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1. Introduction. Let Ui(f), U2(f), • • • , Um(f) be m linear functionals,

wi=gl, each defined for a class of functions / including all polynomials in a

single variable x. The characterization of a functional U(J) as linear means

here merely that if /i and /2 are any two functions to which the operation

applies, c7(ci/i+c2/2) =CiZ7(/i)+C2Z7(/s). This paper is concerned with sets of

polynomials pn(x) orthogonal on an interval (a, b), and satisfying the auxiliary

conditions Ui(pn) =0 for i = 1, 2, • • • , m, and for each value of n. Two of the

simplest special cases, one corresponding to the single condition pn(\) =pn( — \ )

and the other to the condition pn(\) = — pn(— 1), have already been discussed

elsewhere^). It will be shown here that certain formal propositions with re-

gard to such orthogonal systems can be stated with a considerable degree of

generality, while the theory of convergence is carried appreciably beyond the

stage previously attained.

2. Construction of the orthogonal system. If

p„{x) = an0 + anXx + a-niX2 + ■ ■ ■ + annxn,

it follows from the property of linearity that

n

Ui(pn) = 2~2yikank, jik = Ui(xk).
k-0

To the given set of auxiliary conditions there corresponds a matrix

Tio    Tu    7i2 ' ' •

720      721      722   • • •

7m0     7ml 7m2

Presented to the Society, September 7, 1939; received by the editors January 11, 1940.

(') See D. Jackson, A new class of orthogonal polynomials, American Mathematical Monthly,

vol. 46 (1939), pp. 493-497.
Since the present paper was written and since publication of the article in the Monthly,

I have received through the kindness of Professor Mauro Picone a reprint of a paper by

Wolfango Gröbner, Sistemi di polinomi ortogonali soddisfacenti a date condizioni, number 62

of the Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle

Ricerche, Rome, 1939, which also initiates a theory of orthogonal polynomials with linear homo-

geneous auxiliary conditions. That treatment and the one given here, however, diverge almost

from the beginning as to methods and results to such an extent that there is very little duplica-

tion.
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with m rows and infinitely many columns. Conversely, every such matrix, not

consisting entirely of zeros, can be regarded as defining a set of m (not neces-

sarily independent) linear homogeneous conditions Ui{pn) =0, significant for

an arbitrary polynomial.

Let rn be the rank of the matrix of the first w + 1 columns of (1), and let

r_i = 0. If rn = rn-i, there exist polynomials

Pn(x) = a0 + a%x + a2x2 + • • • + anxn,

with a„^0, satisfying the m conditions Ui{Pn) = 0. For if an is taken equal to

1, the relations to be satisfied by a0, • • • , a»-i are

n-l

2~2 "Yiklk = — Tin, i = 1, 2, • • ■ , m,

and the condition r„ = r„_i is precisely the condition that the matrix of this

system of equations have the same rank as the augmented matrix. If r„^r„_i,

that is, if r»"»rn_i-r-.il the equations are incompatible; the same is of course

true if instead of 1 any other value different from zero is assigned to a„,

and there exists no polynomial of the «th degree with a^O satisfying the

conditions.

As n takes on the values 0, 1, 2, ■ ■ • , since r„ can never decrease, can never

increase by more than one unit at a time, and can never exceed m, there

will be at most m values of n for which there is no polynomial satisfying the

conditions. If rn never attains the value m, the m conditions are linearly de-

pendent; in the case of m independent conditions there are(2) just m excep-

tional values of n. It will be assumed henceforth that the conditions are in-

dependent.

Let polynomials satisfying the auxiliary conditions be constructed suc-

cessively for all possible values of n, and let Schmidt's process be applied to

these polynomials. It will be understood that the definition of orthogonality

and normalization involves a weight function p(x) which is non-negative, and

positive on a set of positive measure on (a, b). Let the orthogonal polynomials

when normalized be denoted by pn{x), the subscript indicating the degree of

the polynomial in each case. For convenience of notation, let pn{x)=0 for

the excluded values of n, and also for such negative values of n as may enter

into any of the subsequent formulas.

Any polynomial of the wth degree satisfying the auxiliary conditions can

be expressed linearly in terms of p0, pi, ■ ■ ■ , p„. For terms in xn, xn~l, ■ ■ •

can be removed successively by subtraction of multiples of pn, pn-i, • • • ,

leaving each time a polynomial which satisfies the conditions; when a degree

is reached for which non-trivial polynomials satisfying the conditions do not

(2) See also Gröbner, loc. cit., p. 30, where the conclusion is stated with reference to a less

general system of auxiliary conditions.
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exist, the leading coefficient in the corresponding remainder must already be

zero.

3. Recursion formula and Christoffel-Darboux identity. The ordinary

procedure for setting up a recursion formula does not apply without modifica-

tion, for if a polynomial satisfying the auxiliary conditions is multiplied by x

the product does not satisfy the conditions in general. However, if each of

the functionate Ui(f) is expressible in terms of the values of f at a finite number

of points in the form

(2) Utif) = Cnf(yi) + Ctrfiy,) + ■■■ + Cirf(y„),

where the y's are real, or else conjugate complex in pairs with corresponding

conjugate complex coefficients, the conditions £7,(/)=0 are satisfied by any

polynomial which vanishes at yi, y2, ■ ■ ■ , yv. (As a matter of notation, the

list yu • • • i y» is understood to include all the points that occur in any of

the U's; some of the coefficients Ca may be zero.) If q(x) is the product

(x - yi)(x -?»)•••(*- y*),

or any polynomial divisible by this product (or, with trivial increase of gen-

erality but with a possible slight gain in simplicity or convenience, a constant

plus any such polynomial(3)), q(x)pn(x) satisfies the conditions for each value

of n, and is expressible linearly in terms of po, ■ • • , pn+u, where p^v is the

degree of q(x). By the property of orthogonality, the coefficient of pk(x) in this

representation is zero for k<n—p, and the representation has the form

n+u

q(x)pn(x) = X Cnhpk(x),
k=n—fi

with

Cnk = I p(x)q(x)pn(x)pk{x)dx.
" a

These formulas hold for all non-negative integral values of n without excep-

tion, on the basis of the convention introduced above according to which

pk{x) is identically zero when not defined otherwise.

From the recursion formula a Christoffel-Darboux identity can be derived

in the usual way.

Similar reasoning is possible if £/;(/) involves a finite number of deriva-

tives at the points y,-. If e,- is the order of the highest derivative involved at y,,

q(x) as defined above is to be replaced by

v

II (* - y,Yi+l,

(3) E.g. in the earlier paper referred to, American Mathematical Monthly, loc. cit., the y's

being the points +1, x2 was used as multiplier instead of x2 — 1.
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or by a polynomial divisible by this product, or by a constant plus such a

polynomial.

On the other hand, if there is just one auxiliary condition U\{f) = 0, where

Ui(f) = j f(x)dx,

there is certainly no polynomial q(x) (other than a constant) such that

q(x)pn{x) satisfies the condition for all values of n. For that would require

that q(x) be orthogonal to every polynomial whose integral over (—1, 1)

is zero, and so orthogonal to every Legendre polynomial of positive degree,

and such a polynomial is a constant. There is no recursion formula which ex-

presses q(x)pn(x) linearly in terms of the p's for all n, with a polynomial factor

q{x).

In the case of a single auxiliary condition U\{f) =0, with

WOO = CrHyi) + C2/(y2) + • • • + €0,),

the one exceptional value of n for which pn(x)=0, the smallest value of n

for which Ui(xn)^0, cannot exceed v — 1. For the equations £/i(x*0=O,

&=0, 1, • ■ • , v— 1, constitute a set of linear equations for the C's, having

for its determinant the nonvanishing Vandermonde determinant of the pow-

ers of the y's. That is to say, Ui(xk) cannot vanish for all these values of k

unless the C's are all zero.

If there are m (linearly independent) conditions of the form (2), at least

one w-rowed determinant of the first v columns of (1) must be different from

zero; rn = m for n^v — l, and pn(x) is non-trivial for all values of n^v. For

if all the m-rowed determinants in the first v columns were zero, the m sets

of quantities U~i(xk), k=0, 1, • • • , v — 1, would be linearly dependent; there

would be numbers b%, ■ ■ ■ , bm, not all zero, such that

jC biiCnyl + Ci2yt + • • • + Civyl) = 0, k « 0, 1, > • • , v. — ij
t—l

that is,
h k k

C{ yi + Cl y2 + • • • + Cl y, = 0,      C/ = £ b£„.

By the argument of the preceding paragraph all the coefficients Cf must

vanish, which means that the m sets of coefficients Ca, ■ ■ ■ , Cu are linearly

dependent.

4. Boundedness of the normalized polynomials; convergence. If f(x) is

an integrable function on (a, b), it can be formally expanded in a series of the

polynomials pn{x), the coefficients being determined in the usual way. When

there is a Christoffel-Darboux identity, it can be used for the study of con-
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vergence in the same way as in connection with other orthogonal systems(4),

if the polynomials pn{x) are bounded as n becomes infinite, at the point where

convergence is to be proved.

The discussion of boundedness here will be not so much a general theory

as an exploration of the effectiveness of particular types of hypothesis leading

to the property in question. The auxiliary conditions will in each case involve

the values of the polynomials, or of the polynomials and their derivatives,

at only a finite number of points, and even with this limitation will be rather

highly specialized in form. The interval of orthogonality will for simplicity

be taken as ( — 1, 1). The weight function, while open to subsequent general-

ization, will in the first instance be taken as unity.

Consider first the single condition pn(yi) = £„(—yi). With yi = 1, this was

treated in the earlier paper to which reference has been made. The condition

is satisfied by any even polynomial, and by any polynomial which is divisible

by x2—y\. For n even let pn{x) denote the normalized Legendre polynomial

of the nth degree. There is no polynomial of the first degree satisfying the

auxiliary condition. For odd let pn(x) = (x2 — y2)7r„_2(x), where irk{x) de-

notes the polynomial of the kth degree in the orthonormal system correspond-

ing to weight function (x2— y2)2. For n odd, 7r„_2(x) is an odd polynomial,

since the weight function is even. Inasmuch as any odd polynomial is or-

thogonal to any even polynomial, the even and odd p's together constitute the

desired orthogonal system. The normalized Legendre polynomials are uni-

formly bounded in any closed interval interior to (—1, 1). The same is true(6)

of the polynomials (x2— ytfitkix). Hence pn(x) is similarly bounded for odd

as well as even n, if yi is not interior to the interval ( — 1, 1), and is uniformly

bounded in the interval except near the points ±1, +yi, if yi is between — 1

and 1.

Suppose there are two conditions, pn{yx) =pn(— yi), pn(yi) =pn{ — y2).

They are satisfied by any even polynomial, and by any polynomial divisi-

ble by (x2—y2)(x2—y2). They are not satisfied by any polynomial of the first

or third degree. The orthogonal system consists of the normalized even Le-

gendre polynomials and the polynomials (x2— y?)(x2— y\)irn^{x) with n odd,

where 7Tjfe(x) denotes the general polynomial in the orthonormal system for

weight (x2— y2)2(x2— y\)2. They are uniformly bounded throughout any closed

interval interior to (—1, 1) and not containing any of the points +yi, +y2.

The extension to an arbitrary number of conditions of the form pn (y;) =pn(—yj)

is obvious.

A set of conditions of the form pn{yj) = — pn( — y,) leads to similar results.

For a single condition pn{yi) = — pn(— yi), the orthonormal system consists of

(4) See e.g. D. Jackson, Series of orthogonal polynomials, Annals of Mathematics, (2), vol. 34

(1933), pp. 527-545; Orthogonal trigonometric sums, the same Annals, vol. 34 (1933), pp. 799—

814; A class of orthogonal functions on plane curves, the same Annals, vol. 40 (1939), pp. 521-532.

(6) See e.g. D. Jackson, Series of orthogonal polynomials, loc. cit., pp. 534-535.
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the normalized odd Legendre polynomials and the polynomials (x2 — y2)7r„_2 (x),

ra = 2, 4, • ■ ■ , where ir0, 7r2, • • • are the even orthonormal polynomials for

(x2 — y2)2 as weight function.

With conditions of the form last mentioned, the ordinary proof of con-

vergence, after the polynomials are known to be bounded, requires modifica-

tion in one particular, because of the fact that the orthogonal system does

not include a constant. Consider for definiteness the case of the single condi-

tion pniyi) = —pn{—y\)- If f{x) is a function developed in series of the p's,

the partial sum of the series is given by

/l n
f(t)KnQ, X)dt, Kn(t, X) =  2Z Pn(t)pn(x).

-1 k=l

A polynomial of the «th or lower degree satisfying the auxiliary condition is

reproduced by this formula exactly. For example,

x = f tKn(t, x)dt.

If/(x) can be represented in the form x<p(x), where <p(x) is a function of suffi-

cient regularity, convergence can be treated by means of the formulas

f(x) = x<b(x) = f <b(x)tKn(t, x)dt,

Sn(x) - f(x) = J   [<p{t) - <t>(x)]tKn{t, x)dt.

The assumption that/(x) can be represented in the form x<f>(x) is no essential

restriction, as far as convergence at other points than x = 0 is concerned, for

it can be seen as in other cases that convergence at a point depends only on

the behavior of the function in the neighborhood of the point.

Occasion arises for a somewhat less simple treatment of the problem in

connection, for example, with the auxiliary condition pi (1) =pl ( — 1). This

is satisfied by any odd polynomial; it is not satisfied by any polynomial of

the second degree, but it is satisfied by a constant, or by any polynomial di-

visible by (1 —x2)2. The even polynomials of the orthogonal system, however,

do not consist merely of a constant and the polynomials (1 —x2)20j;(x), where

the g's are orthogonal for weight (1—x2)4; for example, (1—x2)2o0(x) is not

orthogonal to a constant.

Let po(x), pi(x), p3{x), pi{x), ■ ■ ■ be the orthonormal polynomials satisfy-

ing the auxiliary condition, and let £o(x), £i(x), ^(x), • • • be the normalized

Legendre polynomials. The odd p's are the odd £'s. (It is readily seen, as in

other problems having analogous features of symmetry, that the p's of even

degree are even polynomials, and those of odd degree are odd.) For n even let
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(3) p„(x) = C„o$o(*) + CnlSlO) + • • •  + Cn„£nO) ,

Cnk

The polynomial £*(#)—1*2£* (1), with & even, has a vanishing derivative

for x = +1, and satisfies the auxiliary condition. Hence pn{x) is orthogonal

to it when n>k:

f  p„(x)h(x)dx - U (1) j hx2pn(x)dx = 0, k = 0, 2, • • • , n - 2,

i.e., if the last integral is denoted by gn, cnk = gn£k (1).

If Pk{x) is the non-normalized Legendre polynomial, so that £k(x)

= [(2^ + l)/2]1/2P,(x),

Pt'(l) =       + l)/2, = i(k + 1)(2A + l)1'2^2.

Since £„0*0 is normalized,

i = r [#»(*)]*<**==cnn+ig„   +1)2(2£+1),
•J -1 4-0 k-0

the sign £' indicating summation over even values of k. The sum by which'g2,

is multiplied is of the order of magnitude of «6, from which it follows that

gB = 0(l/»»).

Let

ak = [2/(2* + 1)]1/2^'(1) = *(* + l)/2,

Sn(x) = £'**U){*(*) = £'«*[(2A + l)/2]««6_(_) = 2>*i*(l)|*(*).

Let

**(*) = 2_'ty(l)*/(*)
j'=o

for even k. Then (a0 being zero)

n—2 n—4

S„{x) = £'ak[ak(x) — o-k-t(x)] = — £'(a*+2 — ak)o-k(x) + a„_2<r„_2(a0.
fc=2 *=0

Now, with summation extended over both odd and even values of k,

* k + i UidM*) - MVZk+iix)
2, MUM*)-  [(2*+l)(2* + 3)]1/2 " 1- *

which, as ^(1) =0(>fe1/2), ^(x)=0(l), does not exceed a constant multiple
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of k112 on a closed interval interior to ( — 1, 1). A similar statement holds

if x is replaced by — x, and consequently holds for the even and odd parts

of the sum separately. In particular, | o-k{x) \ = 0(k112) uniformly in any closed

interval interior to ( — 1, 1). On the other hand, ctk+2 — ctk = Oik). So

\Sn(x) \ =0(w5'2).

The relation (3) may be written

pn(x)  = Cnn£n(x) + gnSn(x).

From the preceding paragraphs, |g„5„(x)| = 0(1/»1/2). By application of

Schwarz's inequality to the integral defining the coefficient, |c„n| ^1. The

polynomials pn{x) are uniformly bounded over any closed interval interior to

(-1, 1).
An essentially similar problem is that associated with the condition

pi (1) = —pi (—1). The polynomials of even degree in the orthogonal sys-

tem are Legendre polynomials. The requisite information about the coeffi-

cients in the representation of the odd polynomials of the system in terms of

Legendre polynomials comes from the fact that — x%i (1) satisfies the

auxiliary condition when k is odd.

Considerations of the same sort are effective in connection with the un-

symmetric condition pn(1) = hpn(— 1), where h is an arbitrary constant ?^ + 1.

Here the orthogonal polynomials are neither even nor odd(6). In the represen-

tation
n

pn(x)  =  £ Cnk£k(x)

i=0

the coefficients cnk for k<n are determined in accordance with the fact that

%k(x) — satisfies the auxiliary condition with (jl = (1 +&)/(1 —h) when k

is odd, and satisfies it when k is even. Hence, for k<n,

Cnk =gn^k{\) or Atgnir/t(l) according as k is even or odd, with

gn = J pn(x)dx.

Since

ZcL = 1, = [(2k + 1)/2]1/2,

it follows that gn = 0(\/n). And as was noted above, =0(n112)

in the interior of ( — 1, 1), whether the summation is extended over all sub-

scripts from 0 to n, or over the even subscripts or the odd subscripts of the

set separately. Hence the desired conclusion with regard to the boundedness

of the £'s.

The  condition  pn(l)=0  leads  merely  to   the  set  of polynomials

(6) For an explicit determination of these polynomials see Gröbner, loc. cit., pp. 46-47.
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(x — l)irB_i(x), where the it's are orthonormal for weight (x — l)2. The con-

dition p„'(l)=0 appears to be less trivial; boundedness of the p's can be

proved by use of the observation that xfjf (1) has a vanishing deriva-

tive for x = 1.

A primitive example of higher order is the condition p" (1) = 0. It is satis-

fied by i-k{x) — |x2^" (1). So pn{x) is orthogonal to this expression for k<n,

and if pn(x) =2~2kCnk£k(x), then for k<n

Cnk = gn!fc"(l), gn = J %X2pn(x)dx.

Since (1) =i(k + 2)(k + l)k(k —it follows by reasoning similar to

that which has already been used that gn = 0(l/ra5), =0(w9/2)

in the interior of the interval, and the p's are bounded as in other cases.

Consider next the pair of conditions pn(\) =pn( — \), p- (1) =p- ( — 1). Be-

cause of the symmetry of the problem, the orthogonal polynomials are even

or odd, and the even and odd sequences can be considered separately. When n

is even, the conditions are satisfied by £„(x) — \x2^' (1); when n is odd they

are satisfied by £„(x) — x£„(l). In each case it follows on the basis of calcula-

tions which have been presented already that the p's are bounded except near

the ends of the interval.

As a final illustration, of somewhat more general character, suppose there

is a single auxiliary condition U\{pn) =0 expressed in terms of the values of pn

and an arbitrary finite number of its derivatives at the points +1. Let xx be

a power of x, for simplicity the lowest power, such that Ui(x*)^0. Let

\K*0 = ik{x) — Akxx.

The coefficient Ak can be determined so that

tfiGrO = Ut[!*(*)] - AkU^) =» 0.

When Ak is thus determined, pn(x) is orthogonal to ip{x) if n>k, n>\:

J    pn(x)£k(x)dx = Akgn, gn = J XXpn(x)dx.

Since £th) (-1) = (-l)k+h£t) (1), there is a set of coefficients a0, au ■ ■ ■ , aa,

independent of k, with aa^0, such that

Ak = Co£*(l) + ffifc'(l) + • • • + aa&\l)

when k is even, unless Ak = 0 for all even values of k, and a set of coefficients

bo, bi, ■ ■ ■ , bß, independent of k, with bß^O, such that

Ak = 6oft(l) + *i£t (1) +
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when k is odd, unless Ak = 0 for all odd values of k; here a and ß are in general

equal to the order 7 of the highest derivative occurring in Ui(pn), but one of

them may in particular have a smaller value. At least one of the numbers a, ß

is certainly equal to 7, and at least one coefficient ay or by is present with a

value different from zero.

The quantity ^(l) is of the order of magnitude of fc2^1'2', and Ylo'^l

is not less than a positive constant multiple of ni~<+2 when n is sufficiently

large. From the fact that 2~2kclk = i, if pn(x) =2~2cnk^k(x), it follows that

gn = 0(l/n2y+1). Since

- fe.T)(i)/i*(i)] =o(k2y~1),

it may be shown by the use of partial summation in conjunction with the

Christoffel identity, in the manner previously indicated, together with in-

equalities obtained in the same way or, more simply, without resort to partial

summation for the derivatives of lower order, that

= 0(«2^+(1/2))

in the interior of (—1, 1). The p's are bounded as before.

It is apparent that the methods that have been used are capable of further

extension. It is not so clear what the most general explicit formulation would

be. On the other hand, it may be that some different method would lead to

more general results at a single stroke.

The University of Minnesota,
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