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Introduction

1. Let 5 be a metric space, the distance d(f, g) between two elements of S

satisfying the usual postulates. Let/( ( — =° <£< oo) be a function whose val-

ues lie in 5 and which is metrically continuous, that is, d(Jt+h, /()—*0 if A—>0.

If this function has the property that

(0.1) d(ft, /.) = F(t - s)

is a function of the difference t — s only, we call the curve T in 5 defined by/(

(— oo <t < oo) a screw line of 5 and F(t) =d(Jt, fo) a screw function of S. The

reason for this terminology is as follows. If r is a real parameter, the two

curves T0:ft (— oo <t< ») and TT:ft+T (— 00 <t< oo) which are identical as

point sets, are isometrically mapped on each other by the correspondence

/i<->/i+T, for

d(f„fs) =F{t - s) = d(ft+T,fs+r),

in view of (0.1). These congruent mappings of T into itself form a one-pa-

rameter group.

The following properties of a screw function F(t) of 5 are obvious: F(t) is a

continuous non-negative even function and F(0) = 0; if F(t) is a screw func-

tion, then all functions F(kt) (k real) are screw functions.

A different point of view which puts the emphasis on the screw function

F(t) rather than on the screw line T is as follows. Consider the real axis

— oo </< oo as a euclidean space Ei and change its metric from \t — s\ to

F(t — s). We thus get a new space which, following Blumen thai, we shall call

the metric transform of E\ by F{t) and denote by F(Ei). For what functions

F(t) may this metric transform F(£i) be isometrically imbedded in 5? Clearly

F(Fi) enjoys this property if and only if F(t) is a screw function of S. For if

the mapping of the point t, of F(£i), into the point of 5, performs the im-

bedding of F(Ei) into S, then (0.1) expresses the isometricity of this imbed-

ding.

Presented to the Society, September 1, 1936, and December 29, 1938; received by the edi-

tors September 23, 1940. The first communication to the Society [Bulletin of the American

Mathematical Society, abstract 42-9-353] covered the contents of Part f and Part If of the

present paper; the contents of Part III were the subject of the second communication of f938

[abstract 47-1-47]. Thus the contents of Parts f and ff precede in time the articles [4] and [5],

listed in the bibliography at the end of this paper, which were partly suggested by this earlier

work frequently referred to in these articles. Part fit, however, carries on the work presented

in [4] and [5] and is essentially based on some of that work.
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2. As examples we mention

F,(t) = 02 + sin2/)1'2,

which is a screw function of the euclidean space £3, in view of the identity

Fl(t - s) = (t - s)2 + sin2 (/ - 5)

= (t - s)2 + |(cos 2t - cos 2s)2 + j(sin 2i - sin 2s)2.

Similarly

,1/2

(0.2) F2N (t) = ^ 2Z A - sm2 «j) Av > 0, 0 < Mi < w2 < ■ ■ • <

is a screw function of E2n, as seen from

7?2v(^ —■ s) = X {J^4y(cos 2m„/ — cos 2m„s)
(0.2') ' „=i

2 \
+ |4v(sin 2m„/ — sin 2m„s) }.

Finally
. 1/2I n-l \l/2

_$) = (c/2 + 2 /!„ sin2 m,/j ,
(0.3) x

C > 0, 4» > 0, 0 < mi < • • • < m.v-i,

is a screw function of Em-it as shown by

Per-i(t - s) = C(t - s)2

(0-3') fc{ , 2 . . 2,
+ X {j^4„(cos 2m,/ — cos 2u,s) -\- jv4„(sin 2m„/ — sin 2m„s) }.

y=l

We shall see that (0.2) and (0.3) are the most general screw functions of FW

and FW-i, respectively, which are not also screw functions of a euclidean

space of lower dimensions.

The starting point of the present investigation was W. A. Wilson's recent

remark that if

(0.4) F(t) = M1/2

then the metric transform F(£i) is imbeddable in the Hilbert space hence

F*(t-s) = \t-s \ =||/,-/8||2,

for a suitable function ft (— 00 <t< ») with values in [8, p. 64]. According

to our present point of view (0.4) is a screw function of We shall see that

this F(t) is not a screw function of any euclidean space.

3. The principal purpose of this paper is to determine all screw functions

of Hilbert space. It consists of three parts. In Part I we state our fundamental
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result (Theorem 1) and show by means of elementary results of Menger and

Schoenberg that all functions F(t) there described are screw functions of §.

Furthermore, those screw functions of § are characterized which correspond

to screw lines T with one of the following properties: T is euclidean, bounded,

rectifiable or closed.

The converse statement to the effect that Theorem 1 yields all screw func-

tions of § is established in two essentially different ways in Part II and Part

III respectively. In Part II this is proved by a direct investigation of the

group of isometric mappings of § into itself which is induced by the group

of isometric mappings of a screw line into itself. Free use is made of the theory

of Hermitian operators in Hilbert space. In Part III intervenes only by its

metric in accordance with the ideas of Menger on the metric characterization

of metric spaces. The method used is an elaboration of the metrical approach

of Part I which is made more effective by an appeal to the theory of positive

definite functions, i.e., the characteristic functions of the theory of probabili-

ties. This connection was pointed out in two recent papers by one of us [4, 5 ].

In [5, p. 837], it was shown that the question as to when the metric trans-

form F(Em) is imbeddable in ^ depended on certain limit (closure) theorems.

Here we establish these theorems in a form similar to P. Levy's limit theorem

concerning characteristic functions.

In conclusion we want to say that the operator method of Part II, dealing

with the imbedding of F(Ei) in !q, may also be extended to cover the general

case of the imbedding of F(Em) in §. Although this extension has been fully

worked out, for reasons of conciseness we treat in Part II only the case of

screw lines (m = 1).

Part L The fundamental theorem on screw functions

in Hilbert space and elementary consequences

1.1. Let § be a real Hilbert space. For every t > — &>, and < 4- °°, let a

point/j of § be given, such that

(i) ft is a metrically continuous function of /,

(ii) the distance of/( and/s depends on t — s only.

According to the general definition of our Introduction, the curve r:/( is a

screw line of 1q. Condition (ii) means

and conversely, (1.2) implies the continuity of ft and therefore of F(t) every-

where. F{t) is called a screw function of

Let/,„,/(„ ••-,/*. (<o = 0) be »+l points of T. By (1.1) their mutual dis-

tances are \\ft> — fn\\ =F(ti — tk). As these points may be thought of as lying

(1.1)

Then (i) merely states that

(1.2) F(t) -» 0   if   t -* 0,
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in a w-dimensional linear subspace of 1q, i.e., a £„, we have by a known theorem

[3, Theorem 1 ]

(1.3) I; {F*(ti) + F\h) - F\U - tk)} PiPk ̂  0,

for arbitrary real p,-. Conversely, let F(t) be a continuous even non-negative

function, with F(0) =0, enjoying the property (1.3) for arbitrary real r,-, pf

(» = 2,3, • • • ). Geometrically this means: The points to = 0, h, ■ ■ ■ , t„, of the

space F(£i), which is obtained from £1 by changing its metric from 11 — s\ to

F(t — s), may be imbedded in £„. By a theorem of Menger [2] this is sufficient

to insure the possibility of imbedding £(£1) in     We can therefore state

Lemma 1. A continuous even non-negative function F(t) vanishing at the

origin is a screw function of § if and only if it satisfies the inequality (1.3) for

arbitrary real tit pi and for n = 2, 3, 4, • • • .

The interest of this analytical characterization of screw function lies in

its obvious consequence that the squares F2(/) of screw functions form a con-

vex class of functions: If Ff(t) and F2(t) are squares of screw functions then

also F2(t)-\-Fl(t) is the square of a screw function. In view of the euclidean

screw functions (0.2), (0.3), exhibited in the Introduction, this convexity

property suggests the following explicit expression of the screw functions of !q.

Theorem 1. (Fundamental theorem.) The class of screw functions F(i) of

Hilbert space is identical with the class of functions whose squares are of the form

/' °° sin2 tu
-—dy(u),

0 u

sin2 tu

10

where y(u) is non-decreasing for u^0 and such that

J u-^dy^u) exists

A proof that all functions F(t) furnished by (1.4) are screw functions is

exceedingly simple. For it suffices to show that F2(0 satisfies the inequality

(1.3) (Lemma 1). Indeed, in view of the identity

sin2 tiU -f- sin2 tku — sin2 (t, — tk)u = 2 sin2 t(it sin2 tku -f \ sin 2tiU sin 2tku,

we have

n

YZ {FKtd +F*(tk) -F\h - tk))PiPk

(1.6)

= J   ^2 ^ X P' sm2 t'U^ +       S Pi sm |m~2c?7(m) Si 0.
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The converse statement that the square of a screw function is necessarily

of the form (1.4) is proved in two different ways in Part II and Part III of

this paper.

1.2. Let us now see which of the screw functions of § are euclidean screw

functions, that is, belong to some euclidean space, ft is convenient for this

purpose to write (1.4) in the form

/• 00   sjn2 fff
-dy(u),     C = 7(4- 0) - 7(0).

+0 M2

Theorem 2. A screw function F(i) defined by (1.4) is euclidean if and only

if y(u) has a finite number N of points of increase. F(t) belongs to Em and to no

lower space Em> (m' <m) if and only if

(1.8) C = 0,      A7 = m/2 form even,

(1.9) C > 0,      N = (m + l)/2 for m odd.

Indeed, let N be finite. If C = 0, then Fit) is of the form (0.2), and

U\, • ■ ■ , un are precisely the points of increase of y(u). We know by (0.2') .

that F(t) is a screw function of E2n- Moreover its screw line

1/2 1/2
(%A,   cos 2u,t, \A„   sin 2u,t), v = 1, 2, • • • , N; — ao < t < »,

lies in E2n but in no linear subspace of Em?. Similarly, if C>0, it is shown by

(0.3), (0.3'), that F(t) belongs to Em, m = 2N-\.

Let now y(u) have infinitely many points of increase. We want to show

that F(t) is not euclidean, that is, the metric transform F(Ei) cannot be im-

bedded in a euclidean space. For if n is an arbitrary positive integer, we

may find n points of increase u = uy (p = 1, n) of y{u), such that

0<Ui<u2< ■ ■ ■ <un. We shall now locate in F(Ei) n-\-\ points /=0,

hi • • " i In, which cannot be imbedded in En-i- Such points will enjoy this

property if the quadratic form (1.6) is positive definite [3, Theorem l]. The

linear independence of the functions sin 2i*i, • • • , sin 2tun, implies the exist-

ence of values     such that

(1.10) det 11 sin (2/iMi)||i,„ r* 0.

The form (1.6) is now positive definite; for otherwise there would exist values

Pi, with

(1.11) ZPi>0,

which make the form (1.6) vanish. But the vanishing of the integral of (1.6)

implies the vanishing of its integrand at all points of increase of y(u), hence

in particular
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n

(1.12) X) Pi sin (2<««t) =0, k = 1, ■ ■ ■ ,n.
<=i

The incompatibility of the three relations (1.10), (1.11), (1.12) completes this

indirect proof; for as n may be taken arbitrarily large, F(t) is not euclidean.

Wilson's screw function (0.4) is of the form (1.4) since

2   r°° sin2 tu
(1.13) F2(/)=|/|=— I -du.

IT J o U2

Since y(«) =2w/V has infinitely many points of increase, it is not a euclidean

screw function. A somewhat more general example is

(1.14) F(t) =>\t\', 0 < k < 1.

Indeed

F\t) = I t\2* = j sin2 tu-u-^'du jf J* sin2 u ■ u~l~2'du,       0 < k < 1,

is of the form (1.4).

1.3. Let us find conditions which insure the boundedness of a screw func-

tion F(t). Later we shall see that this occurs when the corresponding screw

line lies on a sphere of .£). For the present we prove

Theorem 3. The screw function F(t) given by

rx sin2 tu
(1.15) F2(0=CZ24- -dy(u), C^O,

J +0 m2

is bounded if and only if

(1.16) C = 0   awrf     I   u~~2dy(u) exists.
J +o

More precisely, if C = 0, we Aai>e

#y(«) Äf(«)
2

1 r00 J7(m) c
(1.17)              — —- g limsupF2(0 g

2 t7 _|_o       U2 t—>x J _|_o m:

where all three members may also be infinite.

As C = 0 is obviously necessary in order that F2(t) be bounded, it suffices to

prove the inequalities (1.17). Let

'." sin2 tu2           C " sin15 to

Fe,o(0 = I -(JtW, 0 < € < a < 4- °°.
«7 e m2
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We have

-^J F2,a(t)dt = j sin2 tu dt^u~2dy(u)

/'a / 1       sin 2Tu\
(-)u-2dy(u),

,  \2        ATu /

hence

1  rT 2 1  ra -2
lim — I Ft,a{t)dt = — I u dy(u).
t-"c T Jo 2 J f

Whence, since F2(t)~^F2a(t), we derive

l rc
lim supF (t) S: lim supF,,a(t) St — I   u dy(u).

I—»oo t—»00 2   J e

By comparing the extreme terms only and allowing e—>0 and a—>», we get

the first inequality (1.17). The second inequality (1.17) follows from

-2

f°° sin2 tu C" 1
F\t) = -—dy(u) g -

J+o     u J+0 u
dy(u).

The euclidean screw functions (0.2) are always bounded; (0.3) are never

bounded.

1.4. We shall now investigate when a screw line V of a screw function F(t)

is rectifiable. With this purpose in view we show first that

(1.18) ]ka(^j-J= dy(u),

where both sides may also be infinite.

Indeed, to each e>0 there corresponds a 5>0, such that sin x2/x2>l — e if

x^O and g 5, hence sin2 tu/(tu)2 > 1 - € if 0 g u g St~ \ t > 0. But then

/F(t)\2     r™ sin2 tu /*S1"1  sin2te rsrl

\  <   /     Jo      W Jo t2u2 Jo

and therefore

lim inf f—) £ (1 - «) f <7y(«).
t-»o    \   t   t J0

On allowing e—>0, we have

m mi i-i
(-0   \  t )

lim inf dy(u)
J o
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This, and the obvious inequality

/F(t)y    r°° sin2 to r°°

imply (1.18).

Let now t0 = 0 <h < • • • <tn-\ <tn = t be a subdivision of the fixed interval

(0, /) and 5 = max (tt—tt-i). (1.1) and (1.18) now imply

lim   Z \\fU - ftiJ = Hm £ F(U - t^)
5->0     i=i i-»0 i

• ifa - /,■_,) / p°° y2
= lim 22-fa ~        = *•(   I   dy(u) ) .

s^o     i        tt — \ J 0 /

This proves the following theorem.

Theorem 4. A screw line ft ( — °o <t< so) corresponding to the screw func-

tion F(t) defined by (1.4) is rectifiable if and only if y(u) is bounded. The length s

of the arc (0, t) of the screw line is then connected with the parameter t by the

relation

Pit)
(1.19) 5 = t{y(<*>) - t(O))1'2 = Mim—— •

t-X3 t

In particular, if 7(00) — 7(0) = 1, / is identical with the length of arc along the

screw line of F(t).

The euclidean screw lines corresponding to (0.2), (0.3) are always recti-

fiable, the relations between 5 and t being respectively

s = tl 22 A,u,\   ,      s = t[ C + Z AyU,\ .

The screw lines of (1.14) are non-rectifiable, since F(t)/t—* 00 as t—*0.

1.5. When is a screw line T, corresponding to the screw function F(t), a

closed curve? Let/(o be a double point of T, that is, /(„=/(„+t for some r >0.

Then 0-11/^-/4-F(t), hence ||/(+T-/(|| =F(r) =0 or/(+T=/( for all real t.
This means that /, and therefore also F(t) =||/«— /o|| has the period t and V

is a closed curve. Conversely, all this is implied if F(t) is periodic. Let this

be the case and let r be the least positive period of F(t), which exists if F{t) f4 0.

From (1.7) we get

C    sin'' tu
F*(T) = Cr2 -f -dy(u) = 0.

J +0 m2

This implies that C = 0 and that y(u) is constant in all the intervals
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{k-\.)ir/t<u<kir/t (A-I, 2, 3, • • • ) where sin2 tu>0. But then F2{t) re-

duces to the series

°° /k   \ 00

(1.20) F\t) = Z^sin2(—/), r > 0, cfc ̂  0, Z c* convergent.
k-l \ T    / 1

Theorem 5. A screw line of $ is a closed curve if and only if its screw func-

tion is periodic and its square is of the form (1.20).

The screw lines of (1.20) are rectifiable if and only if Yik2Ck converges.

A euclidean screw line is closed only if it is even-dimensional, that is,

only if the form (0.2) and its frequencies u, (v = \, • • • , N) have rational

ratios (*)•

The Fourier series developments of the Bernoulli polynomials B2(t), Bt(t)

furnish the following simple examples of periodic screw functions of period

one:

1                  ~   1 — cos 2xnt     2 _ sin2 -wnt
Fl(t) - t(l - I) * - - 23,(0 = £ --— = - £ --,

(1.21) 6 1 «27T2 7T2    i n2

(1.21')

o g t i l,

2         2         2      1                    "   1 — cos 27T«/     6  " sin2 ir«i
F2(/) = t (1 - 0 = - + 2J4(0 = 3E -—-= - E ——»

10 30 l w47T4 7T     1 n*

0 < < g 1.

The screw lines of Fi(t) are non-rectifiable; those of F2(t) are rectifiable with i

as length of arc, since lim^0 F2(t)/t = 1.

1.6. We conclude this survey of these most elementary and characteristic

features of screw lines by proving the following theorem.

Theorem 6. A screw line V of § is bounded if and only if it can be placed

on a sphere o/§.

The sufficiency of the condition is clear. Conversely, let the screw line and

therefore also its screw function F(t) be bounded. By Theorem 3 we have

/'00 sin2 tu-— <**<*>.

+0 u

Setting
Ja u

U~2dy{u), u > 0,

+9

(x) The projections of such screw lines on any of the coordinate planes XiOxi, are closed

Lissajou curves. Conversely, any Lissajou curve whether open or closed may be regarded as a

plane projection of a screw line of £4.
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we get

(1.22) F2(/) = f sin2 tuda(u),
J o

where a(u) is non-decreasing and bounded. Define r >0 by

(1.23) 4r2 = «(*>).

We shall prove that T can be placed on a sphere of !q of radius r. Consider

the metric transform F(Ei), i.e., the real axis — » <t< °o with the distance

d(t, t') = F(t—t'); add to this space a new point A and complete the definition

of distance throughout F(Bi) +A by setting

(1.24) d(A, t) = r.

Not only F(Ei) can be inbedded in £>, as shown by (1.6), but also F(Ei)-\-A

may so be imbedded. It suffices to show that the points A, h, ■ ■ ■ , tn may be

placed in E„. Indeed, we have in view of (1.22), (1.23), (1.24)

n

Z V*(A, tt) + d*(A, h) - d%U, h))PiPk
i,k=l

n

= 2Z(r2 + r*- F\U - h))PiPk
l

= ZI2»-2-~ J   I1 — cos 2(t{ — tk)u]da(u)^piPk

= yJ*   j Z cos 2(/i — tk)u-Pipk^da(u)

= — J*   |^ Z Pi cos 2/i«^ 4" ̂  Z Pi sm 2tiuJ ~^da(u) St 0.

Hence F(Ei)-t-A may be imbedded in § by Menger's theorem. Now (1.24)

shows that F(Ei) is mapped into a screw line T lying on the sphere of radius r

whose center is the image of A.

Part II. First proof of the fundamental theorem

by the theory of operators

2.1. Let/( (— oo <t< oo) be a screw line of and F(t) the corresponding

screw function. For greater generality we assume that § is a real complete

unitary space (not necessarily separable). As in §1.1 we have

(2-1) \\ft-f.\\ =F(t~ s),

(2.2) F(/)-»0   if /-»0.
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Using the reality of   we have

(ft - /«, /. - fu) = \\\\ft - /«||2 + II/. - All2 - \\(Ji - /.) - if. - /„)||2}

= MII/t-/«ll2 + ll/»-/u||2-ll/(-/.||2}
= h{F2(t - u) +F2(s - u) - F2(t - s)\.

Hence setting

F*(p) + F*(q) - F*(p - q) = 2G(p, q),

we have

(2.3) (ft - fu, fs — fu) = G(t — u, s — u).

Let §1 be the closed linear subset of    which is spanned by all

ft — fo, t rational.

Write all rational numbers as a sequence ti, h, ■ • ■ , and then orthogonalize

the sequence

f'l ~ fo, fh — /oi • • '

by the Gram-E. Schmidt procedure, thus obtaining the (finite or enumerably

infinite) normalized orthogonal set

<Pl> <l>2, ■ - - •

Thus

i

(2.4) <t>i = z2 an(ftj ~ /")'       au a*i are real numbers.
j=i

The ft—fo, t rational, are linear aggregates of the (p/s, hence (owing to/('s

continuity in t) all/(— fo, — * <t< <*>, are limit points of such linear aggre-

gates. Therefore all/(— fo belong to the closed, linear set which is spanned by

<pi, </>2, ■ • • , and which therefore coincides with $i. Hence

(2.5) ft - fo = £ ßi(t)<l>i
i

where ßi(t) are real continuous functions of t.

Combining (2.4) and (2.5) we get

(2.6) /, - fo = Z ßi(t) j £ «.,(/«, - /o) j ,

that is

(2.7) (ft - fo) - £&(*){£ «„(/., - /o)}|[ = o.
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Consider the equation

(2.6') ft+s - /. = E ßidi j E ««(/V. -/»)},

and its equivalent

(2.7') (/«+. - /.) - EwojZoi^ - /.)||| =o.

(2.7') can be written as a relation of the

(/«'+. - /.- /<"+» - /.)      for /',     = I, it. (*•••■',

and the

p\(<)> «*/•

By (2.3) this means a relation of the

G(t', t") for ft t" = t, hi hi-" %

and the

ßi(t), Ctij.

Hence (2.7'), and consequently (2.6'), are independent of s. But for 5 = 0

(2.6'), (2.7') coincide with (2.6), (2.7), and hence are true. Therefore they hold

for all s.

Let

(2.4') d>i(s) = £ otijiftj+s — /,)■

Then (2.6') gives

(2.5') /h.-/«-

The relation

7=1   if   j = A,
(2.8) = ««i _

(= 0    if    l 9^ k,

means

(  E «.)(/(,+« — /•).   E <Xkj{Jtj+. — /«) ) = 5ifc,
\ J=l J=l /

which is a relation of the

(/«'+. - /., /,-+. - /.),       for t, t" = h, h, ■ ■ ■ ,

and the
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By (2.3) this means a relation of

G(t', t"), for f, t" = h, h,---,

and the

Ctij, Ctkj.

Hence (2.8) is independent of s. It expresses that 4>\{s), (pi(s), ■ ■ ■ is a normal-

ized orthogonal set. Since <p,(0) = </>,-, this is true for s = 0. This proves that

(2.9) <t>i(s), <p2(s), • ■ ■ is a normalized orthogonal set for every s.

2.2. Consider a fixed 5. The (pi(s), #s(*)i ■ ■ ■ span the same closed, linear

set as the/(l+s— /«,/«,+«— /», ■ • • , that is, as the/(+s— fs, t rational. Owing to

the continuity of/„ in u, this is the same set as spanned by the /*+»—/«,

— oo <t < + oo, or, if we write / for t-\-s, by the/(—/„ — =o <;<-)- co.

This set contains in particular/0— /„ hence every ft —fo = (/<—/«) — (Jo— fs).

Hence it contains §i. But £>i contains all/(— f0 (by (2.5), along with the (pi),

hence Js—fo and the/<—/» = (ft—ft) — (J,—/«). Hence it contains our set, too.

In other words:

(2.10) 4>i(s), (pz(s), • ■ • span the closed linear set §i for every 5.

By (2.9), (2.10) the equations

(2.11) U(s)4>i(0) = 4>,(s), for * = 1, 2, • • • ,

define a unitary transformation U(s) in §i. (2.5') gives immediately

(2.12) U(s)(ft-fo)=fl+,-f„

and by (2.4') this relation (2.12) again implies (2.11).

If we write (2.12) for t = u and v, and subtract, we get

(2.13) V(s)(fu - fv) = /„+, - fv+s.

Since (2.12) is a special case of (2.13) (u = t, v = 0) we see that (2.13) is also

characteristic for U(s). Application of (2.13) for s=Si, 52, «i4-*i shows that

(2.14) U(s2)U(Sl) = U(st + s2).

As ftj+s, fs are continuous functions of s, so is (pi(s) by (2.4'). Now (2.11)

shows that

(2.15) U(s) is a (strongly) continuous function of s.

2.3. Extend now ^ to a complex unitary space §, and correspondingly §i

to $i. Then U(s) extends to a unitary operator in §i. Since the extended

meaning of ||/—g|| and U(s) remains unchanged in §i, it is clear that (2.1),

(2.12) and (2.15) remain true.
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As §i is spanned by the enumerable set/*,—/e,/«,—/$, • ■ • , it is separable,

hence a finite-dimensional unitary or a complex Hilbert space. Now we may

apply, considering (2.14), (2.15), the theorem of M. H. Stone ([6, 7]; this

theorem is independent of the separability of the underlying unitary space).

This theorem insures the existence of a self-adjoint operator A in Qx, such that

(2.16) U(s) = exp (isA).

Now equation (2.12) may be written as

/«+. - U(s)(ft-f0) + fs,

or, using (2.16),

(2.17) fl+s = exp (isl)(ft - /„) + /..

2.4. Let E(x) be the resolution of unity which belongs to A in §t. Define

the projections F»,«, w = 0, +1, +2, • • • , e= + 1, and F" as follows:

P..+, = 1(2") - 1(2"-!),

(2.18) = E(- 2»-1) - £(- 2"),

F° = 1(0) - I(- 0) ( £(- 0) =   lim E(x)).
\ x<0, z->0 )

The projection operators Fn,€, F° are clearly orthogonal and their sum is 1.

Let

Tln,e be the closed linear set with the projection Fntt,

(2.19) (« = 0, + 1, + 2, • • ■ ,t = + 1),

502°  be the closed linear set with the projection F°.

Again the 9D7„,t, ffll" are mutually orthogonal and they span together the closed

linear set §i. Clearly every äJJn,£, 9K° reduces A, and hence, by (2.16), all 77(5),

too.

Denote the projections of /(in ÜDc„,e, and S)c°, by/„,e/( and f°, respectively.

2.5. Let us consider first the situation in 2)c0. Here clearly A =0, and (2.17)

gives

-l0 -0 -0 -r0

(2.20) fl+B =/.-/„ 4-/.,

or

(/:+8-/:) = ai-/o0) + (/:-it).

This, and the /-continuity of ft, give immediately

' /t-/o° = *(£-jo),

that is,
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(2.21) ft = tw + Jo, m being fixed.

2.6. Let us consider next the situation in 50cn,e- Here the spectrum Sn,t

of A lies clearly between 2n_1 and 2n, and between —2" and — 2n_1 respec-

tively. Hence acGS,,, implies 2n~xg \x\ g2".

Assume

(2.22) 0 < |*| g w/2".

Then xG5,,, implies 0<2n_l| t\ g\tx\ gw. Hence the function

ft(x) = (exp (itx) - l)-1

is everywhere defined, continuous, and bounded in x£S„,e. Hence we may

form ft(A). As (exp (itx) — 1) ft(x) =ft(x) (exp (itx) — 1) = 1 for all xES„,e, we

have (exp (itA) — l)ft(A) =ft(A)(exp (itA) — \) = \. Hence ft(A) is the inverse

of exp (itA) — 1.

We have thus proved that

(2.23) (exp (itA) — 1)_1 exists and is bounded.

Consider now (2.17) for t, s and for s, t. As the left side is the same in both

cases, the right sides are equal, too, giving

exp (isA)(fnt/t -fM/o) 4-/„«-/=■ = exp (iil)(fne/s - /„e/0) + /«/.,

that is

{exp (isA) — 1 }(/„</( - fnt/o) = {exp (itA) - l}(/ne/s - fn,/o)-

Assume (2.22) for both / and s. Since exp (itA) — 1 and exp (isA) — 1 commute,

and by (2.23) for / and s, we may write this as

{exp (itl) - l}-1(fni/t -fnt/o) = {exp (is!) - l}-'(/«/. - jn«/o).

That is,

{exp (it!) - 1 }_1(/««/t - /»«/o) = vnt,

where 5„« is fixed. But this may be written as

(2.24) fne/t = {exp (itA) — l}ön< + fn*/o, vnt constant.

This holds provided t satisfies (2.22). Since it is obviously true for t=0, it

holds whenever |;| gir/2n. But if (2.24) holds for both / and 5 then (2.17)

extends it to t+s. Hence (2.24) holds for all t.

We may now formulate (2.21), (2.24) as follows:

The projections of ft — f0 in 2JJ° and 9D?„ e are tü0 and {exp (itÄ) — 1} ü„e

(2.25) . _
respectively, the ü>°, üne being fixed elements of 9Jc° and 3)t„,e respectively.
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2.7. We know that §i is the closed linear set spanned by the mutually

orthogonal sets W and Win,, (« = 0, + 1, ±2, •••,€= + 1). As/.-/<, is in §!,

we see that (2.25) implies

CO

(2.26) ft - f0 = to0 + £    £ {exp (i/J) -
«=—00 «=±1

the convergence of the right side being certain for all t.

Since the addends of the right side of (2.26) are mutually orthogonal, we

conclude that
00

||/« -/o||2 - /.2||ü°||2 4- Z    Z || {exp (it!) - l}vnt\\\
n=—oc «=H:1

But for each term of this sum we have

|| {exp (UA) — l}üne||2 = ({exp (UA) — l}»„e, {exp (iil) — l}vnt)

= ({exp (iil) - l}*{exp (UA) — l}üne, vnl).

By well known properties of functions of Hermitian operators, and since

(exp (itx) — l)(exp (itx) — 1) = (exp (— itx) — l)(exp (itx) — 1)

= 2 — exp (itx) — exp (— itx) — 2(1 — cos tx),

the above expression is equal to

(2(1 — cos (tA))vn(, 5ne),

that is, to

J* 2(1 - cos tx)d(\\E(x)vnt\\2).

It suffices to extend this Stieltjes integral from 2™_I to 2", if e= 4-1;and

from —2" to — 2n~l if e= — 1. Denote this interval by In,t.

We have thus obtained

(2.27) F\t) =||/f-/o||2 = *2||ü°||2 + Z    Z   f   2(1 - costx)d(\\E(x)vn(\\*).
n=—oo    «=±1 J In,t

Integrating this relation from 0 to 1 we obtain

(2.28) CF\t)dt = i||««||» + Z    Z   f    2(l -~)<7(||E(*Ke||2).
Jo m=-oo    e=±l \ * /

Since

sin x\ (St ix2, if   | x \ g 1,

x ) (St J, if    I x| St 1,

we derive from (2.28) the finiteness of the following expression:
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(2.28')       £    £   f   \xH\\E(x)vn^ + £  £   f \d\\E(x)vnl\\\
n=-a    e=±l J/„,€ n-1   c=±l  " In,i

2.8. We may now readily complete a proof of Theorem 1 by showing that

the last side of (2.27) can be put in the form (1.4). Indeed, define two non-

decreasing functions ß-(x) (— °o <x<0) and ß+{x) (Ö<*< 4- 00) as follows:

Set

0_(aO = ||E(x)»o,_iH2   in   Jo.-i (~ i £ * £ - I),

and extend the definition successively to Jx,-i, 2j,_i, ■ • • -, and also to

7_i,_i, 7_2,_i, • • • , in such a way that

(i) j3_(x)=||£(x)i5n,_1||24-const., in !»,_, (-2"gxg -2""1),

(ii) the constants are successively determined by the requirement that we

have agreement of values of ß-(x), at every point x= —2", resulting from this

function's definition (i) in the adjoining intervals 7„,_i and 7„+i,_1.

Set similarly

ß+(x) = p(x)t)0,i||2   in   70,i ft & X £ 1),

and define successively

ß+(x) = ||£(x)ü„,i||2 = const,   in   7„a (2--1 g x g 2»),

determining the constants successively by the same requirement as above.

The finite expression (2.28') now becomes

(2.28")     f   \x*dß-{x) 4- f \xHß+(x) 4- f   !«#_(*)+ f *#+(*).
7_i <7+o J-oo «71

and (2.27) may be written as

772(f) = /2i|ü<>||2 4- f   2(1 - cos tx)dß_{x) + f  2(1 - cos tx)dß+(x).
•7 —oo «7+o

Setting

a(x) = 2pV(x) - 2/3_(- x), 0 < x < oo,

this becomes

(2.27') F*(t) = *2||ü°||2 + f  (1 - cosix)rfa(x)
•7+0

where a(x) is non-decreasing such that

«(«,) = 2/3+(=c) - 20_(- co),

/• 1 «1 —o

I    x2<7a(x) = 2 I    xHß+(x) 4- 2 I x2dß-(x)
7+o «7+o 7-i
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are finite, on account of the finiteness of (2.28")- If we introduce a new mono-

tone function by setting

y(0) = 0,      y(x) = f  2x2da(2x), x > 0,
•7 +o

we have

f" 1 - cos 2tx Pm sin2 tx
I    (1 - cos tx)da(x) = I - 2x2da(2x) = | -dy(x).

J +o J +o        2x2 J+o x2

By changing, finally, the value of 7(0) from 0 to — ||ü°||2, we see that (2.27')

now assumes the form (1.4). Also (1.5) is satisfied, since a(x) is bounded.

Part III. Second proof and extension of fundamental theorem

by the theory of positive definite functions

3.1. We know that the class of screw functions of Hilbert space is identical

with the class of continuous, even, non-negative functions F(t) (F(0) =0) such

that the metric transform F(Ei) is isometrically imbeddable in {£> (Introduc-

tion, §1). Let us denote this class of functions by the symbol LI(£i). We now

extend the problem of determining the class II(£i), as follows: Determine the

class II(£m) of functions F(t) such that the metric transform F(Em) be isometri-

cally imbeddable in & (1 gmg «, £«, = £>). (See [5, Introduction and §5.2].)

The definition of n(2im) implies the relations

n(£0 D u(Et) D ■ ■ ■ D n(£m) D-D n(§),

showing that we have to deal with an infinite sequence of non-increasing sub-

sets of LI(£i). The class II(§) was found to be identical with the class of func-

tions F(t) whose squares are of the form

/'00 1 — e~'*u-dy{u),
o u

where y(u) is non-decreasing for wS:0 and such that f™u-ldy(u) exists [5,

§5.4, Theorem 6]. We shall now determine the classes H(Em), (lgm< oo).

The statement of our result requires the integral function

t2                t* /6

1-+-+ . . .
2 m     24-)»(b + 2)     2-4-6-w(w 4- 2)(m + 4)

/m \ / 2\(m-2"2
rVT)(7) •7—(/)-

In particular

Om(/) =

(3.1)

f2i(<) = cos t,      n2(t) = J0(t),      tt3(t) = sin t/t.
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Theorem 7. The class U (Em) of non-negative continuous functions F(t)

(t St 0, F(Q) = 0) such that the metric transform F(Em) be isometrically imbeddable

in §, is identical with the class of functions whose squares are of the form

rx i - ft-/*)
(3.2) F2(t) = --^dy(u),

Jo u

where y(u) is non-decreasing for wStO, 7(0) =0, and such that

r00 dy(u)
(3.3) I - exists.

If m = 1 we obtain our Theorem 1 on screw functions, since 1 — Qi(tu)

= 1 —cos tu = 2 sin2 (tu/2).

The reasoning which leads to the characterization of the class II(£i) given

by Lemma 1, §1.1, extends, of course, to the class II(7im) and gives the follow-

ing statement:

A continuous non-negative function F(t) (/StO, F(0)=0) belongs to H(Em)

if and only if it satisfies the inequality

(3.4) £ {F*(P0P{) + F\P0Pk) - F*(PiPk)}piPk ^ 0,

for any points P0, ■ ■ ■ , P„of Em and arbitrary real p; (n = 2, 3, • • • ), the quan-

tities PiPk denoting euclidean distances in Em.

We refer to [5, §8.1], for a simple proof, based on the statement above,

that any F(t) given by (3.2) belongs toII(£m).

3.2. The proof of the converse, i.e., that formula (3.2) furnishes all ele-

ments of H(Em), requires the following limit theorem:

Lemma 2. Let

(3.5) /«(*)= I -dyn{u), «=1, 2, 3,
•7 o u2

be a sequence of functions with non-decreasing y„(u), (7„(0) =0), such that all

integrals fx u~2dyn(u) exist. Letfn(t) converge, as »—><», uniformly in any finite

interval, to a function f(t). We indicate this type of convergence by the relation

(3.6) fM

Then f(t) is also of the form

c~ l - ftjf*) r°°
(3.7) /(/) =-dy(u),   t(«) T , 7(0) = 0,        u-2dy(u) exists,

J o u2 J i

and
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(3.8) 7»-^T(«)(2),

(3.9)
r" dyn{u)       r" dy{u)
I-> I - in all continuity points u = a > 0 of y(u).

Ja U1 Ja M2

Conversely, if the relations (3.8) and (3.9) hold and fn{t), f{t) are defined by

(3.5) and (3.7), iAew (3.6) holds.

Postponing a proof of this limit theorem we shall now use it to establish

Theorem 7.

Let F(t)EJl(Em), that is, F(Em) be imbeddable in §. By [5, §5.3, Corol-
lary l] we conclude that the functions exp { — XF2(/)}, (X>0), belong to the

class tyiEm) of functions which are positive definite in Em. By [5, §1.2, Theo-

rem 1 ], we are allowed to set

exp {- XF2(/)} = f Qm(tu)da(u, X), X > 0,
J 0

a(u, X) being a family of non-decreasing functions, a(0, X)=0, a(<», X) = l.

Now

1 - exp {- \F2(t)}      1  r °° r
-—-= —       [1 - Um(tu)]da(u, X),

X X J o

and if we set

1 r
ß(u, X) = — I   u2da(u, X),

X J o
we obtain

1 - exp { - XF2(i*)}       C °° 1 - ßmW
(3.10)    /(*,X)=-H-— =--^-dß(u,\).

X Jo u2

On the other hand,

lim fit, X) = F2(t)
X-.+0

holds uniformly in any finite interval. For, if OgtgT, we have F2^) <i£ (since

F(t) is continuous) and therefore

I exp { - XF2(/)} - 1 4- XF2(;) | = | \2F*(t)/2\ - X3F6(f)/3! 4-|

g \2K2e*K,

or

(*) Here and throughout this paper a limiting relation yn{u)—>y{u) involving monotone

functions is assumed to hold for all values of u which are continuity points of the limiting func-

tion y(u).
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1 - exp { - \F2(t)}
g \K2eXK,

a bound which is independent of t and tends to zero with X. Setting /„(/)

=f(t, 1/») we therefore have fn(t)->-F2(t) and Lemma 2 is applicable, on ac-

count of (3.10), showing that F2(t) is of the form (3.2).

3.3. In this proof of Theorem 7 only a part of Lemma 2 was used, namely

that (3.5) and (3.6) imply (3.7). We have stated and shall prove the more in-

clusive limit theorem for two reasons. First, our limit theorem implies that

y(u) of (3.2) is uniquely defined by F(t). Second, a proof of the complete

statement is hardly more complicated than a proof of the partial statement

actually used above.

Lemma 2 will be a direct consequence of the following analogous limit

theorem involving a simpler kernel under the integral sign.

Lemma 3. Let

C" I - e-"<
(3.11) *»(<)= I -dßn(u), »=1,2, 3,

Jo u

be a sequence of functions with non-decreasing ßn(u) (/3„(0) =0), such that all

integrals JiU~ldßn(u) exist. Let <pn{t) converge, as »—»°o, to a function <p{t),

uniformly in any finite interval 0gtgt0, i.e.,

(3.12) 4>n(t) -*-*(*).

Then <p{t) is also of the form

r00 1 - e~ut c °°
(3.13) 4>(t) - -dß(u),  pX»)Ti 0(0) = 0,        u~Hß(u) exists,

J o U J i

and

(3.14) ßn(u)^ß(u),

f" dßn(u)       r°° dß(u)
(3.15) I-> I - in all continuity points u = a > 0 of ß(u).

Ja U J a U

Conversely, if the relations (3.14) and (3.15) hold and <pn(t), <b(t) are defined

by (3.11) and (3.13), then (3.12) holds(3).

The <bn{i) belong to the class F defined in [5, §4]. It was shown there

(Lemma 5) that (3.12) implies <p(t)£.T, hence (3.13). It was furthermore

(3) That the condition (3.15) cannot be dispensed with is shown by the example of ß„(u) = 0

if 0S«<ji, ß„(u) = n if aäit, ß(u)=0, hence <£„(<) = 1 -e-*", 0(/)=O. Now (3.14) holds but not

(3.12). Note that the condition (3.15) is not satisfied.
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shown by means of the Vitali-Porter convergence theorem that <p„(0 and

*»'(*) = f e-^dßn{u)
J o

converge to <p{t) and <p'(t), respectively, uniformly in any finite closed domain

inside the half-plane WltX) of the complex variable t =a-\-ir. In particular we

therefore have

(3.16)    </>„'( 1 4- it) = f e~ue~iuTdßn(u) «►> <p'(l 4- it) — f e-"e-iuTdß(u),
J o «7 o

uniformly in any finite r-interval. In terms of the new monotone and bounded

functions

/tu /» .

e-"dßn(u),      a(u) = I e~"dß(u),
a «7 o

the relation (3.16) becomes

/e-iuTdan(u)      I e~iuTda(u).
o ^ o

Now we may apply a limit theorem of Paul Levy and conclude that

(3.18) a«(w)-►«(«),

[l, p. 197]. But (3.17) may be inverted:

eudan(u),      ß{u) = I eudct(u).

o Jo

Now (3.18) implies the desired relation (3.14).

There remains the proving of (3.15). On one hand (3.14) implies

/io J _        a— tu /» a 1 _ g— tu

-dßn(u) -> -#(«), < ^ 0,
J 0 U J o 11

and therefore (3.11), (3.13) and (3.12) imply

f00 1 - e-,u               r°° 1 - e-,u
(3.19) -.#„(«)-> -dß(u),

J a U                               Ja U

On the other hand, the obvious inequalities

f00 dßn{u)      p°° 1 - e-<« r™ dßn(u)
(1 - e->°) g -dßn(u) g

J a U              J a              U J a *

imply

/ £ 0.

>   t ^ 0,
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1 - e-'"
-dß(u).

r00 1 - <r'« r°° dßJu) 1      r°° 1 -
■-dßn(u) g -— g- -dßn(u), i > 0.

J a U J a U 1 — e~ta Ja U

As n—* oo we get by (3.19)

r°° 1 - e~tu f " dßn{u) fm dßn{u)
I -<7/3(m) |£ lim inf  I - g lim sup   I •-

J a U J a U J a U

■   *.->.-. {■

1 - e~ta J a

As t—> oo this gives

pm dßiu)    . r" ^-w  u     r"        r00 *w)
I - lim inf I - ^ hm sup I - g I -1

J a It J a U J a U J a U

which proves (3.15).

In order to prove the converse of Lemma 3, we have to show that (3.11),

(3.13), (3.14), and (3.15) imply (3.12). For a given e, we can choose a posi-

tive a, continuity point of ß(u), such that

I   u-ldßn{u) < €,        I   u-ldß{u) < «,
Ja Ja

provided n is sufficiently large. But then

ia ^ _      g— tu /* ° 1 _      e~'uf* a \ _        e~tu n i

I -dßn(u), I
J o       u J o

<$(«).

<P«W - <K*) I < 2« +   I -dßn(u) - I -dß(u) ,
\ J 0 U Ja U

0 m

differ from <j>n(t) and cp(i) respectively by less than e. Hence

ia j _        g— tu /* a 1 _        6~'u

- «#„(«)  - I
0 m «/ 0

provided n is sufficiently large. On the other hand, (3.14) implies

t*a \ _     ß— tu p° 1 _c~'u

I -«#»(«)->• I -<*P».
•/ o       w J o u

that is,

If*a \ _     g~'u                 /* ° 1 _     g— tu
I -<«&,(«) - I -<#(«)

J 0          U                             J o m

in an arbitrarily given interval 0^/^/0, provided n is large enough. Hence

I <j>n(t) —(p(t)\ <3«, in the interval 0gtgto, provided n is large enough. This is

precisely identical to (3.12).

By a similar argument we can prove the converse part of Lemma 2. We
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may, therefore, consider the converse part of Lemma 2 as already established

and shall use it in proving the direct part of that lemma.

3.4. In order to prepare a proof of Lemma 2 we need the following state-

ment:

The assumptions (3.5) and (3.6), of Lemma 2, imply the existence of

(3.20)        two constants K and H, independent of n and t, such that

fn(t)<Kt2+H, /stO, « = 1, 2, 3, • • • .

Assume first that m^2. Since

- 1 < MO < 1,   (t>0);       lim Qm(0 = 0,

we see that (3.5) and (3.6) imply (for / = 1) that the two expressions

r1! - M«) rxr        , m
--^dyn(u), [1-Ü.W]-—

J o M J 1 M

are both bounded, as n—»<x>. Since the integrands [l — ßm(tt)]/tt2, and

1 — Qm(w), have positive lower bounds in their respective intervals of in-

tegration (0, 1) and (1, oo), we see that

r1 F°° <*7n(«)
(3.21) dyK(u) - 7b(1),

also are bounded, as «—► oo. On the other hand, it is clear from the power series

expansion (3.1), that there is a constant c, such that

l - MO ^ c*2,

provided ^0. Hence, by (3.21),

r11 - M<«)            f00 1 - M'«)
/«(O = -:-^7n(w) 4--dyn(u)

J 0 U2 J i u

C 1 ct2u2 r °° 2
^ ——dyn{u) + I --dyn(u)

J 0     U2 J i u2

= f%7«(l) 4- 2 J «-*#y.(») < ÜTJ2 4- ff-

If m = \, hence flm(to)=cos /w, we first integrate both sides of (3.6), be-

tween 0 and 1, obtaining the relation

f1 r°° 1 - m—1 sin« p°° l-0»(«) P1

J0 Jo M •/<>«* Jo

From this we derive as above that (3.21) are also bounded in the present case.

The argument is then concluded as above. Thus (3.20) is established.
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3.5. We may now readily prove Lemma 2. From its assumptions (3.5),

(3.6), combined with (3.20), we get

/.(0 •*-/(<).      0 g fn(t) <Kt* + H, Og f(t) <Kt2 + H,t^ 0.

This implies, as readily seen, that

(3.22) f e-t*iifn(tp)tm~1dt+ f e-t2i4f{tfi)tm-1dt,
J o Jo

uniformly in p in any finite interval 0 gp g M. Hence also

f ir*'if»(fh.lis)tm-l&'+- f e-t'lif(t\1'2)tm-1dt,
Jo Jo

uniformly in any finite interval 0g\gL. Taking t\~112, instead of r, as a new

variable of integration, we see that

(3.23) X"m'2 f e-''iiXfn{t)tm-ldt-^\-ml2 f g-^fifyf^dt,
Jo Jo

uniformly in X in any finite interval 0<X5=L. We shall now make use of the

relation [5, p. 823]

(3.24) e~x"2 = cm\-m'2 f Qm{tu)e-i,lllHm-ldt,   X > 0, cm = 21-"*; [T(m/2)]-\
J o

and its particular case (u = 0)

1 = cm\-m>2 f e-f'topr-'dt.
J 0

If we multiply the relation

J0 M

by cmf\~ml2e~'2,iXtm~1dt, we get by integration

1 — e-x"!

*»(X) = cmX--/2 f er^f.ifir-W = f-d7n{u)
Jo Jo W2

p00  1 — e~x"

-<*7n(«1/2).

J n M

By (3.23) </>„(X) converges, as w—>», uniformly in any interval 0<X^F. As

the last expression is defined and continuous for X = 0, we see that the uniform

convergence extends to any closed interval 0g\gL. But then, by Lemma 3,
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we conclude that there is a monotone function y(uU2), (w2:0), such that

7n(w1/2) —>7(w1/2), I->| -'

J a2 U J a2 U

that is,

(3.25) T.W—-LT1-^      —7- •
Ja2 m2 Ja2 m2

By the converse of Lemma 2, we may now conclude that

{n{t) = -;-dyn(u) ^--dy(u).
Jo Ul Jo m

On comparing this relation with the assumption (3.6), we derive the validity

of the desired conclusion (3.7).
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