) =Ci(0, ß, e), S=-R(0) and T = d(a, 0, 0). Then 5 and ST are skew-

symmetric, 5 is nonsingular and Ci = 7?(e) + T. Since ST is skew-symmetric

one has uaSaßTßyUy =0 (a, ß, y = 1, • • • , m) and

for arbitrary values of (w). Since 72(0) = — 5 and S is nonsingular, the last

quadratic form is positive definite when 6=0 and hence for a value t' 9*0.

The matrices S and C* = R(e')+T have the properties described in the

lemma.

Lemma 3. Let C, 77 be the matrices appearing in the matrix (4) and suppose

the matrix (4) has rank mfor all real values of\. There exists an mX(n — m)-

dimensional matrix E such that the equation

has no real roots if the dimension m of C is even and a single real root if m is odd.

Let us begin by disposing of the case m=n. If m=n, the conclusion of

Lemma 3 is that | XT — C\ 9*0 for all real X. This is an immediate consequence

of the hypothesis that matrix (4) has rank m =n for all real X. Incidentally,

if w=w, both m and n must be even; otherwise the equation |XT — C\ =0

would be of odd degree, and would therefore have a real root.

Suppose then that m<n. We shall consider first the case in which m = 2

and C, D are of the form

UaS aß(Rßy   4"   Tßy)Uy   =   UaS aßRßyUy

(10) I X7 - C - ED I = 0

(11) or   D = (d e).

t A. A. Albert, Modern Higher Algebra, University of Chicago Press, 1937, pp. 84-85.
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If D is the two-rowed identity matrix, let

G = (i"J)' E=G~C-

Then the equation (10) takes the form X2 + l =0 and has no real roots. Sup-

pose next that D = (de). We may suppose that b = 0 since this can be brought

about by replacing X by X + o. Since the matrix (4) has rank 2 for X =0 and

\ = a, we have e?*0 and ad-\-ec9*0. Choose numbers a, ß such that

ace — ßae = — 1,      ad + ße + a = 0.

Then equation (10) with E' = (a 3) as the transpose of E reduces to X2 + l =0.

The lemma is accordingly true for the matrices (11).

To prove the lemma as stated, let h be the number of real roots of the

equation | \I — C | =0, each root counted a number of times equal to its multi-

plicity. We may suppose that h^2. It is sufficient to show that the matrix E

can be chosen so that the equation (10) has exactly h — 2 real roots. In view

of equation (6) it is sufficient to prove this result when C, D are replaced re-

spectively by matrices of the form G = B~1CB, Di=FDB, where B and F are

nonsingular. By virtue of Lemma 1 we may select B so that Ci is given by (9).

In fact B may be chosen so that the matrices (8) corresponding to real roots

of |X7 — C\ =0 have higher subscripts than the matrices (7) corresponding to

roots that are not real. It follows that, after a suitable choice of the matrix F

in Di, one has

(M   0\ /U 0\

where the matrices C2, 772 are the matrices C, 77 in (11). The matrix (4) with

C = C2, 77=772 has rank 2, since otherwise the corresponding matrix with

C = Ci, Z7=77i could not have rank m. It follows that there exists a matrix

£2 such that the equation (10) with C = C2, D=D2, E = E2 has no real roots.

Choosing

(O 0\

the equation (10) with C = G, 77= A reduces to the product

I X7m_2 - M I ■ I AJs - Ct - E2D21 = 0,

where the subscript on I denotes its dimension. This equation has h — 2 real

roots and the proof of Lemma 3 is complete.

We are now in position to prove Theorem 4. As was seen above we can

assume that the matrices A, Y are of the form (3). Since we can replace Y
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by the matrix (6) we can suppose, by virtue of Lemma 3, that the equation

\\I — C\ =0 has no real roots if the dimension m of C is even and one real

root if m is odd. Consider first the case in which m is even. Then by Lemma 2

there is a nonsingular matrix B and a skew-symmetric matrix 5 such that

the matrix SC* with C* = B~1CB is positive definite. Replace F by AYB,

where A is defined by equation (5) with £ = 0 and F = I. Then C is replaced

by C* so that the matrix SC is now positive definite. Let Si be the w-rowed

skew-symmetric matrix

\o o)

The product X'SiY is then equal to SC and is accordingly positive definite.

This proves Theorem 4 for the case in which m is even.

The case in which m is odd will be reduced to the case in which m is even.

As was seen above we can assume that the equation | ßl — C | = 0 has only

one real root X = a. Choose nonsingular matrices B, F such that the matrices

Ci=B'CB, Di = FDB are of the form

(M 0\ /U b\

This choice is possible by virtue of Lemma 1 with Mk = (a) and the fact that

the matrix (4) has rank m when \=a. We can suppose that C=G, D=Di,

since this result can be brought about by replacing Y by A YB, where A is

given by (5) with E = 0. Clearly m < n since D has at least one row. Let Xi, Yx

be the matrices

Ai =

IOO

0 1 0

0 0 1

0 0 0

Yi =

M

o

u

V

0

a

b

0

0)

- b

a

0

obtained by adding a suitable column to each of the matrices X and Y. Since

the equations |X7 — Af\ =0, (X —a)2+o2 = 0 have no real roots, the matrix

XAX — Fi corresponding to (4) has rank m+l for all real values of X. As was

seen in the last paragraph, there exists, since m + l is even, a skew-symmetric

matrix S such that the matrix X/5Fi is positive definite. The matrix X'SY,

being a principal minor of X(SYX, is also positive definite. This completes

the proof of Theorem 4 and hence also of Theorem 3.

Incidentally, by an argument similar to that just made, it can be shown

that if L is a maximal linear space having the properties described in Theorem

3 then its dimension is n if n is even and n — 1 if n is odd.
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3. Application to the calculus of variations. Consider the problem of mini-

mizing the double integral

= ///
x, y, zu • • • , 2„, pi, ■ ■ ■ , pn, qi, • ■ • , qn)dxdy,

where pi=dZi/dx, qi=dzi/dy, in a class of subspaces

(12) *<(*, y) ((x, y) on A + B; i = 1, • ■ • , n)

having a common boundary, where B is the boundary of A. The integrand

f(x, y, z, p, q) is assumed to be continuous and to have continuous first and

second partial derivatives on a region 5\of points (x, y, z, p, q). The subspaces

(12) are assumed to be continuous, to have continuous second partial deriva-

tives and to have their elements (x, y, z, p, q) in The boundary B of A

is supposed to be a simply closed continuous curve having a piecewise con-

tinuously turning tangent. Weaker differentiability assumptions could be

made.

Lemma 4. Let Sik(x, y) = —Ski(x, y) (i, k = 1, • • • , n) be arbitrary continu-

ous functions having continuous first and second derivatives in a neighborhood of

the setA+B. Then the integral

(13)

J = JJ g(«, y, z, p, q)dxdy

= f f (1/2) \pi — {sikZh) - qL — (sikzk)\dxdy
J J a 1    dy dx J

has the same value for all subspaces (12) here considered.

For by virtue of Green's theorem the value of 2J is given by the formula

2/ = f f i— (SikpiZk)-(SikqiZk) \ dxdy = f zkSkidZi,
J J a (dy dx ) J b

and hence is completely determined by the common boundary of the sub-

spaces (12).

Let E be a minimizing subspace. Then E must satisfy the condition of

Legendre* that is, at each element (x, y, z, p, q) on E the inequality

(14) P(i, 7])  = + VpiikiiVk + fqiuViVk ^ 0

must hold for every set (£, -n) whose wX2-dimensional matrix has rank 1. If

* Graves, The Weierstrass condition for multiple integral variation problems, Duke Mathematical

Journal, vol. 5 (1939), pp. 656-660. Graves proves only the Weierstrass condition. The condition of

Legendre is a well known consequence of that of Weierstrass.
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the condition (14) with the equality excluded holds on E for every set (£, rf)

whose matrix (£,• 77 *) has rank 1, then E will be said to satisfy the strengthened

condition of Legendre. It should be emphasized that in this strengthened con-

dition of Legendre we require that the inequality P(£, 77) >0 hold only for

sets (£, 77) whose «X2-dimensional matrix (£< 77.) has rank 1 and not for all

sets (£, 77) 9* (0, 0). We have the following:

Theorem 5. Let E be a subspace (12) satisfying the strengthened condition

of Legendre. There exists an invariant integral of the form (13) such that for the

function F =f+g the inequality

(15) FPiPlfc&k + 2FPiq£irik + F4m%$i > 0

holds at each element (x, y, z, p, q) on Efor every set (£, 77) 9* (0, 0).

For by Theorem 2 there exists for each point on £ a skew-symmetric

matrix (Sik) such that the quadratic form P(£, 77) +Sik^i7]k is positive definite

at this point and hence in a neighborhood of this point. It follows readily

that the set A +B can be covered by a finite number of circles G, ■ ■ • , Cm

having a common radius r such that to the circle Cf of radius 2r concentric

with the circle Ca there is associated a skew-symmetric matrix (S"t) of con-

stant elements such that the form Pa(£, v) = P(£, v)+S^t^i7}k is positive defi-

nite at each point on E whose projection in the xy-plane is in CJ. We propose

now to construct a set of functions Sik(x, y) = — Ski(x, y) having continuous

second derivatives on a neighborhood of A +73 and such that the form

P(£, v) +Sik(x, y)^i7]k is positive definite on E. To this end let h(t) be a func-

tion having continuous second derivatives and such that h(t) = 0 when t^r,

h(t) =1 when t}z2r, and 0<h(t) <1 when r<t<2r. Let (x„, ya) be the center

of the circle Ca, and let 67„(x, y) be the distance between the points (x, y)

and (xa, ya). Set ha(x, y) = h [da(x, y) ]. It should be observed that the product

hih2 ■ ■ ■ hm is identically zero on the set ^4+73. This follows because ha=0

on Ca and the circles &, • • • , Cm cover A +B. Denote by Sik(x, y) the func-

tion

(1 - *i)5« + *i(l - h2)s]k + ■ ■ ■ + hh2 ■ ■ ■ Am_i(l - hm)S?k,

where 5« (a = 1, • • • , m) are the constants described above. The quadratic

form P(£, 77) +Sik(x, y)^r]k determined by these functions is easily seen to be

identical with the sum

(1 - Äi)Pi(|,77) + *j(l - Ä,)P*(|,ij) + • ■ • + ÄiÄ* • ' • Ä—l(l - hm)Pma,r,),

where P«(£, 77) is the quadratic form associated with the circle C. Each term

in this sum is positive or zero, since for each integer a the product
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(1— ha)Pa(%, rj) is positive definite at points on E corresponding to points

in C'2 and identically zero elsewhere. Moreover the terms do not vanish simul-

taneously when (£, rj) 9* (0, 0). The quadratic form 17) +Stt(m is accord-

ingly positive definite on E.

We now use these functions Sik to define the function g of equation (13).

From the definition of g we at once obtain

g(x, y, z, p, q) = (l/2)[(dSik/dy)p{zk + (dSki/dx)qiZk] + Sikpiqk.

This shows that the Legendre quadratic form (15) for g is Sik^i-nk. Hence if

F=f+g the Legendre form (15) for F is exactly the positive definite form

P(Z> v)+Sikt;iVk- This establishes Theorem 5.
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