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1. Introduction. In 1932 Wirtinger(1) posed and solved the following prob-

lem. Given a region Qin the complex z-plane and a (complex-valued) function

r/>(z, z) =4>(x-\-iy, x — iy) continuous and with continuous first partial deriva-

tives with respect to x and y in Q, to find an analytic function /(z) which

gives the best approximation to <j> in the mean-square sense, that is, such that

(1.1) I   I <f> — /|2<Zu)z = min,

where du>2 is the element of area dxdy. (In the case in which Q extends to in-

finity he also assumed that 0 t I2 over Q.) By use of the Green's function

G(z, z; f, f) for the region Q, he proved the existence (and uniqueness) of

such an / and gave an explicit formula for /, namely,

1   r       - d2G
(1-2) /(z) = -     <Kf, f) T~^f,

when d/dz = Ti(d/dx — id/dy), d/dz = \{d/dx-\-id/dy), etc. In the case of the

unit circle C the formula yields the result

1   f    <?(f, f)
(1.3) f(z) =- _ dat,

a result which he also obtained directly by use of the Fourier series for </> and/.

Recently Wirtinger(2) posed the analogous question in the theory of func-

tions of several complex variables. In the case in which the region under con-

sideration is a hypersphere i7 = E[|zi| 2+ • • • 4-1 z„|2 < 1 ] and </>(zi, • • • , zn;

Zi, • • • , zn) is merely integrable over H, he obtained a (unique) solution by

use of multiple Fourier series, namely

(1.4)  /(Zl, • • • ,*„) = (- 1)"- jP^—.
TTnJH   [1 - (Zl

<Kf 1, ' • •  i fn? fl. ' • •  , £n)

fi + • ■ ■ 4- z„f„)]"+1
dwt,
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where tiwj- is the 2w-dimensional volume element. He conjectured that the

question probably has a solution for general regions and for very general

functions </> but that the solution appeared to involve difficult investigations

on the extensions of Green's functions. Now in various questions in the theory

of functions of several complex variables Bergmann has been able to replace

the theory of the Green's functions by the theory of complex orthogonal

functions and the kernel of a region(3). In this note we show that by the use

of this theory of the kernel of a region we can solve the problem posed by

Wirtinger for a very general class of regions (which includes all bounded

regions) and for </> belonging to L2; indeed, we give the solution explicitly in

terms of an integral involving 0 and the kernel of the region (see equation

(3.10)).
It is known that results of this general nature have important applica-

tions; for example in connection with the theory of entire functions of two

variables Bergmann has solved the same problem with the function / bi-

harmonic (the real part of an analytic function of two variables) rather than

analytic(4).

For the sake of completeness we shall give in §2 a brief resume of the re-

sults from the theory of orthogonal functions and the kernel of a region. Also

in the concluding section we consider certain extensions of the problem. We

shall speak only of two variables; the case of n variables involves no essential

changes.

2. The kernel of a region. To every region of a wide class of four-dimen-

sional regions there corresponds a kernel function which is defined as fol-

lows^). Let f3 be a region of this class and let {ß(l,)(2i, 22)} be a complete

orthonormal system of analytic functions belonging to L2 over <B, so that

(2.1) I  a<')(Zl> zi)ß<">(*i, Bt)du. = 5M„ h, v = 1, 2, ■ ■ ■ ,
J<B

where j<B=\\mm^x,J<Bm and {<Bm} is a system of regions in <B converging to <B.

The series
00

(2.2) £ a(')(2lf 22)0<")(flj f2)
v=l

(3) For the development of the theory of the kernel of a region see S. Bergmann, Mathe-

matische Zeitschrift, vol. 29 (1929), pp. 640-677, Journal für die reine und angewandte Mathe-

matik, vol. 169 (1933), pp. 1-42, especially pp. 1-5; vol. 172 (1934), pp. 89-128. We shall refer to
these papers as Bi and B2 respectively.

(4) S. Bergmann, Mathematische Annalen, vol. 109 (1934), pp. 324-348, especially p. 333;

Compositio Mathematica, vol. 3 (1934), pp. 137-173. We shall refer to these papers as B3

and B4 respectively.

(5) The results which we state in this section are all given by Bergmann in the papers listed

in footnotes 3 and 4. We shall restrict ourselves to simply-connected bounded regions but the

results are true for any region for which there exists a set of linearly independent functions be-

longing to L2.
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converges absolutely and uniformly for (2) and (f) in any regions interior

to 43 and accordingly defines a function of %, 22, fi, f2 analytic for (2) and (f)

in 43 (see B2). The sum function is called the kernel of the region 43 and is

denoted by K<ß(zu 22, fi, ft). It is known that the function depends only upon

the region 43 and not upon the particular set of orthonormal functions used

in defining it (see B2). Concerning series in terms of the £2(,,) it has been shown

that the series

(2.3) 2~2 fl^w(zi> 22)

can be integrated term-by-term over 43 whenever^ | a-„\2 < 00 (see B3, p. 331).

3. Solution of the problem. Let 4>{zi, 22; it, 22) be a complex-valued func-

tion of the four real variables Xi, x2, y\, y2, defined and of integrable square

over a bounded region 43

(3.1) J434> 2dwz < °o.

We seek a function f(zi, 22) analytic and of integrable square over 43 and such

that

(3.2) f u-J43
mm.

For the solution let { Qw(zlt z2)} be a complete orthonormal set of analytic

functions belonging to L2 over 43 and let us seek to determine coefficients

{a„} subject to the condition

00

(3.3) "£| a„|2 < oo

l

in such a manner that the function

(3.4) f(Zl, 22) = £ a,Q<'>(Zl, 22)
1

furnishes a minimum to (3.2). If we substitute (3.4) into (3.2) we find

(3.5)

du.

Using (3.3) and the results stated in §2 we see that we may integrate term-

wise, thus
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(3.6) I   ] <j> — f\2dw = I   I 4> \ 2do} — 2~2 (arbv "I" &,by — avät),
j 43 */ 43 i

where we have written

(3.7) b, = f tn&dw.

By Bessel's inequality
00

(3.8) El b>\* < »•
y-1

Treating a„ <z„ as independent complex variables and differentiating with re-

spect to cz„ (or a,) we see that Euler's conditions for (3.6) to be a minimum are

(3.9) a, = b„ v = 1, 2, • • • .

Clearly this choice of the a's furnishes an actual minimum (we shall also give

a direct proof of this fact in equation (3.12) below). Thus the minimizing

function/has the form

f(Sl, St) = £ ß^Osi, St)  L«(fl> fa fl. fl)G('Kfl.~fÖ<k>r
i J

/i oO

43 l

= J*^«(fi' f2> Fi« F0^fi(*i. ?»)*»r.

where we have again used the fact that we may interchange the order of in-

tegration and summation.

Thus we have answered Wirtinger's question.

Theorem. Let 43 be any (four-dimensional) region for which there exists an

infinite system of linearly independent analytic functions of L2. (In particular,

let 43 be any simply connected bounded region.) Let «(si, z2, §i, z2) be of integrable

square over 43. Then the function f defined by

(3.10) /(*!, z2) - J" «(fi, ft; fi, f*)k<b(*u z2. fi. f»)**r.

where Keg is the kernel of the region 43 defined as in (2.2), is analytic and of

integrable square over 43 and furnishes the unique minimum to the integral (3.2)

over the class of analytic functions of integrable square.

Very many different properties of the kernel function are known which
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yield various properties of the minimizing function /; for example if g(zi, z2)

is any analytic function of L2 over 43 then(6)

(3.11) j" = 0.

This result is the analogue for the region 43 of a result obtained by Wirtinger

for the hypersphere (loc. cit., footnote 2, equation (8)). It also obviously

furnishes a direct proof of the fact that the function/defined in (3.10) yields

a minimum for (3.2), since in view of (3.11), if g^O,

(3.12)

Jl/+g-«l2 = f\f-<t>\2 + J (/-*)! + /(/-*)« + / \i\

= J\f-<t>\2 + f Ul2>/l/-*l"-

4. Special regions. For many special regions the kernel function has been

given explicitly, for instance in the case of a Reinhardt region in four-dimen-

sional space

(4.1) R = E[\ z2|2 <G(\ Zl|2), 0S|sij<l],

where G is once differentiable in (0, 1), the kernel has the form (see Pn)

m—m p—p

-    -,        4— A ZifiZ2f2
(4.2) KR(zu zt, fi, f2) = £ £

=0 p=0 [*2/(P +!)]/>"' [G(P)]*+ldp

If we have a region R* which can be mapped into R by means of a transforma-

tion zK = zK(wi, Wi), K=l, 2, where the z« are analytic in R*, then the kernel

function for R* is equal to the kernel for R multiplied by the two jacobians of

the transformation (see Bi, p. 5):

KR'(wi, wt, f», £2) =   Kr(zi(wi, w2), z2(wi, wt), zi(£i, £2), isllii £2))

(4.3) _
D(zu z2) Z>(zi, z2)i- 22)"]

Z?(wi, w2) D(£x

In different cases the series in (4.2) can be summed, for example in the

(6) We may see this fact directly in view of the form of / and the orthogonality of the

fl's, or we may note that the corresponding result for the case of biharmonic functions has been

proved by Bergmann (see B3, p. 333). In order to see it directly let us write cv= /gß(v). Then

g(zi, zi)=Z)i°°c»Q<'')(zi. «»)• Also by (3.4), (3.7) and (3.9) /(*,, Zt)=£,"b,W)(zil zs) where b,

=/0S2<r>. Thus _

/(* -f)g = HiZc^ - /E*»n(">] E">tf»]
= iZcJ*®* - Y.cx = 0.
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case of a region of the form

(4.4) a I zi \2lp + I z212 < 1, p integral, p > 0, 0 < a ^ 1,

the kernel is (see Bi)

(4.5) JSr(Zl, z2; jTi, f2) = o'(l - z^-,)*-2-—-r~-—~7"-
x2[(l - s,f,)» - afzifj]3

which yields for the hypersphere H=£ [| Zi| 2+ | z2|2 < 1 ] the result

_  _ 2
(4.6) tfH(ai, z2; fi, r«) =

tt2[1 - 8j|, - s2r2]3

If we put this into (3.10), then we see that for the hypersphere H our result

is identical with the formula (1.3) obtained by Wirtinger (for n = 2).

It is perhaps worth while merely to mention that in the case of a bicylinder

12«I <rK, k=1, 2, the kernel has the form (see Bi)

2 2
-  - rir2

K{zu z2, fx, f2) =
*\r\ - z1f1)2(r2 - z2f2)2

It is also interesting that in the case of simply connected regions in the

complex z-plane the kernel is simply the expression d2G{z, f)/dzdf where G

is the Green's function for the region(7). This of course is in agreement with

the result (1.2) of Wirtingers' mentioned in the introduction.

5. Extensions. A very important variation of the problem in the theory

of functions of one complex variable is the case in which the integration is

over the boundary curve. In the case of two complex variables, when the re-

gion under consideration has a distinguished boundary surface, the analogous

problem may be solved and since there is a general theory of orthogonal

functions and kernel functions related to the distinguished boundary sur-

face^), the same formula for / as in (3.10) is obtained, with of course the

kernel K defined analogously.

Moreover we may ask not only that / be analytic and of L2 over 45 and

minimize the integral (3.2) but also that / be subjected to certain additional

conditions, for example that

(5.1) f(ti'\ h) = X„ 5= !,•••,/>,

(7) The kernel for doubly connected regions in the complex z-plane has been calculated by

K. Zarankiewicz, Zeitschrift für angewandte Mathematik und Mechanik, vol. 14 (1934), pp.

97-104 and by P. Kufareff, Bulletin de l'Institut Mathematique et Mechanique, Tomsk, vol.

1 (1937), pp. 228-235.

(8) See Bergmann, Bulletin de l'Institut Mathematique et Mechanique, Tomsk, vol. 3

(1935-1937), pp. 242-257.
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where {t^, t2s)} e 43. We shall merely indicate the proof in the case p = l. Our

problem is then to find an / analytic and of Z.2 over 43, which minimizes the

integral (3.2) and which takes on a given value X at a fixed point (h, t2) in 43,

(5.2) t2) = X.

The analogue of (3.6) is

f I <t> - /I2 - x[/(0 -x]- »fixt) - x]

- |»[£*0«(l) - A7]

where X, /x are the Lagrangian multipliers. Euler's conditions are

(5.3) a, = h + iiü^(t), ä„ = 5„ + Xf2<">(/), p = 1, 2, • ■ ■ .

Thus p = \ and the condition (5.2) yields

x- £ka">«)
(3.4) /i =-•

Thus the minimizing function / has the form

/<«ii z2) = J" <£(f i, fsj fi, Tz)Kcb(zi, z2; fi, tz)dws

(5.5) , _  _ _ _
, X - Jcq^u ft, fi, ft)*<8(<i. <2; fi, fi)A*r „ ,

H-—:-——-K(QKzuz2;tuh).
Kq}(h, h> h, h)
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