ON STRONG SUMMABILITY OF FOURIER SERIES

BY
OTTO SZASZ

1. A series D_q°A,, or the corresponding sequence of partial sums s, =Y 44,,
n=0,1, 2, - - -, is said to be strongly summable (C, 1) with index & to the
sum s if 2>0 and

1 n
1.1 li ,— sl =0().
( ) nﬂﬂ-'—lzo:ls S| ()

It follows from Hélder’s inequality that the larger % the stronger is the asser-
tion (1.1). Furthermore, for k=1, (1.1) evidently implies (C, 1) summability
to the sum s.

Suppose now that f(¢) is a periodic function of the class L. Let its Fourier
series be

(1.2) (&) ~ 3ao + i (a, cos vt + b, sin ut) = i A4,(@1);
let ' ’
(1.3) o(x, 1) = 3{f(x + 1) + f(x — t) — 25}.

Hardy and Littlewood proved (1913):

THEOREM 1. The Fourier series of an integrable function f(t) is strongly
summable (C, 1) with index 2 at a point x if f(t) is of integrable square in a
neighborhood of x and if for some s

(1.4 fot {¢(x, u) }2du = o(f) astlQ.

In this paper we shall restrict ourselves to the index k=2, and speak sim-
ply of this case as “strong summability.” For generalizations of Theorem I
and for further references consult Hardy and Littlewood [2] and Zygmund
[5, chap. 10].

For the special case in which ¢(¢)—0 as ¢ | 0, Fejér [1] recently gave two
new proofs of the strong summability of the series (1.2) at t=x. We shall
simplify his device and use it to give two new proofs of Theorem I. The es-
sence of Fejér's method is to introduce double integrals with positive kernels
while using the (C, 3) and Abel summability methods. Replacing the partial
sums s, by s,—34, we get simpler (and also positive) kernels.

Presented to the Society, December 26, 1939; received by the editors February 17, 1940.
(1) For generalizations to other summability methods cf. [3, §87, 8 and 11]. Numbers in
brackets refer to the bibliography at the end of the paper.
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In the last section we prove still another theorem of Hardy and Little-
wood [2]:

TuEOREM II. If

(1.5) fthb(x, u) | du = o(t) astlo,
then
(1.6) i (s/(x) — 5)% = o(n log n) asn— «,

Our proof is shorter and simpler, not involving complex function theory.
Hardy and Littlewood also proved, by constructing examples, that (1.6) is
the sharpest asymptotic estimate implied by the assumption (1.5).

2. We prove first the following lemma.

LEMMA. Let s¢f =0, s ¥=s,—3A4,.,n=1,2, - - - ;iflim,., A,=0, and if one
of the sequences s, s+ 1s strongly summable, so is the other.

This follows from the identities

n n 1 2
(o= =D (F =9t = XAl + s* = 29)
1 1 1

n 1 n
= ZA,(s,,— s) — —ZA?
1 4 7

2

n 1 n
= 34,6 —s)+— 2 4,.
1 4 1

In view of this lemma, we may deal with s,;*(x) instead of s,(x) while dis-
cussing the series (1.2). Now

2.1) sX=x) = —l—f Tf(x + ) cot 3t sinnt dt = —l-f tgb(x, t) cot 3¢ sin.nt dt,
27 J _ m™Jy
where Y(x, t) =% {f(x+t) —flx—t) } =y (¢). Hence
s¥x)2 = —1— f i f '1lz(t)¢(u) cot 3£ cot }u sin nt sin nu didu,
w2Jo Jo
and
(2.2) z”: (n+ 1 —p)2sHx)? = izf 'f ’nl/(t)xl/(u) cot %t cot 3u R,(¢t, w)dtdu,
1 ™ 0 0

where R, (t, u) =) _t(n+1—v)?sin vt sin vu.
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If f(¢)=1, then 4,(¢)=1,v=1,2,---,and s;*(x)=1,v=1,2, - - - ; hence
from (2.2)

n 1 L J L
D(mn+1—y2= —f f cot 3¢ cot 3u R, (¢, u)dtdu
1 w? 0 0

(2.3)
= gn(n + 1)(2n + 1).
Now
(2.4) R, u) >0 for0<t<m0<u<m;

the proof is elementary (cf. [4, §2]).
As a first application of (2.2), (2.3) and (2.4) we get:

IF |f()] S1in |t <7, then X2 (n+1—v)2s¥(x)2 <D 2.
Also from (2.1)
1 Ld
l=—f cot ¢ sin nt dt, n=1,2,---;
T Jo

hence
1 " .

(2.5) s,.*—s=—f o(x, t) cot &¢ sin nt dt, n=12,---,
T Jy

and, writing ¥ (¢) for ¥(x, ¢),

n 1 x Ld
S (41— )k — )= —2f f o (H)p(u) cot 3t cot u R,(¢, w)didu
1 ™ 0 0

= I.(¢).
Now (2.4) yields
(2.6) | I.(9) | = I.(¢),

whenever |¢(t)| <¢(t) in 0<t <.

The proof of strong summability at a point where ¢(x, {)—0 as ¢ | 0 now
follows as in Fejér's method. We note first that I.(¢) =0(n?) as n— o is a
necessary and sufficient condition for the strong summability of the series
(1.2) at t=x, or, what is the same, of the cosine series of ¢(¢) at £=0. This
follows from the following general inequalities for an arbitrary sequence of
positive quantities p, =0:

@7 DY (1) S35 S ntY (20 — ).
0 0 0

Next, (2.6) yields the following theorem:
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Whenever |¢(t)| <é(t) in 0<t<m, the strong summability of the cosine se-
ries of @(t) at t=0 implies that of the series of $(t).
If now ¢(¢)—0 as ¢} 0, then there is an interval 0 <¢<§ in which ¢(¢)

is bounded. We choose the majorant function ¢ to be

_ {maxlq&(f)l if 0st=<3s
o(t) = Josr=

| ) | if 6<t=n.

Now ¢ is continuous at ¢ =0 and monotonic in 0 <t < §; hence its cosine series
converges at £=0, and it is, consequently, strongly summable. Thus the series
(1.2) is strongly summable at t=x.

3. The symmetry of the integrand gives

1 1 2
1,.(¢)=_2ff ...+__2ff ...=_2ff .
™ 0StSusS~ ™ 0SuStsS~ ™ 0StSusw

Furthermore for the function

0 for 0<t<d

(3.1) $i(0) = {.,s(t) for §<t<m,

In(¢l) - %fﬁitiuSttb(t)lﬁ(u) T 0(n8) s w’,

since the cosine series of ¢1(¢) converges to 0 at £ =0. This yields the following
result:

A necessary and sufficient condition that (1.2) be strongly summable at t =x
is that for a fixed 6>0

I,(.”(da) = —1—2 f f o (H)o(u) cot }t cot 3u R.(¢, w)dtdu = o(n?)
T 0StSuss

asn— o,

We now use this criterion to prove Theorem I.
Schwarz's inequality yields

1
I ,(.3)(@5')2 = —f f ()2 cot %t cot 3u R,(¢, w)dtdu
w 0StSuss

. ff o(u)? cot §t cot 3u R,(¢, u)didu.
0StSusd

Hence
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1 o pd
1.(9) = = f f ¢()? cot 3 cot ju R (¢, w)dtdu
Téd o Yo

1 é *
= — {da(t)2 cot %tf cot 1u R,(¢, u)du} dt.
0 0

7!'2
But

n

f cot 3u R,(¢, w)du = > (n+ 1 — »)2sin vtf cot 3u sin vu du
0 0

1

=7y, (n+1—»)?sinwu;
1

and the relation
& n
f d(H)2cot 3D (n + 1 — »)?sin vt dt = o(n®)
0 1

follows from Lebesgue’s theorem on (C, 1) summability applied to ¢ (¢)?, using
(1.4) and (2.7). This proves Theorem 1.

4. We shall now apply the Abel-Poisson summability method. From (2.1)
for0<r<1

i (s¥(x) ™ = izf tf 1r|//(t)xl/(u) cot 32 cot %u( i sin n¢ sin nu r") dtdu
1 ™ 0 0 0

- @f;ﬁrmm cos* }# cos® ju

-[1 = 27 cos (u — &) + #2)]72[1 — 27 cos (u + ) + r2]'dtdu.
Putting f(£)=1, we get

r _ 4r(1
a-n

— 2 ] L g
" r )f f cos? }t cos? dujl — 2r cos (u — &) + r2]-!
™ 0 0

[t = 27 cos (u + ) + r2]~'dtdu.
The integrand will be denoted by P(¢, u; r). Evidently

“.1) P, u;r) >0 for0<t<m0<u<m,0<r<I1.

If |f(2)] <1, 0<t<2m, this yields

4.2) SosHx)r < D for0<r<1.
1 1

Similarly from (2.5)
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56— 9 = T [ [ 40000 P, 15 i = 465 ),

and (4.1) gives A(¢; r) <A(p; r) whenever [¢(t)[ <¢(t). We first remark that

1 ’)

is a necessary and sufficient condition for strong summability; i.e., for
D a(s*¥—s)*tobeo(n) asn— .

The necessity is obvious; the sufﬁc1ency follows from the inequality (valid
for any p,=0):

n 1 —-n n 1 v 0 1 v
Zpyé(l——> E;m(l———).S_‘iZPv(l——), nz2.
0 n 0 n 0

n

A@in = o

If now ¢(¢)—0 as ¢ | 0, then, using the same majorant as in §2, we obtain
still another proof of strong summability at points where ¢ (¢)—0. It is similar
to Fejér’s second proof except that we use a simpler kernel.

To prove Theorem I we observe that for the function ¢1(¢) of (3.1) evi-
dently

4r(1 — 2 1
4.3) A =1 ') f f ¢(t)¢(u)P(tur)dtdu—-o(1 r)

This together with the symmetry of the integrand gives (as in §3):

A necessary and sufficient condition for strong summability of (1.2) at t=x
s that for a fixed 6 >0

Aipn) = LT f f 6B P, u; N = o(——).

Again using Schwarz’s inequality, we obtain

4r(1 — %) d
As(¢; E— 2P(¢, u; r)dtd
| 43(8;7) | > fo fo &(2)2P (¢, u; r)dtdu
— 2 & x
= :11(—17-'—)f [¢(t)2f P(t, u; r)du] dt
But ° ’

4r(1 — rz)f P(t, u; r)du = cot %tf cot %u( > sin ¢ sin nu r") du
0 0 1

(4.4)

0
= = cot 3¢ sin nt r".
1
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The right-hand side of (4.4) is o(1—7)~? since the cosine series of ¢(t)? is
Poisson summable at {=0 under assumption (1.4). We have thus proved

Theorem I once again.
5. In this section we assume

(5.1) f‘|¢(x, u)|du-=‘ ®(x, ) = o(t) astl0.
From (4.3)

4r(1 — ) (30 |
A@in) S A( 8]0 = %r—)f [ oot | P4, u; aran

(5.2) 1
+0(1 - )
The first term on the right is
dr(1 — #2) (3 (8
ol =2 [ eew |
T o Yo

cos? 3¢ cos? }u dtdu

(1 = N2+ 4rsin? 3(u — £)][(1 — 7)? + 47 sin? 3(u + #)]
4r(1 — r2) d r?
s T [ lote0]

-[(1 — % (4 — 1)2]_1 [(1 — ﬁ (u + :)2] drdu

(5.3)

assuming 0<d<w/2. Let 1—7<3J, and decompose the range of integration
into 0Su+4t<1—7 and 1 —r=<u+#=<24. For the first part, using (5.1), we
get

-~

(5.4) ffogwgl.,' < (1— r)—4(fol_'| ¢(t)|dt>2= o((1 = 1)2).

Hence, forr 71,

1
Aa(l ¢|; N < 0(1 - f) a4l =) ffl— = +t$za| ¢(t)¢(u)| (+H

@ = N2+ r(w — 0)2]'dtdu.

(5.5)

Now, the last integral is

(5.6) 2f f:MG =2 f f S‘Sul'ﬁ(t)fb(f;)lu-?

(1 = 92+ r(u — §)2]7dtdu = 2Bs().
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Furthermore

28 v
B(r) £ f( u-2|¢<u>l( f | [t —r>2+r<u—t)2]-ldt)du

1-r)/2

28
<(1-r ‘2f u‘2[ o (n) | ®(u)du
(1-r)/2

=(1- r)—zo(f::mu‘l | ¢(w) | du),

and
28 25 28
f wt| ¢(u) | du = u‘lti(u)] + w2 ®(u)du
(1-r)/2 (1-r)/2 (1-r)/2
28
=0(1) + u2d(u)du.
(1-7r)/2

Thus from (5.2), (5.5) and (5.6),as 7 T 1

=)o) o)
11—+ 7 °\1 =+ 1—
1 25
+ 0( f u“2<I>(u)du).
1—7r (1—r)/2
Finally

[ rrawin= ([ + [ ) acin=cio + cuo

1-r)/2 1-r)/2 e(r)

A@in < o

where we may assume
31 — 1) < e(r) =exp [— (log (1 — N™H)12] < 25.

Now
e(r) *
Ci(r) < max w1®(u) u~'du = max w'®(u)[log (r) — log 3(1 — )]
uSe(r) (1-r)/2 uSe(r)
2 1 \V
= max % 1d(%) [log - (log ) 2]
T uSe(n) 1—7 1 -7
1

=o(log1 ) asrtl,

and |

25 1 \V 1
Co(r) = 0( f u‘%lu) = 0(log 25 + (log ) ’) =0 (log )
e(r) 1—7 1 —7
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as r11. Summarizing,

A(-)<O<1 +(11 ‘)+(11 1)
9i7 l—r) ‘N1, %12, ‘\i=, %1 2,)

St = o = o (1 log 7—):

1 1—7r 1—7

or

Putting r=1—1/n yields
Z(s,.*—s)2=o(nlogn), asn—
1
which proves Theorem II.
Addendum (May 27, 1940): To complete the proof of the criterion in §3
we remark that

f:{(ﬁ(t) ﬁ'q&(u) cot 12‘- R.(t, w)du} cot % dt = o(n?).

This follows easily from the fact that strong summability at a point is a local
property of the function. A similar remark holds for the criterion of §4. To
prove Theorems I and II we could also confine ourselves to the case é =.

I have learned from Mathematical Reviews, vol. 1 (1940), p. 139, that
T. Kawata (Proceedings of the Imperial Academy, Tokyo, vol. 15 (1939), pp.
243-246) also gave a simpler proof of Theorem II.
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