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1. Introduction. In an earlier paper(2) by one of us, referred to hereafter as

A.P.T., arc-preserving transformations were defined and studied in connec-

tion with an irreducibility condition on the transformation. It was shown,

for example, that if A and B are compact locally connected metric continua

which are cyclic (that is, without cut points) any single valued continuous

arc-preserving and irreducible transformation T(A) =B of A onto B is neces-

sarily a homeomorphism. ("Arc-preserving" means that the image of every

simple arc in A is either a simple arc or a single point of B; irreducibility of T

means that no proper subcontinuum of A maps onto all of B.) It was shown,

furthermore, that in case A is hereditarily locally connected the same con-

clusion holds without the assumption of irreducibility; and the prediction was

made that this is true in the general case.

Now as pointed out in A.P.T., if A is a compact continuum and T(A) =B

is continuous, then, since the property of being a subcontinuum of A mapping

onto all of B under T is inducible, there always exists a subcontinuum A\

of A such that T(Ai)=B and T is irreducible on Ai. However, since local

connectedness of A would certainly not in general insure local connectedness

of Ai, it is not possible always to reduce the set A so as to make the trans-

formation irreducible without sacrificing essential properties of A.

In the present paper we propose not only to completely justify the earlier

prediction referred to above, but also to obtain theorems concerning a much

more general type of transformation than "arc-preserving" which will give

all the theorems of the first three sections of A.P.T. as immediate corollaries.

R. G. Simond(3) has studied tree-preserving transformations on locally

connected compact and metric continua (that is, transformations T(A)=B

satisfying the condition that the image of every tree (or dendrite) in A is a

tree in B). Miss Simond has proved with considerable difficulty that every

arc-preserving transformation is tree-preserving. We show that this result

is an immediate consequence of one of our theorems, as it is also of a theorem

of A.P.T. In fact our first principal result, the proof of which is very much

simpler than that given by Simond, shows that in order that T(A)=B be

tree-preserving it is necessary and sufficient that the image of every simple
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arc in A shall be a tree in B. We also give an independent proof of the Simond

theorem.

If A is a tree, every simple arc in A is a cyclic chain(4) in A. This shows

at once that if A and B are both trees and T(A) =B is continuous, then in

order that T be arc-preserving it is necessary and sufficient that T be cyclic

chain-preserving. This immediately suggests another of our main results: If A

is a compact locally connected continuum and T{A) =B is continuous, then

in order that T be arc-preserving it is necessary and sufficient that T be both

tree-preserving and cyclic chain-preserving. We give this theorem added

meaning by obtaining a somewhat unexpected characterization of tree-pre-

serving transformations in terms of the action of these transformations and

their inverses on the sets A and B.

In §5 a characterization of ^4-set reversing transformations(5) is given

which supplements the treatment of this type of transformation initiated in

A.P.T.
In conclusion we might mention that if B is cyclic, the following types of

transformations are equivalent: (a) arc-preserving, (b) tree-preserving, (c) A-

set reversing, (d) monotone retracting.

Throughout the paper all transformations are assumed to be single valued

and continuous and all continua compact and metric.

2. Principal results. We assume throughout this section that A and B are

locally connected continua and that T(A)=B maps every arc of A onto a

dendrite in B.

(2.0) The image of every dendritic graph in A is a dendrite in B.

Proof. (By induction on the number of end points.) If the number of end

points in the graph is 2, then the hypothesis gives the conclusion since the

graph is an arc. Suppose that any dendrite in A having k or less end points

(k>0) maps onto a dendrite in B. Let D be a dendrite in A having k + 1 end

points. Let p be a branch point in D giving a decomposition D = D\-\-D2-srDz,

where D\, D2, and Ds are dendrites intersecting by pairs in p. Since D\, D2, D3,

D1+D2, Dx+Ds, D2-\-Dz are dendrites having at most k end points, each of

their transforms is a tree. Hence T(Di)-T(D3) and T(D2)-T(D3) are con-

(4) If M is a locally connected compact and metric continuum and A is a closed subset of M

containing every simple arc axb of M such that a and b are points of A, then A is called an A -set.

By the cyclic chain in M determined by two points a and b of M and designated by C(a, 6) is

meant the product of all .4-sets in M containing both a and b. It is the minimal A-set in M

containing both these points. The cyclic chains in M are closely related to the decomposition

of M into its cyclic elements, for which see Kuratowski and Whyburn, Fundamenta Mathe-

maticae, vol. 16 (1930), pp. 305-331. See also G. T. Whyburn, American Journal of Mathe-

matics, vol. 50 (1928), pp. 167-194, and W. L. Ayres, these Transactions, vol. 30 (1928), pp.

567-578, and vol. 31 (1929), pp. 595-695.
(6) For definition, see §5.
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nected; and since both of these sets contain T(p), their sum T(D3) ■ T(Di-\~D2)

is connected. Thus T{D) = T(Di+D2+D3) is a dendrite.

(2.1) If B is cyclic, T is A-set reversing.

Proof. Otherwise there exists a simple arc b\xb2 in A such that T(bi)

= T(b2)=b, but T~1(b)-blxb2 = b1+b2. Let T(blXb2)=X and K = T~l(X). From

(2.0) it follows that X is a dendrite; hence .XVB. Thus A-K^O.

(i) For any component R of A —K, T{F{R)) is a single point(e).

Otherwise there exists a simple arc cyd in R+c-\-d such that c and d lie

in F(R) and T(c) =^ T(d). But now if both c and <f are on b'xb" (in the order

V, c, d, b") we let t = b'c+cyd+db"; if not let ( be a dendritic graph in A

which contains both bixb2 and cyd. This is impossible by (2.0) since in either

case T(t) must contain a simple closed curve.

(ii) There exist two components R and S of A—K such that a = T(F(R))

^T(F(S))=cand T(R)-T(S)^0.

For let R be any component of A—K and let Q be the sum of all those

components U of A-K such that T(F(U)) = T(F(R))=a. Then since

Q-\-T~l{a) is closed, it follows that T(Q)+a is closed. Since a is not a cut

point of B, it follows that some point x of T(Q) must be a limit point of

B-T(Q). (We know that T(Q)+a^B since X is not a single point.) But Q

is open in A ; consequently 7"-I(x) must intersect some component S of A—K

which does not belong to Q. Thus if we set c = T(F{S)), (ii) is satisfied.

Now to prove (2.1), let y' and y" be points of R and S, respectively, such

that T{y') = T(y") =y. Then there exists a dendritic graph t' in A containing

y' and bxxb2. If    contains y", let Otherwise there exists a dendritic

graph £ in A containing both y" and t'. It is immediate that T(t) contains a

simple closed curve, contradicting (2.0).

We have at once:

(2.11) If A and B are both cyclic, T is a homeomorphism.

(2.2) In order that a single valued continuous transformation T(A)=B

shall be tree-preserving it is necessary and sufficient that the image of every arc

in A shall be a tree in B.

Proof. The necessity is trivial. To prove the sufficiency suppose A is a

tree and that B has a true cyclic element Eb. Let W{B)=Eb be monotone

and retracting. Then WT(A) =Eb is a transformation which maps arcs into

trees. Thus, by (2.1), WT is A -set reversing, hence monotone. But this makes

Eb a tree, which is absurd.

(6) For any open set G, F{G) denotes the boundary of G, that is, the set G — G.
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(2.3) If B is cyclic and no A-set in A other than A itself maps onto all of B,

then A is cyclic and T is a homeomorphism.

Proof. For if A had a cut point p, we could write A = A\-\-Ai, where Ai

and Ai are A -sets with Ax-Ai =p. Then since, by (2.1), T is monotone, either

A\— p or Ai — p, say A\ — p, contains the set T~1(B — T{p)), as this latter set

is connected. But this gives T(Ai) =B.

(2.4) If B is cyclic, Tis equivalent to a monotone transformation retracting A

onto some true cyclic element of A. Thus, in this situation, "arc-preserving,"

"tree-preserving," "A-set reversing," and "monotone retracting" are all equiva-

lent.

Proof. For let Ea be a minimal A-set in A mapping onto all of B under T.

Then since T{Ea) =B is a transformation mapping arcs into trees, it follows

from (2.3) that Ea is a cyclic element of A and Ea maps onto all of B topologi-

cally under T. Thus if for each y in B we set h(y) =Ea ■ T~r{y), then h is

topological and the transformation hT(A) =Ea is retracting. Furthermore,

hT is monotone since both h and T are monotone. Obviously hT is equiva-

lent to T, since h_1(hT) = T.

Definition. For any true cyclic element Ea of A we define E°a as the set of

all internal points of Ea, that is, all points x of Ea which are non-cut points of A.

It is well known that the set of all non-internal points of any such Ea is countable.

(2.5) For each true cyclic element Eb of B there exists a unique true cyclic

element Ea of A such that T(Ea) = Ea. The transformation Tis a homeomorphism

on Ea and T_1 is single valued on T{E°a).

Proof. For let W{B) = Eb be monotone and retracting. Since WT{A) = Eb

is a transformation which maps arcs into trees, it follows from (2.4) that there

exists a true cyclic element Ea of A and a homeomorphism h{E„) =Ea such

that hWT(A) =Ea is monotone and retracting. Since Ea maps topologically

under hWT, it must therefore map topologically under T. Let y = T(x) be a

point of T(E%), where x lies in E°a. Since x is an internal point of Ea and hWT

is monotone and retracting, we see that x = {hWT)~^{x) = T~lW~1h~1(x)

= T~lW~l(y)^T~l{y), and hence x = T~1(y). The uniqueness of Ea follows

at once from this single-valuedness of 7"_1.

(2.6) Let A be a compact locally connected continuum and T(A) =B be con-

tinuous. Then in order that T be tree-preserving it is necessary and sufficient that

for each true cyclic element Eb of B there exist a true cyclic element Ea of A map-

ping onto Eb topologically under T and such that T~l is single valued on the set

T{El).

Proof. The necessity follows from (2.5). To establish the sufficiency we

need only, in virtue of (2.2), show that the image of every simple arc t m A
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is a tree in B. Assuming the contrary, T(t) must contain a simple closed curve

Let Eb be the true cyclic element of B containing J' and Ea the true cyclic

element of A which satisfies the conditions of the theorem. It follows at once

that t-Ea is a simple arc axb which maps into an arc a'x'V of /'. Let a'y'b'

be the other arc of J', and suppose that y' is the image of an internal point

of Ea- Then T~l(y') contains a point of Ea and a point of t — Ea, which is

impossible.

(2.7) Let A be a compact locally connected continuum and let T(A)—B be

continuous. Then in order that T be arc-preserving it is necessary and sufficient

that it be tree-preserving and that the image of each cyclic chain{J) in A be a

cyclic chain in B.

Proof. Necessity: The first condition is necessary by (2.2). That the second

condition is necessary results essentially from the fact that, for arc-preserving

transformations, (1) A-sets map onto A-sets, and (2) the property of having

any three points on an arc is invariant.

We first show that A -sets map onto A -sets. Let A' be an A-set in A and

T(A') =B'. For any cyclic element Eb of B intersecting B' in at least two

points, let Ea be the corresponding cyclic element of A given by (2.6). Since

EbB' is a nondegenerate continuum and T(Ea)=Eb is topological, EbB'

must contain the image y of at least one internal point x of Ea. Then since

x = T~1(y) we see that x must lie in A'. Thus Ea is contained in A', conse-

quently Eb is contained in B'. Therefore, B' is an A -set in B.

Now to prove the necessity of the second condition of the theorem, let

C{a, b) be a cyclic chain in A. Then T{C{a, b)) =K is an A -set in B. Let x, y, z

be points of K and x', y', z' be points of C(a, b)-T~1(x), C(a, b)-T~l{y),

C(a, b) ■ T~1(z), respectively. There exists an arc cd in C(a, b) containing x', y',

and z'. Hence T(cd) is an arc in K containing x, y, and z. Therefore, if is a

cyclic chain (since for A -sets the property of being a cyclic chain is equivalent

to the property of containing an arc through any three points).

Sufficiency: Let ab be any simple arc in A. We first show that if Eb is any

true cyclic element of B such that Eb- T(ab) is nondegenerate and Ea is the

corresponding cyclic element of A given by (2.6) and xy is the arc Ea ab, then

T(ax+yb) ■Eb=x+y. (We may suppose the order a, x, y, b.) If this is not so,

then T(ax)-Eb or T(yb) ■ Eb, say T(ax)-Eb, is a nondegenerate continuum;

hence there must exist a point z distinct from T(x) of T(Ea°) which belongs to

Eb-T(ax). This contradicts (2.6), since T~l(z) intersects both Ea and ax — x.

Thus Eb - T(ab) is a simple arc x'y' = T(xy). Furthermore, no interior point of

x'y' is a limit point of T(ab)—x'y'.

Now if T(ab) is not a simple arc it cannot be a simple closed curve. This

follows either from (2.2) or from what was just shown. Hence T(ab) must con-

(') See footnote 4.
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tain a triod oc-\-od-\-oe=t. But, since T is cyclic chain-preserving, T(C(a, b))

must contain a simple arc through the three points c, d, e, say cde. Then

either cd or de does not contain o, say de does not contain o. Thus od-\-oe-\-de

contains a simple closed curve Jb containing nondegenerate subarcs od' and

oe' of od and oe; and if Eb is the cyclic element of B containing Jb, Eb - T{ab)

3 Eb-to d'e' =od'+oe' and o is a limit point of T(ab) —d'e' contrary to what

was shown above.

3. Supplementary results. We give here some additional results, throwing

light on the action of arc-preserving transformations. We assume throughout

this section that A is a. compact locally connected continuum and that

T(A)=B is arc-preserving.

(3.1) The image of each A-set in A is an A-set in B; the image of each cyclic

chain in A is a cyclic chain in B.

(3.2) For each true cyclic element Eb of B there exists a unique true cyclic

element Ea of A which maps onto Eb topologically under T.

These are direct consequences of (2.6) and (2.7).

(3.3) The image of every true cyclic element Ea of A is either a single point,

a true cyclic element Eb of B, or a free arc of B which is also a cyclic chain of B.

If T{Ea) =Eb, then T is topological on Ea.

Proof. We have at once that T(Ea) is a cyclic chain C(x, y) in B, if we

assume that it is not a single point. If C(x, y) is a single true cyclic element Eb

of B, then our conclusion follows at once. Hence we may assume that x and y

are distinct and that there exists at least one point z which separates x and y

in B.

Let x' and y' be points of Ea mapping into x and y, respectively, and let J

be a simple closed curve in Ea containing x' and y', and define J' = T{J). We

first show that J' is a free arc of B. Regarding J as our space, we see that

T is arc-preserving on /. If J' contains a true cyclic element F of itself, then

by (3.2), T(J) = F is a homeomorphism. This is impossible since x and y are

separated in B by the point z. Thus /' is a dendrite. But /' contains no triod,

since if it did we could easily find an arc of J having a triod in its image.

Therefore, /' is a simple arc.

Assume that /' =a'd'b' is not a free arc of B. Then there exists a triod t

in B having d' as center and a', b' as two of its end points, where d' is some

interior point of /'. Let c' be the other end point of t. Then the three arcs

a'd', b'd', c'd' of t are disjoint except for d' and we may let {c/ } be a sequence

of distinct points on c'd' converging to d' as a limit. It follows at once that

there exists a point d in T~l(d') and a sequence of points in {T~l{c()\

converging to d.

Since A is a locally connected continuum, there exists a region R in A
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containing b but disjoint from both r_1(a') and T~l(b'). This region is arc-

wise connected and hence contains a simple arc cd, where c is one of the

points Ci.

If d lies on / we let z be the first intersection of cd with J, and consider

an arc G defined as the sum of cz and an arc of J intersecting both T~x(a')

and r_1(6'). It is immediate that T{G) contains a triod, which is impossible

since T is arc-preserving. Thus d does not lie on /.

Let z be the first intersection of the arc cd with the closed set T-1^'),

and define cxe as a simple arc in A having the unique point e in common with

J, and on cxe let y be the last intersection with cz. Define an arc H as follows:

(a') if y is not z then H is the sum of the subarc zy of zc and the subarc ye

of cxe; (b') if y is z then H is the sum of cz and the subarc ze of cxe. Let G

be a simple arc of A composed of üand a subarc of / intersecting both T~1(a')

and T~l(b'). Then T(G) contains a triod, which is impossible.

Thus J' is a free arc a'b' of B. Thus every point of the open subarc xy of

a'b' must separate x and y in 5. Accordingly, C(x, y)=xy and C(x, y) is a

free arc of B.

(3.4) (8) // a and b are two points of A having the same image point under T,

then no true cyclic element of the chain C(a, b) can map topologically under T.

Thus each true cyclic element in C(a, b) maps into either a single point or a free

arc of B.

Proof. Let T(a) = T(b) and suppose there is a cyclic element Ea of C{a, b)

which maps onto a cyclic element Eß of B topologically. Let aqrb be a simple

arc in A where aq-Ea = q, rb -Ea = r. Then either aq or rb is nondegenerate,

and we may suppose aq is nondegenerate (rb may or may not be nondegener-

ate). Then T(aq-\-rb) = K is a continuum. Furthermore, K-Eß contains the

two distinct points T(q) and T(r). Hence K Eß contains a point x distinct

from both T(q) and T(r) which is the image of an internal point x0 of Ea.

This is impossible, since T~x(x) also intersects aq+rb — (q+r), whereas by

(2.7) and (2.6), T~*(x) must consist of a single point.

4. Dendrite-preserving property of arc-preserving transformations. If A

is a dendrite (or tree) and T(A) = B is arc-preserving, then it follows at once

from (2.2) that T is dendrite-preserving. This fact can also be seen from (2.5),

since if B had a true cyclic element Eb then A would also have one. This

dendrite-preserving property of arc-preserving transformations was first

noted and proven by R. G. Simond(9) as mentioned in the introduction of

this paper. However, it is interesting to note that it follows directly from

(2.4) of A.P.T. by the reasoning just given above, since the irreducibility of T

(8) This is closely related to (2.3) of A.P.T. and, indeed, yields (2.3) of A.P.T. as a special

case.

(9) See footnote 3.
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assumed in (2.4) of A.P.T. does not limit the generality because we can take a

sub-dendrite of A on which T is irreducible.

In view of the considerable length and difficulty of Miss Simond's proof,

the following one which is self-contained and independent of all other results

on arc-preserving transformations may be of interest.

Theorem (Simond). Arc-preserving transformations are dendrite-preserv-

ing.

Proof. Let T(A)=B be arc-preserving, where A is a dendrite. We first

show:

I. (Whether A is a dendrite or not.) If t = oa + ob-\-oc is a triod such that

T(o)=o', T(a)=a', T(b)=b', T(c)=c', and if t-T~l(a' + b' + c') =a+b + c,

then T(oa) ■ T(ob) = T(oa) ■ T(oc) = T(ob) ■ T(oc) = T(o)=o'.

For if, say, T(oa) ■ T(ob) contains a point q' distinct from o', we may sup-

pose the order a', o', q', b' on the arc a'o'b' = T(aob). Then T(ao) is a subarc

a'o'q' of a'o'b'. Hence the arc T(aoc) consists of a'o'q' plus an arc q'c' from

q' to c' which contains neither o' nor b'. But then the arc T(boc) =ö'o'c'would

contain both the arc o'q'b' of a'o'b' and the arc q'c', which is impossible since

clearly o'q'b'-\-q'c' contains a triod. This proves I.

Now suppose, contrary to the theorem, that B has a true cyclic element

B'. Let A' be a minimal 4-set in A such that T(A') contains B'. Then since

A' is a dendrite but not an arc, there exists a point o in A' and three continua

X, Y, Z such that A'=X+Y+Z and X-F= Y-Z = Z-X = o. Let T(o)=o'.
Since B' is cyclic and T(Y-\-Z) does not contain B', there exists a point q'

in B' — o' and points x in X, y in (Y+Z), such that T(x) = T(y) =q'. Clearly

we may suppose y in Y. Take the arcs xo and yo in X and Y respectively.

Then since both T(xo) and Y(yo) contain arcs from o' to q' whereas T(xo+oy)

must be a simple arc, clearly T(xo) ■ T(oy) contains an arc from o' to q'. Hence

there is no loss of generality in assuming (as we shall do) that both x and y are

cut points of A'. Let Rx and Rv be components of A' — x and A' — y lying in

X — x and Y—y respectively. Then since no one of the sets T(A' —Rx),

T(A' — Ry), T(X+ Y) contains B', there exist points a', b', and c' in B' such

that T-^a^-A' c Rx, T~l(b')-A' <zRv, T-\c')A'<zZ-o. Let a S T~l<ß'),

b £ T~l(b'), and c £ T~x(c') be so chosen that for the arcs ax, yb, and oc in A'

we have ax- T~l(a') =a, yb- T~l(b') =b, and T~1(c')-oc = c. Let oa = ox+xa,

ob = oy-\-yb. Then t = oa+ob-\-oc is a triod satisfying the conditions in I. How-

ever, since each of the sets T(oa) and T(ob) contains both o' and q' we have a

contradiction to I. Thus B can have no true cyclic element and hence must

be a dendrite.

5. yl-set reversing transformations. In conclusion, we give a characteriza-

tion of A -set reversing transformations which is made possible by (2.6) and

(2.7). We recall that T(A)=B is .4-set reversing provided that for each b
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in B, T~Y(b) is either a single point or an A -set in A, it being assumed that A

is a compact locally connected continuum. We make use here of certain re-

sults concerning this type of transformation which were established in §4 of

A.P.T.

Theorem. If A is a compact locally connected continuum and T(A) =B is

arc-preserving, then in order that T be A-set reversing it is necessary and suffi-

cient that the following conditions hold: (a) there exists no true cyclic element E

in A such that T(E) is a free arc of B; (b) if K is the set of all cut points and end

points of A, then T is monotone on T(K).

Proof. The necessity follows at once from the definition and the fact that

every .4-set reversing transformation is monotone (A.P.T., (4.12)).

Sufficiency: By (A.P.T., (4.1)) we must show that T is monotone on each

simple arc in A. If this is not the case, there exists a simple arc axb in A such

that T(a) = T(b) ^ T(x) for any point x interior to axb. If a and b are con-

jugate points, they lie in the same true cyclic element E of A and it is immedi-

ate from (a) and (3.3) that T is monotone on axb. Thus there exists a point q

interior to axb which separates a and bin A. It follows at once from (b) that a

is an internal point of a true cyclic element E of A which maps topologically

onto a true cyclic element F of B. But T~1 is single valued on T(E°), where E°

represents the set of all internal points of E.
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