
A NEW SPECIAL FORM OF THE LINEAR
ELEMENT OF A SURFACE

BY

JESSE DOUGLAS

1. Introduction, and statement of results. The great circles of a sphere

form a family of °o2 curves having the following three important properties:

(1) They are geodesies of the sphere.

(2) They are a linear system; that is, a point transformation exists which

converts them into the straight lines of a plane. Indeed, central projection

of the sphere on any plane not passing through its center will accomplish

such a transformation. An equivalent statement is that it is possible to intro-

duce coordinates u, v on the spherical surface so that the totality of great

circles is represented by the general linear equation: au-\-bv+c = 0.

(3) The angular excess of any triangle AB C formed by great circles is propor-

tional to the area of the triangle:

(1.1) £ = A + B + C - x = hA,

where the factor of proportionality k is equal to the Gaussian curvature of

the sphere: k = l/R2.

It is evident that all the geometric entities and properties involved in

these three statements are invariant under any bending or isometric trans-

formation of the spherical surface(x) together with its great circles; this means

a point transformation into a family of =°2 curves upon another surface so

that ds = ds', where ds denotes the element of length of the sphere and ds'

the corresponding element of the transformed surface. According to a funda-

mental theorem of Gauss, the Gaussian curvature K of the transformed sur-

face must be the same as that of the sphere, therefore constant. Evidently,

too, the geodesies of the sphere go over into the geodesies of the transformed

surface. It follows that the three stated properties are possessed also by the

geodesies of any surface of constant Gaussian curvature.

Let us denote by (J, S) the geometric configuration consisting of a family

J of oo2 curves upon a surface S. Then it is obvious that, in respect of the

possession or non-possession of any of our three properties, the configuration

(y, S) is completely equivalent to any configuration (J', S') derived there-

from by isometric transformation. Any two such isometric configurations will
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geometric.
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therefore be regarded as essentially identical. In other words, all that is rele-

vant concerning the surface 5 is its first fundamental form

(1.2) ds2 = Edu2 + IFdudv + Gdv2.

The family J may always be defined by a differential equation of second

order:

(1.3) v" = <p(u, v, v')      (y = dv/du, v" = d2v/du2).

Thus any configuration (J, S) is represented analytically by a system of func-

tions [E(u, v), F(u, v), G(u, v), <p(u, v, v')\.

With every two properties that may be selected from the three stated at

the beginning, we may associate a corresponding converse problem. Thus we

may ask for all configurations (J, S) which have:

(a) properties (1) and (3),

(b) properties (1) and (2),

(c) properties (2) and (3).

The answer to the converse question (a) is classical. According to a theo-

rem of Gauss, the angular excess £ of any triangle ABC formed by three

geodesies of a surface 5 is given by the formula(2)

over ABC,

where dco denotes the element of area. By the law of the mean, this gives

£ = K(m)oA, where K(m) denotes the value of the Gaussian curvature at

some point m of ABC, while iA denotes the area of this triangle. It follows

immediately that, as the triangle ABC shrinks to any fixed point p of S,

lim t/zA = K(p).

Property (3) then implies that the Gaussian curvature of the surface 5 is con-

stant: K(p) =k for every point p of S. That the family J consists of the geo-

desies of 5 is part of the data of problem (a).

The answer to the converse question (b) is also classical, having been

given by Beltrami in 1865(3). He proved the theorem: if a surface S can be

represented point by point on a plane so that the geodesies of S correspond to the

straight lines of the plane, then S has constant Gaussian curvature. Thus, again,

the only solution of the converse problem is the one which is known a priori.

The converse problem (c). It is curious that the converse problem (c) has

not hitherto been studied. Here I have found the solution (J, S) to be more

general than the geodesies of a surface of constant curvature. In fact, the

(2) In formula (2.2) of the next section, let 1/p =0, expressing the geodesic character of the

sides of the triangle.

(3) E. Beltrami, Opere Matematiche, vol. 1, pp. 262-280.
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complete solution is given by the formulas which follow, whose derivation

constitutes the purpose of the present paper.

In formulating our results, it is convenient to use—instead of general co-

ordinates u, v upon the surface S, wherein ds2 has the form (1.2)—minimal

coordinates, wherein

(1.4) ds2 = IFdudv.

The characteristic property of minimal coordinates is that the coordinate

lines w = const., v = const, have zero length(4), or are the minimal lines of the

surface S. Such coordinates are determined only up to an arbitrary trans-

formation Ui=<p(u), v1=\j/(v), which preserves the minimal character of the

coordinate lines.

Let Ui, Uz denote any two functions of u alone, and V\, F2 any two func-

tions of v alone. Form the determinants

(1.5) I =
Ui + Vi U{

Ui + F2 Ui
II =

Ui + Fi Vi

U2 + F2 Vi

where the accent denotes differentiation. We always suppose Ui, Z72, Fi, F2

so chosen that 15^0, II?^0. Then we shall prove that the most general con-

figuration (J, S) having the properties (2), (3) is represented by the formulas:

(1.6)

where

7- Bv' + Cv'2

(1.6')      B =—(logl- 2 log II),
du

while, for the surface S,

d-
(1.7) S:   2kF =

dudv

C = — (2 log I
dv

(log I + log II).

log II),

With the help of a simple determinant transformation (5), we find

Ö2 II
(1.8) -logI= —

dudv I2

Ui

Ui

U{'

Ui'

d2 I
-log II = -
dudv II2

V{

Vi

V{'

Vi'

hence the expanded form of (1.7) is

(1.70 2kF =
II

I2

Ui

Ui

U['

Ui'
+

II2

Vi

Vi

V{'

Vi'

The case k = 0. In interpreting these results, it is important to distinguish

(4) Of course, these coordinate lines must be imaginary.

(6) Formula (3.19).
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the case k = 0 from k^O. If k = 0, property (3) becomes the statement that

the sum of the angles of every triangle of J is two right angles. In addition, J

is required to be linear, by property (2). Now, an arbitrary surface 5 is ca-

pable of conformal representation upon a plane P, and in infinitely many ways,

since we may combine any given conformal representation of S on P with an

arbitrary conformal transformation of P into itself: u' -\-iv' =f(u-\-iv). Let J

denote the family of °°2 curves on 5 which results from the family of all

straight lines of the plane P by any conformal map of 5 on P. Then J is

obviously linear, and also the angle-sum of every triangle of J is two right

angles, since these are conformally invariant properties which belong to the

straight lines. Thus, an arbitrary surface 5 carries infinitely many families of

curves J which are linear and in which every triangle has an angle-sum of

two right angles.

This finds expression in the formula (1.7') by the circumstance that when

k = Q this formula implies no restriction on the function F, that is, on the ds2

of S, but rather only a condition on the functions Ui, l72, Vi, V2 which de-

termine the family J. Indeed, if k = 0, it follows from (1.7) that

(1.9)

and from (1.7') that either

(1.9')

I II = U3V3

I

II

Ui =

where

or else that

(1.10)

By (1.9) and (1.9'),

(1.11)

therefore

Ui Ui'

Ui Ui'

Ui Ui'

Ui Ui'

in

V*

Vi
Vi Vi' 1/3

- o,
Vi Vi

Vi Vi'
= 0.

I = UsVb,      II = U,Vt;

dudv
log I = 0,

dudv
log II = 0,

whence by (1.8), since by hypothesis I?^0, IIf^O, we deduce

(1.12)
Ui

Ui

Ui'
= o,

vi

Vi

Vi'
= 0.
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(1.10) is the same as (1.12), which therefore subsists in either case. (1.12)

implies the existence of linear relations with constant coefficients:

(1.13) eil/i -f je$ß «f Ct,      c{ Fi + ci V2 = cS ,

where either Ci or c25*0 and either c{ or ci y±Q.

It is evident by the defining formulas (1.5) that, under the conditions

(1.13) , the functions I, II must have the forms (1.11). Therefore, by (1.6').

B = U,      C = V;

accordingly, the differential equations (1.6) of J have the form

(1.14) v" = Uv' + Vv'2.

It is easily verified that this is the general form of differential equation

for a family J derivable by conformal transformation: Ui=<f>(u), Vi=\p(v),

from the straight lines of a plane: vi' =0—explicitly, U= </>"'(«)/<£'(u),

V= —\p"(v)/\p'(v). In summary, we have a proof of the following theorem:

If a family J of °°2 curves on a surface S is linear, and the sum of the angles

in every triangle of J is two right angles, then J must be a conformal image of

the oo2 straight lines of a plane.

In a previous paper(6), the author proved this theorem synthetically.The

first statement and proof is an analytic one by E. Kasner(7).

The case ky^O. Of more interest is the case k^0. Then formula (1.7) or

(1.7') really specializes the surface S: its ds2 must have, in minimal coordi-

nates, the form

(1.15)

1 d2
ds2 =-(log I + log IVjdudv

k dudv

1 jll I U{    U{'        I     Vi    Fi" \\

~~~ku2'\ui  ui' +ir2' vi vi'\f
■dudv.

Upon all and only such surfaces S can curve families J be found with proper-

ties (2) and (3).

In order that this form of the surface 5 shall not be degenerate, it is nec-

essary and sufficient (besides I?^0, IIf^O) that Fy^O, or

(log I + log II) ^0.
dudv

But in the contrary case, we have seen by the calculations (1.9)—(1.13) that

we must have (1.12) or its equivalent (1.13). Conversely, it is evident that

(1.12) implies F = 0.

(6) Number 2 of the list of references at the end.

(') Reference [1].
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Hence, under the hypothesis If^O, IIp^O, the formula (1.15) will give a

nondegenerate surface 5 when and only when linear relations of the form (1.13)

do not subsist simultaneously between Ui, Ui and between Vu Vi. If U\, C/2

are not both constant and Vi, Vi are not both constant, the condition that

relations of the form (1.13) or (1.12) shall not hold simultaneously is sufficient

to guarantee in addition that I f^O, II y^O.

This completes our description of the special form of the linear element

of the surface S signified by the title of the present paper.

An indication that this type of surface S is more general than one of con-

stant curvature results by a count of arbitrary functions. The most general

form of the ds2 of a surface of constant curvature c referred to minimal co-

ordinates is(8)
4U'V

(1.16) ds2 =-dudv,
c(U - V)2

thus involving, besides the arbitrary constant c, only the two arbitrary func-

tions [/of u and Vof v, which determine the distribution of parametric values

u, v over the two systems of minimal lines respectively. The formula (1.15),

on the other hand, involves/owr general functions U\, Ui, V\, Vi, subject only

to the slight restrictions of linear independence which we have mentioned. Of

these four functions, two correspond to an arbitrary transformation Ui=<p(u),

Vx=\]/(v) on the surface S which conserves the minimal lines, so that only two

of the arbitrary functions are really effective in varying the form of S. We

may say that, if isometric surfaces are regarded as identical, there are only oo1

surfaces of constant curvature, depending on the value c of this curvature,

whereas the category of surfaces S with properties (2) and (3) involves two

arbitrary functions of one variable.

This indication is, of course, not completely decisive, since there remains

the question of whether Ui, Ui, V\, Vi are all essential. To obtain a definite

proof that the formula (1.7') contains surfaces not of constant curvature, we

may calculate the Gaussian curvature by the formula

1    d2 FUFV - FFur
(1.17) K =-logF = —-

F dudv F3

The result is a rational function of Ui, Ui, Vu Vi and their derivatives of the

first three orders. A partial calculation suffices to show that this rational func-

tion does not reduce identically to a constant when all the quantities men-

tioned are considered as independent variables—as they may be, since the

functions U\, Ui, V\, Vi are arbitrary, and they and any finite number of

their derivatives are therefore capable of taking any assigned values for any

finite number of given values of (u, v). Consequently, we can arrange to give

(8) Cf. G. Darboux, Theorie Generale des Surfaces, 1887 edition, vol. 1, p. 30. Write x= U

y= V in formula (1), p. 30.
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these functions and those of their derivatives which appear in the expression

for K such particular values at any two chosen points (ui, Vi), («2, vt) that

K(u\, vi)^K(u2, z>2); therefore K will not be a constant.

2. Conditions for the property £ = kzA. We begin the proof of the results

stated in §1 by recalling the formula of Gauss-Bonnet('). If T denote any

closed curve with continuously turning tangent, bounding a region R, then

f-+ffJ r p      J J p

ds
Kdw = 2ir,

P      •> J r

where 1/p is the geodesic curvature of T. In case the curve T has corners at

the points P, (i= 1, 2, • • • , w), then this formula must be modified as follows:

(2.1) r—+ rr Kd»+f> = 2».
J r p      J J r t_i

Here 0i represents the angle, taken with proper sign, between the sensed

tangents to the two arcs of T which form the corner at P,.

Let us apply formula (2.1) to any triangle ABC formed by three curves

of J. The boundary Y of this triangle has corners at Pi, P«, P3 = A,B, C, and

6i=ir—A, 02 = 7r — B, ds=iv — C, where A, B, C denote the interior angles of

the triangle. Consequently, by substitution in (2.1),

(2.2) f—+ff    Kdu = A + B + C - it = £.
Jr p       J J abc

By property (3),

(2.3) £ = hA = f f kdw;
J J abc

therefore

(2.4) r—= r r (£ -   = r r c* - x)^«^,
J t   p        J J abc J J abc

since

(2.5) dw = JFdtt^,

where PF= (EG — F)1'2.

Every polygon whose sides are curves of J can be decomposed into tri-

angles of J. It follows, by the additive nature of both contour and surface

integration, that the formula (2.4) applies to any polygon of J; that is, if Y

denotes the boundary and R the interior of any polygon of F, we have

/■ ds      r r— = I I (k - K)\Vdudv.
r p      J J b

(9) See W. Blaschke, Vorlesungen über Differentialgeometrie, 1921, p. 108.
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By Green's theorem, the surface integral over R can be expressed as a

contour integral over T:

(2.7) J J (k - K)Wdudv = j Pidu + Qrfv,

where Pi, Qi are any two functions of u, v which obey

dQi 6Pi
(2.8) —-= (k - K)W

du dv

—the existence of such functions is obvious.

Relations (2.6) and (2.7) give

(2.9)

for every polygon V of F. This implies that the same integral taken over

any polygonal path between any two fixed points of 5 does not depend on the

path itself but only on its end-points. (By a "polygonal path" we mean one

composed of a finite number of arcs of curves of F.) According to a standard

theorem(10), it follows that the element of integration in (2.9) is an exact

differential:

ds
■-P\du — Qidv = \udu + \vdv,
P

where the subscripts denote partial differentiation of the arbitrary function

X(w, v). Thus we have

ds
(2.10) — = Pdu + Qdv,

p

where P = Pi+Xu, Q = Qi-\-\v- Obviously, P, Q also obey the condition (2.8):

(2.11) Qu - Pv = (k - K)W,

since X„„ cancels in the process of substitution.

Conversely, it is easily seen that if (2.10) is obeyed along every curve of a

family J, and P, Q are related by (2.11), then 7 has property (3), as expressed

by (2.3).
Formula (2.10) by itself defines a type of curve family called a velocity

family(n). Thus property (3) is characteristic of a particular kind of velocity

family—one where formula (2.11) is obeyed.

(10) It is easily seen to be sufficient for the application of this theorem that the condition

of independence of the path of integration apply merely to polygonal paths of J.

(u) The name is due to E. Kasner, these Transactions, vol. 10 (1909), p. 213. The geodesies

of a Weyl metric are a general velocity family; see H. Weyl, Raum, Zeit, Materie, 3d edition,
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In minimal coordinates, where ds2 = 2Fdudv, the geodesic curvature 1/p

of any curve v = v(u) is given by(12)

ds     - v" + (FjF)v' - {Fv/F)v'2
(2.12) — =-du.

p 2 Ur

Therefore, for a velocity family, we have by (2.10):

(2.13) v" = Bv' + Cv'2,

where

B = FJF - 2iP = (logF)„ - 2iP,
(2.14)

C = - Fv/F - 2iQ = - (log£)„ - 2iQ.

Conversely, a family J whose differential equation in minimal coordinates

is of the type (2.13), where B, C are any functions of u, v, obeys (2.10) with

P, Q defined by (2.14). That is: the form (2.13) is characteristic of velocity fami-

lies.

Let us now apply the condition (2.11) by calculating

(2.15) C - B,= - 2(log£)u„ - 2i{Qu - P.).

In minimal coordinates, where £ = 0, G = 0, W~ {EG — F2)1/2 = iF, the Gaus-

sian curvature K is expressed by (1.17), so that the condition (2.11) becomes

(2.16) Qu - Pv = ikF + i(logF)uv.

This gives, when substituted in (2.15),

(2.17) Cu — Bv = 2kF.

Conversely, (2.17) gives (2.16) when substituted in the identity (2.15).

In summary: property (3) is expressed in minimal coordinates by the formu-

las (2.13), (2.17).
3. Linearity of the family J. We now have to impose the additional prop-

erty (2) of linearity on the family J.

If we apply an arbitrary coordinate transformation

(3.1) Ml = <j>{u, v),      Vi = ip(u, v')

to J, the effect on the derivatives v', v" is as follows:

tyu + rf/„v'
(3.2) vi =

<Pu + 4>i>v'

1919, p. 112. Cf. also C. H. Rowe [4]. The term "zyklisches Netz" used by J. Radon, following

Blaschke, denotes the same thing as a velocity family; see J. Radon [3],

(12) Blaschke, loc. cit., p. 117. Write £ = 0, G = 0, «'-1, u" = 0.
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(3 3) V" =        + <M')W'UU + 2*"v' + *vvV'2 + *vV'J

- (iu + + 20«,»' + <t>„v" + <t>vv"))/{4>u + <bvv')3.

Suppose that after this transformation the finite equation of J has the linear

form V\ = au\-\-b, or the differential equation of J becomes v{' =0. Then in

the original coordinate system (u, v) the differential equation of J is, by (3.3),

(3.4) v" = A + TV + CV2 + Dv'3

where

A =
lpu<t>uu — 4>u^Puu

B = 2-1-—

(3.5) lpv4>uv — 4>vlpuv lpu4>vv — <t>v?Pvv
C — 2 I

A A

D =

A = 4>jpv — ipu4>v ̂  0.

This is, consequently, the general form of the differential equation of a linear

family in any system of coordinates.

If now the coordinates are minimal, then the necessary and sufficient con-

dition for J to be a velocity family is, by comparison of (3.4) with (2.13),

A =0, D = 0, that is,

(3.6) \pu<t>uu — 4>iJpuu = 0, ^v(bvv — (kv^vv = 0.

This gives

</>uu       ^uu <t>vv $vv

(3-7) "~ = ~r~= p>   ir = ~r = (r'
4>u      V'u <Pv ysv

or

(3.8) p =  (lüg 4>u)u = (log rpu)n, CT = (log <pv)v =  (log if,),.

We calculate

A„ ((butuv — 1pu<t>uv) + (4>uu^v — Ipuufyv)        QuTptiv — 1pu<t>uv

(log A)u = —- 4-=-h P,
A A A

similarly
A, tv^uv — <t>v*Puv

(log A), = — =-h a,
A A
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so that the second and third equations of (3.5) can be written

(3.9) B = - 2(logA)„+ 3p,      C = 2(log A), - 3a.

The partial differential equations (3.6) are easily integrated, and the re-

sult may be written in the form

(3.10) Ui4>+Urf=l,

therefore <p, -ty must have the forms

Ut + V»

Vi4>+ Vz4< = - 1;

(3.11) 4> =
UiVi - UzVr

+ = -
Ui + Vi

UxVt - U2V1

where UiV% — UaVi^O; that is, Ui/Us and Vi/V2 are not equal to the same

constant, nor do we have Ui = 0 and Z72=0 or Vi = 0 and F2 = 0.

From (3.11) we calculate

<t>u = F2

(3.12)

4>u = ~ Fi -

Ui + Fi Vi

U2 + F2 Ui

Ui   Fi 2

Ui Vi

Ui + Fi Ui

Ui + Vi Ui

<t>v =  — Ui

U, + Fi FZ

Ut + Vi Vi

U! Fi '2

Ut Vi

<K = Ui-

Ui F,

Ui Vz

Ux + Fi Vi

Ui + Vi Vi

Ut  Fi I2

Ui  Vi I

therefore, by the last equation of (3.5),

Ui + Fi Ui

(3.13)
Uz + Vi Ui

A =

By substitution of (3.12) in (3.8),

Ui + Fi Vi

Ui + Vi Vi

Ui Fi

Ui Vi

(3.14)

p = — log
du

a = — log
9»

Ui + Fi Ui

Uz + Vz Ui

Ui + Fi Vi

Ui + Vi Vi

d
2-log

du

- 2 - log
dv

Ui Fi

Ut Vi

Ux Fi

Ui Vi
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Substituting (3.13), (3.14) in (3.9), we find

(3.15)

73 = - log
du

C = 2 — log
dv

d
2-log

du

Ui + Vi Ui

U2 + Vi Ui

Ui + Vi Ui

U2 4- V2 Ui

that is, as abbreviated by the notation (1.5),

d
- — log

dv

Vi + Vx Vi

u2 + v2 Vi

Vi + Vi Vi

Vi + V2 Vi

(3.16)       B = — (log I — 2 log II),
du

C = — (2 log I
dv

log II).

We thus have the result:

In order that a velocity family expressed in minimal coordinates be linear,

it is necessary and sufficient that the coefficients 73, C in (2.13) have the special

form (3.15) or (3.16).
To complete the imposition of property (3), in addition to the property

(2) of linearity, we must particularize our velocity family by the additional

condition (2.17): Cu—Bv = 2kF. Substituting from (3.16), this gives the result

stated in formula (1.7):

(3.17) 2kF =
dudv

We find by direct calculation:

Vi + Vt Ui

a2

(log I-flog II).

dudv
log I =

U2 + V2 Ui

Vi

Vi

(3.18)

+

Vi + Vi

u2 + v2

Ui + Vi Ui

u2 + V2 Ui

Ui Is

Ui
II Ui Vi

Ui VI

Ui + Vi Ui

Ui + V2 Ui

The determinants which appear in the numerators are among the six in the

matrix

Ui + Vi   Ui   Vi Ui'

Ut + V2   Ui   Vi Ui

which obey the well known identity(13):

(13) The same as the one which governs PI ticker line coordinates, being obeyed by the six

determinants of second order in any two-by-four matrix.
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Ui

Ui

Vi

Vi
+

Ui'

Ui + Fi Ui

u2 + v2

I Ui + Fi Vi
I U2 + V2 Vi

Ui Vi

Ui Vi

Ui Ui'

Ui Ui'

Therefore

(3.20)

Similarly we find

(3.21)

d2 11
-log I = —
dtldv I2

dudv
log II

I

IP

Ui

Ui

Vi

Vi

Ui'

Ui'

Vi'

These are the formulas stated as (1.8); substituted in (3.17), they give the

expanded form (1.7') for 2kF.

The proof of our main results is thus completed.

4. General coordinates. It is interesting to see how our formulas look in

general coordinates u, v, instead of minimal coordinates.

Using the general formula(14) for geodesic curvature 1/p, the condition

(2.10) for a velocity family gives the following characteristic differential equa-

tion for such a family:

Wh" = W(P + Qv')(E + 2Fv' + Gv'2)

(4.1) +(F+ Gv') [iE, + EW + (Fv - fr«)v'>]

- (E + Fv') [(Fu - i£t.) + Guv' + §GV2].

The imposition of property (3) is completed by (2.11), where K is to be

thought of as expressed in terms of E, F, G and their first and second partial

derivatives(15):

(4.2) Qu - Pv = {k - K)W.

We have also to express property (2), of linearity, in general coordinates.

It is a known result(16) that the most general linear family has the form

(4.3) v" = A + Bv' + Cv'2 + Dvn,

where A, B, C, D are functions of u, v which obey the conditions

(4.4)
(AC -Av)v- (AD + iCu \Bv)u

+ B(AD + §C. -        - A(BD + DJ) = 0,

Blaschke, loc. cit., p. 117.

<16> See formula (4.11).

(16> Due to Lie and R. Liouville. See E. Kasner [l ].



114 JESSE DOUGLAS

- (BD + DU)U+ (AD + §C„ - \BV)V

[July

(4.5)

(4.6)

+ C(AD + \CU - \BV) - D(AC - A.) - 0.

The formula (4.1) is of the type (4.3) with

A = {WPE + hFEu - E(FU -       } / 14'2,

B = {2WPF + WQE + FEV + ±GEU - F(FU -        — EGU) / W2,

C = {WPG + 2WQF + GEV + F(FV -        - \EGV — FGU} / W2,

D = {WOG + G(FV - JG») - hFGv) / W2.

The conditions (4.4), (4.5) of linearity give two partial differential equations

involving E, F, G, P, Q.

In summary: configurations (J, S) having properties (2) and (3) are charac-

terized in general coordinates by

S:   ds2 = Edu2 + 2Fdudv + dvG2,

J:   of type (4.1),

where the five functions E, F, G, P, Q obey the three partial differential equations

(4.2), (4.4), (4.5), in which A, B, C, D are defined by (4.6). These equations are

of the third order in E, F, G and the second order in P, Q.

Of course, the general solution is obtainable by applying an arbitrary

transformation Ui=4>(u, v), Vi=\p(u, v) to the formulas based on minimal co-

ordinates.

We may inquire also as to the form our equations have in the particular

coordinate system (u, v) where the equations of J are linear(17): v = au-\-b, or

v" = 0. In (4.6), we have then to write

(4.7) A = 0,      B = 0, C = 0, D = 0,

which, in addition to (4.2), give a system of five conditions on E, F, G, P, Q.

From these we easily eliminate P, Q and obtain the following three conditions

on E, F, G:

E G
(4.8)    (\EG - F2) — + ±FEV + FFU - EFV - \EG« + %EF —

E G

(4.9)    (\EG — F2)-+ hFGu + FFV
G

0,

GFU - \GEV + ^FG~ = 0,

d FEU — EFU d  FGV — GFv
(4.10)   2W*-I-2TF3-

dv      WE du WG

E

E Eu Ev

F Fu Fv

G   Gu 6,

= ±kWl.

(") Of course, this coordinate system is determined only up to an arbitrary projective trans-

formation of u, v.
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In the derivation of (4.10), we use the formula of G. Frobenius for Gaussian

curvature (1S):

In summary, (4.8)-(4.10) are necessary and sufficient conditions on the

E, F, G of a surface in order that the curve family defined by the general

linear equation, v — au-\-b, have the property £ = kzA.

(4.8) and (4.9) are necessary and sufficient in order that v = au-\-b shall be

a velocity family.

5. Geometric construction for the property £ = kzA. In the case k = 0, it

is well known that the curve families J which have the property: 6 = 0 or

A +73 + C = 7T for every triangle ABC of J, are exactly the isogonal families(19).

These consist of the totality of °°2 trajectories under every possible constant

angle 6 of any given family a of °o 1 curves.

It is easy to generalize this construction to the case ky^O. Take any net

of curves upon an arbitrary surface S, composed of two families a, ß of oo 1

curves. Construct a trajectory T of the family a, not under constant angle,

but rather so that the angle 6 between T and a decreases by k times the ele-

ment of area swept out by the arc of the curve ßp of ß which passes through

the point p describing T and extends to the intersection m of ßp with any

chosen fixed curve a0 of a.

That is—with reference to a figure easily drawn by the reader—we have,

in integrated form, the law

(5.1) 62 — di = — k area p\p2ni\ni2

for the construction of T. Evidently, this law determines the formation of T,

element by element, when any initial point and direction are given; there-

fore the totality of trajectories T is a family J of oo2 curves. It is very easy to

give by means of a figure a proof of the property: £ = kzA for every triangle

It remains to be shown that every family J with the property £ = kzA is

obtainable by a construction of the type just described. This is readily done

by the following converse reasoning. Construct the pencil II of curves of J

through a fixed point p. In the region 7? covered by II, construct any family ß

of oo 1 curves all of which intersect a fixed base curve a0. At each point of 72

construct a direction 8 according to the following law: (i) at the points of a0,

8 shall coincide with the tangential direction to <xQ; (ii) the angle 6 between II

and 5 shall vary according to the law (5.1). We thus have a field of directions

(") Blaschke, loc. cit., p. 79.

G.Scheffers, Isogonalkurven, Äquüangentialkurven und komplexe Zahlen, Mathematische

Annalen, vol. 60 (1905). p. 504.

(4.11)      K = -

Of J.
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d, whose integration gives a family of °° 1 curves a, including a0. If now T is

any curve of the family J lying in the region R, it is evident, by applying the

property E = kzA to the triangle formed by any arc pipz of T and the curves

ppi, pp2 of II, that T traverses a according to the law (5.1).

Thus the law (5.1) holds as long as T lies in the region R covered by II.

We can extend this region by applying the same reasoning to the pencil of

curves of J which pass through any other fixed point p' of R, and repeating

this procedure any finite number of times.

6. Higher dimensions, n>2. We conclude with a statement of the analo-

gous problem for higher dimensional spaces, which we hope to consider in a

future paper.

Let J denote a linear family of curves in a space of n>2 dimensions; that is,

let J be depictable as the totality of straight lines of a flat projective n-space P.

It is required to impose on the space P a Riemannian metric R: ds2 = g^dxidxi,

so that, in every triangle of P, £ = kzA with k a preassigned nonzero constant,

angles and areas being measured according to R.

Certainly, a sufficient condition is that the space R have constant Rieman-

nian curvature and that J consist of its geodesies. In other words, R shall be

the Cayley metric based on any fixed quadric Q: dist ab= {2(-jfe)1«}~1

■ log (abpipi), where pi, p2 are the intersection points of the line ab with Q, and

the parenthesis denotes an anharmonic ratio. For the Cayley metric is a

typical one of constant curvature, and the straight lines are its geodesies.

It remains to be seen whether, for n >2, the Cayley metric is the most gen-

eral one which can be imposed on the projective space P so that & = kzA. We

reserve this problem for future consideration.

It may be remarked that for k — 0 and n>2 the property 6 = 0—that is,

the property that the angle-sum of every triangle of y is two right angles—

implies that y is linear(20). The author has proved that, furthermore, it must

be possible to represent the Riemann space R conformally on a euclidean

space E so that y corresponds to the straight lines of £(20).
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