
ON KERNELS OF FALTUNG TRANSFORMATIONS

by

RALPH PALMER AGNEW

1. Introduction. A complex-valued function J(t) defined over — °o <t < «

being given, the function

J{t)x{s + t)dt
-as

is, if it exists, called the faltung of the kernel J{t) and the function x{t). We

use Lebesgue measure and integration, and let L denote the class of complex-

valued functions x(t) integrable (and hence also absolutely integrable) over

the infinite interval — °° <t< °o.

It is well known that if J z L, then the faltung y(s) of each x e L exists

(that is, is finite) for almost all s, and y e L. This is implied by the computa-

tion

(1.2)

/CO 00 /* 00 /■» CO f% CO

y(s)ds = I ds J(t)x{s + t)dt = J J{t)dt I x(s + t)ds
—OO " — 00 J — 00 " — 00 " —00

=[/_>'] [/_>4
which is justified by the absolute convergence of the integrals involved. If

J(t) is an essentially bounded measurable function, say | /(/) | ^ M for almost

all t, and xzL, then the simple estimate

/oo /» 00I /(/) I I x(s + t) I dt ̂  M I    I x(s + 0 I df

/CO

I x{t) I ̂
-00

shows that y(s) exists and is bounded over — 00 <s < 00 . Each of these results

is of the type: If / has property P, then y has property Q for each x £ L. To

supplement such results, it is desirable to know whether the conclusion that /

has property P can be drawn from the hypothesis that y has property Q

whenever x belongs to an appropriate class X of functions. Doubtless the most

pertinent questions are those for which the class X is L itself. We are able to

obtain affirmative theorems not only when X is the class L but also when X

is a suitable class of step functions in L. Such theorems become stronger and
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throw more light on the real character of faltung transformations when the

extent of the class X is reduced. There is some arbitrariness in choice of the

classes X; we endeavor to make them at the same time as simple and illumi-

nating as possible.

An example may serve to illustrate a role played by step functions in

the theory of faltung transformations. If J(t) =exp it", n>2, then (see §6)sim-

ple estimates show that the faltung of each ordinary step function is a

bounded continuous function in class L. But Theorem 3.1 shows that there

exist generalized step functions in class L of which the faltung is not in class L.

The main results of this paper are Theorems 2.1, 3.1, and 4.1 which are

of the following type: If y(s) has property P for each x(t) belonging to a

class X of functions, then J(t) must have property Q. With each of these

theorems is associated a theorem of familiar type which asserts that, if / has

property Q, then (i) y has property P for each x £ L and (ii) a certain constant

determined by J is the bound of the transformation, that is, the least con-

stant M such that a constant (norm) determined by y is less than or equal to

Mjl „ I x(t) I dt for each x e L.
The class X is in each case a nonlinear subclass of L consisting of certain

generalized non-negative step functions. Neither the class X, nor the larger

manifold Tl(X) consisting of all finite linear combinations of elements of X,

forms a closed set in the space L in which the distance between two elements

X\{t) and x2{t) of L is given by the familiar metric

/oo I x2(t) - xx(t) I dt;
-00

in other words the space obtained by using the elements of 90? (X) and the

metric of L is not complete. It is shown in §6 that each of Theorems 2.1, 3.1,

and 4.1 will fail if X is replaced by certain smaller classes of step functions.

Let 5 denote the special class of all real non-negative functions x=x(t) such

that (i) x e L and (ii) there exist non-negative constants • • ■ , c_i, Co, C\, c2, • • •

and • • • <a_i<a0<ßi<ö2< ■ • ' (depending on the particular function x)

such that lim,^^ an = — 00, lim,,..,,, a„ = °°, and for each «=•••,—1,0, 1,

2, • • • ,

(1.5) x{t) — cn, an 2= t < an+i.

Each x E S may be described as a real non-negative function in L which is a

generalized step function(') having a finite number of steps in each finite in-

terval.

Let Su denote the subclass of 5 consisting of those functions in S for which

a„+i — an = 1, n =0, +1, +2, • • • ; each x e Su is a unit step function, each step

0) We reserve the term ordinary step function for step functions which vanish outside some

finite interval.
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being one unit long. Each x e 5 is bounded over each finite interval, and each

xe Suis bounded over — » <t < « . (It is a trivial remark that the last asser-

tion would be false if in (1.5) an^t<an+i were replaced by an<t<an+\.)

2. Conditions for existence of y(s). This section is devoted to discussion

and proof of the following two theorems.

Theorem 2.1. If J{t) is such that, for each x e Su,

/OO

J(t)x(s + t)dt
-00

exists for at least one s in the interval —<s< oo, then J(t) is measurable^2)

over — oo <t< co and for each constant 0<A < oo there is a constant Ma such

that
u+a

' dt = MA < oo/u+A
\j(t)

Theorem 2.2. If J{t) is measurable and (2.12) holds, then for each x e L,

y(s) defined by (2.11) exists for almost all s and is measurable, and for each A >0

/» u+a . /» (
I y(s) I ds ̂  MA I x(t) dt

where Ma is the constant of (2.12). Moreover the constant Ma in (2.21) is the

best possible one in the sense that if a measurable function J(t) satisfying (2.12)

and A>0 are fixed, then, for each C<Ma,

/i u+A r* oo

I y(s) I ds > C I    I x(t) I dt
U —00

will be true for some xeL.

If A\ and A2 are finite positive numbers, then each interval u^t^u+Ai

can be covered by a finite set of intervals of the form Uk^t^ui+A2; hence it

is apparent that if the left member of (2.12) is finite for some one A >0, then

it is finite for each A >0. Therefore the condition (2.12) is equivalent to

/< u+l I J{t) \dt < oo ,

and this condition is easily seen to be equivalent to

/. n+l
I /(/) \ dt < OO.

n

(2) Perhaps little would be lost if we were to assume measurability of J(t); but the proof of

measurability of J(t) is so simple (see the few lines following the statement of Lemma 2.3) that

we elect to prove it rather than to assume it.
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In §7 we discuss further the class of functions satisfying the inequality (2.12).

It is a corollary of Theorems 2.1 and 2.2 that if J is such that y(s) exists

for at least one 5 whenever xzL, then y(s) must exist for almost all s whenever

x £ L. This does not imply that if /(/) and xit) are a pair of functions with

x £ L for which y(s) exists for at least one 5, then y(s) must exist for almost

all s; indeed if J(t) is 0 or t2 according as [t], the greatest integer less than

or equal to /, is even or odd, and x(t) is 1/(1 -\-t2) or 0 according as [t] is

even or odd, then x £ L and y(s) = 0 when s is an integer but y(s) = <x> when s

is not an integer.

Our first step in the proof of Theorem 2.1 is to prove

Lemma 2.3. If J(t) is such that, for each x e SUt y(s) exists for at least one s,

then J{t) is integrable over each finite interval a^t^b and, for each x £ Su, y (s)

exists for at least one s in each closed interval of unit length in the interval

— SO <S< oo .

To prove Lemma 2.3, let J{t) satisfy its hypothesis and let Xo(t) be a

positive function x £ Su, say x0(t) = 1/(1 + [t]2). Let s0 be fixed such that

/CO

At)x0(st + t)dt
-00

exists. Then if — <*> <a<b< x>,

i b

J(t)x0(s0 + t)dtf
exists. But the function l/xo(^o+0 is measurable and bounded over a^t^b;

therefore J(t)= [J(t)xo(so+t)]/xo(so+t) is integrable as well as measurable

over a<t<b.

Now let an arbitrary function x £ Su be fixed. The function X(t) defined

by the series

oo

(2.32) X(t) = £ 2-'"'*(< + n)
71=—00

exists for almost all t, and X e Su't that X e L is shown by the computation

/CO /%  CO COX(t)dt =1     X^'^H »)*
-oo *^ —co   n=—co

00 f 00 /% 00

= X) 2-|n| I    x(t + n)dt = 3 I x(t)dt
n=—oo *^ —oo *^ —oo

which is justified by the fact that x(t) ^0 and x £ L; and X(/) and *(/) are con-

stant over the same unit intervals. Let s0 be fixed such that
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/% CO

(2.33) Y(so) = J   J(t)X(s0 + t)dt

exists. Then

/» 00 00

(2.34) I      X) 2-l"l |/(0| x(s0 + n + t)dt
J —oo n=—oo

exists, and since each term in the sum is measurable and non-negative, this

implies that

/oo I J(t) I x(sa + n + t)dt
-00

exists for each n. Thus

/OO

J(t)x(s + t)dt
-to

exists when s =So, So+ L Sq + 2, • • • . Since each closed unit interval contains

at least one of these points, Lemma 2.3 is proved.

To complete the proof of Theorem 2.1, let /(/) satisfy the hypothesis of

Theorem 2.1 and hence the conclusion of Lemma 2.3. To establish (2.12), we

assume that (2.12) fails and obtain a contradiction. Failure of (2.12) implies

that the left member of (2.24) is + » ; hence there is a sequence n\, n2, «3, ■ • •

of integers such that \np — nq\ >3, py^q, and

(2.37) lim I(na) = oo
a—too

where

/» n+l

I(n) = I      I /(/) I dt.
J n

It follows from (2.37) that we can choose a decreasing sequence 0i >92 > • ■ ■

of positive numbers such that

CO 00

(2.38) Z/(O0a =oo, E»«<^
a=l a=l

Let

(2 39) *«) ■" ?«> M« - 1 - * < n« + 2, « = L 2, • • • ,

= 0, otherwise.

Then *(/) is real, non-negative, and constant over each of the abutting unit

intervals n^t <«+l; and the second of the relations (2.38) implies that xeL.
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Hence x e Su- Since the integrands are all measurable and non-negative, we

find when | s\ 5= 1

/OO /» 00I /(/) \ \ x(s + t)\dt = I    I J{t — s) 11 x{t) I dt
-00 J -00

oo      /» I»a+2

a=l ^ 3rea-l

a=l      J 3na-l

s= E    I      I AO I * = E *«/(»«.) = «;
a=l       •/ M„ a=l

na+2

I /(/ - s) \ I x{t) I rff

»>a+2

I J(t ~ S)\dt.

hence

/OO

/(0*(s + t)dt
-00

fails to exist when | s | 5= 1 and we have a contradiction of the fact that y(s)

must exist for at least one 5 in each unit interval. This completes the proof of

Theorem 2.1.

Proof of the first part of Theorem 2.2 is very simple. Assuming that J(t)

is measurable and (2.12) holds, and that x e L and A >0 are fixed, we find for

each real u

u+A (* u+A

' dt
/* u-\-A /» u+A /» x

I y(s)\ds ^ ds      \j(t)x(s + t)
u J 11 J —a,

J(t - s) M x(t) I dt
/» u+A n oc

ds)

I x(t) \dt \       \j(t - s)\ ds

/CO (—u /• oo

I x(t) \dt j I /(a) I Ja ̂  AfA I I I A;
-oo «/   f—II—/( « —»

the steps are easily justified by fundamental theorems which imply also that

y{s) exists almost everywhere and is measurable over u^s^u-\-A. It follows

immediately that y(s) exists almost everywhere and is measurable over

- oo <s< oo, and that (2.21) holds.

In our proof of the last part of Theorem 2.2 we shall use the following

lemma in which we choose notation to fit the application.

Lemma 2.4. If u is real, A >0, h>0, and J(t) is integrable over the interval

u^t^u+A+h, then
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U+A J        f* 8+8

5-»0+

/i u+A        J     /» 8+8
ds —        \j(t) -J(s)\dt = 0.

u 0   J ,

In case J(t) is continuous over u^t^u+A+h we can, for each e>0,

choose 60>0 such that \j(t)—J(s)\ <e/A when 5 and t lie between u and

u+A + So and |<— s| <50; letting 1(5) denote the iterated integral in (2.41),

we find that 0^/(5) <e when 0<5<50 and (2.41) follows. In case J(t) is not

continuous, we can show that lim sups-,0/(5) <e by use of the following in-

equality:

I J(t) - J(s) I ̂  I J(t) - /,(*) I + I /«{*) - /,(*) I + [ Jf(s) - J(s) I

in which Jt(t) is a function continuous over u^t^u+A+h for which

iu+A+h

J(t) - 7,(0 I dt < e/3.

Let a measurable function J(t) for which (2.12) holds and a constant A >0

be fixed. For each 5>0, let xs(t) be defined by

xs(t) = 8-\      0 < t < 8,
(2.42) ~

— 0, otherwise.

Then

/OO

I Xi(t) \dt= 1, 8 > 0.

The faltung ys(s) of 7 and Xs is

yt(s) = f /(*)*«(* + t)dt = — f
7-oo 8 /_„

i+S

J(t)dt;

hence

so that

ys(- s) - J(s) = 4" f + [7(0 - J(s)]dt
8 J s

I y,(- s) - J(s) | JJ i- f ** | 7W ~ 7W I *
8 J,

and for each u

I yt(- s) - J(s) I <fr £ I      «fr- I      I 7(0 - J(s) I
u v, 8   *J £

Using Lemma 2.3, we obtain
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/> u+a I ys(— s) — J(s) I ds = 0,
u

and this implies that

/> u+a f* u+a
I ys(- s)\ds = \      I       I ds.

If now C< Ma, then we can choose a fixed u such that

• /» u+A

(2.45) I    [/(*) I #*><;■.,
w u

and then because of (2.44) and (2.45) we can choose a fixed S>0 such that

/> u+a
I y,(- s)\ds > C.

u

Using (2.42), we can write (2.46) in the form

I yt(s) I ds > C 1    I *a(*) I dt;
-u-a J -oo

this implies (2.22) and Theorem 2.2 is proved.

The hypotheses of Theorems 2.1 and 2.2 do not imply that, if x e L, then

y(s) must exist for all real 5. This follows from

Theorem 2.5. In order that J(t) may be such that

/O0

J(t)x(s + t)dt
-00

exists for all real s whenever x e L, it is necessary and sufficient that J{t) be meas-

urable and essentially bounded.

A function J(t) is called essentially bounded if there is a constant M such

that I Jit) I < M for almost all t. Sufficiency is a consequence of the well known

fact that if J(t) is measurable and essentially bounded and £(/) £ L, then

J(t)l-(t) £ L; and necessity is a consequence of the well known fact that if

J(t)!-(t) £ L for each £ £ L, then J(t) is measurable and essentially bounded.

If /(/) is essentially bounded, then (2.12) holds and MA^Aß where ß is the

least constant such that | /(/) | 5=/3 for almost all t; but (2.12) does not imply

that J(t) is essentially bounded.

3. Conditions for y £ L. It is possible to prove, by means of an extension of

a theorem of Banach(3) and some ideas which we use in the course of proof

(3) Banach, Theorie des Operations Lineaires, Warsaw, 1932, p. 87, Theorem 9. The extension

required is from the finite interval Ogi^l to the infinite interval — <*> <t< oo, and from real-

valued functions to complex-valued functions.
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of Theorem 3.1, that if /(/) is such that, for each x e L, y(s) exists for almost

all s and y e L, then J eL. Theorem 3.1 below, of which we give a direct proof,

includes this result.

Theorem 3.1. If J(t) is such that, for each x e S,

/oo
J(t)x(s + t)dt

-00

exists for almost all s and y e L, then J z L.

Theorem 3.2. If J e L, then for each x e L, y(s) as defined by (3.11) exists

for almost all s, y e L, and

/OO /» 00I y(s) I ds ̂  M„ I    I x(t) I dt
-CO j -OO

where

/CO

I /(*) I dt;
-00

moreover Mx is the best possible constant in (3.21) in the sense that if C<Mm then

/oo n oo

I y(s) I ds > C I    I x{t) I dt
-00 " -00

will hold for some xzL.

Our first step in the proof of Theorem 3.1 is to prove

Lemma 3.3. If J(t) is such that y e L whenever x e S, then there is a constant

M < <x> such that

/CO /% 00I y(s) I ds ̂  M I    I x(t) I J/, zeSi,
-OO " -OO

where Si is the subclass of S consisting of those functions x(t) in S which vanish

outside the interval 0 5= t < 1.

If J(t) satisfies the hypothesis of Lemma 3.3, and no M< =o exists for

which (3.31) holds, then for each « = 1,2, • • • there is xn e Si such that

/CO S* 00

I yn(s) I ds > 2n I    I xn(i) \ dt,
-00 j -00

y„ being the transform of xn. Since the faltung transformation is homogene-

ous, we can assume that the functions xn(t) and yn{t) are divided by the left

member of (3.32) so that
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/CO s% COI xn(t) I it < 2-",        I    I yn(s) \ds = 1.
-00 J -00

Let Xi = 0 and choose constants a2>ßi+l such that the inequality

f an+1

(3.34) I       I yn(s - X„) I ds > 1 - 3-"
/ an

holds when n = 1. Since

/CO

I y„+i(j - X„+i) I ds = 1,

we can choose X2>Xi+l and then choose a$>a2-\-l in such a way that

(3.34) holds when n = 2. Continuation by induction furnishes sequences

fli<a2<03< • • • and Xi<X2<X3< • • ■ such that an+i>an-\-l, X„+i>X„+l,

and (3.34) holds for eachfw = l, 2, • • • . Since xn(t) £ Si, it follows that

xn(t— X„) vanishes outside the interval X„^/^X„ + 1. Let

(3.36) ,„ X(t) = 22 x»(t ~ Xn).
...   —. ... n=l

The series converges for each t since, for each t, xn(t — X„) 5^0 for at most one n.

Properties of the sequences xn and X„ imply that X £ S. Hence, by hypothesis,

(3.37) Y(s) = J J(t)X(s + t)dt

exists for almost all 5, and Y £ L. Since X(t) vanishes at all points t not in one

of the mutually exclusive intervals (X„, X„ + l), it follows from (3.37) that

=o     n X„+l

Y(s) = X /(< - s)X{t)dt
tt-l J Xn

00      /* Xn+1 °0 oo

(3.38) = J2 I      /(* - s)x»0 ~ ^n)dt = X I   /(*.- 5)*-(* _ X«)A
" X„ n=l « -co

00 00 oo

=  X   I     /(<)*•.(* - Xn + t)dt = X ~ V)-
n=l *^ —oo n=l

It follows from"(3.33) and (3.34) that for each n = \, 2, ■ ■ •

/' O.n+1 I Vk(s — Ajt) I ds > 1 — 3~n,       k = ft,
an

m m < 3-*,       * * n.

Hence the inequality
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(3.41) I Y(s)\ = 2Zy*(s - x»)

implies that

/On+l I Y(s)'

^ I y„(s - X„) I - XI yk(s — **)

rfs ̂  1 Z 3~* = » = 1, 2,

This is inconsistent with the previous conclusion that Ye L; hence M< =o ex-

ists for which (3.31) holds and Lemma 3.3 is proved.

To prove Theorem 3.1, let J(t) satisfy its hypothesis, and let Xs(t) be the

function in (2.42) which is 5-1 over 0^t<8 and is 0 otherwise. If 0<S<1,

then x$ £ Si; hence Lemma 3.3 implies existence of a constant D < » such that

(3.43) I ys(s) I ds = D I    I *,f» I ds = Z>, 0 < 5 < 1.

Since, by Theorem 2.1, J(t) is integrable over each finite interval, (2.44) must

hold; replacing A by 2A and setting u = — A in (2.44) gives

= lim f
S->0   J -

(3.44) f |/(0|^
J -A

From (3.43) and (3.44) we obtain

(3.45) f   I 7(0
J -A

ys(- s) ds,

dt = D,

A > 0.

4 > 0,

and this implies that

/CO

I J{t) \dt^D.
-00

Thus /£ L and Theorem 3.1 is proved.

The first part of Theorem 3.2 is well known, and we give its proof merely

for completeness. If / £ L and x £ L, the computation

/CO f% CO f\ CO

I y(s) \ ds ̂  I   ds I    I /(<) I I x(s + t) I <ft
-00 J -X        J -00

/CO /» 00I J(t) \dt I    I *(s + 0 I A
-00 * -00

is easily justified and (3.21) follows. If it be assumed that
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/CO /»COI y(s) I is ̂  C 1    I *(/) I <i/,
-00 /-00

where

/00 -00

then we can set D = C in (3.43) to obtain Z> = C in (3.46) and have a contra-

diction of (3.49). Therefore if C< Mx, then xzL exists for which (3.23) holds

and Theorem 3.2 is proved.

4. Conditions for y z B. The measurable upper bound of a real measurable

function £(t) defined over —<»<;< <x> is the least number 0 such that £(/) =)8

for almost all We write ß = m.u.b.£(2); and let 5 denote the class of all com-

plex-valued measurable functions x(t) for which m.u.b. \x(t)\ < °o.

Theorem 4.1. If J(t) is such that, for each x e S,

/» 00

(4.11) y(s) = I   J(t)x(s + t)dt
J -co

exists for almost all s and y £ B, then J z B.

Theorem 4.2. If J z B, then for each xzL, y(s) as defined by (4.11) exists

for all s and

/CO

I x{t) I dt
-00

where

(4.22) ß = m.u.b.   | J(t)\;

moreover ß is the best possible constant in (4.21) in the sense that, if C<ß, then

/CO

I x(t) I dt
—00

will hold for some x z L.

Our first step in the proof of Theorem 4.1 is to prove the following lemma

in which S and Si denote the classes of step functions previously defined in §1

and Lemma 3.3.

Lemma 4.3. If J{t) is such that yzB whenever xzS, then there is a constant

M such that

(4.31)
/CO

\x(t)\dt, .veSi.
— 00
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To prove Lemma 4.3, let J(t) satisfy its hypothesis and assume that (4.31)

fails. Failure of (4.31) implies existence for each n = \, 2, 3, • ■ ■ of a function

xn £ Si having a transform y„ such that

r* oo

m.u.b.   I yn(s) \ > 4" I . | xn(t) \ dt.

We can suppose that each xn, and hence also yn, has been multiplied by the

appropriate constant to give

/CO

I «.(0 I dt = 2-»,       n m I, 2, • « • ,
-oo

If Oi, Ö2, • • * is a sequence of which each element is either 0 or 1, then

cO

(4.33)
n=l

Hence under our hypothesis

00

(4.34) Y(s) = I 7(/)X(j+()(f/E5.
/-co

Starting with (4.34), we obtain

oo

(4.35) Y(s) = - n)zB.
n=l

That the conclusions just obtained are contradictory, and hence that Lemma

4.3 is true, is a consequence of the following lemma in which we write wn(s)

for yn(s — n).

Lemma 4.4. If wn(s) is a sequence of measurable functions, defined over

— co <s < oo, such that

(4.41) m.u.b.
— w <s<co

X 8nwn(s)   < co

for each sequence 6n of which each element is 0 or 1, then there is a constant Q < oo

such that

(4.42) m.u.b.   | wn(s)\£ Q, n = 1, 2, 3, • • • .
— eo <S< oo

If p is a positive integer and we set 6n = 0 or 1 according as ox n=p,

we see that a constant <2p < 00 exists such that

(4.43) m.u.b.   | wp(s) | = Qp.
-co<5<00

To prove (4.42) amounts to proving that the sequence Qp is bounded. As-
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sume to the contrary that

(4.44) lim sup Qp = oo .
p—► oo

Setting 6n = l for each n in (4.41) shows that the series ^=,iti„(s) converges

for almost all s; hence \imn,x wn(s) = 0 for almost all s. Therefore by a theo-

rem of Egoroff(4) w„(s) converges to 0 essentially uniformly over each set

of finite measure \e\; that is, corresponding to each 5>0, there is a subset F

of E such that | E — F\ < 5 and w„(s) converges to 0 uniformly over F. Using

(4.44) , choose an index rti such that i?i=; m.u.b. |kj„(s)| >2 when » = »i. Let

Ei be a bounded set of positive measure such that |w„(s)| >1 when « = «i,

s z Ei. Let Fi be a subset of Ei such that | Ex— Fi\ < \ Ei \ /22 and wn(s) con-

verges to 0 uniformly over Fi. Choose n2>ni such that |w„(s)| <2~2 when

n = n2, s £ Fi and also i?2 = m.u.b. |w„(s)| >3+i?i when n=n2. Let Ei be a

bounded set of positive measure such that | wn(s) >2+i?i when n = n2, s z E2.

Let F2 be a subset of £i+£2 such that |Ei-F2| < £i|/23, \E2-F2\ <|E2|/23,

and such that wn(s) converges to 0 uniformly over F2. Choose n3>n2 such

that|w„(s)| <2-3 when n = ns,sz F2, and also i?3■ m.u.b. | w„(s) | >i+Ri+R2

when w = w3. We continue by induction to obtain sequences of numbers and

sets such that for each p = t, 2, $, • • •

(4.45) I Ep \ > 0;        m.u.b.   | wnp(s) | = Rp;
- » <S< oo

J)-l

(4.46) I wnp(s) I > p + £ Rk, szEp;
A-l

P

(4.47) Fpc2ZEv;      I I < 2-», seFp-n
k-l

(4.48) \Ek-Fp \ ^\Ek \ fl**\ k^p.

Setting, for each positive integer k, Gk — EkFkFk+iFk+2 • • • , we find

00 oo

Ek - Gk = Ek - JlFp = £ (Ek - Fp)
p=k p=k

so that by (4.48)

00 00

I Ek - Gk I ̂  X I Ek - Fp I i£ £ I Ek I /2»+i s\Ek\ /2;
p=k p=k

and therefore | Gk | ^ | Ek \ /2 > 0. Let

00 -ft- -

TO =Z^(s).

(4) See, for example, E. W. Hobson, The Theory of Functions of a Real Variable, vol. 2, p. 144.

The extension of the theorem to complex-valued functions is easily made.
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For almost all s in Gk we find on using (4.45), (4.46), and (4.47) that

k-l x

I W(s) I = - £ I wn,(s) I + I w„h(s) I - D I wnp(s) I

15

p=i
k-l

p-k+1

^ - 2ZRp+ k+ 2Z\Rp \ - Z 2-"g *- l.

Hence for each integer & there is a set of measure [ Gk\ >0 such that | TF^)!

^ & — 1 for all s in the set. Therefore

(4.49) m.u.b.
— W <S< M

p-1

But (4.49) contradicts the hypothesis that (4.41) must hold in case 0„ is 1

when n = n\, w2, n3, ■ ■ ■ and 0 otherwise. This completes the proof of Lemma

4.4 and hence also that of Lemma 4.3.

To prove Theorem 4.1, let /(/) satisfy its hypothesis. By Lemma 4.3 there

is a constant D < » such that

(4.51) m.u.b.   I   J(t)x(s + t)dt ^ ö I    | x(t) | dt, xtSt.
— oo <s<oo I J _M •/ _a,

Let, where 0<5<1, Xs(t) = 8~1 when 0 = /=5 and jc5(i)=0 otherwise. Then

xs e 5i and it follows from (4.51) that

I i /..+«     j i 1 r~
(4.52)      m.u.b.   — I      J{t)dt\ = m.u.b.   — I

-»<S<=0   I     5    j „ -0O<S<»   I     8    j _3

s+5

< Z>.

But since J{i) is integrable over each finite interval, (1/8) J\+s J (t)dt is a con-

tinuous function of s for each 5>0. Hence it follows from (4.52) that

(4.53)

1     /» s+5

- I J(t)dt
8 j.

£D, 0< 5 < 1, - » < j < oo.

But, by one form of the fundamental theorem of the calculus,

1     p s+S

(4.54) linr— I      J(t)dt = J(s)
i->o 5 •/ s

for almost all s. Hence | J(s)\       for almost all 5 so that

(4.55) ß = m.u.b.   | /(/) | = D.
— 00 < (< 00

Therefore / e B and Theorem 4.1 is proved.

To prove Theorem 4.2, let / £ B so that ß = m.u.b. | J{t) \ < co . If x £ L,

then for each s



16 R. P. AGNEW [July

I    /• co r* oo

I y(f) |=| + o<ft £ I   I J{i) \ I *0 + 01 A
I J -co I ^ -co

/CO /»COI *(s + t) I <li = j8 I    I »(0 I Ä
-00 j -00

and (4.21) follows. If it be assumed that

/cc

\x(t)\dt, xeL,
-oo-»<s<

where

(4.57) C</3=   m.u.b. |/(/)|,

then we can set D = C in (4.51) to obtain D = C\n (4.55) and have a contra-

diction of (4.57). Therefore if C<ß, then x £ L exists for which (4.23) holds,

and proof of Theorem 4.2 is complete.

5. Conditions for continuity of y(s). The following theorem, which we give

mainly for comparison with other theorems, is easily proved.

Theorem 5.1. In order that J{t) may be such that

/co
J(t)x(s + t)dt

-00

exists for all real s and is continuous whenever xe L,itis necessary and sufficient

that J(t) be measurable and essentially bounded.

Necessity is a consequence of Theorem 2.5. If ß = m.u.b. | J(t) \ < oo and

x £ L, then the estimate

/oo .I J(t) I I x(s + h + 0 - x(s + 0 I dt

x(s + h + 0 — x(s + t) I dt

x(/ + A) — *(0 I dt,

together with the fact that x £ L implies that the last member converges to 0

as h—>0, shows that y(s) is uniformly continuous.

It is interesting to note in connection with Theorem 5.1 and earlier theo-

rems that the hypothesis that y(s) exists and is continuous for all real 5 when-

ever x £ 5 does not imply that Je B. To prove this, let J{t) be a function in L

which is not essentially bounded and which vanishes outside some finite in-
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terval a^t^b, say /(/) = t~112 over 0 < t < 1 and J(t) = 0 otherwise. Let x £ S.

Then for each fixed real Sa

/CO

J(t)x(s0 +
-CO

t)dt

exists sincex(sa+t) is measurable and bounded over the finite interval a^t^b

outside of which vanishes. If K is chosen such that |x($o+0[ <K over

a-l^t^b + 1, then when |ä| <1

dt
/CO

I /(/ - h) - J(t) I I x(s0 + t)
-00

/CO

I /(/ — h) — J(t) I dt,
-CO

and, since the last integral converges to 0 with h, y(s) is continuous at s0.

Thus Theorem 5.1 will fail if the phrase "whenever x e L" is replaced by the

phrase "whenever x £ S."

6. Some examples. Theorem 2.1 differs from Theorems 3.1 and 4.1 in that

the hypothesis of Theorem 2.1 involves the special class Su of unit step func-

tions while the hypotheses of Theorems 3.1 and 4.1 involve the larger class 5.

We are going to show that Theorems 3.1 and 4.1 will fail if 5 is replaced by Su

in their statements. For the case of Theorem 4.1, we observe that if x £ Sv

then x £ B and hence that if J e L then y e B; therefore the hypothesis that

y £ B whenever x £ Su does not imply that J £ B. For the case of Theorem 3.1,

let J(t)=e2Til. If x £ Su, then

y(s) = f  e2*ux(s + t)dt
j —CO

exists for each s since x(s-\-t) £ L and e" is measurable and bounded; and the

fact that x(s+t) is constant over unit intervals, together with the fact that

the integral of e2*u over each unit interval is 0, implies that y(s)=0 and

hence y e L. Since J £ L fails, the hypothesis that y £ L whenever x £ Su does

not imply that J eL.

We show also that none of Theorems 2.1, 3.1 and 4.1 will hold if the hy-

potheses are relaxed to require that y(s) have the stated property only when

x(t) is an ordinary step function. By an ordinary step function, we mean a

finite linear combination of simple step functions; a simple step function being

a function such that £(/) = 1 for all t in the interior of some finite interval /

and £(t) =0 for all t outside the closure of I. Except for the inconsequential

fact that we do not require ordinary step functions to have right-hand con-

tinuity at end points of intervals, an ordinary step function may be described

as a function in 5 which vanishes outside some finite interval; hence each
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ordinary step function is equal, for all except a finite set of values of s, to a

function in 5.

For the case of Theorems 2.1 and 4.1, let

(6.11) Ji(t) = teil\

If x(t) = 1 when a<t<b and x{t) = 0 when t <a and when t >b, and yi(s) is the

Ji transform of x(t), then

/, 6—8

tewdt = [e^-»)2 - ei(-"-s^]/2i
a-t

so that yi(s) exists for all s and is continuous over — oo <s < ap , and

(6.13) I yi(s) I SlU, - oo < s < oo.

It follows easily that the J\ transform of each ordinary step function exists

for all s and is bounded and continuous. But J\ is not essentially bounded,

and the condition

/» u+A I Ji(t) \dt<oo
u

fails for each A >0. Thus the hypothesis that y(s) exists and is bounded and

continuous over — a> <s< °o whenever x{i) is an ordinary step function im-

plies neither the conclusion of Theorem 4.1 nor the conclusion of Theorem 2.1.

For the case of Theorem 3.1, let

(6.21) /,(<) = eiln

where n is a fixed real number greater than 2. If x{t) = 1 when a<t<b and

x(t) = 0 when t <a and when t>b, and if y2(s) is the J2 transform of x(t), then

we have

/»co p b—a

(6.22) yi(s)= I   J2(t)x(s+t)dt= I eitndt.
" — oo / a-s

Integration by parts gives, when | j | is so great that the interval a — s^t^b — s

does not contain the origin,

£l-n        -16-3      \ — ft   C b~*

(6.23) y2{s)=^—eiln-;— I r"eitndt.
in      J a-t      in   J as

Hence, for such values of s,

I ys{s) I = n~l[ I b — s \l~n + \ a — 5 |1_n]
(6.24) ,       , r i i       i i ,

+ (b - a)[\b - s\-n+ \a- s\-n]

so that
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(6.25) lim sup \s\n-1 \ y2(s) \ = 2/n.
|ih«

Since y2(s) is continuous, n>2, and (6.25) holds, we have y2 £ L. Thus the J%

transform of each simple step function is bounded, continuous, and in L; and

it follows that the J2 transform of each ordinary step function also has these

properties. But J2zL fails. This shows that the hypothesis that y is bounded,

continuous, and in L whenever x is an ordinary step function does not imply

that JzL.
In case n = 2, the transformation determined by the kernel (6.21) becomes

(6.26) y(s) = I   eil'x(s + t)dt = I *x(t)dt;
J -00 " —'A

and this can be written in the form

/CO -00

where

(6.28) r,(s) = y(s)trm,      f(f) = x{t)eil\

The function r/(s) of (6.27) differs in only a simple way from the Fourier

transform of £(f). If £(£) is a simple step function, it is easy to compute i){s)

and to show that 77(5) is not in class L.

7. The class K of measurable functions satisfying (2.12). The classes L

and B, and the linear vector metric complete spaces associated with them, are

well known. (See, for example, the book of Banach previously cited.) In

Theorem 2.1 we were led to the class K of measurable functions, a member of

which we now denote by x{t), such that

/» u+A

(7.1) l.u.b.    I       I x(t) I dt < 00
— «= <H< 00    j u

for each A >0. The class K contains all elements of L and all elements of B.

It is easy to show that the class K is linear, that is, if x\, x2zK and C\, c2 are

constants, then C\x\-\-c2x2 £ K. In terms of a fixed A >0 and a number <fi(A) >0

let the norm of each x e Kbe defined by

/» u+A I x(t) I <ft.
w

Dependence of ||x|| on A is illustrated by the fact that if x0(t) = 11 \_1/2, then

xoeK and

/A/2 I *0(0 I dt = (8Ayi*<b(A).
-a/2
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There seems to be no compelling reason why one choice of A and <j>(A) should

be preferred over another. If x £ L and <j)(A) = l, then \\x\\A converges to

fl„\x(t)\dt as ^4—>co; if x e B and 4>{A) =\/A, then ||x||a converges to

m.u.b. \ x{t) \ as^4—>0.

Assuming now that A >0 and 0(^4) >0 are fixed, it is easy to see that the

class K becomes a linear vector metric space when the distance between two

elements Xi and x2 of K is defined by ||x2 — Xi||. We conclude by showing

that this space is complete. Let X\, x2, • ■ ■ be a Cauchy sequence in K so

that ||xm — x„|| —>0 as m, n—><x>. Then as m, n—»oo

(7.4) Im.n.r =   I I Xm(t) — Xn{t) \ dt
«* rA

converges to 0 uniformly in r. Since space L is complete, there is for each inte-

ger r = 0, ± 1, + 2 , • • • a function £r(t) defined over rA^t<(r + l)A such that

p (r+l)a

(7.5) lim  I I Ut) ~ xn(t) \dt = 0.
n—*»  •/ rA

If we let £(£) be the function defined over — so <t < so which agrees with £r(2)

in the interval rA = £ < (r + l)A, then for each real r

p (t+1)A

(7.6) In.r =   I I £(*) - Xn{t) I A

converges to 0 as n—> oo. The inequality

(7.7) I Im,r       Iti,r | == l~m,n,ry

together with the fact that the right member converges to 0 uniformly in r

as m, »—><» implies that the left member converges to 0 uniformly in r as

m, n—* oo and hence that In,r converges uniformly in r as n—> oo. But I„,r con-

verges to 0 as ra—>cc. Hence /„,, converges uniformly to 0 as n—>co, that is,

p (r+lM

(7.8) lim   l.u.b.    I | £(/) - x„(t) | dt = 0,
»—♦oo   — oo <r< co   %} ta

or

I £(/) - *„(<) | <ft = 0.
u

This implies that £ £ K, and on multiplying by the constant <j>(A) we ob-

tain lim — xn\\ =0. Thus each Cauchy sequence xn in K has a limit in K,

and completeness of the space K is established.
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