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Introduction

Minkowski's Geometrie der Zahlen as it was published in 1896 led up

to two fundamental inequalities concerning a symmetric convex body in rela-

tionship to a lattice; in his notation

(1) MnV ^ 2"

and

(2) Si • • • s»v si 2».

The second inequality, which generalizes the first, is a decisive step towards

a theory of reduction of arbitrary gauge functions under arithmetical equiva-

lence. In fact the problem of reduction for quadratic forms of n variables

(ellipsoids) was the starting point of Minkowski's investigations. But he must

have found that the new instrument which he invented and of which he made

so many beautiful applications in other directions was not quite adequate to

the goal for which it had originally been devised. For 14 years later he came

out with a paper on "Diskontinuitätsbereich für arithmetische Aequivalenz"

[l] which makes no use whatsoever of his own geometric methods. This was

probably due to two difficulties: he failed to see a way of passing from pseudo-

reduction to true reduction for an arbitrary convex body, and in the special

case of ellipsoids he found the inequality of true reduction tied up with the

selection of a finite number among the linear inequalities which characterize

a reduced form. The latter knot was unraveled by a kind of topological argu-

ment in a joint paper by L. Bieberbach and I. Schur [2] while K. Mahler

in 1938 made an almost trivial remark which removed the first difficulty [3].

In a general overhauling of the geometry of numbers [4], to which the author

was led by preparing an introductory talk for a seminar on the subject, he

generalized (2) in such a way as to make the approach to that inequality

more natural [5], rediscovered Mahler's observation, substituted a simpler

argument for that used by Bieberbach and Schur and finally extended

Minkowski's second theorem of finiteness. Without this extension certain

primitive questions about the topological pattern of equivalent cells would

be unanswerable. In a previous paper R. Remak had considerably shortened

and sharpened Minkowski's estimate for the coefficients p\-y which appear in
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the Jacobi transformation of a reduced quadratic form [6]. The author found

that a considerable part of the theory of reduction could be carried through

along the lines of Mahler's approach for arbitrary convex bodies and that this

more general procedure results in stronger rather than weaker estimates for

the quantities on which the question of finiteness depends.

The present paper sets forth the whole theory ab ovo, and hence is partly

of a didactic nature; as far as possible it follows the geometric approach deal-

ing with arbitrary convex bodies. In order to prevent it from becoming too

dull reading, I have extended the theory to vectors and lattices and forms in

which complex numbers or quaternions take the place of real numbers. Chap-

ter I deals with the general theory, Chapter II with the special case of quad-

ratic, Hermitian and "Hamiltonian" forms(').

Chapter I. General theory of reduction

A. The real case

1. Known facts about lattices. In the w-dimensional vector space En

whose elements are the w-uples f = (xi, • • • , xn) of real numbers we consider

the lattice 2 of the vectors with integral components x,-. The n unit vectors

*k — • • • , o*) form a basis of, or span, this lattice in the sense that the

lattice vectors appear as sums with integral coefficients. Here 5f are

the Kronecker o's. Any basis 3;t = (s*, • • • , sjj) of the lattice arises from the

absolute basis    by a unimodular transformation S = ||s*||:

Siti.

i

The corresponding coordinates, x,- and x/ , r =Z>x»e« =Z'=X* are linked by

the equations(2)

Z, k     _   . _
Xk Si or briefly, x = x'S.

k

The coefficients sf are integers and their determinant is +1. The substitu-

tions S with these properties form a group {S \, the modular group. Our view-

point is that the vector space is endowed with the lattice, but that the choice

of the lattice basis is arbitrary.

(') A brief and masterly treatment of the reduction of quadratic forms along purely arith-

metical lines is to be found in a recent paper by C. L. Siegel, Abhandlungen aus dem mathe-

matischen Seminar der Hansischen Universität, vol. 13 (1939), pp. 209-239, of which I re-

ceived a reprint on March 20, 1940. (The number of the journal itself has not yet reached

Princeton.) But even against Siegel's highly simplified arithmetical treatment, the geometrical

approach retains the advantage of yielding sharper estimates. Siegel has a generalization of the

second theorem of finiteness, different from ours, which leads to important applications in the

domain of rational indefinite forms. (Added March 25, 1940.)

(2) In preparation for a later generalization to quaternions we take good care to put factors

in their proper order.
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Any k linearly independent vectors bi, • • • , bk (Q^k^n) span a A-dimen-

sional subspace

Ek = E= [bi, • • • , b*].

If they are lattice vectors, then £ is a lattice subspace. E0 consists of the vector

zero only.

A vector a not in E may be adjoined to E and then gives rise to the

(&+l)-dimensional manifold E' = [E, a] consisting of all sums

(3) r' = r + xa

with r in E, x a number. If £ is a lattice subspace and a a lattice vector, the

adjunction is said to be primitive provided every lattice vector (3) in E' has

an integral coefficient x (and hence a lattice component r in E).

Suppose bi, ■ • • , bk are k linearly independent lattice vectors spanning

the lattice subspace E= [bi, • • • , b*].

Lemma 1. There exists a positive integer M such that every lattice vector in E

is of the form

— "I + •••+— b*
M M

where the y's are integers.

There are two essentially different proofs of this fact, one resting on divisi-

bility and determinants, the other on considerations of magnitude. The first

proof runs as follows. We can select n — k among the unit vectors t\, ■ ■ ■ , e„,

say e{ , • • • , e„'_fc, such that

(4) bi, • • • , bk, ti, ■ • ■ , e„'_*

are linearly independent. The determinant of the components of (4) is non-

zero; denote its absolute value by M. Writing down the equation

(5) r = yibi + • • • + ytb* + %[ t[ + • • • + x„'_4e'„_t

for any lattice vector r in terms of absolute components, one finds the coeffi-

cients y and x' to be fractions with the common denominator M. This applies

in particular to the lattice vectors in E for which x{ = • • • =xn'_4 =0.

The other proof compares 2 nE = 2k, "the lattice in E," with the coarser

lattice 2i consisting of all integral combinations of bi, • • • , b*,

(6) yibi + ■ • • + ykbk (yi, ■ ■ ■ , yk integers).

We maintain that there is only a finite number M of vectors in 2k which are

incongruent modulo 2%. For every vector r in E their exists a reduced one

(7) f m r (mod ?°),        r* = yx*bx + • • • + yk*bk,
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which satisfies the inequalities

(8) [#| jrt,---, \y?\ki:
Using again the absolute components one readily derives from (8) upper

bounds for the | x* | of any reduced vector r* = (x*, • • • , *„*). Hence if the x *

are required to be integers, which is the case when r and thus r* is a lattice

vector, one finds oneself restricted to a finite number of possibilities. Our re-

sult states that the additive Abelian group 2k/2°k is of finite order M, and

therefore every vector r of 2k satisfies the congruence Afr = 0 which was

to be proved.

The vectors bi, • • • , b* form a lattice basis of E if 2k coincides with 2*,

that is to say, if every lattice vector in E is of the form (6).

The vector 8* of any basis (gj, • • • , 8„) of 2 evidently is a primitive ad-

junction to [Si, • • • , %k-i]. More generally, we have

Lemma 2. Suppose 8i, ■ • • , 8„ constitute a basis of 2. The vector

a = 0181 + • • • + an8„

is a primitive adjunction to E— [8i, • ■ ■ , §k-\\ if and only if alt ■ ■ • , a„ are

integers and ak, ■ • ■ , an are without common divisor.

Proof. 1. If (ak, ■ • ■ , an) have a common divisor d>l, then

1
(9) — + • ■ •  + On&n).

d

evidently is a vector r' in E' = [E, a] for which the x in (3) is l/d and thus

not an integer.

2. If one denotes by x/ the components of r' in (3) with respect to the

basis 8,-, one has

(10) x/ = sä», • • ■ , xl = xan.

Hence (10) must be integers for any lattice vector r' in E'. However if

ak, ■ ■ ■ , an are without common divisor one can ascertain integers lk, ■ ■ • ,ln

satisfying the equation

akh + ■ • ■ + aJn = 1 •

The integrity of (10) then results in the integrity of

x = xi h + ■ • ■ + Xn ln

itself.

Lemma 3. Suppose E' is a given lattice subspace and b a lattice vector out-

side E'. Then one can pass from E' to E= [£', b] by a primitive adjunction 8.

Proof. Let E be spanned by the k — 1 linearly independent lattice vectors
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8*_i and use the notations 8*, 21 with respect to the basis

(81, • • • , 8*_i, b) of E. We write each vector r of 8* in the form (3),

(11) r=*b + r' (fin £0.

If M" is the order of the additive Abelian group 2k/2°, we know that

(12) Mx = y

is an integer. Select a full system of residues

jco) = 0, rU>, • • • , r^-1'

of 2k modulo 2l and denote by y<0)=0, y(1), • • • , y(M_1) the corresponding

numbers y as defined by (11), (12). The integers M, y(1), • • • , y^-" have a

greatest common divisor (CCD.) m*, namely a common divisor expressible

as a linear combination

IM _|_ /(l)-y(i) _)_... _l. /(m-nyM-n

with integral coefficients Z. By forming the corresponding combination

8 = lb + i«>j(» + • • • + fCW-OjUf-U

we obtain a vector 8 of ?*,

8 = (m*/M)b + 8' (8' in ET),

such that for every f in 2k the coefficient y is divisible by m*. This 8 evidently

satisfies our lemma.

Since m* is a divisor of ilf, M = mm*, we have

(13) 8 = (l/w)b + Mi + • ■ • + fc-i**-».

m is a positive integer. Moreover one can assume

(14) \k\.^,:-•, I *h-i\ ^ |.

In the special case w = 1 one may simply take 8 = b.

We shall use our lemma only for the case when 81, • ■ • , 8*_i constitute a

lattice basis of E'. Then the lemma makes possible, by induction with respect

to k, the construction of a lattice basis for any given lattice subspace.

All these simple facts about lattices are well known to the mathematician

and the crystallographer. We had to restate them for later use and generaliza-

tions.

2. Gauge functions. Minkowski's inequality. According to Minkowski, a

real-valued continuous function /(r) —f(xi, ■ ■ ■ , xn) in vector space is said

to be a gauge function under the following three conditions:

(i) f(xi, ■ ■ ■ , xn)>0, except for Xi= ■ ■ ■ =xn=0;

(ii) f(txi, ■ ■ ■ , txn) = 11\ -f{x\, ■ ■ ■ , xn) for any real factor t;

(iii) /(xi-fx/, • • • , *»+*„') g/(*i, • • • , xn)+f(x{, ►••,*«'},
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One may use this function to endow the re-dimensional affine point space with

a metric by ascribing the distance f(pp') to any two points p, p'. The gauge

body St defined by /(r) < 1 is an open convex bounded set surrounding the

origin r = 0. (Boundedness follows from the fact that/(xi, • • • , x„) has a posi-

tive minimum on the sphere x\-\- ■ • ■ +xj| = l.) $ has a Jordan volume V.

Equation (13), together with (14) and mitl, results in the inequality

(is) m ^ /(b) +     + • • ■ + /(#*-o I •
If one makes the distinction m = 1 orm^2 one finds that /(g) cannot exceed

both numbers

Therefore we may state this

Supplement to Lemma 3. The vector 8 may be chosen so that (15) holds,

or even so that

(16) /(g) £ max {/(b), §/<b) + lf(*i) + ■■■ + i/(«*:0}.

Minkowski determines a sequence of lattice vectors bi, ■ • • , b„ and lattice

subspaces £0, -Ei, starting with the zero-space E0 by the following

induction with respect to k.

Among all lattice vectors a outside Ek-i, one chooses one, bk, for which

f(a) takes on the least possible value, so that /(a) ^/(b*) for every a outside

Ek-i- The space £& arises from|£t_i by the adjunction of bk, Ek= [Ek-i, bk\.

We put/(b0 = Mk. Evidently

Mi ^ Mt ^ • • ■ ^ Mn.

Consider the continuous series of homothetic solids

«(«): /(?)<?

increasing with the positive parameter g. Our M* can be described thus:

$(g) contains less than k linearly independent lattice vectors as long as

q Mk, but at least k such vectors if q > Mk- Hence Mi, ■ ■ , Mn are uniquely

determined. About these consecutive minima Minkowski proved the funda-

mental inequality:

Theorem 1.

(2) Mi • • • M»V£2*.

For later purposes we repeat this proposition in the following slightly

modified form: Suppose Ml, • • • , Ml are given positive numbers such that

the number of linearly independent lattice vectors r for which /(r) < Ml is

less than k. Then

(17) Ml • • • MIV = 2".



132 HERMANN WEYL [July

While Mi, ■ ■ • , Mn are uniquely determined, there may be a certain

amount of free play in the choice of bi, • • • , b„. The most one can say about

it in general terms is this:

Theorem 2. If b{, ■ ■ ■ , bn' are a second set of lattice vectors determined

just like bi, • • • , b„, and if, for a certain k, Mk < Mt+i, then b/, • • • , bk are

linear combinations of bi, ■ • • , bk only.

Proof. Suppose one of the vectors bi', • ■ ■ , bk , say b/, is not a linear com-

bination of bi, • • • , bk. Then bi, ■ ■ ■ , bk, bt' are linearly independent, and

hence not all the A-f-1 numbers

f(bi) = Mi, ■ ■ • ,/(b,) = Mk,f(b!) = Mi

can be less than Mk+i- This contradicts the assumption Mk<Mk+i.

The problem of reduction consists in constructing a basis for the lattice 8

in terms of the given gauge function /. The vectors bi, • ■ • , b„ do not yet

solve the problem because in general they do not span the whole lattice 8.

Our next task will be to pass from this pseudo-reduction to true reduction, a

step well prepared by the considerations of §1.

3. Reduction. The only modification needed in the definition of b* is the

insertion at its proper place of the word "primitive." The new inductive defi-

nition of lattice vectors 8i, ■ • ■ , 8n and lattice subspaces Ea, Ei, runs

as follows:

Among all primitive adjunctions a to En-t, we choose one, bk, for which f'(a)

assumes the least possible value, so that

'(a) ^ /(«*)

for every primitive adjunction a to Ek_i. Moreover

Et = [-E&-1, 3*] .

Lemma 3 guarantees the existence of primitive adjunctions a to Ek-i.

We realize by induction that 8i, ■ • • , %k is a lattice basis for Et, hence

8i, • • • , 8B for the whole space. We put f(%k)=Lk. Taking Lemma 2 into

account, we can give our definition of a reduced basis 8i, • • • , g„ the follow-

ing turn:

An w-uple of integers (x\, ■ ■ ■ , xn) is said to belong to Xk if xk, • • ■ , xn

are without common divisor. The basis 8i, • • • , 8„ of 8 is reduced with respect

to f, if for every k = l, ■ • • , n and every (xi, ■ ■ ■ , xn) of Xk the inequality

(18) f(xiii + ■ ■ ■ + xn§n) ^ f(«t)

holds [7], Our procedure has led up to this result:

Theorem 3. For every gauge function f there exists a reduced basis &i, • • • ,

3„ of the lattice.
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Relation (18) implies

^ /(«*)
or

(19) Li £ U S • •' • S L».

The following proposition ties up pseudo-reduction with the reduction

just defined [8]:

Theorem 4 (Mahler's theorem). One has

(20) U ^ 9kMk

where 6k is a constant independent of the gauge function f.

An immediate corollary derived from it by Minkowski's inequality (2) is

Theorem 5. The relation

(21) U ■ ■ ■ LnV ^ Mn

holds with pn = 2n ■ didz •••#„.

Proof. After we have ascertained $i,■ • • , $k-i we determine a primitive

adjunction g to E'= [gi, • • ■ , gfc-i] by the construction of Lemma 3, choos-

ing b in this particular fashion: One of the k linearly independent vectors

bi, ■ ■ ■ , bfc occurring in Minkowski's construction, say b,-, lies outside E'.

We take b = b< and then find a primitive adjunction g to E' such that

[£', g] = [£', b]. By the supplement to Lemma 3 one will have

/(g) ^ /(b) + *{/(«,) + • • • + /(g,_0}.

Since/(b) is one of the numbers Mi, ■ ■ • , Mk and hence is less than or equal

to Mk, and since by definition Lk^f(8), we find

Lk^Mk + K% + • • ■ + L*_i),

which under the assumption of the inequalities

Li ^ 6iMh ■ ■ ■ , Lk-i ^ 6k-iMk-i

leads on to

U g 0kMk

with

(22) 6k = 1 + J(9i+ • ■ • +»*_!).

Hence Theorem 4 is proved inductively, and, by the recursive relations (22)

or

0! = l;    et+i = l + \(6i + • • • +     + «0 = ek + \ek = iok,



134 HERMANN WEYL [July

we find the following explicit expressions for 6k and ixn\

Mn = (1)"("-1,/2.

Suppose po, pi, ■ ■ ■ , pn are given numbers satisfying the following condi-

tions:

(23) t*W#*k&>

A basis §/,•••, g„' of 8 is said to have the property B (pi, ■ ■ ■ , pn) if the in-

equality

/(*!«/ + • • ■ + M*'3 ̂  (l/>*)/(«»)

holds whenever (aci, • • • , x„) is an w-uple in Ajt and A one of the indices

1, • • • , w. By exploiting our method to the full we arrive at the following [9]

generalization of Theorem 4:

Theorem 6. If the lattice basis has the property B(pu ■ ■ ■ ,pn), then the

values f($k) =Li satisfy the inequalities

1
(24) Li g — Li (for k > i)

pi

and

(25) U =2 Ok(p)-Mk (k = 1, • ■ • , n)

with a constant 6k(p) depending on pi, ■ ■ ■ , pk but not onf.

Relation (24) is a consequence of the fact that (öt, • • ■ , ö*) is an w-uple

in Xi if k>i. Otherwise the proof follows the same road as before. (22) gives

place to this recursive equation:

0t(p)/pk = l + m(P) + ■■■ + dk-i(p))

which in the same manner readily leads to

k-l

ek(p) = pk-Jl(i + hpd.
i—l

One sees that 6k(p)/pk increases with k, and therefore (23) implies

(26) 1 = 60(p) ^ 9i(p) ^        ^ 6n(p).

One can repeat our whole argument after replacing (15) by the sharper

and slightly more complex inequality (16). One then obtains this

Supplement to Theorems 4-6. One may choose

(27) ek = (!)*->,    y.n = (#)»<-»«     ek(p) = pk-n (i + \pi),
i=l



1940] ARITHMETICAL EQUIVALENCE 135

or, with a slight improvement,

ti =1,       dk= (f)M    (for k > 2);      Mn = (^)(n-i)(n-vn.

(28) 1 + pi
Bi{p) = Pu Okip) = pk-~ 11(1 + fa) (for k>2).

2 i_2

Shifting the accent, we call a gauge function f(x\, ■ ■ ■ , x„) reduced if it

satisfies the inequalities

k k

f(xi, ■ ■ ■ , xn) ^ /(«,, • • • , 5„)

for any vector (xx, ■ ■ ■ , xn) in Xk and k = l, ■ ■ ■ , n. This means that the unit

vectors tk = (b\, ■ ■ ■ , b\) form a reduced lattice basis with respect to /. The

inequalities (20) then hold for Lk=f(tk). If /(f) is any gauge function and

8i, ■ • • , 8„ a reduced lattice basis with respect to/, we may set

/(*1«1 +  • •  ■  + Xn§n)  = f*(Xl, ■  ■  ■  , Xn).

Then/*(xi, ■ ■ ■ , xn) is a reduced gauge function, and we see that any gauge

function/can be carried over into a reduced one by a unimodular transforma-

tion S of its variables. We shall adopt this terminology in Chapter II while at

present we stick to talking in terms of reduced bases rather than gauge func-

tions. •

4. The question of uniqueness. Denote by X* the set Xk after excluding

the two w-uples

(xi, ■ ■ ■ , x„) = ± (Si, • • • , 5„).

The lattice basis gt, • ■ • , 8„ is said to be properly reduced when for every

k = 1, ■ • ■ ,.n and for every (xi, • ■ ■ , xn) in X * the inequality (18) holds with

the > sign.

The 2" diagonal transformations of the modular group,

/I     t{   =   + ft, • •  ■  , $n   =   ± 8n

(all possible combinations of signs admitted) form a finite Abelian subgroup

{/} of order 2". Its generators are the involutions Ji, ■ ■ ■ , Jn which change

one sign at a time:

Jk: 3* = — %k and $/ =«,■ for all j^k.

Clearly the/carry a reduced basis (8i, • ■ ■ , $„) into a reduced one.The first

result concerning the question of uniqueness is that this exhausts the possi-

bilities, provided (8i, • • • , 8„) is properly reduced [l0]. Of two lattice bases

(8i, ■ ■ • , 8„) and (#/,*••, 8„'), the first is called lower than the second

provided the first nonvanishing difference

fW) -/(«.), • • • ,/(*»')-/(«■)
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happens to be positive (which includes the case for which they are all zero).

Theorem 7. Let (81 , • • • , 8„') be any lattice basis and (81, • • • , 8„) be a

properly reduced lattice basis. In these circumstances (81, • • • , 8„) is lower than

(8/ , • • • , 8„'), and the equations

/(«/) =/(3i), • • " r /<«*.) -/(«*)

imp/y

81 = ± 81, • ■ • , »*' = + 8*.

-7/ (8/ , • • ■ , 8n') is reduced and (81, • • • , 8„) is properly reduced, then

81 = ± 81, • • ■ , 8„' = + 8».

Proof. Under the hypothesis that (81, • • • , 8„) is properly reduced, we

have to show that

(29) «1' = ± 81, • • • , «t'_i = ± 8ft_i

imply/(«*') ^/(«t), and even/(«»') >/(«») unless 8*' = + «*.

Because of (29), 8* is a primitive adjunction to

[«/, • • • , tiU] = [81, • • ■ , Iw),

and hence

(30) /(«*') i'Ärj:

As (81, • ■ • , 8„) is properly reduced, the equality sign in (30) will hold only

if 8*' = +1*.
Suppose 81 , • • • , 8„' is reduced and (29) holds. Since 84 is a primitive ad-

junction to [81 , • • • , 8fc_i], we must have /(8*) =£/(8*f) in addition to (30),

and hence/(Si ) =f(8k), an equation which we have just found impossible un-

less 8a? = ±8*. This establishes the full content of our theorem.

Much less can be said if the reduced basis (81, • • • , 8„) is not properly

reduced.

Theorem 8. If

81, • ■ • , 8„;     It, • • • , 8„'

are two reduced bases, then

£* = /(«*),      U -Mi)
satisfy the inequalities

(31) OkLk ̂  L£,      dkLi ^ Lk.

(This proposition indicates how far the uniqueness of the Mk survives

for the Lk.)
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Proof. Because there are k linearly independent lattice vectors

£ = g], for which f(i)i=Lk, Lk cannot be smaller than Mk. Hence

Mk^Lk,       Lk ä 8kMk;
(32)

Mk £ Li ,      LI ^ BkMk.

Elimination of Mk leads to the two inequalities (31).

The case when (8i, ■ • • , 8„) is reduced while the basis (#/, ■ ■ • , 8„') has

the property B(pi, ■ ■ ■ , pn) will also be needed later. The k linearly independ-

ent vectors ${,•'', 84-1, 84' impart values to/which are less than or equal to

p\Lk, ■ ■ ■ , pk-iLk, Lk
respectively. Hence

Mk ^ ptr-iLi ,      Li g 6h(p)-Mk.

Substituting these inequalities for the second line of (32) and again eliminat-

ing Mk we find:

Theorem 8p. For a reduced basis (8i, ■ • • , 8„) and a basis (8i , ■ ■ • , I«)

of the property

B(ph ■ ■ ■ , pn)       (1 = p0 ^ ft ^ ■ ■ ■ ^ pn)

the values

Lk = /(«»),      U =/(8*')

satisfy the inequalities

(33) Li S6k(p)-Lk,      Lk i &kpk-i Li.

With the same effort one could have established similar relations for two

bases of the properties B(pi, ■ ■ ■ , pn) and B(pi, • • • , pi) respectively. The

present generality, however, is sufficient for our purposes.

Theorem 9p. If, for a certain k = 1, ■ ■ ■ , n — l,

(34) 6k(p)dk+l Lk < Lk+i,

then $/»•••) 8* are linear combinations of the vectors 8i, • ■ • , 84 only and thus

arise from them by a unimodular transformation of degree k.

Proof. Suppose that in one of the vectors 8/, ■ • * , 84 , say

8/ = $(61 + • ■ • + *»§»,

not all the components s}t, (j = k-\-\, ■ ■ ■ , n), vanish. Then 8i, • • • , 84, 8/ are

linearly independent and hence the maximum of the k-\-l numbers

L\ = /(81), ■ • ■ ,Lk=f(Sk),L! = /(«/)

must be greater than or equal to Mk+i. If on the contrary
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(35) Li, • ■ ■ , Lk',      L[, • ■ • , LI

are all less than Mk+i, then the ${,••', 8* are linear combinations of

8i, • ■ • , 8& only. Now

U ^ Bi{p)-Li (* — 1,-r *)f

and owing to

Li £ • • • £ L*,      1JS 0i(p) £ M#

all our requirements concerning (35) can be met by the one condition

ek(p)-Lk < Mk+i

which in its turn is a consequence of

6k(p)-Lk < Lk+i/8k+i

because Lk+i ^ 6k+iMk+i.

In the particular case where (8/, • • • , 8„') is likewise reduced (pi = ■ ■ ■

= pn = \), we have the following close parallel to Theorem 2:

Theorem 9. Let 8i, ■ • ■ , 8„ and 8/, • • ■ , 8„' &e two reduced bases of 2, and

/(Si) =Lk. Suppose that moreover, for some k^n — l,

Bkdk+iLk < Lk+i.

Then the first k vectors 8/ , • • • , 8* are linear combinations of 8i, • • • , 8* owZy.

B. The imaginary and quaternion cases

5. Integers and Minkowskis inequality in the complex field. Complex

numbers £ =Xa-\-ixi have two real components Xq, Xi. We denote the conjugate

by % = x0 — ixi. Trace and norm:

tr £ = I + I = 2*„,      N| = Ü = I S f = *o + *i
are real and the coefficients of a quadratic equation satisfied by £:

(36) e - f-tt J + N| = 0.

Let w be a non-real number. 1, to span a lattice J in the Gaussian plane con-

sisting of all numbers

(37) ' £ = y0 + yiuj (y0, yi integers).

If J is closed with respect to multiplication and the operation £—>|, then J

is a self-conjugate ring, and we agree to call the elements of J integers. Owing

to the choice of 1 as an element of the lattice basis 1, w, the only real integers

(with yi = 0) are the common rational integers. Trace and norm of an integer £

are rational integers. Hence the quadratic equation (36) for £ = w shows that w
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is of the form \{c-\-id112) where c and d are rational integers and either

cmO (2),   d=0(i),   or   cm 1(2),   d = 1 (4).

The lattice J is rectangular in the first, rhombic in the second case. The

density of the lattice J, that is to say, the area of its fundamental parallelo-

gram spanned by 1, co, is ^d1'2.

The numbers of the form (37) with rational coefficients y0, yi form the

embedding field J0. Indeed if £^0 is in JQ so is

r1 = I/n{.

Ja is the quadratic field over the rational field determined by {—d)112. The

Xo, X\ and yo, yi, formula (37), are always spoken of as the x- and y-components

of a complex number £=Xo+JXi.

We ask for the least radius r such that the circles of radius r around all

integers cover the whole £-plane. One readily finds in the rectangular case,

r = |(1 +kd)112,

and in the rhombic case

1 + d
r ~ U1'2

If £ is any complex number, one can always ascertain an integer a such that

n(£ - a) £ r2.

Another constant which will crop up later is the least norm e2 of an integer

ay^O which is not a unit (i.e. for which l/a is no integer); e is either 21/2, 31/2

or 2.

We operate in a vector space En of 2» real dimensions whose vectors

r = (£i, • • • , £„) have arbitrary complex coordinates £,-. The lattice ? consists

of all vectors whose coordinates £,■ are integers (elements of J). The notion

of a lattice basis needs no explanation. The modular group {S} consists of

all unimodular transformations S,

k

with integral coefficients of whose determinant is a unit e.

A gauge function is a real-valued continuous function/(£i, •••,£«) with

the following three properties:

(i) /(£i. ■ ■ ■ , £n) >0 except for (fc, • • • , £„) = (0, • ■ • , 0);

(ii) f(riu ■■■ , r£„) = |r| •/&, •••,£„);

(Hi) • • •, £„+£n')^/(£i, • • • , £*)+/(£/, ••-,£»')•
We introduce real coordinates #fc0) Xki by ^k=Xka+ixk\ and use them in defin-
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ing the volumes of solids in our space. In particular V denotes the volume of

the gauge body

$ti  Mi, ■■■ ,$n)<l.

We carry out Minkowski's construction according to the same recipe as in

the real case and thus determine n lattice vectors bi, • • • , b„ and consecu-

tive minima Mk=f(bk). Our first concern is the analogue of Minkowski's in-

equality:

Theorem 1*.

(38) Jf? ----- Mlv ^ (2dV2)n.

We resort to Minkowski's original inequality in the form (17). But under

the present circumstances we deal with 2n real coordinates Xko, xki and with a

lattice which is the direct product of n two-dimensional lattices of density

§rf1/2 rather than 1. Hence the right side in (17) is to be replaced by

2*«(|<f»/i). = (2d1")'.

The only lattice vectors r for which f(%)<Mk are linear combinations of

bi, • • ■ , bk-i with complex coefficients. Hence there are at most 2(k — l) vec-

tors satisfying this inequality which are linearly independent in the real sense.

Consequently we may take

Mik-i = Mu = Mk,

and in this way the inequality

M[ ■ ■ ■ ML V ^ (2rf1/2)"

results in (38).

6. The same for quaternions. A quaternion £ has four real components

(xq, Xi, Xi, xi). The conjugate is £=(xo, — Xi, — x% — xi). The quaternions

(x, 0, 0, 0) can be identified with the real numbers x. Both trace and norm:

— —       I     12 2 2 2 2

tr £ = £ + £ = 2xo,      N£ = ££ = I £ I  = x0 + Xi + x2 + x3,

are such real numbers. Every quaternion £?^0 has its reciprocal

(39) r1 = £/N£;

but since multiplication is noncommutative we have to do with a division

algebra rather than a field. Each quaternion £ satisfies the quadratic equation

(36) with real coefficients.

Any lattice J in the four-dimensional space with the real coordinates

Xo, Xi, Xi, Xz which is spanned by four linearly independent quaternions in-

cluding 1,
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(40) O)0 = 1,     Wl,     ü>2, co3,

may serve to define the integral quaternions as those of the form

(41) £ = yao>o + yvui + yzuz + y3a3

with ordinary integral coefficients y, provided J is closed with respect to

multiplication and the operation £—>£. Then trace and norm of a quaternion

integer are rational integers. As (39) shows, the quaternions (41) with ra-

tional y form the embedding field J0. We denote by \d the density of the lat-

tice J, and maintain that d is a rational integer. Although this fact is of little

importance to us I shall briefly indicate its proof.

With (41) we form

3
^ . 2 2 2 2

(42) N£ = 2_, a-ikyiyk (= x0 + X! + Xi + x3).

The coefficients

(43) an and 2»,-* for i = k

are rational integers. According to the transformation theory of quadratic

forms the discriminant of (42) is (id)2 and hence, because of (43), d2 is a

rational integer. On the other side let us study the field J0 and any basis

a>o= 1, coi, a>2, a)3 of the field. Starting with (40) we may first subtract from an

and oi2 half their traces and thus provide for the conditions

cöl =  — «i, ö>2 =  — ü>2.

Then a)iC02+co2a>i is the trace of d0iw2 and hence a real rational number 2c. Re-

placing co2 by «2+c«i, one gets

CO2CO1 =  — ü>iü>2.

wiu>2 is in the field. Choosing it as «3 the form (42) becomes

2 2 2 2

yo + ay! + by2 + aby3

which shows that its discriminant is the square of a rational number. This

property persists for any basis of J0. Hence d2 is the square of a rational

number d, and, as d2 is integral, so is d itself [ll].

r and e have the same significance as before.

The vectors r = (£1, •••,£„) which we now consider have arbitrary qua-

ternions £4 for their components,

£fc = (xka, Xki, Xkz, Xk3)

= y*o<oo + ynui + y*2«2 + yi3<>>3.

The definition of lattice vectors remains unchanged. The modular group con-
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sists of all pairs of mutually inverse transformations

ki = Z£*,<7«; £<   = Z £*r«
* k

with integral coefficients of, rf. (This modification of the definition is forced

upon us because a quaternion matrix ||of|| has no determinant.) One has to

observe carefully the position of the factors. Our convention is that the sub-

space spanned by k linearly independent vectors bi, • • • , b* consists of the

vectors ??ibi+ • • ■ +Vki>k with the coefficients v in front of the vectors.

The description of a gauge function by the three properties (i), (ii), (iii)

stays unaltered, with the factor r in front of the variables |i, ■ • • , |» in (ii).

Minkowski's inequality assumes the form

4 4 An , _ n

Mx ■ ■ • Mn V S 2 (Id) ,

which we put down as

Theorem 1**.

2 2      1/2,     1/2 n

(44) Mi ■ • • Mn-V    ^ (2d   ) .

7. Reduction. What remains will be done simultaneously for the imagi-

nary and the quaternion cases in such language as applies literally to the more

complex of the two. We have to check Lemmas 1-3 of §1 as to their validity

under the new circumstances.

Both proofs of Lemma 1 go through with the following precautions. (5) is

to be written down in terms of the 4ra integral y-components of the vectors

and coefficients concerned, and the positive rational integer M is the absolute

value of the determinant of the linear equations with in unknowns thus ob-

tained. The inequalities (8) for a reduced vector (7),

r* = i7i*bi + • • • + ij**b*,

must be replaced by

Nj,!* S r\ ■ ■ ■ , Nth* ^ r2-

In order to secure the validity of Lemmas 2 and 3 an essentially new as-

sumption has to be made:

Hypothesis P. Every left or right ideal in the ring J is a principal ideal.

As far as left ideals are concerned it requires: Any integers

(ax, ■ ■ ■ , ah) ^ (0, • • • , 0)

have a left common divisor 5,

ax = S-ßx, ■ ■ ■ , ah = 8-ßh      (ßx, ■ ■ • , ßh integers),



1940] ARITHMETICAL EQUIVALENCE 143

which can be written as a linear combination

(45) BiXi + ■ ■ ■ + ak\h

with integral coefficients X,-. This divisor 5, which up to a right unit factor is

uniquely determined, is called the left G.C.D. of oti, ■ ■ ■ , a*. (The integers

represented by (45) if the Xi range independently over all integers coincide

with the values of 5 /x for all possible integral values of p. It is sufficient to

make the requirement for two integers an, a2.)

Lemma 2, in which the last words "without common divisor" must be

changed into "without left common divisor," is true under the hypothesis P

for left ideals (Pi). Change the Roman into Greek letters and define d, or

rather 5, as the left G.C.D. of a*, • ■ ■ , a„. The alternative 1 occurs if 5 is

not a unit, the alternative 2 if ak, ■ ■ ■ , an are without left common divisor

(which means, of course, that they have no left common divisors except

units).

One has merely to glance through the proof of Lemma 3 in order to realize

that it depends on the hypothesis P for right ideals. We obtain the primitive

adjunction in the form

g = (1/V)b + riöi + • • • + Tjt_igfc_i

where p. is a nonzero integer and the t satisfy the inequalities

Nn ^ r\ ■ ■ ■ , Nth ^ r\

If p is a unit one may take

g = b, i.e.,    p = 1,      ti = • • • = Tk-t = 0.

As Njt^l for any integer p.7^0, the inequality (15) is turned over into

/(g) + ■ • • t/OM)
while in (16) the smallest norm e2>l of integers makes its appearance:

/(g) £ max {/(b), (IMffl +V(/(«i) + ■ " • +/(«*-:)) ) •

Incidentally hypotheses P; and Pr are fulfilled if r<\. For then Euclid's

algorithm for the G.C.D. goes through. In the complex field this happens for

the rectangular lattices J with d = i (Gaussian field) and d = 8, and for the

rhombic lattices J with d = 3, 7, 11. The most important example for qua-

ternions is the classical case first treated by A. Hurwitz [12]: he declares a

quaternion (x0, Xi, x2, x3) to be integral when 2x0, 2xi, 2x2, 2x3 are rational

integers either congruent to (0, 0, 0, 0) or to (1, 1,1,1) modulo 2. One realizes

at once that here r<\; the exact value is r = l/31/2.

The whole theory of reduction of §§3 and 4 will now go through, practi-

cally without alterations. We indicate the few changes to be made. Xk is the

set of all w-uples (£i, •••,£„) for which £i> • • • , £„ are integral and £»•'■'•{«
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without left common divisor. X* arises from Xk by excluding the following

w-uples:

• ■ • , S„) (e a unit).

{/ } consists of the diagonal transformations

/:   gi = eigi, • • • , g„' = e„g„,   or   (t = £/ei, ■• • , |„ =

where «i, ■ ■ • , e„ are units. This group is the direct product of n factors each

of which is isomorphic with the group of units. The most essential point

concerns the values of the constants dk, dk(p) and p.n.

Instead of the recursive formula (22) we get 6k = 1 +r(0i+ ■ • ■ + 0/t-i)

leading to

Ok = (1 + r)k-K

Similarly

k-\

Skip) = Pk -U (1 + rpi) .
i-l

Theorem 5**. The inequality

2 2      2/« 2
Li ■ '' Ln-V   £ pn

holds, where k = 1, 2, 4 characterize the real, imaginary and quaternion cases re-

spectively and

2 (      1/2   , ,«-1.«
ßn = [2d   -(1 + r)     } .

iln the real case d = A, r=\.)

The same trick as used before, compare formulas (27) and (28), allows us

to improve to some extent these values of 6k, Bkip) and p„.

Chapter II. Reduction of quadratic, Hermitian

and Hamiltonian forms

8. Jacobi transformation. A quadratic form

(46) /(r) = Z gijX.Xj ii,j = 1, • • • , n)

of n variables {xi, ■ ■ ■ , xn) = r is characterized by its real symmetric coeffi-

cients gij = gn and may thus be denoted by/= [gi,}. All quadratic forms con-

stitute a linear space R of 7V=§w(m-t-1) dimensions. In the imaginary and

the quaternion cases the analogues are the Hermitian and"Hamiltonian" forms

respectively,

(47) Mu ■ ■ ■ , f-) = j 6y#<&
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whose complex or quaternion coefficients satisfy the symmetry condition

(48) in = Ja.

The conjugate of a product is the product of the conjugates in inverted order.

This rule at once shows that the value of / is real, /=/. In the quaternion

case one has to watch out for the order of the factors on the right side of

(47). The substitution x^txi multiplies the quadratic form (46) with

t2 = \t\ 2 = Nt, while £<—>t£, changes (47) into t/t, or since / is real, into

TT-f = Nt-/.

The diagonal coefficients ja are real while the skew coefficients y^ on one

side of the diagonal, i<j, may be chosen arbitrarily and then determine the

coefficients on the other side by (48). Hence the quadratic, Hermitian and

Hamiltonian forms / constitute linear spaces of

n(n — 1)
N = n + K-

2
or of

N = \n(n + 1),      »*,      n(2n — 1)

dimensions respectively. The form / is said to be positive if /(r) >0 except for

f = 0. According to our remarks above,/1'2 may then serve as gauge function

in the real, imaginary or quaternion vector spaces.

Jacobi's transformation is a uniquely determined linear transformation of

recursive character of a positive quadratic form into a square sum. It is noth-

ing else than the method of "completing the square" which, probably some

4000 years ago, was invented for the solution of quadratic equations. It no

less applies to Hermitian and Hamiltonian forms, though in the latter case

we have to bear in mind that there are no determinants. Thus we had better

disregard this formal tool altogether. The discriminant of the form will be

defined by recursion in the course of our construction. Its general explicit

expression in terms of the coefficients 7;,- is a task about which we need not

bother here [13]. I now give the description of the process for positive

Hamiltonian forms /.

If / is positive, then yu is real and greater than 0, yn = q\. We form

which implies

and find

721 7m
fl - h + - + " ■ '  + £n —

7n 7u

- - 712 - 7ln _

f 1 = Zl + - !»+••• + - in
7n 7n
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(49) £fa • • ■ , 6«) = ?ifif. + •••,£»)

where the remainder/* depends on the variables fB only. Incidentally

its coefficients are given by

(50) y% = 7i3- — 7 •

/* is positive; for if £2, • • • , i> are any given values we may determine £1 by

the equation

and then

721 7nl

+ - +  ■ • •  + In - =0
7ll 7ll

/*fe, ••,*») =     ft, • •, U > 0

except for £2= • • ■ = £n = 0. Iteration of the splitting (49), therefore, leads to

an expression

(51) /(f)  = 9l|fl|2+  '  ■  •   + <?»|f„|2

(Jacobi's transform) where the q are positive numbers and f, linear forms of

the recursive type

(52) U =    + £
(i>0

The product qi ■ ■ ■ qn—D=Dn is called the discriminant of/.

Break the sum (51) into two parts according to

/(?) = («! I fi I2 + • • • 4- <7*_i I       I2) + (qk |f* |2 + • ■ • + ?« I f. |2)

and substitute f = e*. The value of the whole form is ykk while the value of the

second summand is qk. Hence

(53) qk ^ ykk,

(54) D ^ 711 •  ■  • 7nn.

The Jacobi transformation of the positive form

/<*> = Mu ■ • ■, h, o, • • •, o)

of k variables is obtained from (51) by setting £4+1= ■ • ■ =£„ = 0. Conse-

quently its discriminant is Dk = qi ■ • ■ qk and thus

qk = Dk/Dk_, (k = 1, • • ■ , n; D0 = 1).

The first step (49) goes through under the sole assumption 7n = öi>0. If,

in carrying the process further for a given form/, we find q2 >0, • • • , q„>0
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at the following steps, then the formula (51) itself reveals that / is positive.

By (50) the inequality g2 >0 amounts to

I T21 |2 = I 7i2 [2 < 711-722-

More generally we must have

I 7i?|2 < fata (i j)

for any positive form/.

Next we compute the volume V of the 4w-dimensional ellipsoid /(r) < 1.

Denote by w„ the volume of the sphere

2 2
*1 + • * * + *» < 1

in the ^-dimensional real vector space. When in the recursive substitution

(52) we replace each of the quaternions £ and f by its 4 real x-components,

we again obtain a recursive substitution, this time in 4« variables, whose co-

efficient matrix has l's along the principal diagonal and hence is of determi-

nant 1. Thus the volume V is the same as that of the Jacobi transform

X^»<Z« I £<|2 < 1 or 'n real x-components

H (?;/2*;<*)2 < 1.
»-l a-0

Consequently

0>4„ IT2" 1 X2" 1

(55) V
(q[12 ■ ■ ■ ?1/2)4    (2n)- q\ ■ ■ ■ ?2    (2m)! D2

In the real and the imaginary case one finds

con C02n      x" 1

(56) V =-,       V =-=-
D1'2 D      n\ D

instead. Incidentally these formulas prove that, although our recursive defini-

tion refers to a definite arrangement, the discriminant of / is not changed by

arranging the variables £i, •••,£„ in a different order.

From here on we limit ourselves to real quadratic forms, because the ad-

justments to the two other cases are sufficiently trivial; only an occasional

glance will be cast upon them.

9. Some simple topological considerations. Within the iV-dimensional lin-

ear space R of all quadratic forms/= \ ga\ the positive ones form a convex

subset G which is a cone with the origin/ = 0 as vertex. The relative clause

means that dilatation, /—>//, at any positive rate t carries G into itself. G is

an open set. Indeed the quantities emerging at the first step of Jacobi's trans-

formation,
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■      I*1      * Sniu. ,. . \
?i = gn,    Oil =->    gii = ga-{i, j = 2, ■ ■ ■ , n),

gu gn

all depend continuously on /. [We now use corresponding Roman instead of

Greek letters throughout, so that the transformation (52) reads

(52') Zi = Xi + £ xi°n- ]

Hence qi, ■ ■ ■ , qn; bn (j>i) depend continuously on/at a given point/0 of G,

and all forms / in a certain neighborhood U of /° will satisfy the conditions

o o
qi ^ tfi, ■••,?« £ tf»

and thus be positive.

Jacobi's transformation shows quite explicitly that for a given positive

form / and a given number A the inequality /(r) ^A entails upper bounds

for the \xi\ of £ = (xi, ■ • • , x„). In fact, one first obtains upper bounds for

• • • i |s„| and then, going in backward direction, from the relations

(52') upper bounds for |x„|, |x„_i|, • • • , \x\ \. One can make this estimate

uniform throughout a sufficiently small neighborhood of a given form. Hence

this

Lemma 4. Let A (/) be a real function depending on a variable point f in G

and continuous at the given point f". We can fix a neighborhood U of /° such that

nearly every lattice vector j = (xi, ■ • ■ , x„) has the property of satisfying the in-

equality

m>A(f)

for all f in U.

("Nearly every" means that only a finite number lack the property in

question.)

Proof. We fix the neighborhood U so that

qk(f) Ztel,      AtyS-l + A(/),      I bH(f) I Ä 14-141•

If r is a vector such that there is an / in U for which /(r) ^A (/), then (51)

yields upper bounds for | zk\ which are universal in that they do not depend

on the specific / in U, and (52') yields universal bounds for |

From now on up to the end of §12, / without or with accent or index al-

ways indicates a point of G. All topological notions are to be interpreted rela-

tive to G; e.g., a subset of G is said to be open or closed whenever it is open

or closed relative to G.

Before going on we specialize some of our previous definitions concerning

gauge functions to gauge functions of the type/1'2 now under consideration.

A positive quadratic form f is said to be reduced if it satisfies the inequality
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f(*U ■ ■ ■ , xn) ^ gkk

for any vector (x\, ■ ■ ■ , xn) in Xk and for k = \, ■ ■ ■ , n. This implies

(0 <)gU ^ g22 ^  • • •   ^ gnn-

Two forms /, /' are called equivalent and counted in the same class if one

proceeds from the other by a substitution

Xk S{

k

of the modular group. Every point/in G is equivalent to a reduced one.

To each index k and vector r. = (x\, ■ ■ ■ , xn) in Xk there corresponds a

linear form of the coordinates g,, in R,

/(?) - gkk =      XiXjgu - gkk= Yl align,
iii i, i

which we denote by ak{%); its coefficients are

k k
OL% j — 0C%0C j       8{ Ö 4 •

The relations for the variable point \ga},

H^ngii = 0,       ^0, >0

are referred to as the equation, the inequality and the strict inequality ak(%)

respectively. Except for r= +tk, i.e., for every vector r in Xk*, the inequality

and equation at(r) define a half-space and its bounding (N— l)-dimensional

plane in R. Now / is properly reduced provided the strict inequality ak(%)

is satisfied for every r in Xk* and every k. Examples of properly reduced forms

are ready at hand; the simplest are the diagonal forms

2 2

glXl + ■ ■ ■  + gnXn With 0 < gl < gl <  ■ ■ ■   < gn-

The reduced points form a closed convex subset Z of G which again is a

cone and will be called the (basic) cell. A properly reduced / is said to belong

to the core of Z. An inner point of Z belongs to its core. Each unimodular

substitution 5 carries Z into an equivalent cell Zs- The substitutions of the

subgroup {/} leave Z unchanged, but if S is not in {/} then no point of

the core of Z can be in Zs (Theorem 7). Hence the equivalent cells Zs cover G

without gaps and overlappings; two different cells have none but boundary

points in common. Here two substitutions like 5 and JS which are left equiva-

lent modulo {j\ are to be identified because they have the same effect on Z.

Our aim is first to study the individual cell Z and then the whole pattern of

the division of G into equivalent cells.

We start with the observation that a point f° belonging to the core of Z is
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an inner point of Z. Indeed according to Lemma 4, nearly every lattice vector

r satisfies the inequalities/(r) >gkk for k = 1, ■ • •, n and for all forms/in a cer-

tain neighborhood U of /°. Therefore among the infinitely many inequalities

(57) «*({) (r in Xk*; k = I, ■ ■ ■ , n)

there are only a finite number, say a', a", • • • , which are not a priori sure

to hold throughout U. But if the strict inequalities a', a", ■ ■ ■ hold for/0

then they hold also in a sufficiently small neighborhood U' of f°; and the

neighborhood Un U' of/0 lies in Z.

Denote by Tk the subset of Xk to which r belongs if there are reduced

forms / satisfying the equation f(%) = gkk- The two vectors + tk belong to Tk,

and again T* designates what is left of Tk after these two vectors have been

removed. The planes ak(%) =0 corresponding to the r in Tk* graze the cell Z.

Our last result asserts that every boundary point of Z lies in one of these

grazing planes

(58) mM = 0 (f inf** * - 1, • • • , *).

Hence from a general topological principle which we shall presently prove for

our special situation there follows

Theorem 10. In the definition of Z as the set consisting of all points f of G

which satisfy the inequalities

(59) ak(t) for every r in Xk and k = 1, • • • , n,

the vector set Xk may be replaced by T*.

Proof. Choose one of the points/0 belonging to the core of Z as the center

of Z and suppose / is any point (of G) outside Z. Join /° with / by a straight

segment. Somewhere, at a point/', it will cross the border of Z; the part/0/'

of the segment, including/', belongs to Z while the points beyond/' are out-

side Z. The point/' satisfies one of the equations (58), say

(60) £ «lifii = 0.

The left member of (60) is greater than 0 at/0, equals 0 at/', and hence is

less than 0 at/. Consequently a point/which satisfies all inequalities

ak{i) ^0 (I in Tk*, k = 1, ■ • • , n)

cannot lie outside Z [14].

We denote by X\ the set of lattice vectors (xi, • • • , x„) for which

0C]q — 1 , %Jq^.\ —  ' * *  — OCfi — 0 *

Xl is a subset of Xk. Let p be any number greater than 1 and a a positive
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number. Later on we shall have occasion to study the part G(p, a) of G defined

by the following simultaneous inequalities:

1
(611) /(>i, • ■ • , xn) ^ —gkk for every vector (xu

P2

(612) f(Xi, ■ ■ ■ , xn) ^ gkh — cgu       for every vector (xh

[*-1» ••••.*],

G(p, a) is a closed convex part of G which increases with increasing p and a.

A point/of G satisfying all these inequalities (61) with the > sign is an inner

point of G(p, a), as follows by the argument previously applied to Z. The

domain G(p, <r) contains the cell Z in its interior. I propose to show that with

p | oo , a \ oo it exhausts the whole G. Let / be any point of G. All lattice vec-

tors (xi, • • • , xn) except those of a certain finite set 2 satisfy the inequalities

/(*t, • • ■ , x„) > gkk {k = 1, • • • , n)

and hence (61), whatever the values p> 1 and <r>0. When (xi, • ■ ■ , xn) varies

over the finite set X*nS,/(xi, • • • , xn) will assume a least (positive) value

gkk/pl- Thus all the inequalities (61i), with the > sign and for k= 1, • • ■ , n,

will hold as soon as p>pi, P2, • • ■ , Pn- In the same manner one sees that,

for a sufficiently high cr, / satisfies all relations (6I2) with the > sign for

k — 1, • • ■ , n.

10. The first theorem of finiteness. We now resume the algebraic study

of reduced forms, first specializing Theorem 5 for the gauge function/1'2:

Theorem 11. Any reduced form f = {ga} satisfies the inequality

(62) X„gn ■ • • gnn ^ D

where X„ = (wn/pn)2.

About the constant p„ see the Supplement to Theorems 4-6 in §3. We

use the formulas (55) and (56) for the volumes of our ellipsoidal gauge bodies

and thus obtain a corresponding inequality

X„7n • • • Tnn ^ D

for reduced Hermitian and Hamiltonian forms, with

it"   1 7tn 1

K=^'7n' K=\(2nW2'7n

and the values of p„ given by Theorem 5**. The resulting values of X„ are

certainly not optimal, but fairly good.

In passing we mention the following relations:

• • • , xn) in Xk,

0

•••,*») in Xk
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(63) I ga\ = hga,       \ytt\ S ryu,

which hold for reduced forms and for i <j. Choose two different indices, say 2

and 5. The two vectors for which Xi — ±1, x6 = 1 and all other Xt vanish be-

long to X5; hence

g22 + 2g25 + g55 ^ g55

or

2 I g25 I  = g22-

In the imaginary and quaternion cases the procedure is as follows. Let 77 range

over all integers. We take £s = l and £2= — 77 while all other vanish. The

resulting inequality reads

7227??? — 777 25 — 752?) ^ 0

which for 7 =752/722 yields

I 7 — t; |2 ̂  I 7 |2.

This means that, in the lattice of integers, 7 is not farther from zero than from

any other integer. Hence this distance \y\ cannot exceed r.

If f(xi, ■ ■ ■ , xn) is a reduced form of n variables, then

/<*> = f(Xl, ■ ■ ■ , xk, 0, • ■ • , 0)

is one of k variables, therefore

Dk 7> Xfcgn • • ■ gkk.

Combining this with (54) for/(*_1), Z?*_i^gii • • • f*_i,t_i, we find the important

inequality

qk ^ ^kgkk (k = 1, • • • , n)

holding for reduced forms f.
We are now sufficiently prepared to prove the first theorem of finiteness:

Theorem 12. The set Tu of lattice vectors is finite.

Hence by Theorem 10 we have succeeded in sifting from the infinitely

many inequalities (59) a finite number on which all others are consequent and

therefore redundant. In proving our proposition we shall give fairly explicit

upper bounds of       , • • • , \xn\ for the vectors f=(xi, x2, • • ■ , xn) in Th.

Proof. Suppose % is in Tk and / a reduced form for which f(%)=gkk- In

particular r = e* fulfills this demand. We apply Jacobi's transformation to/

and then find for the vector in question

2 2

<?lZl + • ' '  + qnZn = gkk',

a fortiori
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" 2

i-k

In the last sum jfr^X&M^X/gu (j = ^)> and thus the inequality

results which yields universal upper bounds for \zk\, ■ ■ ■ , |z„| :

(64) |Z)-|2^1/X, (/=*,■•■,»)•

To find universal bounds for | Z\\ , ■ • ■ , \ z*_i| is a slightly more intricate

job. Let A be a given index less than k. Without altering *«, •• -., Xh+i we may

replace Xh, • • , Xi by such integers xt*, ■ • • , x* in succession that the corre-

sponding %%*,■■•, z* satisfy

I «• * I <r 1 I n- * I <^ iSti      i I zi I = 2-

Since the new vector (x*, •   • , x *, Xh+i, ■ ■ ■ , x„) also is in Xk, we must have

/(xi*, • • • , xi*, Xh+i, ■ ■ ■ , x„) ^ gkk,

consequently

$2 #2 2 2
(flizi + • • ■ + qhZh ) + (a*+iz*+i + • • • + qnz„)

2 2 2 2

^ git* = (giZi + • • • + qnZh) + (qh+iZh+i + ■ ■ ■ + qnzn)

or

jk2 3k 2 2 2

?izi + • • • + o*za ^ gizi 4- • • • 4- qhZh-

The left member is less than or equal to

rKq, + •••+?*) = r2(gn + • • • + ghh) £ r2£gÄÄ        (r = |).

Hence
2 2 2

r ^gAfc ^ ?äZa ^ ^hghkZh or

(65) ss ^ r**A» (* - 1» 1).

(The notation r is used in order to cover also the imaginary and quaternion

cases.)

Applying (65) to j = e*, one gets

(66) blh ^ rh/\h (for h < k).

The universal upper bounds for \zn \, ■ ■ ■ , \zi\ together with the universal

bounds for the moduli of the coefficients bkn in the recursive equations (52')

result in universal upper bounds for |x„|, • ■ • , |xi|.
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This argument is chiefly due to Minkowski and is in my view the back-

bone of his theory of reduction. The simple remark leading from (65) to (66)

was first made by Remak [15 ]. It dispenses with the necessity of making use

of the explicit expression of bk\ as Minkowski did, which is the more fortunate

as it would have been quite cumbersome to follow his procedure in the qua-

ternion case.

11. The second theorem of finiteness. Generators of the modular group.

We prove now the following theorem.

Theorem 13. The set G(p, <r) has points in common with not more than a

finite number of cells Zs-

We must show that there is only a finite number of unimodular substitu-

tions S capable of carrying an (unspecified) point f of Z into a point /' of

G(p, o-),

/(yrfi 4- • • • + y„«„) =/'(yi, •■•,?»).

Here (3i, • • • , 8„) is a lattice basis of the property B(p, • ■ ■ , p) with respect

to /1/2. Consider the two series of subspaces

E0,  £i = [d],   E2 = [ei, e2], ■••,£„;

BS, Ei = [Si], Ei - [«!,«,], ■••,£„'.

E0 = Ei is the zero space, £„ = £„' the full vector space. Let / be the highest

of the indices 1, • • • , n for which

(67) EU =

The decision whether or not El = Ek depends merely on checking whether

some integers are zero. For / there exist the possibilities 1=1, ■ ■ ■ , n. We

propose to consider the S with a definite I.

First we focus our attention on the vectors

(68) g* (k = l,---,n).

For the moment let r = (x\, ■ ■ ■ , xn) denote the vector §k; then

2 2 /
(69) /(r) = qiZi + ■ ■ ■ + qnzn = gkk.

Put

61 = di(p) for pi = • • • = Pi = p.

Because of the significance of / and Theorem 9P we have

{oldi+iYgu i gi+i.i+i

for i^l. Therefore and because / is reduced,
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2 2 2 2

qizi + ■ ■ ■ + qnZn ^ \iguzi + ■ • • + f^ngnnZn

i       2 2 Xfc_l 2
,   , ^ gkk \ X„z„ + • • • + \kZk + —-        2*-i + ■ • •
(70) . I {dUdk)2

X, 2)

■ ■■»{■$>■• ol+l)2 )

while by Theorem 8,,

(71) g'« ^ (0*)2g**.

Combining the two inequalities (70) and (71) with (69), we get hold of uni-

versal upper bounds for | s;|, • • • , | z„|, namely

i    I      Ol ii 9&
\Zk    £ ->  • ■ ■ ,     Zn \  = ->1    1     Xi'2 1    ' X1'2

k n

i       i     Ok-idk 'dk i    i     0[ ■ ■ ■ 6k -Oi+i ■ ■ ■ Ok
Zk-l    5= ->  • • • ,     Z;  1 ä - ■

1    1     jM* 1  1 xy2
A—1 i

So far we have used merely the first set (61i) of inequalities for /'.

The second set yields universal bounds for fsi|, • • • , |z/-i|- Suppose

yu • • • i yi-i to be any integers; we have

f'(yi, ■ ■ ■ , yt~i, h, ■ ■ ■ , On) ̂  /'(Si* ■ • • , 5„) - ag'u

which is equivalent to

/(yiSi + • • • + y«-i8z-i + %k) ^ /(«*) - o-g'u

or

(72) /(*!*, • • •  , 361*4, Xj, • • •  , Xn)  = /{*!, • • ■ , Xn) — O-g'u

where (xi, ■ ■ ■ , xn) again is the vector %k and x*, ■ ■ ■ , x*_i denote any inte-

gers. In fact

X* = Xi + xl , ■ ■ ■ , X;*_i = +

with

yi«i + ■ • ■ + yi_iSj-i = x/ei + ■ • • + */-jei-i.

Observe that 8i, ■ ■ ■ , 8;_i span the lattice in Ei^i so that X\ i ' ' ' } Xi—i and

therefore x*, ■ ■ •, x*-i range independently over all integers while yi, • • ■ ,yi-i

do so. Let h be one of the indices 1, •■•,/— 1, and choose x* =x< for i>h,

but Xi* such that
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[z**| £ r, • • • , \ zt*\ £ f (r - i).

Then (72) yields

/ ° Jk2 2 2 2 2

o-gll + (ölZi   + • • • + fffcZA ) = ?lZl + • • • + 0*Zä ^ 0*2ä ^ ^hghhZh-

The left member is less than or equal to

cp2gn + r2(gn + • • • + ghh) ^ (o-p2 + r2k)gkh;

thus
2 2 2

XaZa ̂  <rp + r h (h = 1, • ■ • , / — 1)

Hence we have obtained universal bounds for all |zj| and by means of (66)

also for all ] Xi \. In other words, for each of the lattice vectors (68) we find our-

selves limited to a finite set from which to choose.

If Z = 1 nothing remains to be said. In the opposite case the same situation

prevails for the "cut" forms

f(xu ■ ■ ■ , x;_j, 0, • • • , 0),      f'(xu • • • ,        0, • • • , 0)

of l—Kn variables in Ei-i as for the full forms / and /' in n dimensions

which we started with. Thus the proof is complete by induction.

The main idea of the proof is again borrowed from Minkowski—with two

essential modifications:

(1) Where Minkowski uses estimates based upon Jacobi's transformation

of quadratic forms, we have availed ourselves of the general Theorems 8 and 9

holding for any gauge function whatsoever; in spite of their far greater gen-

erality these estimates are sharper than Minkowski's.

(2) Minkowski has our proposition only for

p = 1,       a = 0,      C7(p, a) = Z,

in which case it asserts that Z borders on not more than a finite number of

equivalent cells Z&. However, we should know that every boundary point of Z

is on the common boundary of Z and a different cell Zs, or that the cells Zs

cluster only towards the border of G, which means that into any sufficiently

small neighborhood of a point of G, or into any compact subset of G, there

penetrate only a finite number of cells Zs. Our theorem goes beyond this be-

cause G(p, <r) exhausts Gifpt ».o"? 00 , but is not compact. About this finer

point refer to §13. Here is an application of the fact that the cells do not

cluster in the interior of G:

Lemma 5. Any cell Z' =Zs may be reached from the basic cell Z by a chain

(73) Z=Zl,Z2,- -,Z,=Z'

in which any two consecutive members are in contact, i.e., have points in common.
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Proof. The center/0 of Z goes by the substitution S into an inner point fg

of Zs = Z'. Join/0 with/s by a straight segment r. Determine p>l and er>0

so that/s is an inner point of G(p, <r). Then the whole segment r lies in G(p, o~).

Since the number of cells Zs having points in common with G(p, a) is finite,

the same is true a fortiori for the cells Zs which are met by the segment r.

On the other hand every point of t belongs to a certain cell Zs, and the points

which t and Zs have in common form a (closed) interval on r. Hence r is

covered by a finite number of subintervals of which we can select a chain

connecting/0 with/s. What we obtain in this manner is a chain of cells (73)

in which any two consecutive members have a contact point on r.

Those substitutions of the modular group which effect transition from Z

to cells in contact with Z form a finite set [Z]. If S is in [Z], so is the "(two-

sided) congruent" substitution

S* = JSJ' (J, J' any two elements of {/})

as one readily verifies by performing the substitution /' on the two contact-

ing cells Z and Zjs = Zs- Hence [Z] breaks up into a number of complete sets

of congruent substitutions; we choose a representative out of each set:

S', S",

Theorem 14. The substitutions of {S} which carry Z into cells bordering

on Z, or rather a complete system of modulo \j\ incongruent representatives

S', S", ■ ■ ■ among them, combined with {j}, generate the whole modular group

{S\.

Proof. Let 5 be any element of the modular group and determine a chain

(73) leading from Z to Zs = Z'. A certain unimodular Srx will carry Z< into

Z and Zi+i into a cell contacting Z which therefore arises from Z by an

element 5(i) of [Z]. The substitution S(i)Si carries Z into Zi+i and thus can

and shall be adopted as S,+i- If this inductive definition of Si is started off

with Si the identity, then 5("_1) • • • 5(1) carries Z into Zs, and therefore

5 = /S<"-i> ■ ■ - 5«> (/in [/}).

12. Faces and walls. The main body of the theory of reduction is now

complete; what follows are accessories of minor importance. In this section

we discuss the consequences upon the cell configuration of the fact that any

boundary point of a convex solid polyhedron lies on one of its faces. Engaging

in this kind of general topological argument, we prefer the notation yi, • • • , yjv

instead of g,-,- for the coordinates in our A^-dimensional space R. A face of

the cell would be described by one of the equations

(57) a,(r) feinX?,*'-1, •••,»),

which hold for N— 1 linearly independent points of Z. Taking it for granted

that each boundary point of Z lies on a face, we infer from the proof of
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Theorem 10 that the corresponding inequalities suffice to define Z as a part

of G: those planes (57) which do not share an (JV — l)-dimensional convex

face with Z may be discarded. It is clear that on account of their "extreme"

character the remaining inequalities are truly indispensable.

As to the configuration of all equivalent cells Zs, it seems clear that any

point on the boundary of Z lies on a "wall" separating Z from an "adjacent"

cell Zs- By these words "wall" and "adjacent" we wish to indicate that Z

and Zs have N — 1 linearly independent points in common. The points which

two cells have in common, if any, form a convex cone of 1 or 2 or • or

N—l dimensions. We speak of a contact of order 1, 2, • • • , N—l respec-

tively. The unimodular 5 carrying Z into adjacent cells form a finite set

[ [Z] ] narrower than [Z]. Again it decomposes into subsets of congruent sub-

stitutions. Theorem 14 remains true if S', S", ■ ■ ■ denote representatives of

these sets. We can dispense with none of these more restricted generators.

The ultimate goal of all such considerations should be to show that the

pattern of our cells which mutually border on each other is a complex in the

combinatorial topological sense, of such particular structure as to form the

skeleton of a manifold.

It is clear that the walls of Z are parts of its faces. This simple observation

establishes a close relationship between the first and Minkowski's special case

of the second theorem of finiteness.

I shall try to give the most convenient arrangement of the proofs. First

the faces of Z.

Lemma 6. Any boundary point of Z lies on a face of Z.

We know th<it Z as a part of G is characterized by inequalities

(74) a(y) = onyi +••••' + otNyN = 0

corresponding to a finite set 2 = 20 of linear forms a(y). Let/1 be a point

(of G) on the boundary of Z; it will satisfy at least one of the inequalities of 2

with the = sign. After an appropriate linear transformation of the coordi-

nates y, we may assume

(75) p = e1 = (1,0,0, ■•• ,0).

2i is the non-empty subset of 2 to which a linear form <x(y) belongs if nullified

by e1. Their first coefficient ot\ vanishes, so that they may be looked upon as

forms of N — 1 variables. For the linear forms ct(y) in the complementary sub-

set 20 the first coefficient «i is positive. We describe the vth step of this proc-

ess of selection. Suppose the subset 2„ of those linear forms of 2 in which the

variables y%, • ■ ■ , y, are absent is not empty. The corresponding inequalities

av+1yv+i +••••+ oLNyN S: 0

of 2» define a convex pyramid Z" in the (A7 — i^-dimensional space R" with
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the coordinates y„+i, ■ ■ ■ , yjv. As long as N — v S; 2, we can find a point/"4"1

on the boundary of that pyramid, and by a suitable affine transformation of

the coordinates y„+i, • • • , y/v we can provide for /"+1 having the coordinates

(y-+i, ■ ■ ■ , jn) = (i, o, ■ • • , o).

2„ breaks up into the subsets 2„+i and 2„ whose members have their first co-

efficient a,+i = 0 and >0 respectively. 2,,+i is not empty.

The existence of/"+1 follows in this way. Denote by/°= (y?, ■ • ■ , y%) the

center of the cell Z. All linear forms a(y) belonging to 2„ have the property

a(/°)>0for

(76) / = (yl+i, ■ ■ ■ , yl),

or (76) is an inner point of Z". Operating in the (N — v)-dimensional space R"

we choose one of the forms of 2„ say a'(y), and a point/^0 in the plane a'(y).

(As long as R" has at least two dimensions, a plane a'{y) =0 through the origin

0 certainly contains points/j^O.) We join /° with / by a straight segment,

which will not contain the origin O. Traveling along the segment from /°

to / we encounter a first point /* where one of the forms of 2„ ceases to be

positive. (If not before this will happen for/.) All forms of 2„ are greater

than or equal to 0 for/* and at least one equals 0. We take/"4"1 =/*.

We end up with a non-empty set 2^_i consisting of linear forms a^y^r in

the 1-dimensional space RN~l with the single coordinate y^. They are positive

for yN=y%- We take one of them as the coordinate y^; then the coefficients a.v

of the others are greater than 0 and ym = 0 is the pyramid ZN~l in RN~1. At

the same time we have arrived at a complete normalization of the affine sys-

tem of coordinates yi, ■ • ■ , y^.

By construction the pyramid Z"_1 in R"-1 contains the point

(?», • • • , 9») - (1,6,   • ,0).

The system 2„_i of linear forms

a.y- + • ■ • + aNyN

splits into 2, and 2„_i according to the condition a, = 0 or a„>0. It is there-

fore easy to ascertain a positive constant e„i£ 1 such that (1, y„+i, • • • , yi?)

lies in Z"-1 provided (yv+i, • • * , y/v) lies in Z" and

I yn-i I 2» •»»■•", I yv I £

This is true even at the first step v = 1 when i?° = R is restricted to G, because

for a sufficiently small e the neighborhood of (75) described by

yi - 1, I y»\ £ e, • • • , I.yM\ £ «

lies in G.

Starting with the point y^ = 0 in ZN~X and following this rule for the tran-
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sition Zv—>Z"_1 backwards from ZN~} to Z, we find that the following TV—1

points

(1,0,0, 0, ■■■,0),

(1, ft,©, 0, •••,0),

(1,      eie2, 0, ■ • ■ , 0),

belong to Z. Thus the plane yjv = 0 belongs to 2jv-i, hence to 2, is a face and

contains the point/1.

Lemma 7. Any cell Z' =Zs may be reached from the basic cell Z by a chain

whose consecutive members are adjacent.

The inner reason for this lemma is obvious: because the region G is con-

vex, the cell complex into which it has been divided is connected.

We start with the chain described in Lemma 5. Any two of its consecutive

members have a common point / situated on the segment r; but in general

their contact will be one of order 1 only. We must insert further cells between

them to make the chain proceed by contacts of order N—l.

The point /, being common to two cells, is not an inner point of a cell.

I shall try to describe the situation intuitively in the plane section gnn = 1 of G.

The cells to which /belongs cover an entire neighborhood U of/, each of them

participating in it by an (N — l)-dimensional pyramid with vertex/. Hence

we obtain a division of the (N — l)-dimensional space R1 into a finite number

of convex pyramids radiating from the vertex/, and our task is to prove that

this complex is connected. We thus face the same problem as before, but in

one dimension less, and hence induction with respect to N will lead to the

desired result. Let us now repeat the argument in detail, again using the nota-

tion y\, ■ ■ ■ , ytr instead of ga for the coordinates in R.

Not more than a finite number of cells Zs penetrate into a neighborhood U

of/which lies in G(p, <r). If one of these cells does not contain/, then U may

be shrunk so as to have its intersection with the closed Zs empty. Hence we

find a smaller neighborhood of /, again called U, into which none but cells Z;

containing / will penetrate. We choose the coordinates yt- such that

/= (1, 0, 0, • • • , 0). A cell Zs is defined by a finite set 2 of inequalities (74)

which as before is divided into the subsets 2i and 20; and as has been shown

above, any point (1, y2, ■ ■ ■ , yjv) sufficiently near to/, if it satisfies merely

the inequalities 2i, will lie in Z/. The inequalities 2i define a convex pyramid

ZjU in the (N — l)-dimensionaI space R1 with the coordinates y2, • • • , y^.

The center (y?, • ■ • , y$) of Zf gives rise to a center (y2, ■ • • , y$) of Zfl). Thus

the Z/ determine a division of R1 into a finite number of pyramids Zfl), and

our aim is to prove the connectivity of that assemblage. Let us formulate

this assertion as a lemma for N instead of N—l dimensions.



1940] ARITHMETICAL EQUIVALENCE 161

Lemma 8a-. Suppose the N-dimensional space R divided into a finite num-

ber of convex pyramids II with their common vertex at the origin 0. Each of them

is supposed to contain inner points. Then any two of them can be joined by a

chain whose consecutive members have contacts of order TV — 1.

The argument employed to reduce Lemma 7 to 8a-_i may be used equally

well to reduce 8^ to 8at_i and thus to prove 8at by induction. The case is

somewhat simpler because we now deal with a finite set of cells from the be-

ginning. There is a slight complication, however, in so far as the Euclidean

TV-dimensional space robbed of the point 0 is not convex, but it is still con-

nected as long as TV=2, and that is what counts. Indeed the centers of any

two of our pyramids can be joined by a line consisting of one or two straight

segments without passing through 0.

As a consequence of Lemma 7, Theorem 14 is sharpened to

Theorem 15. A complete system of modulo {/} incongruent substitutions

S which carry Z into adjacent cells generates the whole modular group when one

combines them with a system of generators for {j}.

13. Concluding remarks. Observe that a reduced form / satisfies the in-

equality

not only for integers Xu •• • , Xn without a (left) common divisor, but for any

integers {x\, ■ ■ ■ , xn) =^ (0, • • • , 0) whatsoever. This is nothing else than the

equation L\ = Mi.

In this final section we are going to study the cell Z of reduced forms rela-

tively to the whole TV-dimensional space R rather than G.

The cell Z as a subset of R is not (necessarily) closed; boundary points/

which do not belong to G will be semi-definite forms in the sense that/(f) 3:0

for every vector f, but/(f) =0 for certain vectors f 5^0. Such a form can be

written as a square sum

of m<n linear forms Zi, ■ ■ ■ , zm of the coordinates Xi with real coefficients.

Now if e is any pre-assigned positive number we can ascertain a lattice vector

(xi, • • • , xn)   (0, • • • , 0) for which

(77) f{Xl, ■ ■ ■  , Xn) = gu

2

Zl + ■ ■ ■ + z•m

■m

and thus

(78) / ^ me2.

This is accomplished either by Minkowski's inequality (1) for a parallelo-

tope or by an easy application of Dirichlet's principle concerning the distribu-
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tion of v + 1 objects in v boxes. But (78) contradicts (77) unless

«ii = o.

Because of the relations (63),

^ rgu, ■ ■ ■ , I gl« I £ rgn,

which will extend from the forms in Z to those on the boundary of Z, the lat-

ter will satisfy the n equations

(7°) gn = gl2 =  ■ ■ ■   = gin = 0.

(Even an appeal to the inequality g2u — gn ■ g„- valid for all positive forms would

have sufficed here.)

The closure Z of Z in R has each of its boundary points either on one of

the planes formerly assembled in the finite set 2 or on the plane gn = 0. Hence

Z as a part of R is completely described by the inequalities 2 together with

gn — Q and therefore is a pyramid. For n = 1, the set 2 is empty and we have

the one inequality gnStO. We may safely ignore this trivial case. For «3:2,

Z reaches the boundary of G only along the "edge" (79) of n dimensions less;

hence gn = 0 is no face of Z, and the inequality gn — 0 is redundant. Therefore:

Theorem 16. The same finite set of inequalities which defines Z in G defines

Z in R. The boundary points of Z which do not belong to Z lie on the edge (79).

The vertices of Z are the so-called extreme forms; every reduced form is a

linear combination of them with non-negative coefficients, but some of the

extreme forms will be semi-definite.

We can now more fully appreciate the fine points in our two theorems of

finiteness. By excluding from Z an arbitrarily small neighborhood

V,:   gn < €g„„

of the "edge" we obtain a compact subset Ze of G(3). The fact that the bound-

ary points of Z which lie outside this neighborhood Vt belong to a finite

number of plane faces is considerably less deep than our first theorem of

finiteness, and so is its proof. When one excludes Vt, one could have used the

region G(p) defined by the first set of inequalities (61) alone instead of G(p, <r),

and could have shown that G(p) possesses not more than a finite number of

plane faces outside Fe, while this is not true for G(p) or G(p, a) as a whole.

And the second theorem of finiteness could have been replaced by the less

profound and more easily accessible assertion that there is only a finite num-

ber of 5 capable of carrying a point of Z outside of Fe into a point of G(p)

outside Vf. These statements would have sufficed for the topological analysis

(3) Compact under the convention that proportional forms like/and tf (/>0) are identified.
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in §12. Our two theorems of finiteness include the approach to the "edge"

and thus reveal finer features which are of great interest to the algebraist,

though perhaps of less important from the topological standpoint.

Up to now positive quadratic forms have been the object of investigation.

Instead one can study arbitrary affine coordinate systems [16] in an w-dimen-

sional vector space, consisting of n linearly independent vectors Ott, • • • ,

these new objects form an w2-dimensional space St. Two such systems

(cti, • • • , a„) and (bi, •••,&«) are said to be (arithmetically) equivalent if

connected by a unimodular transformation S,

hi = £ **a* (5* integers, det (sk) — ± 1).
k

For any vector r = (x\, • • ■ , xn) we introduce its square

2 2 2

f   = X\ + • ■ •  + %n

(in accordance with Euclidean metric geometry) and associate the positive

form

(80) • • • , xn) = (xiui + • ■ • + xnan)2

with the coordinate system (oi, • • • , a„)(4). The latter is said to be reduced

and to belong to the "cell" 3 01 21 provided the associated form / is reduced.

3 is a fundamental domain for the group {S} in 21, and we could interpret

our whole theory in terms of the new objects. The quadratic forms are then

merely a tool for the study of coordinate systems under the rule of unimodular

equivalence. We have thus returned to the approach of Chapter I: What we

now call a reduced system (cu, • • ■ , a„) was there termed a reduced system

with respect to the gauge function

2 2 1/2
(*»+••■ v+ *J •

A similar shift of viewpoint is applicable to the imaginary and the quaternion

cases.
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