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Introduction. In this paper we present a detailed account of the results

recently published in the Proceedings of the National Academy of Sciences

[29 Our theory is an attempt to generalize the results of the classical

class field theory to arbitrary normal fields. In the last analysis, the theory of

cyclic extensions Z of an algebraic number field k can be described in terms of

cyclic algebras (Z/k, X, a) and collections of local algebras (Zp/kp, 5, ap), for

all prime divisors p of the base field. As a matter of fact, Chevalley's new ap-

proach [ll ] to the classical theory by means of ideal elements may be viewed

in the light of our assertion (§8). It is a well-known fact that for arbitrary

normal fields K/k with the Galois group T, the crossed products (K/k, T, F),

where F denotes a factor set for T in K, are the strict analogues of the cyclic

algebras. We use this feature of normal fields and their associated algebras

to extend the classical (cyclic) theory. In this generalization ideal elements are

replaced by "ideal algebras," where an ideal algebra is a collection of local

algebras, one for each p-adic extension Kp/kp (§4).

It might be conjectured from this approach that most of the results of

the classical theory may easily be generalized, but this is not the case(2). En-

tirely new problems, mostly group-theoretical ones, block the path which has

been envisaged by various statements of E. Noether [32, 33] on noncommuta-

tive methods. One of our final theorems may suffice to illustrate the rather

unexpected results of this paper. Our new "class group" of ideal algebras can

be represented as F%'/\F")TW, where F2T denotes the group of factor sets

of ideals relatively prime to the different of K/k, where TW is the group of

transformation sets of such ideals, and where (F") are principal ideals gen-

erated by "norm residues" (§26). For an abelian (non-cyclic) field this class

group is not isomorphic to the Galois group, as in the ordinary theory; it is

rather a cyclic group whose order is equal to the least common multiple of the

orders of the elements in the Galois group. In other words, for arbitrary

abelian fields our theory does not give the classical law of reciprocity. Only a

composition which is extraneous to the theory of factor sets yields the usual

theory for general abelian extensions.

In the first part of this paper we follow an unpublished investigation of

E. Artin (§5). It deals with the theory of p-primary factor sets, that is, factor

sets whose elements involve only the divisors of a fixed prime divisor p of k.

Presented to the Society, April 27, 1940; received by the editors August 5, t940.

(>) The numbers in square brackets refer to the papers in the bibliography.

(2) The first attempts in this direction are due to Tannaka [38].
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The results culminate in the following theorem: The least common multiple J

of the orders of the elements in T is equal to the index [FW: (F")TW\. The

proof of this theorem is obtained by collecting the results on p-primary factor

sets by means of the Tschebotareff density theorem (§§6, 7).

The final chapter of this paper treats of the realization of the above men-

tioned index relation by a generalized Artin symbol (§29). It is not difficult to

generalize the theory of the norm residue symbol (§28). All the formal proper-

ties of the old symbol hold true for the new one,except for the usual statements

on the values taken by the norm residue symbol for variable argument. The

real reason for this discrepancy may be sought in our results on the relation

between local algebras and algebras in the large. It is found that in general

not every local algebra for Kp/kp is the p-component of a suitable crossed

product in the large (§§13-16).

The main part of the group-theoretic investigation of the class group is

centered around a series of theorems on unit groups (§§17-23). As in the proof

of the classical inversion theorem we try to treat the fundamental index

[FW: (F")TW] by means of arithmetical reductions of a group-theoretic na-

ture. The class numbers, which are easily canceled off in the old proof, con-

front us here with a rather involved situation. By means of a group-theoretic

invariant, the deficiency index, we finally succeed in disposing of them (§§15,

16). This deficiency index together with the theory of group extensions over

unit groups give rise to new invariants for the field K/k. The customary

reduction to the Herbrand subgroup can be carried out to a certain extent.

However, we find a totally unexpected deviation from the classical case. The

principal genus theorem for units and unit groups connects our investigations

with Schur's theory of the multiplicator, as was pointed out to us by A. H.

Clifford. The group generated by one of the Herbrand units H belonging to an

unramified infinite prime divisor can be described in purely group-theoretic

terms. If Y is abelian, the number of group extensions by Y of such an "ab-

stract unit group" turns out to be exactly the order of the multiplicator of Y

in an algebraically closed field (of characteristic °°). We wish to emphasize

that many of the arithmetic properties of K/k are of strictly group-theoretic

nature and can be formulated as such. There are a large number of new prob-

lems in group theory which originate in our analysis of normal fields (3).

Finally, comparison of the two evaluations for the fundamental index leads

to a very complicated relation between the invariants we introduced in the

course of our investigation (§25). We discuss this rather mysterious equality

in a number of special cases which indicate the relative contributions of the

partial indices of [FW:(F")TW]. In conclusion we may say that we have

explored the potentialities of the concept of factor sets and algebras for arbi-

trary normal fields.

(3) The statement of these problems in §§17, 21-23 may be read without detailed reference

to the remaining sections.
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Chapter I. Factor sets and algebras

1. Preliminaries on factor sets. Let G be a group with an abelian normal

subgroup N and a corresponding factor group T = G/N. In each coset a of

Gf N choose a representative uc, so that the coset a is Nuc. This element u, in-

duces in N an automorphism

(1) A     A° = UaAu,1 (A in A7).

Since N is abelian, any other element v, in the coset Nua will induce the same

automorphism A^A". For a and r in T, (-4T)<r = ^4.'rT (note the order!).

Conversely, let an abelian group N and a group T be given, and let each

element a of V be assigned to a definite automorphism A<-^A° of 7Y. We as-

sume that this assignment preserves the products, so that

(2) A" = (AT)' (all o-, t in r).

A group extension of A7 by V, with the given assignment of automorphisms, is

then any group G with N as normal subgroup, and T = G/N as quotient

group, in which each coset a of V induces in N the given automorphism (4)

A++Ä*.
To represent a group extension explicitly, use a fixed representative u, in

each coset a of G/A7. The product of two representatives u„ and uT is in the

coset of or, hence

(3) uauT = Fc,TuCT (each 7\,,r in A7).

The associative law Ua(uTup) = (uauT)up implies that these constants Fa,T satisfy

the associativity conditions

(4) F,,TF,T,„ = KpF..tp (all a, t, p in Y).

The equations (1), (3), and (4) determine the group extension G in terms of

the subgroup N, quotient group V, and constants F„,T. Any set T^of constants

Ftr, in N which satisfy the associativity conditions (4) is called a factor set.

Every factor set for T in 7Y determines a group extension G which consists of

elements Au„, for A in N, a in T, which are to be multiplied by the rules (1)

and (3), or

(5) UgUj = F„,Tu„r,      u„A = A"u„.

The product of two factor sets F and F' is a third factor set with compo-

nents F'JiT = F'atTFc%T, for this set F" clearly satisfies (4). All factors sets F form

a group which we denote by FrN, or simply by(s) FN.

(4) See discussion in Baer [6, 7]; Zassenhaus [43],

(6) We shall adopt this abbreviation if there is no ambiguity about the group T. Here and

subsequently, starred definitions are given special numbers. They introduce notation important

for later arguments.
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(*1.1) FTN = the group of all factor sets F with components F,,f in N.

In a group extension the representatives u„ of the cosets may be replaced

by new representatives va = N,u„, with Na in N. This replaces the factor set F

by a new set F', given by F'a<T = F,,T {NaN°N~Tl). These two factor sets F and F'

are called similar (notation F^F'), so

(•1.2) F~F' means F„'iT = F.,r(NJtt*1,

with suitable elements A7,, of A7. Two factor sets determine isomorphic group

extensions (with N and T fixed) if and only if they are similar.

The added factors NcN°N~r of (*1.2) themselves form a special sort of

factor set known as a transformation set. We write

(♦1.3) TN = TN, for a transformation set N.N'N'1, Na in N.

If r is finite, each such set is derived from a vector

(*1.4) N,= {A7,,, A7,,,,   ■ ■ ,Nfd},

where each NCi is in N and the subscripts <r; denote the n distinct elements

of T. The symbol A7, denotes ambiguously the whole vector or just one com-

ponent.

Lemma 1.1. If V has order n, the nth power F" of any factor set F in FrN

is a transformation set TN.

Proof(6). From the given factor set F construct the products

(6) c, = nx*        (°ver au t in r)-
t

The associativity relations (4), multiplied together over all p in T, become

n a

(7) F0iTCaT CtC<j.

This states that F" is the transformation set TCa.

2. Crossed products. For the basic normal field K of our investigation,

we use throughout the following notation:

(*2.1) K, a fixed normal extension of an algebraic number field k,

(*2.2) «= [K:k], the de gree of K over k,

(*2.3) A, a nonzero number of K, or (7) the group of all such numbers,

(*2.4) 0", t, p, automorphisms A^A" of K/k,

(*2.5) r, the Galois group of K/k, composed of all cr,

(*2.6) F=FTA, a factor set of numbers F„iT in A,

(*2.7) (S), a class of normal simple algebras split by K over k.

(6) This proof is apparently originally due to Artin.

(7) As in Hasse's group-stenographic method, a letter may denote ambiguously a group

or an arbitrary element of that group.
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In connection with this last definition, we recall the properties of algebra

classes. Every normal simple algebra B over k has the form of a direct product

B = MXD, where D is a division algebra, M a total matric algebra. Two such

algebras B\ = M1XD1 and B^ = M2XD2 are similar if and only if Dx is equiva-

lent to D2 over k. The set of all algebras similar to B is termed an algebra class

(B). The field K is said to split an algebra B over k if the algebra Bk formed by

extending the coefficient field of B to K is a total matric algebra. If K splits B,

it splits every algebra of the class B. The direct product of two classes of

algebras, taken term-by-term, is a third class (Bi) X (B2) = (Bi XB2). If both

Bi and B2 are split by K, so is their product. Therefore the algebra classes (S)

of (*2.7) form a group.

Every factor set F in K determines an algebra called a crossed product of

K by F. It consists of all sums ^2„B„u„ formed, with coefficients Ba in K, from

n linearly independent elements w„, one for each er in T. These sums are to be

added term-by-term and multiplied by the distributive law and the rules (5)

of § 1 for multiplying the elements u, in a group extension. With this convention,

the sums ^aBau, constitute a normal simple algebra (K, T, F) = (K/k, T, F).

It has order w2 over k and contains A' as a subfield. Conversely (8), every nor-

mal simple algebra S over k of order n2 with the subfield K has a crossed prod-

uct representation (K, T, F) for some factor set F. Consequently every algebra

class (S) split by K contains a crossed product S=(K, T, F). Two crossed

products belong to the same algebra class if and only if their factor sets are

similar. The direct product of two crossed products ([2, pp. 67-73]) is given

by the product of the factor sets,

(l) (K/k, r, f) x (K/k, r, FQ ~ (K/k, r, ff1).

Hence the correspondence F—=>(K, V, F) maps the group Fo{ factor sets homo-

morphically on the group (S) of algebra classes split by K.

The explicit theory of the algebras S depends on the valuations of the base

field k: the non-negative real-valued functions ||a|| defined on k with

||aö|| =||a||||ö||, + = ||a||+|HI> =0 if and only if a = 0. Two valuations

are equivalent if the convergent sequences which they determine are the

same; they then determine the same minimal field kPZ)k complete in the con-

vergent sequence topology. By a prime divisor (or prime spot) p of k we mean

a class of equivalent valuations(9) of k, so

(*2.8) kp = the minimal complete field kvZ)k in the valuation at p.

There are two types of prime divisors. If #<->at- is an isomorphic mapping

of k on the field of complex numbers, so that a,- is a conjugate of a, then the

(8) See [2, chap. 5], or the parallel discussion in [13, chap. 5], In our formula (3) of §1 the

coefficients FC,T appear on the left; in [2] and [f3] the corresponding symbols are to the right

of Uc. This causes slight changes in the form of the associativity relations, etc.

(9) Discussion in [l, pp. 251-305], [13, pp. 93-105], [42, 2d edition, vol. l].
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ordinary absolute value of a< gives a valuation ||a|| = |a,| of k. The corre-

sponding prime divisor is called an infinite prime divisor p =p<», and the asso-

ciated complete field kp is either the field of complex numbers or that of real

numbers (the latter if the conjugates a,- of all a are real). If p is a prime ideal of

the number field k, there is a valuation function ||a||p = exp [— Fj,(a)], where

(*2.9) Vp(a) =the exact power to which p divides the ideal (a).

The corresponding prime divisor p is said to be finite, and the complete field kp

p-adic. Every prime divisor of k is either finite or infinite in this sense.

Each prime divisor P of the extended field K determines a valuation and

hence a prime divisor p of the subfield k; call P a divisor of p. Every p has

at least one divisor P; the corresponding complete field Kp may be considered

as an extension of the original complete field kp. This local extension Kp/kp

is normal, and its Galois group A(P) is a subgroup of the original Galois group

T of K/k. If P is finite and belongs to a prime ideal P, then A(P) is the Hilbert

decomposition group of this P, so

(*2.10) A(P) =all 5 in the Galois group T with P5 = P.

Conjugate prime ideals P have conjugate groups A(P), so the order of A(P)

depends only on the original p,

(*2.11) mp= [KP:kp]= [A(P):1].

If P is infinite, Kp is either the real or the complex field. If Kp = kp, A(P) = 1,

and P| p is said to be unramified. If Kp is complex, kp real, A(P) is cyclic of

order 2 with a generator 8=5P and P|p is ramified.

Consider the corresponding local algebras for any p,

(*2.12) Sp = a normal simple algebra of degree m over kp, split by Kp/kp.

A normal simple algebra of degree m over kp contains an isomorphic map of

every possible extension of degree m over kp (see [9, Lemma 0]), hence Sp

contains an unramified cyclic extension W of degree m = mp. Therefore Sp has

a cyclic representation (W/kp, <r, a) where cr generates the cyclic group of

W/kp, while a is an element of kp.

The symbol (W/kp, a, a) represents the cyclic algebra which has over W a

basis of m linearly independent elements 1, u„, u%, ■ ■ ■ , u™, connected by

the multiplication table

(2) u„A = A°u„,      u„ = a;      m =

For such an algebra one may determine an integer which is invariant (inde-

pendent of the particular cyclic representation) by the formula(10)

(10) In [22], Hasse uses as invariant the quantity pp — {l/n)nP, modulo 1, which is inde-

pendent of our fixed degree n.
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(3) u(Sp) = u(W/kp, a, a) m (n/mp)Vp(a) (mod n).

Two normal simple algebras over kp are similar if and only if they have the

same invariant p modulo n.

Another invariant is the index ip of Sp/kp, defined as the degree of the di-

vision algebra (unique up to isomorphism) which is similar to Sp. This index

is known [21, 22] to be the reduced denominator of nP/n; that is, it is the

smallest integer ip such that

(4) ipHP = 0 (mod n), ip = the index of the algebra Sp.

For an infinite prime divisor p, kp is either the real or complex field, and the

only proper normal division algebra over kp the algebra of real quaternions

Q. The invariant of a normal simple algebra Sp/kp may then be defined by

p(Sp) =0 if Sp is a total matric algebra,

p(Sp) = n/2 if Sp is similar to Q.

For the direct product XSP2) of two algebras over kp (p finite or infinite)

one always has the formulas

(6) p(S™ X Sp2)) = p(sf) + ß(Sp) (mod »).

An algebra 5 over k has for each prime divisor p of k a local component

(5) p = Sp = SXkp, obtained by extending the coefficient field to the complete

field kp. This algebra Sp is normal simple over kv. Hence 5 has a set of invari-

ants pp(S) =n(Sp), one for each p. Conversely, it is known that 5 is deter-

mined up to similarity by the set of its invariants [2, 21, 22]. If Sp is a total

matric algebra, Sp~kp, then 5 is said to be unramified at p, otherwise rami-

fied. It is known that 5 is ramified at only a finite number of prime divisors

([2, pp. 148-149]).
For a crossed product the local algebras can be explicitly represented ([21,

22]) as

(7) Sp = (K/k, r, F), ~ (KP/kp, A(P), F n A)

where Ff~}A denotes the part of the factor set F applying to the group

A(P) =A; that is, FHA is the factor set with terms Ft,n for f, 77 in A. Here A

may be the decomposition group for any one of the prime divisors P of p.

If P is finite and P| p unramified, the invariant pp may be explicitly calculated

from the factor set F. For, under these circumstances the local extension

Kp/kp is cyclic, and its group A has as generator

(*2.13) 5 = 5p = the Frobenius automorphism [(K/k)/P] which is charac-

terized by the property (u)

(») See [20, Part la, p. 71 ]; [23, pp. 36, 38].
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(8) As m AN* (mod P), Np = absolute norm of p, VP(A) ^ 0.

Because KP/kp is cyclic, the crossed product (KP/kp, A(P), FC\A) can be

written as a cyclic algebra (Kp/kp, 8P, a), while the generator Wj for this alge-

bra may be chosen as the corresponding basis element u& of the given crossed

product. By (2) the multiplication constant a is then u™, where m is the

p-degree m = mpoi (*2.11). However

m m—2 t m—Z

a = us = (wjttj)ttj    = Fj,i(«i»«i)«i    = • • • = FSiSFs\s ■ ■ ■ F^-\iU^.

But M8m = Wi, and U\Us = Fi.jMj, so Wi = Fi,s. Consequently

m-l

(9) a = FU5FS,S ■ ■ ■ Fr-\S = il^a'.a (3 = h).

According to the definition (3) of the invariant jxp, we have

[TO— 1i-0

where 5 = 5/> is the Frobenius-Artin automorphism of order m = mp.

3. The module M. As in the cyclic case, one must restrict the numbers

under consideration to those relatively prime to some divisor

, . hi   hi hs

(1) M = Pi P2    ■ ■ Ps ,

where each P, denotes a finite or infinite prime divisor of K, while the A,- are

positive integers. The requirement "A relatively prime to M" means that A

is relatively prime to each factor Pj'' in M. If Pi is a finite prime divisor, this

statement has its customary meaning, while "A is relatively prime to an in-

finite P" means simply "A 5^0." It is convenient to say that a prime divisor p

of k is involved in M if some factor P of p is present in M (with a positive

exponent).

For M in the subsequent developments we use any module which satisfies

the conditions

(i) any p ramified in K/k is involved in M,

(ii) if p is involved in M, every P| p is present in M.

For example, M might be the product of all P's ramified in K/k. Alterna-

tively, M might be the factor-set conductor of K/k which is defined in §26.

A prime ""' will be used to denote elements or groups of elements rela-

tively prime to the module M.

(*3.1) A' = the group of numbers A^O of K relatively prime to M.

(*3.2) P' = the group of all factor sets of numbers F,,T relatively prime

to M.
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(*3.3) S' = S'(20 =the group of all normal simple algebras 5 relatively

prime to M.

Here we call an algebra S "relatively prime to M" if none of the ramification

divisors of 5 are involved in M; that is, if p involved in M implies

sxfcP~i(12).
4. Ideal algebras. By an ideal algebra © over the field k we simply mean

a specification of normal simple algebras Sp over kp, one for each prime di-

visor p of k, such that Sp~kp except for a finite number of prime divisors.

The algebra Sp is the component (©)p = ©p of ©. We agree to call two such

ideal algebras @i and ©2 equal if and only if their components (©i)2,~(©2)p

are similar for every p. For each such p we have the corresponding p-index

*„(©) =i(Sp) of the local algebra Sp. We say that © is split by the given ex-

tension K/k if, for each p, i„(©) is a divisor of the p-degree mp of K/k. In

case © has the components <&P = SP of an actual algebra S, this condition is

simply the usual condition that the algebra 5 be split by K [21, 22, 2]. Ideal

algebras form an abelian group under the operation of the direct product

(1) (@i X ©2)P = Si, X S2p.

Under this operation the set of all ideal algebras split by K constitutes a sub-

group

(*4.1) ©(if) = © = the group of all @'s split by K,

(*4.2) ©'(20 =©' = the group of all ©'s relatively prime to M and split

by K.

Again, © relatively prime to M means Sp^*kp for all p involved in Af. The

group S(K) = S of actual algebras forms, in natural fashion, a subgroup of ©.

We propose to compute the index

(*4.3) /= [©':S'].

An ideal algebra © is determined uniquely by giving the set of its local in-

variants pp=pp(©) =p(5p), for each prime divisor p. Thus an ideal algebra ©

split by K is completely specified by a list of integers pp subject to the condi-

tions

(2) mppp = 0 (mod n) for all p,

(3) fxp = 0 (mod n) for all but a finite number of prime divisors p.

Theorem 4.1. The index J defined in (*4.3) is J(T), the least common multi-

ple of the orders of the elements of the Galois group V.

Proof. The only relation between the invariants of a crossed product is

[2, 13, 22] ^PpP(S)=0 (mod 1). In terms of the invariants p„, this becomes

(12) Remember that (K/k, V, F')P~1 need not hold for p involved in M.
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^pßpiS) =0 (mod n). For a given ideal algebra the quantity

(4) = X Pp(@) (mod »)

measures the divergence of © from "actuality." More explicitly, the map

©—xi(©) carries the group © homomorphically (see §2, (6)) into an additive

group of integers d mod n, in such a fashion that the subgroup carried into

0 mod n is the group of actual algebras. By the restriction (2), each <£(©')

satisfies the condition J(r)d(©')=0 (mod n). Therefore ©—»d(©) maps the

quotient group ©'/S' isomorphically on the cyclic group of integers of order

J(T), generated by n/J(T) (mod n), provided there exists an ideal algebra ©'

with &{&>') = n/J(T). It remains to construct this ©. Recall that J(Y) is the

least common multiple of the orders Oi, • ■ • , Ot of certain elements

0*1, • • • , o-( of the Galois group. By partial fractions, we may express l//(r) as

l//(r) = fli/Oi 4- • ■ • + o«/0, (oi integers).

The Tschebotareff density theorem (see [20, Part II, §24]) asserts that for a

given (Ti there are (infinitely many) sets of distinct prime divisors pi of k with

factors Pi in K such that the Frobenius automorphism of Pi is o-;. One may

assume each pi to be relatively prime to M. By definition, the Frobenius

automorphism generates the decomposition group A(P,), so that the order nti

of this group is the given order Oi of <r<. There is thus an ideal algebra ©

relatively prime to M and split by K, with invariants

fip. = ncii/Oi (mod n), i = 1, 2, • • • , t,

ixq m 0 (mod »), (o ^ Pi, pg» • • • , p<).

For this algebra © we get d(©) =n/J(T), as desired for Theorem 4.1.

In this proof we may drop the requirement that the ideal algebras © be

relatively prime to M. The result is analogous.

Theorem 4.2. The index [©: 5] of the group of actual algebras in the group

of ideal algebras split by K equals Jo(P), the least common multiple of the orders

mp of the decomposition groups of the primes p in K/k.

5. Artin's character method. An ideal algebra can be given by a factor

set of ideals in K, as we now show by computing the "invariants" pp of such

a factor set. We use the following notation, in which each letter may also de-

note the group of all objects so labelled, while a prime ""' will denote the

restriction "relatively prime to M":

(*5.1) 21 = an ideal of K (possibly a fractional ideal),

(*5.2) 2l„ = a vector of n ideals, one for each tr in Y,

(*5.3) P2I = a transformation set 2L3IX""-1 derived from 2L,

(*5.4) 5 = a factor set gv.r of ideals of K, with a, r in Y.
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For each such set we introduce a function hP(a), determined by a in T and a

prime divisor P of K,

(*S.S) hP(o-)=hp(<x, 5)=LrVp(5..r) (mods),

where Fp is the P-adic valuation (see (*2.9)). If P is unramified in we

propose as an invariant of § the integer

(•5.6) pp=/M5)=M«, 8) (mod »),

where 5 = 5p is the Frobenius automorphism (see (*2.13)).

If p is the prime ideal of k divisible by P, each ideal in a factor set 5 may

be factored as

(1) - %% 9.;„      (»..„#) = 1

where the first factor involves only the prime factors Pu P2, • ■ • of p.

These ideals constitute by themselves a factor set which is p-primary in

the sense of the

Definition. An ideal factor set $ is called p-primary if all prime ideal fac-

tors of any ideal %„,r of the set are prime ideal factors P of the given p.

The factor set § and its p-primary component j5(p) clearly determine the

same function hp(a)(13).

Lemma 1. For factor sets of ideals gi and implies hP(8, fji)

= hp{h, %t) (mod n) for all 5 in A(P).

Proof. Multiplication of factor sets is represented by addition of the corre-

sponding functions h, for the definition shows that

(2) hP(c, $iS0 = hP{c, ft) + hP(a, g2) (mod »).

But j5i~i52 means that 8:i = o:2o:. where 5 is a transformation set. Hence we

need only prove hp(o, %) =0 (mod n), whenever % is a transformation set

But

(3) n [wx1] -«c(n*r)'(n si,-)"1 = c (n *

For o- in A(P), Fp(QTSlT) = P>([l4M% since <r leaves P fixed. Hence

Ap(«, 8L8ÖÜ1) = wFp(2l0) h 0 (mod n).

(13) The function h and its properties are due to unpublished work of E. Artin. The method

used will apply to factor sets 3 in any Pr(2l) for which the abstract group 21 with operators has

a suitable structure (generated by free generators P, Q, • • • , suitably permuted by T); see

the statement of Theorem 5 in [17].
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Lemma 2. The function h corresponding to any factor set ft is a character of

A(P) mod n; which is to say that

(4) hP(t) + hP(r,) = hp(tn) (mod n) (f, q in A(P)).

Proof. As in §1, (7) and (8), we introduce a vector S„ for each ft, with

(5) S, = II S».r, g£, = SrC'Cr' .

The function Ap(<r) is then given by

(6) Ap(<0 = Fp(C) (mod »).

By (5), the transformation set PS consists of wth powers, which means that

(7) 4- Kp(e') = Fp(6„) (mod »).

But Fp(Sr), the exponent to which the prime P appears in (5*, is simply the

exponent of the prime P"-1 in ST. If we set <r-1 = p, (7) becomes

(8) Vpp(&T) = Ap(p-1r) - hpijr1) (mod »),

If in (7) we let a be an element 5_1 in the decomposition group A(P), the re-

sult, expressed in terms of h, is

(9) hP(S) + Ap(t) =■ hP{oT) (mod »),        (5 in A(P), r in Y).

This includes the desired conclusion (4) as a special case. By a similar device

we may prove a partial converse to Lemma 1.

Lemma 3. If hp(8, g<p>)=.0 (mod n), for all 5 in A(P), then the primary

factor set ftfp) is a transformation set.

Proof. By (9),hp(8r) = hP(r) (mod n) then depends only on the coset of r

modulo A(P). There is therefore an ideal £ divisible by Pp exactly to the power

Äp(p_1). for each factor Pp of p, or

IV(2) = hP{p-\ ft).

Using (8), one may then show that t/fp(?1-T6T) =0 (mod n) for every p, which

is to say that 81_TSr is the wth power of some vector of ideals 93„,

= «" (all t in T).

Substitution of this value of 6r in the second equation of (5) yields ft" = T$$n.

Since the wth roots can be extracted uniquely (if at all) in the group of ideals,

the last equation means that g = 71S~1, as asserted.

Lemma 4. Every character h(8) of the decomposition group A(P) is the char-

acter h(8) =hp(h, ft) of some p-primary factor set ft of ideals.
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Proof. In r select for each coset crA(P) a representative <r*, taking care to

select the identity as the representative of A(P) itself. A product cnr*-1 is then

always in A(P). From the given character h(8) of A(P) we define an extended

function h*(<r) as

(10) **(#) = hi™*-1).

By the assumption (4) on A one then computes that A* satisfies (9). This

implies that the expression h*(<tt) — h*(t) is unaltered, modulo n, by replace-

ment of <r by another element 5er in the same coset. There must therefore be a

vector of ideals Sr with

Fp(Sr) = h*(r) - A*(l),

TV(gT) a Ä*0rV) - Ä*(p"1) (mod «),

in analogy with (8). From this definition one computes that Fp"(S,6rS"'T1) =0

(mod «), so that this transformation set must be an «th power T& = ftn. Here

ft must be a factor set because it is the (unique) wth root of the known factor

set P6. Furthermore this p-primary factor set % has the given function A(8)

as character, for one computes by (11) that hP(5) = Fp(ßj) = A(5) — A(l) = A(5)

(mod n).

These results may be summarized by

Theorem 5.1. If the prime ideal factor P of p in K/k has the decomposition

group A(P) with the commutator subgroup A(P)', then the number of classes of

p-primary factor sets of ideals in K is equal to the index [A(P) :A(P)'].

Proof. The preceding lemmas show that the correspondence ft^hP(8, ft)

maps the group of classes of p-primary factor sets isomorphically on the group

of characters A(5) mod n of A(P). Hence we need only count the number of

such characters. Each character maps the commutator subgroup A(P)' onto

zero, mod n. Furthermore, each character of A(P) is induced by a character

of the abelian quotient group A(P)/A(P)'. Conversely, this abelian group has

a number of characters equal to its order, which is the index [A(P):A(P)']

of the conclusion.

Corollary. If P\p is unramified, the number of classes of p-primary factor

sets is the p-degree mp of Kp over kp.

Proof. P\p unramified makes A(P) cyclic. The character hp{8) is essen-

tially independent of the choice of the prime ideal factor P of p. If Pp is any

other factor, the decomposition group A(P") of Pp is obtained from A(P) by

the isomorphism ö-^pöp-1. If 5 is the Frobenius automorphism of P, then

pbp~l is the Frobenius automorphism of Pp.

Lemma 5. For any prime factor Q = P", the corresponding character is
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(12) hQ(P8p-\ g) = hP(8) (8inA(P)).

If P\p is unramified, P and Q determine the same invariant pP(ft)=po.(ft).

For by (6), (8), and (9),

Wp"1) = 7q(6„,-i) - Fp(C-i)
= 7,(6ip-i) - IM&p-i) = hp{8p~1) - ÄP(p-1) m hP(8) (mod «).

It is useful to express the character h in several different forms.

Lemma 6. The character of any factor set ft is given by the expressions

hp(8, ft) = (n/m) X Kp(5».*) (summed over all ij in A),

(13) '
= (n/m) 22 Vp(ft,,s) (summed over all t) in A),

i

where m = mpis the order of the decomposition group A = A (P). If f lies in a sub-

group A CA of order r, then

(14) hp(£, ft) = (n/r) ^ Vp(ft„,t) (summed over all r\ in A).
i

Proof. In the second half of (5), set <r=S, T = n, take the order Vp and

sum over 77 (i.e., over 8rj). There results

«Z VP(fts„) = mVP(&s).

By (6), we have on the right mhp(8), hence the first result of (13). For con-

venience, we represent the exact exponent of P in the decomposition of ft;by

V* = VP(ftt,v).

The second half of (13) reduces to proving that the "right" and "left" sum

functions

are identical. But the associativity relations for ft yield for the exponents ej-,,

the analogous relations

(15) %„ 4- ef,,5 = e,,£ 4- er,,i (f, v, £ in A(P)).

If this equation is added over f and then over £, one finds

£(ij) + 1(f) = me,,; 4- I(iJÖ, «ef>* + = *0?) + W

If we solve these equations for the common value met,v, we find

m + m - my) = m + m - wi>.
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In this equation set 77 = 5*, f = 5, and add for i = 0, 1, • • • , m— 1. The result

is mR(b) = mL(8), and hence R(8) =1,(5), as desired for (13).

The relation (14) describes in effect the behaviour of a character when ap-

plied to a subfield (corresponding to the subgroup A) of K. We set

L&(£) = 2j e,,f (summed over all 17 in A).
1

The associativity relations (15), summed over all f in A, give

Lib) + La(ö = re„, + Za(ti£) (i?, £ in A).

Combination with the similar equation for L itself yields

(»/r)[l_(«) + LA({) - LA(*JÖ] =       +       - L(#).

As in the previous case this entails (m/r)LtL(n)=L(ri). This gives (14), for the

functions L can be written as

im = £ Fp(S„r) („ in A),
1

1(f) = Z Vp(5,.r) (77 in A(P)).

The invariant pp®) as defined in (*5.2) is the same for all prime factors Q of p

by Lemma 5, for it is known (see [20, Part II, p. 51 ]) that the Frobenius

automorphism for Q = P" is obtained from that of P as hQ = phPp~l. We write

Mj>(5) =Pp&) =Mo(S:) f°r this common value. These invariants of ft form a

complete set for ideals relatively prime to the module M.

Theorem 5.2. Two factor sets ft{, ftj satisfy ft{ ~fti if and only if

Mp(Si ) =Mj>(02 ) (mod n) for every p relatively prime to M.

Proof. According to Lemma 1 we need only show that a factor set ft with

its invariants all zero is a transformation set. As in (1), consider some p-pri-

mary component ftlp) of the given factor set. Since the ideals are all relatively

prime to the module M, we need consider here only prime divisors p which

are unramified in K/k. For such an unramified p the decomposition group

A(P) is cyclic with generator 5p, and the invariant pp = hp(8P) determines the

whole character h(8P). Hencep„ = 0 (mod n) implies hP(8P)=0 (mod n), which

in turn makes i3(p)~l, as in Lemma 3. Since this holds for any p-component,

ft itself is ~1. In similar fashion we have

Theorem 5.3. Let integers pp be given for every p relatively prime to M such

that, for every p,

mppp m 0 (mod «),

and such that pp = Q (mod n) except for a finite number of prime divisors p. Then

there exists a factor set ft' of ideals relatively prime to M with the invariants pp.
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The computation of pp may be summarized (see [13, 14]) by

Lemma 7. If 8 = 8p is the Frobenius automorphism of a factor P of p, then

(16) m*(8) = («/»)Vp[nS«<.«], m = mv.

Furthermore, for the product of two factor sets

(17) PP(ftiftt) - Mp(Si) + **„(&) (mod »).

If 7] = 8' generates in A(P) a subgroup of order r, then

(18) tßM) - W^f [ S 8^.,] (mod »),

Note that formula (16) is just like the formula (10) in §2 for the invariant

up of an actual algebra. Hence

Theorem 5.4. Any factor set FA of numbers determines a factor set ft = (FA)

of principal ideals, such that for unramified p the invariants uv of the ideal factor

set ft and the algebra (K, T, FA) coincide:

(19) uP((FA)) m uP(K, T, FA) (mod n).

It is instructive to observe that the analysis of p-primary factor sets may

be reduced to the factor sets er,, of integers with the associativity conditions

(15). Such a factor set determines a group extension of the additive group E

of rational integers by the group A(P), under the assumption that each f in

A(P) induces in E the identity automorphism ef = e, e in E. One may prove

Theorem 5.5. If P is a prime ideal factor of p, and if ft,, r=P/"'T33„, T, with

(33, ,r, P) = 1, is a p-primary factor set ft of ideals, then the exponents ftfor f, 17

in the decomposition group form an additive factor set FE=f(,nof integers. The

correspondence ft—>FE maps the classes of similar factor sets ft isomorphically

on the classes of similar factor sets of integers.

Corollary. The number of group extensions of the group of p-primary ideals

by the Galois group V is the same as the number of group extensions of the addi-

tive group of integers by the decomposition group A(P).

Here a "p-primary ideal" is one whose prime ideal factors are all factors

of the given prime ideal p of k.

6. Factor sets for ideal algebras. Following E. Noether, we consider the

factor sets given by

(*6.1) F" = factor sets P^4 composed of numbers F„,T relatively prime to

M, and such that the algebra S=(K, T, FA) is relatively prime to M.

As before, "5 relatively prime to M" means Sp~kp for every p involved in M.
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Such factor sets F" determine certain factor sets of principal ideals (FCtT)

which are said to constitute the principal class?*) of ideal factor sets.

(*6.2) (F") =the group of factor sets (F,,T) of principal ideals generated

by(16) factor sets F,,T of type F".

This group is contained in the group ft' of all factor sets of ideals relatively

prime to(16) M.

The representation of an ideal algebra ©' by an ideal factor set in 5' = FSl'

may be stated as

Theorem 6.1. The index J (the number of ideal algebras relatively prime to

M modulo the actual algebras relatively prime to M) is given by

where TW ■ (F") denotes the join of the subgroup TW of transformation sets and

the subgroup (F") described above.

Proof. Each factor set ft' = F21' of ideals determines a set of invariants

Pp(S') which are the invariants of some ideal algebra split by K. The corre-

spondence

maps the group of factor sets ft' homomorphically into the group of ideal

algebras ©' relatively prime to M, for multiplication of factor sets corre-

sponds to multiplication of algebras (§5, (17), §2, (6)). For each ©' there is a

corresponding set of invariants pp, for which there must be, by Theorem 5.3,

a corresponding ideal factor set ft'. Hence (2) is a homomorphism. To prove

the identity (1), it remains only to investigate the subgroup of ft carried by

(2) into the group of actual algebras.

The subgroup TW of transformation sets is clearly carried by (2) into a

certain group of actual algebras, for the invariants of a transformation set

are all zero (mod n), as stated in Theorem 5.2, so the corresponding algebra

is similar to k. On the other hand, the principal ideal factor set (F") is mapped

by (1) on the actual algebra (K, Y, F"), according to Theorem 5.4. It remains

to show that every factor set mapped into S' lies in the product TW ■ (F"). If

F—>5', then the algebra S' has a crossed product representation (K, T, F)

in which the factor set F may be so chosen that its components are relatively

prime to(17) M. Thus F is a factor set F". According to the correspondence

(14) This principal class is narrower than that denned by Noether in [33], to the exact

extent of the requirement that each FCtT be relatively prime to M.

(16) In this definition, it is essential not only that (Fa,T) be an ideal factor set, but also that

the numbers P„,T be themselves a factor set.

(") Note that the infinite prime divisors in M do not impose conditions on ideals.

(") Proof is given below; see Theorem 6.2.

(1) J = [®':S'] = [FW:TW-(F")l

(2) ft' -* ©'   if, for all p,   ßp(ft') m Up(&) (mod »)
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(2) , ft and S' have the same invariants. Hence, by Theorem 5.4, ft and (F")

have the same invariants. Therefore their quotient is a transformation set

(see Theorem 5.2). This proves (1) completely.

In the above proof we have assumed part of the following characterization

of factor sets relatively prime to M.

Theorem 6.2. Let S be a normal simple algebra over k with maximal sub-

field K. Then S has a crossed product representation S= (K, T, F') with a factor

set F' of numbers relatively prime to the module M if and only if, for every prime

ideal p involved in M, the p-adic component Sp of S has a representation

(3) Sp~(KP/kp,A(P),FEP)

in which FEP is a factor set for the group A(P) in the group Ep of units of the

field Kp?*).

Proof. If S=(K, T, F'), then each P„')T is a unit of each KP, so we have

the representation (3) by the usual formula of §2, (7) for the p-component

of a crossed product. Conversely, assume (3) for every p involved in M. The

algebra 5 has some crossed product representation S= (K, V, F) with a factor

set F not necessarily relatively prime to M. Then Sp can be computed (by

§2, (7)) as

Sp ~ (KP/kp, A, Ft,v) ~ (KP/kP, A, Et,,)

where Er,, denotes the given factor set of P-adic units and A=A(P). Since

similar algebras arise only from similar factor sets, one has

1**or Fr»(itpMr«)*r*«

from some vector At of elements in Kp. One may then compute the character

function h associated with the factor set of principal ideals (70. By Lemma

5.6, putting m = mp,

Mf. (F)) - (n/m) £ VP(Ft„)
i

• (n/m) £ Vp(AtAUt)
v

m (n/m) \mVP(At) + £ VP(AV) - £ VP(A,,)\ m 0 (mod n).

Therefore the p-primary part of (F) has character 0 and so is similar to 1,

(18) Note that in the theorem we consider only finite prime divisors. For infinite unramified

prime divisors p there are no proper local division algebras. If p is ramified then there is the

algebra of all real quaternions. The condition F' relatively prime to M admits in the latter case

the real quaternions. One finds that fi„{/7j a<0 (S in the decomposition group of the ramified

prime divisor) implies that (K, T, F')p is not similar to kp.
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which is to say that there are (p-primary) ideals 93* for which the similar fac-

tor set (F) ■ (T$b) is relatively prime to p. This can be done simultaneously

for all the prime divisors p involved in M. One may then select another vector

of ideals (S„ such that Sff is relatively prime to M and 58,6, is a principal ideal

(D„). We obtain then by the transformation

(F) ~ (F)(TSB)(T<5) = (?)(r93(5) = (F)(TD)

a new factor set which is relatively prime to M. Thus F'=F • TD is a new fac-

tor set of numbers which is similar to F and relatively prime to M. This gives

the desired representation of 5 as 5= (K, V, F').

7. Crossed characters and principal genera. In considering transforma-

tion sets TA we shall repeatedly deal with the group of those vectors AQ for

which the transformation set TA is 1. Following a terminology suggested by

A. H. Clifford, we call these vectors "crossed characters" of I\ Specifically, let

77 be any multiplicative abelian group with V as a group of operators. Then a

crossed character of V in 77 is any function 77 (cr), with values 77(cr) in 77 for

each a in T, which satisfies the identity

(•74) 77(<rr)= U(o-)[U(t)Y (77 a crossed character).

The vector group of all such crossed characters we call 7777. From a fixed ele-

ment 77 of the given group one may trivially obtain a crossed character

77(<r) =77w. We call this a unit character, while two characters are associates

if their quotient is a unit character. With the notation

(*7.2) 7777 = the group of all crossed characters in 77,

(*7.3) 77w = the group of unit characters = the group of vectors {TT1"",

aller in T},

the index [7777:771-"] will measure the number of classes of associated crossed

characters of T in 77.

A "principal genus theorem" is an assertion that every crossed character,

under certain conditions, is a unit character. The principal genus theorem for

ideals [33] is

Theorem 7.1. Every crossed character of the Galois group T in the group 21 of

all ideals of K is a unit character. The same conclusion holds for crossed charac-

ters in the group W of all ideals relatively prime to M.

Proof. If &„ is a vector of ideals, the theorem asserts that 7X5 = 1 implies

S<r = 931~<r for some ideal 93. Let 93 denote the greatest common divisor £ß„

of the given ideals. Then one computes that =93 ([13, p. 127]). One may

write 93=93'8, where 93' is relatively prime to M and 8 contains only prime

factors of M. If each 6, is relatively prime to M, then

gw = = g„/93'1-"
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is relatively prime to M for every <r, so that 81_<r= 1. Then S„ = 931-ir=93'l-<',

so 93' is the desired ideal in the group 21'.

There is also a similar theorem for numbers (Noether's principal genus

theorem (19)).

Theorem 7.2. Every crossed character of V in the group of all nonzero num-

bers of K is a unit character?").

Lemma 1. Given a factor set F= TB, with F but not necessarily B, relatively

prime to M, there exists a vector BJ relatively prime to M for which F= TB'.

Proof. Write the principal ideals (73,) as (73„)=2US„, 2L relatively prime

to M, where E„ involves only those prime ideals p of K which are involved

in M. Then (F) = 7"(73) = 711- PS. Since (F) does not involve any p of M, the

transformation set PS has no prime factors in common with either (F) or 7111.

Hence PS=1, and S„ = 93l_", by the principal genus theorem. Choose 21'such

that 9321' is a principal ideal (77). Then

(BJD^°) = (730/(77)!-- = IL€»/®,-f'4~ = WP**,

so that BJ =BC/D1~" is, like 2L, relatively prime to M. Furthermore,

TB' = TB/TD1'" = TB = F,

so the vector BJ has the desired properties.

In order to clarify the meaning of the principal class (F") of ideal factor

sets which appears in our basic index §6 (1), we now quote Noether's general-

ized principal genus theorem [33, 13]:

Theorem 7.3. If the vector K, of ideals (not necessarily relatively prime to

M) yields a transformation set T<& which lies in the principal class (F") of ideal

factor sets, then there exists an ideal 93 of K, such thatS81~° and S„ lie in the same

ideal class, for every a in T. In other words, there exists a vector of principal ideals

(73„) such that

(1) (S, = (J,)©1- (all a in V).

If E, is relatively prime to M, 93 and B, may be chosen relatively prime to M.

In other words, we have the implication

(2) m = (F") -» 6, = (73„)931-'.

Proof(21).  Let T(E = (F").  By definition (*6.2) of F", the algebra 5

(19) Principal genus theorem "im Minimalen" [33].

(20) The corresponding assertion for the group A' of all numbers relatively prime to M is

false. If p= (Pi • • • Pg)' is ramified in K/k, then there is an element B with (B) =Pi ■ • ■ Pa<§.,

& relatively prime to M. The vector Ca = B1~" is relatively prime to M, but C„ = B can be

shown to be impossible.

(21) We repeat a proof here to check the provisions "relatively prime to M" which are not

present to Noether's original theorem.
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= (K, T, F") h as Sp^l for any p involved in M. On the other hand, for a

prime divisor p not involved in M, we may compute the invariant

up(S) = uP(F") = ßp(T<£) m 0 (mod »),

according to Theorem 5.4 and Lemma 5.1. Hence 5,,~1 for all p. This means

that 5~1, so the factor set for S is F" = TB, where the elements 73 „ may

be chosen relatively prime to M, as in Lemma 7.1. Thus T(H= (F") = (TB),

T[Qi<,(B^1)] = 1, so (Ea(Ba~l) =93w, by the principal genus theorem for ideals.

This gives the result (2).

8. Cyclic analogues to factor sets. It has long been recognized that prop-

erties of factor sets provide parallels to the properties of the numbers which

appear in the usual class field theory for cyclic fields Z/k. The parallel is as

follows (we denote by X a generator of the cyclic group of Z/k):

Cyclic Z/k Arbitrary normal K/k

1. A normal simple algebra S/k with maximal subfield Z (or K) may be

represented as

a cyclic algebra a crossed product

S = (Z, X, a), S = {K, T, F).

2. This algebra is then determined by

a, a number, F, a factor set.

3. The associativity of the products in the algebra gives the condition

a in k, F satisfies the associativity condi-

tions of §1, (4).

4. The algebra S is a total matric algebra if and only if

a is a relative norm in Z/k: F is a transformation set:

a = Nz/kC, F = TA.

5. The algebra 5 is a total matric algebra if and only if Sp~kp for all p;

that is, if and only if, for each p,

a = NPCP FAA = T±AP

where NP is the relative norm in where      is a transformation set

ZP/kp, ior A=A(P),AP in KP.

6. If 73 is a number of Z (73„ a vector of K) then

Nz/tB = 1, TB, = 1
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holds if and only if, for some C in Z (ör in K),

B = Cx-X B, m C1-" (all o- in T)

(Hilbert's norm theorem), (minimal principal genus theorem).

7. A conductor

c(Z/k), C(K/k)

(see §26 below).

8. The principal genus consists of all ideals 93 (ideal vectors 93,,) relatively

prime to the conductor c (to M) such that

/Vz/*93 = (v), m = [F%

where the essential condition(22) is that, for every p in C(Z/k) or M,

{Z,\,v)9~kp, (K, r, F'% ~kp.

In the cyclic case the precise results of the class field theory depend on

the computation that

[a': (r)2Vr] = «

where a' denotes the group of all ideals in k which are relatively prime to the

conductor c(Z/k). Since norms correspond to transformation sets, elements

of k to factor sets, ideals in k to ideal factor sets, and norm residues to factor

sets F", one sees that the corresponding index in the general case will be the

index

/ = [FK':m'(F")]

which has already appeared in Theorem 6.1 as our main index /.

Next we shall show briefly that the general index / specializes to

[a': (v)NW] in the cyclic case. So suppose that the cyclic Galois group is

generated by X. We can normalize the factor set in the usual manner(23)

n-l

»=0

We apply this process to the various groups involved in /, so

(1) FW^f[^,x = 93,
t=0

(2) (F')^Ti(F"<,x) = (B),
i-0

(*) The condition on v is equivalent to requiring that v be a norm residue for c(Z/k).

P) See, for example [13, pp. 64-65]; as well as §2, (9) above.
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(3) m' -» n (2Ix<2lxX 2lx<+0 = Nzi^x

gives a homomorphism of the various groups involved in / upon those of the

classical class field theory. We first remark that 93 is an ideal b of k, for 93

is relatively prime to M and invariant under X. Inversion of the normalization

of factor sets proves that every ideal a' in k can be obtained as a 93 from some

FW, and that every NW has the form NW\ for some TSIx' of (3). It remains

to prove only that the norm residues v are the elements B obtained from the

principal class (F") in (2). Assume that the prime divisors p involved in the

module M are precisely those which appear in the conductor c(Z/k) (i.e.,

precisely those ramified in Z/k). Then B of (2) is in k, is relatively prime to

c(Z/k), and is the normalized constant of the algebra 5= (Z, X, B) = (K, Y, F").

By definition of F", Sp = (Z, X, B)p~kp for all p in c(Z/k). Therefore B is a

local norm for each such p, so is a norm residue for c(Z/k). Conversely, any

norm residue v is relatively prime to M and determines an algebra (Z, X, v)

which is relatively prime to M and so can be written, by the inverse of the

normalization process, as (Z, T, F"). This completes the proof of the assertion

that / specializes to the classical index in the cyclic case(24).

We propose to investigate how far the methods used for the cyclic case

will carry in the calculation of J = [FW: TW(F")].

Chapter II. Indices for groups of algebras

9. Group-theoretic principles. The usual computations for the group in-

dices in the cyclic case involve a number of principles for transforming given

group indices. These we now state for reference. It is customary to carry out

these group reductions formally, without any indication of purpose. Rather

than join in this type of obscurantism, we attempt to formulate some direc-

tions for such calculations. If R, S, jT(26) are given abelian groups, the usual

problem is to compute the index [i?:S] of some subgroup S in R.

The objective can be attained if R and S are groups determined by simple

and explicit generators, so that the quotient group R/S can be described com-

pletely and its order [i?:S] computed. For example, the group 21 of all ideals

has a simple generation by prime ideals. In order that this direct computation

be possible, it is necessary to change a given index to indices involving other,

simpler groups.

The simplest case is the introduction of suitable intermediate groups. In

the class field theory it is especially useful to introduce a subgroup from the

(24) For general abelian extensions K/k the general index obviously does not specialize to

[31': (V)iV2r]. The fact that the latter factor group is isomorphic with V cannot be explained

by referring to general factor sets. It is a consequence of the special structure of K over k.

(26) The letters R, S, T are used in this section without reference to their previous and later

meaning.
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base field corresponding to a given group in the extension K. (Thus the group

of numbers 5^0 of k is a subgroup of the group A for K.) In general, if [22: T]

is finite,

(1) RDSD r-> [R:T] = [72:S]-[S:T].

A characterization of a given group in different terms is often an essential

preparatory step to a reduction. Thus the principal genus theorem for ideals

characterizes the vectors 331~" as those vectors &„ for which P((S») = 1.

A reduction principle may be applied if a given group is a composite of

two groups R and 5. Since the groups are abelian, this composite is

(*9.1) 22S = the set of all products rs, for r in R, s in 5.

One has [23, p. 129],

(2) [RS:S] = [22:2c ns],

where 2?P\S denotes the intersection. This equality may be proved on the as-

sumption that either one of the two given indices is finite. If the composite

occurs as a subgroup ST(ZR, one may introduce a smaller subgroup S and

write, using (1)

(3) [R:ST] = [R:S]- [ST-.S]'1 = [R:S]- [T:S O T]-1

on the assumption that [22:5] is finite, or that [22:57"] and [7":5] are both

finite.

The isomorphism principle is the well-known description of the effect of a

homomorphism upon suitable subgroups. If <j> is a homomorphic map of R

on R', while S' is a subgroup of R', the set <p~"1(5') composed of all ele-

ments of R mapped by <p into S' is a subgroup of R, and the quotient groups

R/<b~l(S') and R'/S' are isomorphic. Hence

(4) [*:+-*&)] = [R'--S'],

provided either index is known to be finite.

The homomorphism principle describes the similar computation for any

index [R: S] under a homomorphism </> mapping R into part of a group T.

Let<p-I(l) denote the set of all elements mapped by <p onto the identity 1 in T.

Then

(5) <£-1(l) 1^ S = all elements of S mapped onto 1 by <b.

One has

(6) [R:S] = [4>(R):<p(S)]-[<p-Kl)nR:d>-Kl)r\S],

provided [22:5] is finite.

This principle will be applied to two homomorphisms occurring naturally

in our theory. The first is the map
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(7) 21    211-' = 21/21"

carrying an ideal 21 into the vector with components 21w. The second is the

map

(8) 2I„ -> 7%, = TU = 2L2C/2U

under which a vector 2L determines its correspondent transformation set. The

analogous homomorphisms in the cyclic theory are

21-^-N 2I-»/vV2L

These homomorphisms have the convenient property that they may be ap-

plied in either order, one after the other, with the result always the identity

Urgp-t) = (Ml) »-» = 1.

This situation is exploited in the famous Herbrand group reduction principle

[23, pp. 130-131]. In the general case this cannot be done, for it is meaning-

less to apply (8) "followed by" (7). This is the root for some essential diffi-

culties in our computations (see §§18-23).

Another important homomorphism is

(9) A -* 04)

mapping the group of nonzero numbers on the group of principal ideals. This

homomorphism is often applied backwards, to reduce an index on principal

ideals to one on numbers. Under this homomorphism, the group mapped onto

the identity is exactly the group of units. This is the point at which the units

are inserted into the computations.

Lemma 1. Let RZ)S be multiplicative groups of numbers in K, while (R), (S)

are the corresponding groups of principal ideals, generated by these numbers. If E

is the group of units of K, then

(10) [(*):(£)) = [RE-.SE],

provided either of the indices concerned is finite. If R~Z)E, one also has

(11) [(*):($)] = [R:S][E:S n E]-t

provided the index [R: S] is finite.

The proof will illustrate the systematic application of the principles above.

Apply the homomorphism R-^-(R) and observe that the subgroup carried into

the identity is simply the group E. Hence by (6), one has

[R:S] = [(R):(S)][Rn E:S C\ E],

which gives (11). On the other hand, the homomorphism RE-^(RE) = (R) is



320 SAUNDERS MAC LANE AND 0. F. G. SCHILLING [September

one in which all elements mapped on 1 lie in the subgroup E of SE. Thus the

isomorphism principle of (4) applies to give (10).

For direct products, one has

Lemma 2. Let RiQR and SiQS be subgroups of the respective factors of a

direct product RXS. Then

(12) [R X S:Ri X S1] = [R:Ri] - [5:5,},

provided the indices on either side of this equation are known to be finite.

As an application, suppose that i?D5 are groups of numbers of K, while

Rt (S„) is the group of vectors with components R„ (5„) in R (5) for every cr

in r. The group R„ is thus the direct product of n groups R, where n is the

order of V. Hence, if [i?:S] is finite,

(13) [R.:S.] = [R:S]*.

10. Invariant ideal classes. The basic index / can be transformed into a

form involving the number of ideal classes of K invariant under the group T.

The results are stated in Theorems 10.1 and 10.2, while the method is directed

at successive applications of the basic homomorphisms 21—>2IW and 2L—>r2I.

We need the notation:

(*10.1) 2Iw = a vector a all elements of V), for 21 a fixed ideal,

(*10.2) £=the group of all units in K,

(*10.3) H= [2l:(4)]=the class number of K,

(*10.4)  h = [a: (a)] =the class number of k.

Consider the index /= [Fä':TW(f")]. Since the second group is com-

posite, one applies the appropriate reduction of §9, (3), to get

/= [fw.(f")][m':mr\ (f")]-\

This is valid because the second index is finite, as will appear in the course

of the subsequent computations of this section. The second member of /

arises from a homomorphic map 21,—»jT3t, and the principal genus theorem

states that the vectors carried into the subgroup TH'A(F") by this map

are exactly the vectors of the form W~"(AC), with 21 and A, relatively prime

to M. Hence the isomorphism principle yields

(1) J = [FIV:{f")][2U :wi-*<4%]-1.

Here the vector groups occurring on the right are (temporary notation):

2l„' = the group of all vectors 21, with components relatively prime to M,

2t'1_" = the group of all vectors of the form 2l'1~'r, for an 21' relatively

prime to M,

(A'), = the group of all vectors of principal ideals generated by numbers

A' relatively prime to M.
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The composite appearing in the second index again suggests a reduction by

(3) in §9,

(2) [fU :Wl-°(A%] = [KJ : (A%] n {A'),]~\

This step (and the previous one) is valid if the index [2U : (A ')„] on the right

is finite. This it is, for such an index of two vector groups reduces, as in

Lemma 2 of §9, to(26)

lit*: (A'),] = [W:(A')]" = H\

But the second member of (2) suggests the homomorphism 21—>2l1_". For the

elements carried by this homomorphism into the subgroup 211_<rf>\04)<r we

use the letter 3):

(*10.5) 33 = all ideals in K with 331_<r principal for every a in T.

For the moment we also denote by 33' the ideals of 33 relatively prime to M.

These ideals 33 might be called ideals in "invariant classes," for by definition

33" and 3) lie in the same ideal class, for every <r. Under this homomorphism,

(2) becomes

(3) [21/ :t'l-*(4'),] = H»[W:®']-K

The quotient iJ[2l' :33']_1 involved here suggests the elimination of the group

21',

(4) fffSWH - [W:(A')][W= [33':04')]-

In the latter index, one may drop the condition "relatively prime to M."

Specifically, any ideal 33 generates an ideal class which contains some ideal 93'

relatively prime to M, so 3) =93'04). Here 93'1_,r, like 331_<r, must be principal,

so that 93' is in 3)', and 3) is the group join 3)'04). By the reduction principle

[3): 04)] = [3)'04):04)] - [3)': (A) A 3)'].

The intersection (4)H3)' is just the group of principal ideals {A'), so

(5) [3): 04)] = [3)': 04')].

A combination of the results of (1), (3), (4), and (5) yields

Theorem 10.1. If H is the class number of K, while [33: (A) ] is the number

of invariant ideal classes of K (see (*10.5)), then the basic index is

(6) J = [F2T: (F") ] [3): (A) h1//1"",

where the first factor gives the number of ideal factor sets relatively prime to M

modulo the "principal class"' (F") of (*6.2).

(26) Note that the class number H may be computed with a restriction to ideals relatively

prime to M (any ideal class contains an ideal relatively prime to any given module).
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To study the index [3): 04)] appearing above, we use the definition of 3D,

which involves the mapping of 3) on the vector of principal ideals. The

subgroup carried into the identity by this mapping is the group of invariant

ideals 3.
3 = all ideals of K with 3 = 3", for every a in T.

The corresponding subgroup of invariant principal ideals is (A), where

(*10.6) A =all numbers 5*0 of K with (A1"") = 1, for every a.

According to the homomorphism principle we get,

(7) fc:(A)] = Ik^U^HSKA)}.
The group of principal ideals (A) certainly includes all principal ideals (a)

of k. The introduction of this subgroup in the second factor of (7) yields

(8) E3:(A)] - [»(>)][(A):(a)K

provided the first index is finite. To see this, use the subgroup of ideals a in k,

for which

[3:00] = [3:a][a:(a)].

The second factor is the (finite) class number h, while the first measures the

number of invariant ideals 3 which are not extensions of ideals in k. But an

invariant ideal 3 involves with each prime factor P every conjugate P". If P

is unramified in K/k, the product PiP2 • • • P„ of all conjugates Pi of P is a

prime ideal p of k, consequently is in the group a. Hence any 3 is congruent

modulo a to an invariant ideal 3 involving only prime factors P ramified in

K/k. If p is a ramified ideal in K/k, with

(9) p = (Pi ■ • • PaY, e = e„

then the invariant ideals involving only factors of p must all be of the form

(Pi • • • Pg){. For these ideals we get a complete set of representatives modulo

a if i ranges from 0 to e — 1, for (Pi • ■ • Pg)e = p is an ideal in a. Combining the

effects due to the different ramified primes (according to the direct product

of the partial groups 3) one finds

[3:a] = LT ep (over all finite p of k).

Therefore the first factor on the right of (8) is indeed finite, and the result is

(10) [3: (A)] = h(llep)[(A):(a)]-\

The index [(A): (a)] may be shifted to one involving only numbers. Since

every unit E is by definition (*10.6) a number A, one has, by equation (10)

of §9,

[(A): (a)] = [A:aE].
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To exploit the definition of A one clearly must use the homomorphism

A—>AW. In this homomorphism the only elements mapped on the identity

are in a, so the isomorphism principle yields

[<A):(#)] = [A«~:JEM.

The vector A1-" can be characterized as a vector of units E„ which can be

obtained as E, = Al~" for a number A =A. By the principal genus theorem

for numbers, the vector E„ has this form if and only if TE,= TE = \, i.e., if

and only if E„ is a crossed character U(a) (see §7).

(*10.7) 77£ = the group of all crossed characters of T in the group of

units = all vectors of units U(a) with U(<r) [U(t)]"= U(<tt).

Then

(11) [(A): (a)] = [UE:E^].

Theorem 10.2. The number of invariant ideal classes of K is

(12) [D:(4)3 - [^>1-":(Al-")][UE:El-'']-lh1[[ep,

where [UE: E1-"] denotes the number of non-associated crossed characters in E,

h is the class number of the base field k, and the product \\ep, taken over all finite

prime divisors p, uses

(*10.8) ep = the ramification order of the prime ideal p in K/k.

The crossed characters of units are closely related by (11) to the principal

ideal theorem [30 ]. The group (A) of principal invariant ideals includes the

group <Xk of those ideals in k which become principal ideals in K, so that

(13) Mfl)] g [UE:E^}.

In case K/k is unramified, the above computation of a] shows that all (A)

lie in ük, so that this inequality becomes an equation. We state the result as

Theorem 10.3. The number [ür '■ (a) ] of ideal classes of k which become prin-

cipal in K is at most equal to the number of classes of associated crossed characters

of T in the group E of units. If K/k is unramified, these two numbers are equal.

The equation (11) in reality involves an isomorphism (A)/(a)~ü7£/El~r.

As Moriya ([30]) has done in the cyclic case, one may call those crossed

characters, which in this isomorphism correspond to elements in the subgroup

aK/(a), crossed characters of the "first kind." This allows an obvious restate-

ment of Theorem 10.3.

11. Reduction to unit factor sets. A further reduction leads now to the

formula for j given in Theorem 11.2 below. We use the notation

(*11.1) FE = the group of factor sets of units,

(*11.2) TE = the group of all transformation sets of units.
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The index 041-")] of Theorem 10.2 may be shifted from ideals to

numbers if one observes that by definition (*10.5) each S)1-" is a principal

ideal (#„). Let 0„ temporarily denote any vector of numbers so obtainable,

(d„) = 3)w, for some £) and all a.

Surely a vector of units E„ is such a vector, for each (Ea) is 1. Therefore the

principal ideal shift of §9, applied to these vector groups, yields

[^—.(A^)] = [(*,): 041-)] m [er:A^E.].

Now apply the homomorphism da—>Td„ = Td. The elements mapped on 1 by

this homomorphism are all in the group of vectors A1-", according to the

minimal principal genus theorem (see §7). Hence the isomorphism principle

yields

(1) [&-~:(A1-)] = %:A>*E.\ = [T6:TE].

We next investigate the group Td. By definition, (0„)=jD1-", so

r(ö) = rS}1-" = l. Each element of the factor set Td is thus a unit of K,

so Td is contained in the group FE of factor sets of units. On the other

hand, Td is a transformation set of numbers, hence the corresponding crossed

product algebra S=(K, V, Td) is a total matric algebra. Since each p-adic

component Sp of this algebra is then similar to kp, it follows that Td is one

of the factor sets F" considered in our basic index.

We now assert that these two groups FE and F" not only both contain Td,

but that their intersection is Td,

(2) FE n F" = TO.

For, let F be a factor set in the intersection (27), and consider the invariants

of the crossed product (K, T, F) = S. If p is ramified in K/k, the assumption F

in F" means that Sp~l, hence that the corresponding invariant pP = 0

(mod n). Hp is finite and not ramified in K/k, the invariant up(S) may be

computed by the explicit formula of §2, (10). Since all the FC,T of the factor

sets are units in K, the invariant turns out to be =0 (mod n). If p is infinite

and unramified the invariant is also =0 (mod n). As the algebra S is com-

pletely determined (up to similarity) by its invariants, this proves S~l.

Therefore the factor set Fis a transformation set F = TA„= TA. The principal

ideals T(A„) = (TAJ) = (F„,r) are then all equal to 1. The principal genus theo-

rem for ideals then asserts that (AJ) =S)1-(r for some ideal 3). Therefore the

vector A, is one of the vectors d„, F=TA lies in the group Tdc, and (2) is

established.

Introducing this expression in the index (1), we have

Theorem 11.1. The first index of Theorem 10.2 is

(") This proof is essentially due to E. Noether [33].



1941] NORMAL ALGEBRAIC NUMBER FIELDS 325

(3) [S)1-*:^1-*)] = [FEC\F":TE].

The same intersection group may be extracted from the first factor of J,

as found in Theorem 10.1. In [FW:(F")] insert the intermediate group (F')

of ideal factor sets (see (*3.2)):

[FW: (F") ] = [FW: (F') ] [(F'): (F")}.

Here the second index may be shifted to numbers, after the manner of §9,

(11), with the results

(4) [FW: (F")] = [FW: (F')] [F':F"] [FE:F" r\FE]~l

which is valid provided [F':F"] is finite.

When this result is inserted in the expression (6) for J in Theorem 10.1

and combined with the results of Theorems 10.2 and 11.1, we find a formula

for J, the denominator of which involves parts of (4), as

[FE:F" r\FE][FEr\F":TE} = [FE:TE\.

All told, one has

Theorem 11.2. If the factor set index [F':F"\ is finite?*) (see (*6.1)), then

J = [FW:(F')]H^h-1[F':F"](Tl ep)-U(E),

J(E) = [UE:El~"][FE:TE]-\

where the product is taken over the ramification orders ep of all finite primes,

where H and h are class numbers, and [FW: (F')] is the number of ideal factor

sets relatively prime to M modulo the principal ideal factor sets.

The group E of units in K appears in (5), as the quotient J(E): the num-

ber of classes of crossed characters of E divided by the number of group

extensions of E. In the sequel we turn to the separate investigation of the

terms in (5). We first compute [F':F"], proving it finite, then reduce the

index [FW: (F') ] in terms of a certain group-theoretic "deficiency" index, and

finally devote a chapter to the index J(E).

12. Local algebras with factor sets of units. The study of factor sets F"

for algebras unramified at the divisors of M will subsequently be reduced to

questions on local algebras Sp with factor sets of p-adic units. For any local

algebra Sp split by Kp/kp we consider the possible crossed product representa-

tion

(1) Sp = (KP/kp, A(P),F)

in which F=F{iV denotes now a factor set defined for the elements 77 in

the Galois group A(P)=A of Kp/kp. Since the invariant p of this algebra is

(28) The finiteness [F':F"] will be proved later, in Theorem 13.1.
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an element of an additive cyclic group, the class group of these algebras is

cyclic of order mp = m = [Kp: kp]. Consider now only those factor sets F which

consist of P-adic units.

Theorem 12.1. The p-adic algebra classes Sp which have a crossed product

representation (1) with a factor set FEp consisting of P-adic units Et,, form a

cyclic group of order ep, where ep is the ramification order of Kp/kp.

Proof. If Kp is unramified over kp, e = ep = \, and the theorem follows

readily. For A = {5} is then a cyclic group, so the invariant u(Sp) can be

computed as in (10) of §2. The result is a sum of terms Fp[£a»,j] which are

all zero because the P-adic order of a unit Es\i is zero. Since the invariant is

zero, the algebra 5P~^P, as asserted. In the general case the maximal un-

ramified subfield W of Kp has over kp a degree f = m/e. Any algebra 5phas

as index a divisor of m, and the index is the same as the exponent of Sp in

the group of algebra classes. Hence the index of the power Sp is a divisor

of m/e. This means that S£ has W/kp as splitting field, so that Sp is similar to

some crossed product of W. By a formula due to Witt [41], one can explicitly

calculate this representation of Sp. If £2 is the subgroup of A corresponding

to W according to the Galois theory, the extension W/kp has the factor group

A/12 as Galois group. If for each coset 77 Q of this factor group a representative

77' in A is selected, Witt showed that

(2) Sep = (KF, A, FEp)°~ (W/kp, A/A, B)

where the factor set B consists of quantities given in terms of FEp = Et,v as

■ßfn.i" = LT •Ef",,'PM,f,'Pa,,1(f,)' (over all w in Q).
til

For our purpose we need only note that if the original factor set FEp con-

sists of units, then this derived factor set will also consist of units. By the com-

putation already made for the unramified case, the algebra (W, A/0, B) of (2)

is then similar to kp, so that S£~/ep. In the group of all algebras with factor

sets of units any algebra thus has order at most e. This group must be cyclic

by the remark at the beginning of this section. Consequently to complete the

proof of the present theorem we need only show that some algebra with factor

set of units has order at least e. In the whole (cyclic) group of all local alge-

bras Sp there is one algebra of order m = ef. Hence it will suffice to show that

the/th power of this algebra has a factor set of units. This is indeed the case,

as we shall prove in

Theorem 12.2. Any factor set F for Kp/kp has its fth power Fs similar to a

factor set of units.

Proof. The integer f=m/e can be described as the inertial degree of Kp
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over kp. If the factor set F does not already consist of P-adic units, denote

by et,v the P-adic orders Fp[Pf,,] of its elements. The associativity relations

if multiplied over all values of f (in A), yield for the e's the relations

(3) bv + b( = me,,f +

Here &, denotes the P-adic order VP(BV) of a vector P„ with

= IjX,. cr«D>r...
r i

For these two vectors the associativity relations, multiplied over all values

of i), yield

C(Bt = 5{Cf,

which is to say that B\ = Pj. The invariant element B$ must therefore lie in

the subfield kp, which implies in turn that its P-adic order 6$ is a multiple of

the ramification order e. Hence b^ = eai for a suitable integer aj, and (3) can

be rewritten as

If .4r is a vector of elements of the respective orders — at, this means that

(T^yp^

will be a factor set each of whose elements has P-adic order zero (i.e., is a

P-adic unit). In other words F! is similar to a factor set of P-adic units, as

asserted.

If p is an infinite prime divisor, Theorem 12.1 still is valid, if we adopt the

usual convention as to ramifications at infinity. If Kp = kp, the extension

Kp/kp is, of course, unramified, and ep= 1. If Kp is the field of complex num-

bers, kp is that of real numbers, then Kp is ramified over kp with ramification

order ep = 2. Theorem 12.1 then holds because the group of algebras Sp over kp

is then generated by the algebra of real quaternions.

13. Algebras with factor sets relatively prime to M. One of the partial

indices in the formulas (5) of §11 is [F':F"], for the group F' of all factor

sets of numbers relatively prime to M and the subgroup F" consisting of those

factor sets F' for which (K, T, F")P~kp whenever p is involved in M. To

reduce this index, we apply the natural homomorphism carrying F into a

crossed product

(1) 77 —> S = (K, T, F).

According to Theorem 6.2 we map F' on the group Se, defined by
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5e = all normal simple algebras S/k split by K/k such that, whenever p

is involved in M, Sp has a crossed product representation (Kp/kp, A(P), FEp),

with a factor set FEP of P-adic units.

The subgroup F" is, by its very definition, the group of those factor sets

carried by the homomorphism (1) into algebras S' relatively prime to M.

Hence, by the isomorphism principle(29),

(2) [F':F"] = [S.lS'l

The index on the right can be computed in terms of the behaviour of local

algebras Sp at the ramified prime divisors. Let us use the following notation:

(*13.1) pi, pi, • • ■ , pt all (finite and infinite) prime divisors of k which are

ramified in K,

(*13.2) e, = the ramification order of a divisor P< of pi,

(*13.3) nii = [Kpi'.kpi] =the local pi-degree of K/k.

Then e< | w,- and nii\ n (n/ttii is the number of distinct prime factors of p).

Theorem 13.1. The index [F':F"] may be computed in terms of invariants

of K/k as

(3) [F':F"] = n~\n, J(T)n/eu ■ • • ', J(T)n/et)H
v

where the product is taken over all {finite and infinite) ramification divisors of

K/k, while J(T) is the least common multiple of the orders of the elements of the

Galois group V of K/k.

For a proof we appeal to the local invariants of the algebras Se. If p< is a

ramified prime divisor, the component Sp of an algebra in Se has by definition

a factor set of Pj-adic units. In the group of all algebra classes split by Kp/kp,

Sp consequently has an order which divides (Theorem 12.1). The integral

invariant of S at p,- thus equals(30) p<(5) =Xi(n/ei), where Xi is an integer

which is uniquely determined mod e*. We map the group Se on a vector group

of these invariants,

(4) X = (xi, Xi, ■ ■ ■ , xt),      nxi = e,-pi(S).

(29) This equation may also be viewed as follows. The homomorphism which carries a fac-

tor set F into an algebra S is in effect the reduction of the group of factor sets modulo the trans-

formation sets. The group of algebras Se obtainable from F' is therefore isomorphic with

F'/{TAC\F'). Similarly, S' is isomorphic with F"/{TA(~\F"). But the intersections TAC\F'

and TA C\ F'' are identical, for a transformation set TA which is relatively prime to M will nec-

essarily determine a total matric algebra. Hence it will lie in F". Consequently

= [F'/(TAr\F'):F"/{TAr\F')]=[F':F"].
(30) For simplicity we write the local algebra 5 and the invariant m with i instead of pi as

subscript.
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For all the unramified prime divisors p which are involved in M we have

Sp~kp. Hence an algebra S of Se belongs to the subgroup S' if and only if

each Si~ki; that is, if and only if the vector X of invariants corresponding to

S has the form

Y = (yici, yie2, • ■ ■ , ytet),

with invariants Pi(S) =y,e<(w/e,) =0 (mod n). Therefore our index becomes

[F':F"] = [S.:S'] = [X:Y\.

If we introduce the group of all vectors

Z = (zi, Z2, • • • , Z()    (each z< a rational integer),

this index will become

(5) [F':F"\ = [Z:Y]/[Z:X] = I[e,/\Z:X],
V

where the product is taken over all prime divisors of k.

It remains only to compute the index [Z:X], which measures how many

of the a priori conceivable sets of invariants z,- are possible for an actual alge-

bra S. The only condition on the invariants of an algebra 5 is the sum rela-

tion (see [22]),

t t

(6) 0 = £ p,(5) = £ Ui(S) + X uq(S) ■ E + £ Uq(S) (mod «),
p t=l q tmi q

where q runs over all prime divisors distinct from pi, • • •, pt. The invariants

uq(S) =pq can be considered as the invariants of an ideal algebra @ which is

unramified at every p< (* = 1, 2, • ■ ■ , t), but which otherwise has the same

components as does 5. We have

Lemma 1. An integer r can be the sww£ppj,(©') of the invariants of an ideal

algebra ©' if and only if J(Y)r = Q (mod n).

Proof. In establishing Theorem 4.1 we showed that any r satisfying the

above condition is the invariant sum of a suitable ideal algebra Con-

versely, an invariant pj,(©') for an unramified p has by definition (see §2, (3))

the form sn/mp, where 5 is an integer and mp is the order of a correspond-

ing Frobenius automorphism. Since mp\j(T) we have J(Y)up(<&') =0, and

/(r)EJ-M3>(©')=0 (mod n).

Lemma 2. A set of integers Xi belongs to the group X of (4) if and only if

ELf*<</(r)«/«i) =0 (mod n).

Proof. The relation (6) characterizes the integers x, by the condition that

—Ef-i*<(*/*<) De congruent, mod n, to the invariant sum of an ideal alge-

bra      Lemma 1 now gives the result desired.
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By the elementary theory of congruences it is now possible to find a basis

for the group X. One need only select from those vectors in which the first

i—1 components are zero a vector (0, 0, • • • , 0, Xa, • • • , x1() in X with a

minimal ith component xa>0. The index [Z:X] of (5) is thenHi-i*;»- This

product can be computed as n divided by the greatest common divisor

(*13.4) n* = (n, J(T)n/eu • • • , J{Y)n/et).

The formula (5) then becomes the assertion (3) of Theorem 13.1.

We pause to discuss the invariant n* of (*13.4), which appears in the for-

mula (3). Clearly /(r)|w*|ra. In the definition (*13.4) one may omit any d

which divides J(T). Suppose in particular that some p, has no higher ramifica-

tion^1)- Then the ramification order ei is the order of the inertial group of

Pi\pi, which is cyclic, so certainly ei\j(T). The formula (*13.4) thus need

include only the prime divisors p,- with higher ramification.

Theorem 13.2. The invariant of (*13.4) satisfies n* = n if and only if the

ramification order e of every p in K/k is a divisor of J(T). In particular, n*=n

whenever J(T) = n, or whenever there is no prime ideal p in k with higher ramifi-

cation in K.

Theorem 13.3. Let lr be the exact power of a rational prime I which divides

the degree n= [K:k], while Is is the largest power of I which occurs as the order

of an element in the Galois group T. Among the prime ideal divisors P of I in K

select one whose Hilbert ramification group Vi has as large an order l" as possible.

Then the exact power lu of I dividing n* is given by

u = r (if v < s),

u = r — (v — s) (if v ^ s).

Proof. This theorem follows at once from (*13.4), for the ramification order

e of a prime ideal which divides the rational prime / has the forme = e0^,

where (e0,1) = 1» while l" is the order of the first Hilbert ramification group.

The inequality n* <n can actually arise, even though an earlier summary

of these results ([29]) was based on the assumption «* = «. For a simple ex-

plicit example, let k be the field R of all rational numbers, while K = R(6l,2,7ln)

is a quartic field with the four group as Galois group. In each of the three

quadratic subfields i?(6I/2), R(7112), and i?(421/2), the rational prime 2 is rami-

fied, since each field has an even discriminant. It follows that the ideal (2) is

totally ramified in K/R, for in any other event, K would have a quadratic

subfield which is an inertial or decomposition field for (2), counter to the

observation above. Since (2) has ramification order 4, while J(T) — 2, we con-

clude by Theorem 13.2 that n* = 2, w = 4.

A more general construction is embodied in

(31) Each prime factor Pi of pi has its first ramification group Fi = l.See [20, Part fa, p. 70].



1941] NORMAL ALGEBRAIC NUMBER FIELDS 331

Theorem 13.4. Let I be a rational prime which is not totally decomposed in

an algebraic number field k. Then k has an abelian extension K with a degree

n = l'"^P such that the invariant n* is at most I2.

Proof. The local class field theory [9] may be used to construct an abelian

extension of type (/,/,•■•, I) with sufficiently complicated ramifications. By

hypothesis, I has in k some prime factor p with a local degree np = [kp:Ri]^2.

Consider the corresponding group k*/k*1. This group can be explicitly ex-

pressed by using a basis of the units in kp. In the regular case, when kp con-

tains no primitive Ith roots of unity, the group k*/kpl is abelian of type

(I, I, ■ • ■ , /), with Wp-f-1 generators. In the irregular case, when kp contains all

Ith roots of unity, the group k*/k*1 is abelian of type (I, I, ■ ■ ■ , I) with np-\-2

generators. (See [18] and [24].) In either event the existence theorem of local

class field theory asserts that kp has an abelian extension Ap with a Galois

group isomorphic with k*/k*1. The degree of this extension is at least

/"p+1^/3, since by hypothesis npg^2. In Ap/kp, the Galois group modulo the

inertial group is cyclic, consequently it has order at most I. By Grunwald's ex-

istence theorem [16], the local extension Ap/kp can be obtained from infinitely

many abelian extensions A /k with the same Galois groups a.sAp/kp. The in-

variant n* of (7) is then n*g(n, J(T)n/e) g(n, 11) =l2, as asserted.

These examples may be combined to give the following conclusion:

Theorem 13.5. Over any algebraic number field k there is a normal (abelian)

extension K with(Z2) n* <n.

14. Algebras with given local components. The questions raised in §13 as

to the existence of local algebras with specified local components suggest an

analogous inquiry: when is a given local algebra a component of an actual

algebra? This leads to a certain index [<SCp):S(p)], analogous to the main in-

dex [©': 5'], where

(*14.1) ©(p) =the group of classes of normal simple algebras S(p) split by

Kp/kp,
(*14.2) 5(p)=the group of those algebras ©<p) which are components of

some 5 split by K/k.

If p is unramified, the invariant of ©(p) has the form pp(©(p)) =x(n/mp)

(mod n). By the Tschebotareff density theorem we know that mp = mq for at

least one other unramified prime ideal q of k. There is thus a local algebra Sq

with an invariant ßq(Sq) m —x(n/mq) (mod n). These two invariants add up to

Uq(Sq) 4-Pj>(@(p>) =0 (mod n), so there is an actual algebra 5 with ©(p) and ©a

as its only non-trivial components. Therefore 5(p) =©(p) for any unramified p.

Consider next the t ramified prime divisors pi with associated decomposi-

C32) For the existence of suitable primes I consult the density theorems. See [20, Part II].
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tion groups of order (33) m{. The invariants of an actual algebra 5 must satisfy

the relation

+ £ ß,(S) + £ *(S) = 0 (mod ») (q * tu ■ ■ • , p,).
jV«,J=l 3

The terms here can be arbitrary multiples of n/nii, n/nij, and n/mq respec-

tively. The possible values for Ui(S) are then found by elementary number

theory.

Theorem 14.1. At an unramified prime divisor p every local algebra Sp split

by KP/k pis a component(3i) (S)p of an algebra S split by K/k, while at a ramified

prime divisor p=pi of p-degree m, (i=l, ■ • ■ , t) the index of the group S(p)

in ©(p) is

[@<»>;S«] -mt[{m, n{)]-\

Hi = l.c.m. [mi, • • • ,        mi+i, J(T)].

Specifically, a local algebra 5(p) is a component (S)p of some S if and only if

its invariant satisfies the condition

(mi, «,)p(5(p)) m 0 (mod n).

That the indices (1) are drastically limited is indicated by the following

calculation. In introduce as an intermediate group the composite 5@'

and apply the reduction principle (2) of §9. Then

(2) = [®'.WS][Wm\ = [©':£'].

The second index was computed in Theorem 4.1 to be J(T). The first index

may be transformed by the homomorphism which carries each ideal algebra ©

into the vector {(®)i, • • ■ , (©)<} of its components (©),• at the ramified

prime divisors p,-. Under this homomorphism each algebra of the join ©'5

goes into the vector of components {(S)%, ■ ■ ■ , (S)t] of the actual algebra S.

Hence, by the isomorphism principle,

[«:€W] = [{(€9* • • • - (©).}: {(5)i, ■ • • , (S)t}].

On the right we obtain a larger group if we allow distinct (S)i's to arise from

different algebras 5. The group index is then that for a direct product, so that

[@:©'5] 2: II [©<pP:S<pi>] -II m/(mt, n().
<=i i=i

If in (2) [©:5] =Nand [©':5'] =J(T) are evaluated as in Theorems 4.2 and

4.1, we obtain

(33) Notation as in (*13.1).

(M) For the time being, we denote the p-component of an actual algebra 5 by (S)p.
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Theorem 14.2. The local algebra indices of (1) are limited by

t

(3) II [©'V:$<"<>] g N/J(T).
irni

However, these local indices are not necessarily all 1.

Theorem 14.3. Over any algebraic number field k there is an (abelian) nor-

mal extension K for which [®<p): S(p) ] > 1 for at least one prime divisor p.

Proof. If k is not the rational number field, there is at least one(35) rational

prime i which has in k a prime ideal divisor p of absolute local degree greater

than 1. We assert then that [<S(p):S(p)] >1. As in Theorem 13.4, the local

class field theory gives an extension Ap/kp which is abelian of type (/,/,•••, /)

with at least three generators. According to the Grunwald existence theorem

there is a field A /k with the same Galois group as A p/kp which has at p the

local component Ap/kp and which has at each other prime ideal divisor q of /

some specified local component Aq/U^ of degree (say) i2. Then in the index

[<5(p):S<p)] of (1), the p-degree mi corresponding to pi=p is at least lz. If any

q = qt is ramified, the corresponding degree mi is at most i2, by construction.

Finally, if there is a ramified p,- not a divisor of /, this p,- cannot have higher

ramifications because the degree of the extension A /k is a power of i. By the

Hilbert theory, the p,-degree w, can then be at most i2. In (1), each degree m<

(with        is at most/2, while /(f) is i. It follows that [@<P>:S<P>]

It remains to consider the case when k = R, the field of rational numbers.

The extension K = R(2112, (-1)1/2, 51'2) is abelian of type (2, 2, 2). The prime

ideal (2) of R is ramified in six of the quadratic subfields of K, while in the

seventh field P(51/2) it is inert. By the Hilbert theory it follows that (2) = P4

in K. Therefore the degree mi corresponding to pi =(2) is wi = 8, any q^2

in R has no higher ramifications, hence has degree mqat most 4. By formula

(1) it follows that(36) [@<p>:S<p>] ^2.

Certain properties of the norm residue symbol (37) suggest also the consid-

eration of algebras with unit factor sets

U(p) =the group of classes of algebras ©(p) with factor sets of P-adic units.

By Theorem 12.1 the group U(p) has order ep. As in Theorem 6.2 one may

prove

Theorem 14.4. An algebra s has its p-component in UCp) if and only if s

has a crossed product representation with a factor set F of numbers relatively

prime to p.

f85) For example, one might select any / which is ramified in k/R.

(*) The extension K might also have been constructed by local class field theory. Indeed,

2,-1, and 5 are the generators of the factor group R*/R*2 in the dyadic field

(«) See Chapter V, §27, Theorem 27.4.



334 SAUNDERS MAC LANE AND O. F. G. SCHILLING [September

The previous methods also enable us to determine when a local algebra

U(p) with an invariant x[n/ep] (mod n) can be realized as the component of

an actual algebra 5.

Theorem 14.5. At a ramified prime divisor p=pi the number of algebras

11, = U(pi) which cannot be realized as components Si = S(pi) of an actual algebra

S is given by

(4) f&vuni&l]-*t/<*t,*d,

where    is determined^*) as in (1);* = 1, 2, ■ • • , t.

By the devices used in the proof of Theorem 14.3 one may demonstrate

that this index necessarily exceeds 1 if p is a prime divisor of k of absolute

degree at least 3, and if K is suitably constructed.

15. An invariant of a group pair. For the convenient statement of subse-

quent results we need a certain "deficiency" invariant for homomorphisms of

groups. Consider any abelian group R for which T is a group of operators, with

a T-allowable subgroup 5(39), and

(1) SR = R/S, a group with operators in T,

(2) <p, the natural homomorphism of R on R/S = Rcb,

(3) 8(72) = G, a group extension of R by T.

Since 5 is a T-allowable subgroup of R, it follows that S is a normal subgroup

of the extension G, so that the quotient group G/S is a group extension of R/S

by T. The set of all such extensions G<b = G/S forms a subgroup of the group

of all extensions of SR [6, 43]:

(4) 8(Ä) = ®, a group extension of 9? by T.

The index of this subgroup in G is our deficiency index.

Definition. If the homomorphism <f> of R has S as the subgroup of elements

mapped into 1, the deficiency of R modulo S is

(*15.1) co(72, S)=[8(22cp):{8(2?)}c/>].

The special extensions Gcp may also be described in the following terms,

due essentially to A. H. Clifford. Given an extension G of 22, an extension ©

of SR by the same group T, and a homomorphism <j> of 2? to SR, we say that G

is a tp-prolongation of ® by S if and only if the homomorphism cp can be so

extended to a homomorphism of G to ® that the subgroup of those elements

of G mapped into 1 is exactly the given subgroup 5 of 22. The extensions Gcp

(3S) For the notation see the preceding developments.

(39) That is; j* is in 5 for every s in 5 and a in V.
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of our definition can then be characterized as those extensions @ of 5R which

admit a cp-prolongation by 5. The problem of prolonging a given group ® by S

may also be described as the problem of superimposing two group pairs,

© D 9t D 1,     rdsd1,     R/S - ft,

in such a fashion that they "overlap" properly in a combined group

G D R D 5 D 1,      G/S = ® extending        = 9?.

This combined group may be viewed as a specially restricted extension of 5

by &, where 5 is considered as a group with operators in © according to the

natural rule Su* = S'r for all elements u, in a coset cr of ®/9c.

In less invariant fashion, the same deficiency index may be described in

terms of factor sets. If Ra,T is a factor set FR, then the elements (R,,T)<j> con-

stitute a factor set for R<b = 9t.

Theorem 15.1. The deficiency index, in terms of factor sets, is

(5) »(R,S) = [F(R<p):(FR)<p],

provided one of these indices is finite.

Proof. Each factor set F(R(p) determines in the usual manner a group ex-

tension & = (R<j>, T, F(R<p)), while a factor set (FR)<p yields under this map one

of the "prolongable" extensions Gcp = (R, V, FR)<b. We shall have proven (5)

in accordance with the isomorphism principle of group theory, provided we

show conversely that

(R<b, V, F(R<t>)) = G<b   implies  F(R<p) = (FR)d>.

Now G is given by a factor set as G = (R, T, FR), so Gcp also has the factor set

(FR)<f>. The sets F(R<p), (FR)<p thus determine the same extension of 9J, hence

are similar,

f(R<t>) = (frmmm'rVCrl

The transformation set Tdl„ can clearly be written as the homomorphic image

of a transformation set TRa, where Rc is chosen in the coset 9t„. Hence

F(R4>) = {(FR)[rJCr7?]}4>,

as required for our proof.

16. Factor sets of principal ideals. In the formulas of §11, there appears

the index [r7?!': (F')]t known to be finite. Between these two groups we may

insert the group F(A') of factor sets of principal ideals. This group need not

be the same as the group (F') = (FA') of principal ideals derived from factor

sets of numbers. In fact, the index of (F1) in F(A') is exactly a deficiency

index, in the sense of §15, for the homomorphism A'—+(A') belonging to the

subgroup E of units; or
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(1) [F(A'):(F')] = [F(A'):(FA')] = w(A\ E),

(2) [FW:{F')} = [m':F(A')]u(A', E).

The first index here suggests the use of the group of ideal classes in K.

Specifically, set

(*16.1) 2l' = the ideal class determined by the ideal 21.

Then 2l' will also, as usual, denote the (finite) group of all ideal classes in K.

Applying to part of (2) the homomorphism 21—>2l', we have

(3) [FW.F(A')] = [(FW)* :l] = [FWfA^FWf.iFWy]-1.

The second index is by definition a deficiency index

(4) co(2T, (A')) = [FW#:(FW)f] = [m:(FW)t],

for 21'= 21''. The first index [F2l'#:l] maybe reduced to group extensions,

(5) [FW A] = [FW:mt][m*A].

The homomorphism which carries a vector of classes 2lf into a transformation

set !T2l' will introduce the group of crossed characters (721 , as

[m*A] = [2l*:l][i72I#:l]-1

= [2P: 1 ]" [ m*: W-° hl [2I#1-ff: 1

The index [2l#: l] is the class number H, while the homomorphism 2l'-^2l#1_"

will give

(6) [7W:1] = H^imtiW-^h.

The results (2) through (6) may now be combined as

Theorem 16.1. In terms of the group 21' of ideal classes in K and the de-

ficiency index co of §15, we may write

[W':(F')] = H^hu(A', £)k«', (^'))]-1[^(ä')]-1,

7(2io = [uw.w^Ww.m*]-1.

In this formula there appear two indices co depending on the module M.

We inquire now how each depends on the nature of M.

Theorem 16.2. The index co(2l', (A')) is independent of the choice of the

module M, provided only that this module involves all ramified prime divisors

for K/k.

Proof. We may consider two such modules Mi and M with Mi | M. The

respective indices are (4) and
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«(31/, (Ai)) = [FK{:(FW)*l

where $L{(A{) are ideals (elements) relatively prime to Mi. Hence the con-

clusion of the theorem will follow if we prove (FM{ )*= (FW)*. This will be

the case provided the factor set FW can be turned into a factor set relatively

prime to M by multiplication with a suitable factor set of principal ideals,

as asserted in the following lemma:

Lemma 1. If pis unramified in K/k and ft is a p-primary factor set of ideals

in K, there exists another factor set fti relatively prime to any specified module

such that ftfti is a factor set of principal ideals.

Proof. Our chief concern is to show that fti can be chosen so as to be a

factor set. Select P, a prime factor of p with the decomposition group A(P),

and let L be the corresponding decomposition field in K/k. Since P is un-

ramified the ideal P is present(40) in L. There is then in L an ideal S relatively

prime to M such that P(S is principal. Furthermore E, like all the elements

of L, is invariant under all automorphisms 5 of the group A(P). Because of

this invariance, we can, in an unambiguous fashion, set up the following ex-

tension of the correspondence M>(P)=S to all p-primary ideals (see §5). If 21

=n»-f>a"'. let

*(3l) = n

For arbitrary p-primary ideals SI, 23 this function has, according to its origin,

the properties

(8) Sf^SI) is relatively prime to M, Wfr(W) is principal,

(9) *(3I5S) = *(3I)*(23),      ¥(«') = [*(»)]',

for every r in T. In other words, the mapping 31—»^(SI) is an operator homo-

morphism of the group 3I(p) of p-primary ideals on a subgroup of the group 31'.

It follows that the map ^(ft) of a p-primary factor set will be itself a factor

set. Consequently, the product S^KS) will be a factor set of principal ideals,

as asserted in the lemma.

The dependence of the other deficiency index of (7) on M is exhibited by

(10) MI Mi  implies   u(A{, E) g u(A', E).

For, the index oi(A', E) of (1) involves the subgroup (FA'), which may be

written as the intersection (FA') = (FA)C\F(A'), since a factor set of princi-

pal ideals is relatively prime to M if and only if the generators of the ideals

are relatively prime to M. Hence

(40) Subject to the usual convention that an ideal in L is to be identified with its extended

ideal in K.
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(11) u(A',E)= [F(A') :{FA)r\ F(A') ] = [(FA)F(A'): (FA) ].

In this form the conclusion (10) is immediate. It implies that o)(A', E) is

eventually independent of the module M. In order to obtain a more precise

result we must employ a roundabout method.

Theorem 16.3. The index oi(A', E) is independent of the module M, pro-

vided only that this module M involves all ramified prime divisors of K/k.

Proof. If the formula (11) is substituted in the final formula (5) of Theo-

rem 11.2 for the basic index J, one obtains a relation (see (15) below) between

various indices which are all independent of the module M, with the exception

of the indices u(A', E), w(3T, (A')), and [F':F"]. The latter index was shown

in Theorem 13.1 to be independent of M, while we have just shown that the

index co(SI', 04')) is independent of a module M of the type under considera-

tion. This gives the result of Theorem 16.3.

Theorem 16.4. If K/k is a normal extension such that K and all subfields

L over which K is cyclic have class number 1, then uj(A ', E) = 1.

Proof. The proof of the theorem depends on a choice of special prime ele-

ments in K. Let p be an unramified prime ideal for K/k, 2l(p) the group of

p-primary ideals in K, P a typical prime divisor of p in K, A = {5} the asso-

ciated decomposition group. Then P is an ideal of the decomposition field La,

over which K is a cyclic extension. By hypothesis La has class number 1, hence

(12) P = (tt), with 7t in LA and irs = w.

Next write T in terms of cosets

r = criA 4- <r2A -f • ■ ■ -f- a0A,       g - [TIA].

The prime ideal factorization of p in K is given as

(13) p = n P"<, P"'5 = (P5)*' = P".
i=l

Now select for each prime ideal P"' = Pi the prime element ir***=sjF< as gen-

erator, P,= Or,-) in K. Let II(p) be the group of power products of all the prime

elements tt,. By construction Wp) and n(p) are groups with T as operator

group. We assert that they are operator isomorphic with respect to T. For

the proof we use the correspondence

.     . ai as ai ag r,al"l <W0

(14) fi ■ • • wg -» On • • • «■»> •= JP    • • • P .

We have to investigate the effect of an element er in T. By the coset decom-

position of r, we get cr = cri5, a(jj = o-j'hj, where 5,- in A and j' in {1, ■ • • , g}

are both determined by j. Consequently
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(S -'")'
is an element of II(p). Similarly

( TJ pw)   = JJ p™,a' = JJ p"' J°J =      p'» °'
\ j=i      /      )-i ;=i j=i

Thus the correspondence (14) is an operator isomorphism with T as allowed

set of operators.

Choose now for every p relatively prime to M such a group LT(p), and let 23'

be the group of numbers generated by all groups II(p). Then 31' is operator

isomorphic with 23' under the natural extension of the mapping (14). For the

proof remark that 31' is the direct product(41) of the groups 31(p). By the corre-

spondence B'*->(B') we map 23' in an operator isomorphic fashion in 31'. This

rule is, in fact, the rule (14). It is an isomorphism by the behaviour of the ex-

ponents. Finally, we remark that every element A in A' has a unique repre-

sentation A =EB where E is a unit of K and B an element of B'. By the prime

ideal decomposition of (A) we first determine an element 23 in 23' such that

(23) = 04). Then 0423-1) = 1, whence A =BE with a unit. This representation

is unique, for A=E\B\=EB implies (B) = (Bi) and therefore B=B\ and

E = E\. Consequently, A' is equal to the direct product B'XE with T as

operator group. Therefore by Lemma 2 of §9(42), u(A', 22) = 1.

To summarize the results thus far obtained, use the basic formula (5) of

§11 with the value for [FW: (F')] obtained in Theorem 16.1 and the formula

for [F':F"] obtained in §13. The latter formula involves the product YLep

of the ramification orders for all prime divisors p. Part of this will cancel

against the productJJep over all finite prime divisors, as in (5) of §11. There

remains the product He*^ over the infinite p's. This is just 2", where p is the

number of infinite prime divisors of k ramified in K/k. All told, the basic index

/=/(r) is

7 = n*n-^{A', £)co(3T, {A'))-U{E)[J(W)]~l2p,

(15) J(E) = [UE:El~"][FE:TE}-\

7(310 = [uw.w-'^Fw.m*]-1.

Chapter III. Factor sets of units

17. The Herbrand unit group. The analysis of the index 7(£) entering in

our formula is based on the explicit structure of the group E of units. This

in turn depends on the classification of the infinite prime divisors of k and K.

Recall that a prime divisor p=px of k is called real or complex according as

(41) With r as set of operators.

(42) Lemma 2 of §9 obviously generalizes to the kind of direct product we consider here.

a a j aj
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the corresponding complete field kp is the real or the complex field (see §2).

The infinite prime divisors of k then fall into three classes according to the

types of their divisors in K (see [5]):

(1) pM,< (t = li • • • , Pi) real in k, with n real divisors in K,

(2) poo.i (* = Pi4-li • ■ ■ , fi) real in k, with n/2 complex divisors in K,

(3) poo,» (*=fi4-li • • • , fi+*"i) complex in k, with n complex divisors in K.

In each case let Px,i be any one prime divisor of px,i, while A(P00,<) is the cor-

responding decomposition group (composed of all automorphisms of T which

leave fixed the valuation belonging to P „,,<)• F°r a prime divisor of the first

or the third type, A(Pc0,l) consists only of the identity, and Pj\px, is said to

be unramified. For a prime divisor of the second type, A(Pac,,) is acyclic

group of order 2, while Pj[pK is ramified. For all cases, set

(4) 5j = the generator of the decomposition group A(P00,,),

(5) Ki = the decomposition field of P„,< (the field left invariant by hi).

Then in case (2), hi has order 2= [iTiiTj], while in cases (1) and (3), 5, = 1

<LXiAK = Ki.

The unit group of k contains r = ri+r2 — 1 independent units •••,€,

which, together with a suitable root of unity, generate the whole group of

units in k. For the same reason there will be a maximum of R = npi

4-(»/2)(ri — pi)4-wr2 — 1 independent units in K. Herbrand's generalization

of Minkowski's theorem [5, 23, 25, 26] asserts that one can find in K r + 1

units Hi, H2, • • • , Hr+i which with their conjugates H°~ and with the units

£i, e2, • ■ • , er will generate a group of units which has finite index in the whole

group E of all units in K. Furthermore, the multiplicative relations between

these units are all consequences of the simple relationsC3)

(6) Hi' = Hit      NiHi =1 (f = 1, • • • , r + 1),

where A7; denotes the relative norm of Ki/k. By an Herbrand group E* of

units in K we mean a group generated by such a basis Hi, HI, ■ ■ ■ . In

other words, E* is a direct product

(7) E* = ti X • • • X er X Hi X • • • X Hr+i

of infinite cyclic groups e<, each generated by a basic unit e,- of k, and of groups

Hi, where each Hi is generated by a unit Hi and its conjugates

(8) Hi={Hi,Hl   - }.

(43) This provides the proper number of units. If p„,i is unramified, Hi and its conjugates

provide n — 1 independent units, e< one more; if p„,< is ramified, Hi = Pi and its conjugates Hi

provide n/2 — f independent units, the total number being in agreement with the value of R.
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The groups e; and Hi which figure in (7) are groups which have Y as group

of operators. They can be described in purely group theoretical language.

Thus e, is an infinite cyclic group with a generator e; which is invariant under

all operators of V.

To describe the group Hi belonging to an unramified prime divisor p„:i,

consider first the operator free abelian group G(T) belonging to any finite

group T of order n. As in Hall's paper ([17]) the group G(r) is an abelian

group with n free generators G", one for each element er in V. To these genera-

tors the elements t of V are to be applied by the rule (Gv)r = Gr<r. In this group

G(T) the elements left unaltered by all operators of V form an infinite cyclic

subgroup N(T) which is generated by the "norm" NG = G1+ff+T+---. The quo-

tient group G(T)/N(T) belonging to this subgroup N(T) is then isomorphic

to the unit group Hi = H. This quotient group is an abelian group with n gen-

erators iP(44) subject only to the relation NH=l. We call this quotient group

H = G(T)/N(T) an abstract unramified unit group:

(9) H = {H, BP, BT, •"« • •)«      II B' = 1,      (H°Y = B".
ff

In the ramified case let 5 = 5; be the generator of the decomposition group

of some ramified prime divisor Poo,.', and let V be decomposed modulo the

subgroup {l, 5} into left cosets

r = *ifl, Sf +«kfl,f| + • • • + <r,fl, 5K 8 = »A

Then the abstract S-ramified unit group is an abelian group described by gen-

erators

(10) P'i, P**, • • • , P*», with P'iP"2 ■■■?'«= L

The operators of T are applied to this group according to the rules

(11) (Fci)T -  PTiri,      P"iS = P'<, i =-1, 2, • • ■ , g.

The Herbrand group E* of (7) is thus represented as a direct product whose

factors are

r infinite cyclic groups,

pi+f» abstract unramified unit groups,

r\ — pi abstract 5,-ramified unit groups belonging to the prime divisors px<i

of type (2).

18. Reduction to the Herbrand unit group. The formula of Theorem 11.2

involves the units of K in the index

(") Each H" is the coset of the original generator G".
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(1) - [UEiE^llFB-.TE]-1.

We desire to relate this index to the corresponding index for the Herbrand

unit group E*

(2) /(£*) = [UE*:E*l-'][FE*:TE*]-K

Theorem 18.1. The indices involved in J(E*) are both finite, and

(3) j(E) = /(£*) { [£:£*]n_1[e:e A E*][FE:FE*]~1}

where all the indices on the right are finite, and where tC\E* is the group of all

units of k which lie in the Herbrand group E*.

Proof. We first show why the indices in (3) are finite. If E, is the group

of all vectors with components in the group E, with a similar meaning for £„*,

then E, is the w-fold direct product of E by itself, so that

[E.:E,] = [E:E ]

is finite. Apply next the homomorphism £<,—»££„. By definition, the subgroup

of E„ mapped onto the identity is the group UE of crossed characters. Then,

by the homomorphism principle of §9,

[£:£*]» = [TE:TE*][UE:UE*],

where both indices on the right must be finite. This may be written as

(4) [UE:UE*] = [E:E*]n[TE:TE*]~1.

Secondly, apply the homomorphism which carries a unit E into a vector with

components El~". The subgroup mapped on the identity is e, the group of

units in k. Hence

(5) [EiM*]" [JP":E*1-'][tuniE*],

where both indices on the right are finite.

Next we return to the index J(E). In the numerator the index [UE:El~']

suggests two chains of groups UEDE^^E*1-" and UEZ) UE^E*1*" which

join the same groups UE and E*w. The whole index [UEiE*1*"] is known to

be finite. It can be computed in two ways from these chains, with the result

[UE-.E1-'] = [UE*:E*1~°][UE:UE*][El-<':E*l-°]-1.

Inserting the values of these indices from (4) and (5), we get

(6) [UE:E1-'] = [UE*lE*l-*][E:E*]»-1[tun E*][TE:TE*]~K

One may similarly run two chains from FE to TE*, through the intermediate
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groups FE* and TE. The indices [FE:TE], [TElTE*] are known to be

finite, hence the indices are all finite and

(7) [FE:TE] = [FE*:TE*][FE:FE*][TE:TE*]-K

Division of formula (6) by (7) yields the desired reduction formula (3).

19. The correction factor for the reduction. The replacement of the index

J(E) by the corresponding index J(E*) for the Herbrand unit group involves

a "correction factor" found in equation (3) of §18,

(1) <j> = J(E)/J(E*) = [E:E*]»-l[t:er\ E*][FE:FE*]-K

In the computations for the cyclic case in the classical theory it turns out(45)

that the corresponding correction factor is always 1, which is to say that the

indices involving the units can be computed directly from the Herbrand group

E* itself instead of from E. It would be convenient to have also <p = l in

general (46). This is not the case. We shall prove c/> = l/2 for a suitably se-

lected pair of fields K, k.

Before actually proving this assertion we shall establish some lemmas re-

ducing the problem to a simpler problem involving "normalized" factor

sets.

Let r be the four group, with generators y, ß:

(2) F - {l,y,ß,yß},      72 = 02=1,      ßy = yß = 8.

A factor set E„,T determines a group extension of the unit group E by the

group r. Any such group extension is completely determined by the multi-

plication table for elements uy and Uß which represent the two generating

cosets 7 and ß in the extension. This multiplication table(47) has the following

form

(3) uyE = Eyuy,      UßE = EßUß, (for any E),
2 2

(4) Uy    =   C, Uß    =    B, UßUy    = DUyUß,

where C, B, and D lie in the group E. The multiplication determined by this

table will be associative if and only if C, B, and D satisfy the conditions

(5) & = C,     B» = B,     Dl+y = a~\     &** = Bl-».

The necessity of these conditions is readily proved by "multiplying out" in

two different associations the products u\, u\, u\uy and UßUy. Thus, any group

(«) See Theorem 19.2 below.

(46) This was actually conjectured by Deuring in a letter to Hasse in 1933, relating to some

investigations on the principal ideal theorem of Hilbert.

(47) Similar normalizations considered as generalizations of the formulas for cyclic algebras

were used in the investigations of Dickson on crossed products [14]. Our normalization is a

special case of the normalization of factor sets for abelian groups as set forth in [43, pp. 95-97].
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extension of E by T is determined by a vector of three constants {C, B, D\

satisfying (5).

The fact that any group extension can be normalized in this form means

that there is a homomorphic mapping of the factor sets E„,T onto the "nor-

malized" factor sets. To obtain explicitly this homomorphism, let the factor

set E„,T generate a group extension in which the representatives va of the

cosets a multiply according to the table vcvT~Ea,Tv„. A corresponding nor-

malized factor set then can be obtained by setting uy = vy, Uß = Vß and com-

puting C, B, and D from the table of the Eo-.t's. One finds

(6) C = Ey,yEi,i,      B = Eß,ßEi,i,      D = Eß.yEy.ß.

These formulas provide a homomorphic mapping

(7) FE = £,.,-> [C, B, D).

What factor sets E^T are mapped by this homomorphism onto the iden-

tity? If E^T belongs to the multiplication table vrvT = E^Tv„, then Uß=Vß and

Uy = vy multiply as in (4) with constants C = B=D = l. Furthermore the two

remaining coset representatives must have the form vi = Ei, v& = EsVßVy, where

Ei and Es are elements(48) of E. From these constants we may calculate the

whole multiplication table, getting

(8) 2?,,T = ECE'/E„, where Eß = Ey = 1.

Furthermore, the given factor set uniquely determines the two constants

Ei and Es as E^ = Ef\, Es = Ef^. Conversely, any two elements E\ and Es

determine through the formulas (8) a factor set Ef^ which has the property

that it is mapped by the homomorphism (7) on the identity. Hence (8) pro-

vides an isomorphism

(9) {£,,£♦} <->E?}

between the group of pairs Et, Es and the group E^r. An analogous isomor-

phism applies to the group 7i*.

Now apply the homomorphism (7) to the index [FE:FE*]. This maps FE

on the whole group of vectors { C, B, D ], because any such vector determines

a group extension and hence a factor set of which it is the map. Furthermore,

this homomorphism carries the group FE* of factor sets belonging to the

Herbrand subgroup E* into the group { C*, B*, D*} of vectors from E* satis-

fying (5). Therefore, by the homomorphism principle,

[FE:FE*] = [\C, B, D]: [C\ B*, D*\]{E^k<r)W ]•

The second index, involving the group of factor sets mapped by (7) into the

identity, may be computed by (9) as

(4S) That is to say, they are part of a vector E„ used to transform a factor set.
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[eI°:t:(e:T]=[{E1,Es}:{eIeU]=[E:E*]\

This proves

Lemma 1. If T is the four group, the factor set index is

(10) [fe:fe*] = [{c, b, d): [c*, b*, d*} ] [e:e*]\

where the elements c, b, d of e (or c*, b*, and d* of £*) are restricted by the

associativity conditions (5).

Lemma 2. // V is the four group, the unit "correction factor" of (1) is

(11) <p = [e:e*][d:d* HE*]-1,

where d is the group of all elements in e for which there exist solutions b and c

of the equations (5), and d* is analogously defined in e*.

Proof. The group of vectors {C, b, d\ of equation (10) may be mapped

on the group d described in the lemma by the homomorphism

(12) {c,b,d}-^d.

The vectors thereby mapped into the identity (d = 1) are the vectors {c, b}

which satisfy the relations (5) with d = l, or c"> = cß=c, b»=b^=b. These

relations mean that c and b are both invariant under all elements of the

Galois group V, which is to say that c and b are both units in the group e.

The group mapped by (12) on the identity is therefore {e, e, 1}, so

(13) [{€, b, d}: {c*, b*, d*}] = [d:d*] [t'.e Pi £*]2.

Inserting the values (13) and (10) in the correction index (1) we get the asser-

tion of the lemma.

We remark in passing that the conclusion (11) is still valid if T is an

abelian group which is the direct product of two cyclic groups with genera-

tors ß and 7 of respective orders 5 and /, provided the condition (5) is replaced

by

(14) O = c,   b» = b,   D1+7+---+7'"1 = a-1,   ZP+0+---+0s-1 = bl->.

Consider now the particular field(49) K = R(151'2, (-2)1/2) which is normal

over the field of rational numbers R and has the four group as Galois group.

Lemma 3. The only units in R(15w, (-2)1/2) are ±r)m, where t]= 4+151/2.

Proof. One verifies at once that the only roots of unity present in K are

+1. In the quadratic subfield i?(151/2) it is known that the units are all of the

form ±T)m. Let N denote the norm from K to i?(151/2). Then N(r)) =rf. Since

(49) In the elaborate search which ultimately led to this example, considerable use was

made of the tables for units in the back of Sommer's textbook [35].
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there can be only one independent unit in the totally complex field K, any

other unit E in K is dependent on y, hence has NE= ±rj'no for some mo^Q.

We can therefore prove that +ym exhaust the whole unit group of K if we can

assert that no unit E has NE = + tj.

Since E is an integer, it is readily shown that E must have the form

E = (a + M51'2 4- c(- 2)1'2 4- d(- 30)I'2)2-1       (a, b, c, d are integers).

If one calculates NE, one finds that NE=—in is impossible, while ATE = 77

leads to the diophantine equations

a? 4- 15i2 4- 2c2 4- 3CW2 = 16,      lab 4- 4cd = 4.

By trial of a small number of cases it results that these equations have no

integral solutions. Thus the lemma is proved.

Theorem 19.1. There exists a normal extension K/k with the four group as

Galois group for which the correction factor cp of (1) is different from 1.

Proof. Take the field X = i?(15I/2, (-2)"2). The Herbrand group E* of this

field is any group of units generated by a unit P invariant under the auto-

morphism carrying K into its complex conjugate. The unit P = 77 is such a

unit, hence we may take for E* the group of all if. Then E is the direct prod-

uct £ = { + l} X-E*, where { +1} is a cyclic group of order 2. One verifies

readily that if D = — 1 the equations (5) defining the parameter D have a solu-

tion 73 = C = 1. Hence the group D is given as { +1} XD*. Finally, e — { ± 1},

ef~\E* = l. With these values in the formula (11) for the correction factor we

get «p = 2/4 = l/2.
The result for this particular field has been checked directly, independ-

ently of the normalized factor sets, by the laborious process of explicitly solv-

ing the associativity conditions for all factor sets E„,T in the unit group

{ Using the normalization again, the unit group has been computed

also for the fields i?(301/2, (-2)1'2), i?(42x/2, (-2)1'2), R(2ll\ (-1)1/2). In

these three cases one finds again that cp = l/2. The first two cases have unit

groups isomorphic to the group of our example i?(151/2, ( —2)1/2), while in the

third case the unit group involves more roots of unity.

The correction factor <b is not the same for all fields with the four group.

For the field i?(3I/2, (-2)1'2) it turns out to be 1.

Theorem 19.2. If the Galois group T of K/k is cyclic, the correction factor cp

is 1(60).

Proof. The proof depends on a normalization of the factor sets FE which

appear in formula (1). Just as in the formula (9) of §2, each factor set of

(so) This theorem simply asserts that the correction factor 4> of (f) does in fact behave like

the analogous correction factor of the cyclic theory.
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units E„,T for a cyclic group with the generator X determines a single quantity

C which functions as the usual "normalized" factor set,

n-l

(is) c = n
i-0

The associativity condition becomes Cx = C, so that C is a unit e in the base

field k. The equation (15) thus provides a homomorphic mapping E,,r—>C

of the group FE onto the units e of k. This mapping carries FE* into ePE*,

and one may establish as in Lemma 1 above that the factor sets E^T mapped

by (15) into 1 have the form of transformation sets E<®=EaE'TE~l for which

E\—l. By the homomorphism principle we have

[FE:FE*] = [t:tr\ E*][E,:E*] = [e'.e C\ E*] [E:E*]n~l.

According to (1) this proves <p = l.

20. An additional reduction for unit factor sets. In this section we

give another way of reducing the basic index involving the units, J(E)

= [UE:El~°]/[FE: TE]. The result will also be used to get an estimate

for [FE: FE*] and for the correction factor J(E)/J(E*). The group E may

be analyzed into the subgroup e and the groups

(1) Z = all roots of unity in K; f = Z H k;

(2) B = all units E with NE a root of unity f;

(3) 0 = Bt.

We introduce also the integer y= [Z:l].

Under the homomorphism A—*AV the subgroup mapped on 1 is the group

Z, hence the isomorphisms

(4) E»^E/Z,      B» & B/Z, =

Clearly these isomorphisms hold also if y is replaced by any proper multiple

of [Z:l].

Theorem 20.1. The index J(E) is given by

J(E) = J(B*)J((*)J(Z)w(E, B)u(B, Z)/[E:B(],

where each w represents a deficiency index, where for any group R J(R)

= [UR:Rl~°]/[FR: TR], and where [E:Be] depends on the norms within e as in

[E:Be] = [NE:en]/[NEr\ f:f»].

Since e is generated by f and r independent units t\, ■ ■ • , tr of infinite

order, e" is isomorphic to a subgroup of the group generated by £i, • • • , «r.

Hence ey is the direct product of r infinite cyclic groups. As will subsequently
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be shown (§21, (4) and §23), one may then compute that /(«")= [r:T']-r,

where T' is the commutator subgroup of T.

The proof of Theorem 20.1 will depend on systematic use of the subgroup

12 of 72, as defined in (3). The index [E: 12] can be evaluated in several differ-

ent ways.

Lemma 1. The index [E: 12] is finite and is given by

(5) [E:ü] = [£»:0»J,

(6) [72:12] = [NE:e"]/[NEnr-rl

(7) [72:12] = [(£1-")f:(01-')"][£1-ff Pi Z^Z1""].

Proof. If [E: 12] is finite, the expression (5) is obtained at once by applying

the homomorphism principle to the map £—*■£", for the elements mapped

thereby into 1 all lie in the subgroup Z of £2. To get (6), apply the homo-

morphism E—+NE, with the result

[E:ü] = [NE-.Nü] = [NE:(NB)tn] = [NE:(NE P f)e"]

= [NE:e"]/[(NEr\ f)«*1:«"],

for by the very definition of 73. Since 7V72 is a subgroup of e, [A77£:en]

is less than the finite index [e:eB], which proves that [72:12] and all other in-

dices here present are finite. If one observes that the intersection of (ZVTsPf)

with en consists of all roots of unity in k which are rath powers, and hence is

just fthis formula will give the result (6) by the reduction principle (§9).

Finally, to prove (7), apply the successive homomorphisms 72—+El_ff

—»(Ts1-")". They give

[72:0] = [E1-"-.^-'] = [(£»-»)*:(Q1-«)'][fi1** A ^ff^ A 2,].

This will give (7), if we can prove that fl'"'nZ, = Z,. By definition, 12 = 73e,

so 121_ir = 731_!r. Since 73 contains all units with norms in 73DZ and

S'—PZOZ1-". Conversely, suppose that 73 is a unit of norm NB=£ with

73J-' = Z, for all a. Then (73,-')« = Z^ = 1, so (73")1-" = 1, and 73" = e is in k.

Therefore NBv = ^y= 1 =«", so the unit e must be a root of unity. But 73" = e,

so 73 is also a root of unity Z. Therefore 731-'PZ„CZW, and the lemma is

established.

Lemma 2. If R and S are T-allowable subgroups of K such that [R:S] and

[FRiTR] are both finite, then [FR:FS] and [FS:TS] are finite.

Proof. The index [FR: FS] can be written formally as

[FR:FS] = [FR:(TR)(FS)][(TR)(FS):FS].

The first index does not exceed [77?: 77?], and the second can be changed

by the reduction  principle to   [TR:FSC\TR], which does not exceed
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[TR:TS]. The latter index is finite, and bounded by [i?:S]n. Hence

[Fi?:FS] is finite. Therefore [FS:FS] is finite, because it can be expressed

as [FR:TR][TR:TS]/[FR:FS].
The expression J{E) of the theorem has as denominator the index

[FE:TE]. This may be reduced by applying the homomorphism A-+A", to

get

(8) [FE:TE] = [(FE)y.(TE)y][FZ:TE PFZ].

Here [FE: TE] is known to be finite, while [£:£"] is also finite because E has

a finite number of generators. Therefore [FE:FEy] and [FEy: TEy] are both

finite indices (Lemma 2). The latter may be introduced in (8) if we divide by

the deficiency index co(£, Z) = [FE»: (FE)"] (see Theorem 15.1). The sub-

group Qy of (3) may be introduced in terms of the finite indices [FEy: FQy]

and [TEy:Tüy]. Then

[FE:TE] = [FEy:FQy][Füy:TÜy][TEy:Tüy]-1

X [FZ:TZ][TEr\FZ:TZ]~l[u(E,

The index involving TEV and TQy may be found by a homomorphic map

of the group (£"), of vectors with components in Ey, as

[(£")„: (ny)„] = [TEy:TQy][UEy:Uay],
(10)

[TEy:TQy] = [Ey:Qy]n[UEy:UQy]-\

In (9) we next attack [FEy:FQy\ by the norm homomorphism

[FEy:Füy] = [N(FEy):N(Fey)].

One proves easily that the norm of a factor set is itself a factor set. The group

N(Fey) = (Fey)n is then contained in F(Ney) = F(eny). Since each element of eny

has a unique wth root, the two groups are equal, or N(Fey) = F(eny). On the

other hand, the index [F(NEy): N(FEU)] is a deficiency index w(£>, By) be-

longing to the norm homomorphism. All told

[FEy:Füy] = [F(NEy):F(eny)]/w(Ey, Bv).

Now NEy and eny are both subgroups of finite index in the group ey, which

is a direct product of r cyclic groups. Hence both NEV and eny are them-

selves direct products of r cyclic groups. Therefore [F(NEy): T(NEy) ]

= [F(eny):T(eny)]; in fact, they are each equal to [r:r']r, by §21, (4). The

factor sets on the right in the last equation may therefore be replaced by

transformation quantities,

(11) [FEy:Füy] = [T(NEy):T(eny)]/o:(Ey, By).

Since each NEy is invariant under any <r, every crossed character of Y in the

group NEV is an ordinary character of T in NEy. But T is finite and (NE)y
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contains no element of finite order, so that all these ordinary characters are 1.

This means that the homomorphism {NEy)-*T(NEy)„ which carries a vector

into a transformation quantity is an isomorphism. With this isomorphism,

the last equation becomes

[FEy:FQy] - [NEy:eny]n/o>(E>>, B»).

On the other hand, the homomorphism NE^-(NE)y gives

[NEy:eny] = [NE'.tn\- \NEC\ f:f"]_I = [E:Q],

according to (6). These two formulas, combined with (11), yield

(12) [FE»:FQy] = [E: Q]n/w(Ey, By).

The deficiency index w which is present here may be reformulated by com-

bination with the deficiency co(£, Z) present in (9). By the norm homomor-

phism

a(E, Z) = [FEy:(FE)y] = [N(FEy):N(FE)»][FBy:(FB)y],

while

w{Ey:By) = [F(NEy):N(FEy)],      u(E, B) = [F(NEy):N(FE)y].

Combining these results, we find

(13) m(E, Z)u(Ey, By) = o>{E, B)w{B, Z).

Turn now to the numerator [UE:El~"\ of the expression J(E). To each

vector in the principal genus UE apply the homomorphism UE^>(UE)y.

Then

(14) [UE'.E1'"] = [(UE)y:(Eyy-"][UZ:El-'n Z„].

We may introduce the group U(Ey)ZD(UE)y by

Lemma 3. The index [UEy: (UE)y\ is finite, and is given by

(15) [UEy:(UE)y] = [TEr\FZ:TZ].

Proof. Let U'E temporarily denote all those vectors £„ of units such that

the transformation set TE consists of roots of unity. Then U'E contains the

crossed characters UE, and the homomorphism T gives

[U'E:UE} = [TEr\FZ:l] = [TE H FZ: TZ] [TZ: l].

Since Z is a finite group, the indices involved here are all finite. On the other

hand, the crossed characters U(Ey) are all yth powers of elements in this tem-

porary group U'E, so the homomorphism UE^>(UE)y will prove

[U'E:UE] = [U(Ey) :(UE)y] [z„:UZ\.
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This proves that the desired index [77(£"): (77£)"] is finite. Furthermore we

get (15) by comparing these two expressions for [U'E: UE], observing that

[Z,: 77Z] = [rZ:l] by the very definition of the crossed characters Z7Z.

Using the result of Lemma 3, we may now rewrite (14) as

(16) [UE'.E1-'] = [UEy:(Eyy-°] [UZ: Z1""] [TEC\FZ: TZ]~l [£'-'nz,:Zw]-1.

The first index in this formula may be transferred to the group £lyS since

[£»:«»] is finite, so are [UEy: 77«"] and [(£")I_(r: (fl»)1-']. Therefore

[UEy:(Ey)1-'] = [UEy:UQy][Uüy:(Qyy-"][(Eyy-":(^yy-']-1.

On substitution in (16) and application of (7) this gives an expression for

[UE:E}-'} as

(17) [UE»: UQy] [77Z: Zw] [770": (0")1""] [TE C\ FZiTZ]-1 [E: q]~K

The results can now be combined to give J(E) = [UE:El~"]/ [FE: TE] by

dividing the expression (17) for the numerator by the expression (9) for the

denominator, using (10) and (12) for substitutions. The result is

(18) 7(72) = 7(0")7(Z)co(£, Z)co(£", 73") [jg:0]-».

Since 0" = 73"«", and since 72" contains no roots of unity, and hence no ele-

ments in the group 73" of elements of norm 1, 17" is a direct product 73"Xe".

The corresponding J index is therefore also a product 7(12") = 7(73")7(€").

Putting this in (18), reducing the product of the two deficiency indices as in

(13) and replacing [£:12] by (6), the result (18) becomes that of Theorem 1.

The indices involved in this expression for 7(72) are all reasonably explicit

except for 7(73"). As indicated in (4), the group 73" here may be replaced by

731, where x = [£:£*] is the index of the Herbrand group. Hence the problem

is essentially that of computing [£73x: TBX], the number of group extensions

of a certain subgroup 73x of the Herbrand group. The computations of §§22, 23

solve this problem for the special case when Bx is a subgroup isomorphic to

the group 77* generated by all the Herbrand units of norm t.

This type of computation can also be employed to give a new expression

for the correction factor of §19.

Theorem 20.2. For an Herbrand subgroup E* of E

7(£)/7(£*) = [7(73")/7(77*)]7(Z)co(£, 73)co(73, Z)[E:7Je]-\

where 77* is the subgroup of £* consisting of all units of norm 1.

This conclusion can be obtained by a suitable direct analysis of the cor-

rection factor, using the index x= [£:£*] much as the index y of the above

computation. A quicker method is to apply the computation underlying Theo-

rem 20.1 to the group £* as if £* were the whole unit group of a field. Since
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t* = E*C\k, the Herbrand group is as in §17 the direct product E* = e*XH*,

and contains no roots of unity. The result analogous to Theorem 20.1, using

y = 1, is then

/(£*) = J(H*)J(e*)co(E*, H*)/[E*:H*€*].

But E* =H*Xt* means that the deficiency index w here must be 1, because

every factor set in H* is automatically a factor set in E* and thus a homo-

morphic image of a factor set in E*. Furthermore e* is isomorphic to e", as

both are free abelian groups on r generators. Hence J(e*) =/(e"). This result,

combined with Theorem 20.1, then gives the formula of Theorem 20.2.

21. Extensions of unit groups. The denominator of the index J{E*) is

[FE*:TE*], the number of group extensions of the Herbrand unit group E*

by the Galois group T. Since E* is a direct product (see the end of §17), this

index reduces at once to

(1) [FE*: TE*] = ( TJ [TV- Tirf) ( \j \FH(:TBt]^ .

Here the index [Pe^Pe,] is simply the number of group extensions of an

infinite cyclic group «, by the Galois group Y, it being assumed that et lies

in the center of the resulting extension (61). These group extensions can be

counted by the character method applied in §5, to p-primary factor sets of

ideals. In fact, the group extension problem is formally exactly that of finding

the number of classes of p-primary factor sets in the special case when p is a

prime ideal(62) of K. The number of such classes was shown in Theorem 5.5

to be the index [A(P):A(P)'] of the commutator group A(P)'. Since the for-

mal analogue of the decomposition group A(P) is the whole group I\ we find

in this case

(2) [Ffi-.Tu] = [T:V], V the commutator group of T.

The index (1) thus reduces to the following group-theoretic expression.

Theorem 21.1. The number of classes of associated factor sets from the Her-

brand unit group E* is

(3) [FE*:TE*] = [T: T'Y[FH: TH]n+r* JJ [FP„:T?S]
POO

where II is the abstract unramified unit group of (9) in §17, Pj is the abstract

h-ramified unit group of (10), (11) in §17, the product is taken over all px which

are ramified in K/k and 8 = 5(Poo), where Px\ px.

The group-theoretic indices in (3) can be evaluated in some special cases.

(61) That is to say, the coset belonging to each a induces in ei the identity automorphism.

(52) In this case the p-primary ideals form an infinite cyclic group.
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If T is abelian and is the direct product of cycles of orders

then(63)

(4) IfH'.TH] - II {m,m,).
i<i

Exactly the same formula holds for an abstract ramified group P, as will be

proved by the computations^4) of §22. These results prove

Theorem 21.2. Let V be an abelian group represented as the direct product

of t cyclic groups of respective orders mx, ms, • • • , mt. Then

1h-1
(5) [FE*:TE*] = [T:T']r LT O» mi)

»« -I

where (nii, mf) denotes the greatest common divisor of m, and m,.

22. The number of extensions for a unit group. This section is devoted

to group-theoretic computations leading to

Theorem 22.1. If P is an abstract ramified unit group belonging to an abe-

lian group r which is the direct product of cyclic groups of orders mo, • • • , m„

then the number of group extensions of P by V is

(1) [FP: TP] = n (»»<> »dl *. 3 = °. • • • -
Ki

The ramified unit group P is defined with reference to an automorphism 5

of order 2 in T (8 is the generator of the decomposition group of a correspond-

ing infinite prime divisor of K). Write the abelian group T as a direct product

of 5 4-1 cyclic groups

(2) r - \a0} X [ai\ X ■ ■ ■ X \a. \ ; order of on = M*

A simple computation shows that this representation may be so modified that

the given 5 lies in one of the cycles, as

(3) 5 = ao,      mo = 2r.

In each coset of T modulo {1,5} there is a representative of the form

(4) ß - «o V • • • a.''; 0 g e0 < r, 0 g « < mu (i ft 0),

with an exponent less than r for ao-

By definition, the abelian group P is generated by elements Ps subject

(M) Dr. A. H. Clifford has pointed out to us that this product is exactly the order of the

multiplicator 3JJ of r in Schur's theory of collineations (see [15, 36]). Moreover, Clifford and

MacLane in [12] have proved by more general methods that FH/TH is isomorphic to SK when-

ever r is solvable.

(64) We omit the analogous computations for (4), since the result is given by [12].
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to the relations(56)

(5) TJ P" = 1.      P5 = P.
ß

Any element A of P can be expressed in the form

(6) A = II Po03>(3 = psa(ß)ß = exp ( E "CPW).

("exp" for convenience!). Since P5 = P, it is convenient to define the integer

a(y) for all y in T by the convention a(ßaT0) =a(ßo) —a(ß). Because of the first

relation of (5), the representation (6) is not unique; the exponents a(ß) may

all be changed simultaneously to a{ß)-{-g, for any integer g. We call g a change

of gauge.

In any group extension (£ of P by T pick a fixed representative Ui = u{ai)

for the cosets a, of @/P~r. Then use for any element y of T the special repre-

sentatives generated by the «,-,

(7) m(«0 ai ■ • • a, ) = «) «i ■■«,, 0 g e, < w,-.

The multiplication table for these representatives is then

(8) m,m' = Ci,      UjU{ = DuUiUj (i < j; i,j = 0,--,s);

these constants d and Dij from P form a normalized factor set. The multi-

plication table for @ is completed by the commutation rule

(9) UiA = AaHu (for all ,4 in P).

If the original coset representatives are changed to Vi—AiUi, for constants

A0, ■ ■ ■ , A, in P, the constants C; and Z><, of the factor set are multiplied

respectively by the transformation quantities

(10) NiAi, aY^aV1 (i <j,i,j = 0,---,s);

here A7,- (the "relative norm for a,") denotes the expression

(11) NiA, = A1+a+---+c'm~1, (a = cti, m = w<).

The factor set { C<, Di, } must satisfy the associativity conditions(66)

(12)        cT = Ci,   cT'1 = NiDi,-,   dT'dT'dZ1 = 1

for all i, j, k, with Dji = D^1 and Z7,» = 1. Our problem is to count the number

(56) Here and subsequently ß denotes an index which runs over the elements (4).

(*) The fact that these conditions are necessary and sufficient to insure associativity is

proved by Zassenhaus [43, p. 97]. His Ai:k is our Did.
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of non-equivalent solutions of these equations, where two solutions are called

equivalent if their quotient is a transformation set (10). A preliminary is

Step I. Removal of the constants C,.

Lemma 1. For each group extension (S of P by T there is a normalized factor

set with d = \,for t = l, ■ • ■ , s.

Proof. If d is written in the exponent form of (6), then

(13) Ci = exp ( £ cfJ/jSj,      CT = exp ( £ c.kW)-

According to the associativity condition (12) these two representations can

only differ by a change of gauge gi, so (12) becomes

(14) aia^ß) = c((ß) + gi (all ß; i = 0, • • • , s).

For a fixed i, add these equations over all ß. Since T^aCffartS) =^2ßCi(ß), each

gi = 0. Therefore c,(/3) =d(ßc4) for every k. If ß' runs over the elements ß of

(4) which do not involve a,- (i.e., which have e, = 0), the C< of (13) becomes

(15) d = exp [ E 03' + p"«< + • • • + ^«T^eiCBo]; (* ̂  0).

The sum (l-fa-f ■ 1 ■ -\-am~l) is the exponent involved in the norm A7; of (11),

so d = Ni(exp ^,ß'Ci(ß')). This means that d is a transformation quantity

A,-^4i for a suitable .4,-, so that this transformation will reduce d to 1, q.e.d.

For i = 0 the argument fails. Since ß involves o4 only up to e = r — 1, (15)

becomes

(16) Co = exp £ £ 03' 4- 0'ao + • • • 4- jS'orVodS')]; 03' "» • •.«.})•

The corresponding transformation quantity NoAo is (with a = ao)

. !+«+■ ■ ■ + am~1 (l+„+... + „'-1)(l+a'-) 2(l+a+---t-a'~1)

AV4o = = -40 = ,

for ar=d leaves A0 fixed. The exponents in AVlo are all even, so Co of (16)

can be brought to this form only if its exponents Co03') become even after a

change of gauge. This proves

Lemma 2. The constant C0 may be reduced to 1 by a transformation quantity

if and only if its exponents co(ß') satisfy Co(ß') = co(l) (mod 2) for every ß' in

the group generated by <xi, ■ • • , cts.

Henceforth we consider only factor sets reduced, as in Lemma 1, to

(17) Ct - C% m= C. = 1,      JMt = • • • = N.A, = 1.
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Step II. Construction and counting of the invariants. The essential device

for our computation is the reduction of factor sets in P to factor sets of in-

tegers. This is done by using the trace of each element A of the group P,

(18) a = t(A) = t\expJ2 a(ß)ß\ = £ a(ß) (mod n/2),

where n = mom\ • • • m» is the order of the group V. The change of gauge

a(ß)-^-a(ß)-\-g changes the sum over n/2 terms ß by {n/2)g, hence t(A) is

uniquely determined modulo n/2. Furthermore

(19) t(AB) m t(A) + t(B),      t(A~<) = t(A) (mod n/2).

Therefore t is an operator-homomorphism of the group P of units on the addi-

tive group of integers modulo n/2, so t maps the given factor set {Co, Da]

onto a factor set of integers

(20) co ■ /(Co),      da = t(Di,) (i < j, i, j = 0, • • • , 5).

The homomorphism t applied to the associativity conditions (12) yields 0 for

every term of the form Ba~x, because t(B") = t(B). There remain only the con-

ditions derived from the norms in (12). The norm NtB of (11) contains nii

exponents, so t(NiB) =mit(B), and the associativity conditions (12) yield the

trace conditions

(21) niidij m 0 (mod n/2),      mjda = 0 (mod n/2).

These must hold for all i y^j, with da = — </,-,-.

Lemma 3. The number of integers da modulo n/2 which satisfy a trace con-

dition (21) is the g.c.d. (mi, m,).

Case 1: 0<i<j. Here (21) states that da is a multiple of the integers

n/2mi and «/2w,-. The smallest such multiple is the I.cm. [n/2mt, n/2mj]; the

the number of multiples (mod n/2) is

(n/2) [n/2mi, n/2mj]~l = w,-jw,■«[>»,•«, min]~l = (mi, m/),

according to the relation (w,-, mi) [mi, m,] = mimj.

Case 2. i = 0, n/mo = 0 (mod 2). Here n/2m0 is an integer, so the argument

proceeds exactly as in Case 1.

Case 3. i = 0, n/m0^0 (mod 2). The congruence modai=2rdoj = 0 of (21)

becomes here 2doj = 0 (mod n/mo). The latter modulus is odd by assumption,

so dQj = Q (mod n/mo). Computations now give (mjt r) solutions do,-. But the

hypothesis n/mof^0 (mod 2), where n/mQ = mi ■ ■ ■ m,, means that each m,

must be odd. Therefore (m,-, r) = (m,-, 2r) = (mj, m0) is the number of solutions.

Because this lemma gives the same total countljjo^mj, mi) as that stated

in our theorem, it will suffice to prove that each set of solutions da of the trace
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conditions (21) is the trace belonging to one and only one group extension.

Because a transformation quantity Z>,-,- of (10) has trace zero, each group ex-

tension @ determines the trace da uniquely. It remains only to prove that each

set of solutions dis the trace of some factor set and that a factor set with

traces da = 0 is a transformation quantity (and so belongs to the unit exten-

sion).

Step III. The realization of invariants by factor sets. To given da we wish

to construct a factor set

(22) Co = exp [ £ cQ(ß)ßj,      Dtt = exp [ £ dit{ß)ß] ■

The integral exponents c0(ß)=c(ß) and da(ß) must satisfy the associativity

conditions (12). The second condition of (12), after substitution of the expres-

sions (22), takes on the forms (the first for i = 0, the second for i^O)

-l r_1 k

(23) goj + coißaj ) - c0(j8) = 2 X doi(ßao), (j # 0, all ß),
k=0

(24) gii = X dijißai),      (ally ^ *, i yi 0),
*-o

where gy represents a change of gauge. These gauges may be determined in

terms of the traces. In (24) let ß' run through all elements (4) not involving a,-.

By adding these n/lnii equations, one gets

m~l k

ngij/lnii = E  E dijiß'cti) = X dij(ß) = dt,-.
ß'     4=0 ß

Hence gij = 2niidij/n. A similar addition of (23) gives g0j- For a fixed choice

of gauge for Co and D(j in (22) we have

(25) gu = Iniidij/n, (all t ^ j).

The trace conditions (21) assert that these constants g,,- are integers.

Since t{AB)=t{A)-\-t{B), it will be possible to realize any allowable set

of invariants da if these invariants can be realized one at a time. The cases

i = 0 and 0<i<j behave differently, as we now show by treating the typical

cases dn and doi.

Lemma 4. If du is a solution of the trace conditions (21), with 2 = 1, j = 2,

there exists a factor set {Co, Da) with Co = £>i, = l for (i, j)5*^(1, 2) and with

t{Du)=dn.

Proof. The essential associativity condition is (24) with i = \, j = 2 and

i = 2,j= 1; the trace conditions insure that gu and gu are integers. If we regard

the exponents ^(craja;*) = —dnio-alal) for fixed cr as the terms of an nt\ by m2
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matrix, condition (24) requires that each column (h = 0, ■ ■ ■ , ni\ — 1) add up

to gi2, and that each row (k = 0, • • • , m2 — 1) add up to —gn. These two re-

quirements are consistent because the sum of all terms by rows is —ntign, by

columns is m^gn, and these two sums are equal by (25), with dn = —du. The

requirements may be met by making the matrix |JcZi2(crcejo;*)11 zero except in

the first row and column, as

h k h k
<f 12(0-0:10:2) = 0, dn(o-cti) = —gu, duio-az) = gn (h, k 5* 0),

dn(ff)  = #12 4" g21 4" niigii = gu + g21 — 7»2gl2.

For any a = ay>cx\3 • • • d£" in the group generated by the remaining ex's we take

these equations as defining the quantity Z?i2. They satisfy the associativity

conditions (24), as may be seen by substitution. Furthermore this definition

is independent of the choice of a, so the resulting Dn is invariant under any

a^«i and a2. Therefore -DJ2-1 = 1. Every other Da is to be 1, so the last associa-

tivity condition connecting any three D's as in (12) is satisfied, and the lemma

holds.

Lemma 5. If doi is a solution of the trace conditions (21) with i = 0 andj = l,

there exists a factor set {Co, Z?,-,-} with D,-j-=l for (i, j)^(0, 1) and with

t(Dai) =d0i.

Proof. Much as in the proof of Lemma 3, a separate treatment is necessary

in the case when Wi=0 (mod 2) (i.e., when «i has an even order).

Case 1. Wi^O (mod 2). If we set Co = l, the associativity conditions ((24)

with 7 = 0, i = \ and (23) with j=\) become

h k r—i .

X ^oi(faoai) = — gut        X d0i(aaocti) = goi/2.

By (25) the integers gio and goi satisfy Wigoi= — mogw- Since Wo = 2r is even

and ni\ is odd, goi must be even and goi/2 is an integer. These equations again

specify the row and column sums of a matrix, and may be solved exactly as

in the previous lemma.

Case 2. mi = 0 (mod 2). We choose dio = —dm,. By the trace condition on

doi. the constants g0i and gw of (25) are integers, and by (25) they satisfy

m\ga\ = —ntagv). We no longer choose Co = 1, but set instead

Co{<raüai) = kgoi,

(26) «2 ,.,
(cr = ct2 ■ ■ ■ a, ; h = 0, • • ■ , r — 1; k = 0, • • • , nti — 1).

For ß = <ro^al the quantity c0(ßarl) — c0(ß) of (23) is, according to this agree-

ment, (k — l)goi — kgoi = —goi, provided k5*0. If k = Q, it is (nil— l)goi- Therefore

(23) and (24) give the associativity conditions
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1—1 h r-1

(27) X ^oi(o-ao) = Wigoi/2,       X rfoi(ffa0ai) =0, (£ 5^ 0),
A=0 A=0

mi—1 u   ^ e e

(28) X Joi(o-aoai) = — fJOi (it = a2 <0-

These requirements once more specify consistent row and column sums for a

matrix ||<fn{0ia$a£)||. A solution is given by

(29) dn{aalax) = 0,    (* ft 0);       <foi(crao) = — gio,

where cr again is any element in the subgroup generated by os», • • • , a,. These

formulas provide a construction of a Dn from the given integer dm. Because

the formulas (29) do not depend on a, = Doi for any a not ao or a±. For this

reason all the associativity conditions of (12) are satisfied if the remaining Z),,-

are all 1. This proves the lemma. Combination of these results proves

Lemma 6. Any set of integral solutions da of the trace conditions (21) is the

trace of some factor set {Co, D,,}.

In Case 2 of the proof of Lemma 5 the use of the constant Co?^l is essen-

tial (at least whenever goi^O (mod 2)). One may show by examples that this

is the case; the result will subsequently throw some light on the relation of

the ramified group P to Schur's multiplicator.

Lemma 7. For some abelian groups V there is a factor set {Co, P*f} with

i(Co) ̂ 0 (mod n/2).

Proof. The expression Co constructed in (26) has

/(Co) = (»/2)(«i + l)goi/2.

This will satisfy t(Co)=0 (mod n/2) only if mi is odd or g0i is even. Sometimes

neither will be the case, as for instance when T = {a0} X {«i} with a0 of order

2, ai of order 6. Then mi = 6=0 (mod 2), « = 12, and the constant doi = 3 satis-

fies the trace condition. It gives goi = l by (25). Hence /(Co) =6(7/2) =21 ^0

(mod 6). Since /(Co) cannot be altered, mod 2, by the insertion of any trans-

formation quantities (10), the factor set so constructed cannot be equivalent

to any factor set with Co = 1.

Step IV. The reduction of factor sets with zero traces.

Lemma 8. If a factor set {C0, Di, } has traces /(Z?tJ) =</,,-= 0 (mod n/2),

then Co may be reduced to 1 by a suitable transformation set

Proof. By suitable choice of gauge in (22), all da are zero identically. Then

go/ = 0 by (25), so the associativity condition (23) makes c0(ßafl) — c0(/3) =0

(mod 2). By applying this repeatedly for all j=l, • • • , s, one proves
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Coiß') =c0(l) (mod 2) for every ß' in the group generated by au ■ ■ ■ , a,.

According to Lemma 2, C0 may then be reduced to 1.

After this reduction the associativity conditions (12) satisfied by any one

constant     have the form

(30) NiDij = 1,      NjDij = 1,      t(Dif) = 0 (mod n/2).

The essential step is the demonstration that each D which satisfies conditions

of this form may be removed by an appropriately chosen transformation

quantity. This is essentially accomplished by a lemma related closely to a

lemma of Clifford's [12].

Lemma 9. // an element D in the unit group P satisfies conditions t(D) =0

(mod n/2) and NiD = 1, there exists in P an element A such that D=A1~", where

« = «,-. The quantity A may be so constructed that, for every j^i, N,D = 1 implies

NjA = 1 and D = Da> implies A = Aa>.

Proof. Write D = exp (£ßd(ß)ß)- The hypothesis t(D)=0 means that

d=^2ßd(ß) =0 (mod n/2). By a suitable choice of gauge for D we may ac-

tually get <f = 0. The hypothesis NiD = l may now be expressed in terms of

the exponents d(ß) exactly as in (23) and (24). Because the trace d is zero,

the gauges ga, computed as in (25), are also zero, so the condition NiD = 1 be-

comes

(31) D d(ßahi) = 0 (h = 0, • • • , m, - 1).
h

We seek an A =exp {^ßa(ß)ß} to satisfy the equation A1~a = D, where

a = ai. In terms of the exponents a(ß) this equation is

(32) a{ß) - a(ßa~l) = d(ß) + g     (g a constant for all ß).

To solve this explicitly, write ß = rae in such wise that r involves only the

generators a^a, and try

(33) a{ja") =      d(rak), (e » 0, 1, •   • , f»< - 1, Ö 4 9* 0).
k=.0

If e = mi, then rae=r and this equation is still valid in virtue of the hypothesis

(31). Therefore (33) holds for every integer e^0. By substitution we then find

that this proposed A does satisfy the required condition (32), with a gauge

g = 0.
The case a = a0 may be treated by a minor modification of this argument.

For a solution A we need define the exponent a(ra') only in the range

e = 0, ■ ■ ■ , r — 1, where r = m0/2. Again we adopt (33) as the definition in

this range. Since the original exponents d satisfy d(ßar) =d(ß), the hypothesis

(31) may now be written 2^2,hd{ßal) =0, where h runs from 0 to r— 1. There-
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fore (33) again holds for all integers e outside the original range of definition,

and we have constructed A to satisfy aißa') =a(j3), as desired.

The construction (33) gives an element A with the added properties as-

serted in the lemma. Because t(D) = 0, an added hypothesis NjD = l would

again mean

(34) 2 <*(0«*) = 0- (A - 0, 1, - 1).
A

On the other hand, N,A is by definition

NiA = exp { £ a(ß)ß ( £ a •) j = exp { E( E «(#*i')/3

Set ß = ra', and compute each exponent, by (33), as

X tf(™ a/) = £   £ d{ra a*) = £ £ rf(ra*a*).
A A=0    *—0 A

This sum is 0, by the hypothesis (34); hence NjA =1.

Suppose next that D=DaK Exactly as in the argument in (14), this means

that the exponents satisfy d{ß)=d{ßa]). With the definition (33) one then has

also a03) =a(/3a<), hence A =Aai, q.e.d.

By this lemma, any individual Di, may be reduced. For example

NaDn = NiDoi = 1 by the associativity conditions (30), so there must exist

an A0 with Al~ai = D0i and AV10 = 1- According to the formulas (10) for trans-

formation quantities, a change v0 = Ao~1uQ in the coset representation will then

replace D0i by 1 without disturbing the normalization Co = 1 already achieved

in Lemma 8. This process continues as in

Lemma 10. If every factor set {d, Di,} with traces /(Z>13) = 0 is

similar to a factor set with d=l for all i and Dij=\ for all i and j which satisfy

Q<Li<j£k.

Proof. The above reduction of D0i takes care of the case k = l. Assume by

induction that the lemma is true for k — l, and by a second induction that

Doh= ■ ■ • =Dj-i * = 1 (the case 7=0 will be included in the induction argu-

ment). For the next constant Dik use at long last the third associativity con-

dition of (12), which enforces a relation between three constants D. For each

i<j the constants Da and Dki = D^1 have already been made equal to 1, so

this third condition becomes D"f1 = l for a = aa, • • • , a,_i. The other condi-

tions on Djk are NjDjk = NkDjk = 1. By Lemma 9 there exists an Ak with

Djk = A\~ai,      NkAk =1,      A? = ■ ■ ■ = A^1 = A.

Make the corresponding change vk = Ak~1uk in the coset representatives (7).

According to the list of transformation quantities (10), this change reduces
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Djk to 1 and modifies each of Ck and Dik for i = 0, ■ ■ ■ — l by 1. In other

words, the new reduction Djk = 1 is accomplished without disturbance of the

results of previous reductions. This completes the induction, and proves

Lemma 11. Every factor set with traces zero is similar to 1.

With this lemma the proof of Theorem 1 of this section is complete. Our

argument has actually shown that the group of classes of factor sets is iso-

morphic to the additive group of traces dij. Each trace by itself gives a cyclic

group of order (mj, m3), hence

Theorem 22.2. The group FP/TP of group extensions of P by an abelian

group T is the direct product of cyclic groups of orders (w;, w,), for allO^=i<j^s.

For an unramified unit group H exactly the same two theorems are true;

they have been established by more general arguments than ours in Clifford

[12]. It is proved there that FH/TH is isomorphic to the multiplicator üDi

of r in an algebraically closed field of characteristic °°. This multiplicator

can be represented by factor sets of nth roots of unity or, equally well, of

integers modulo n, but the resulting factor sets of integers can always be

normalized so that the constants for d = u™i are all 0. In the unramified case,

the trace maps the group FH/ TH isomorphically on this representation of

the multiplicator ffl, as is proved by Clifford. In the ramified case the group

FV/TV is still isomorphic to the multiplicator, in virtue of Theorem 22.2;

however, the trace t(A) no longer provides an isomorphic map of FP/TP

on SDc. This curious anomaly is a consequence of Lemma 7 above, which as-

serts that for the ramified case the constant Co cannot always be reduced to 1,

although it can be so reduced in the case of the multiplicator.

23. Crossed characters for abstract unit groups. The index J{E*) for the

Herbrand unit group E* has as numerator [UE*:E*l~r], the number of

classes of crossed characters (see §7) of V in E*. Since E* is a direct product

(see the end of §17), this index can be written as a product

, r ,       r+l ,

(1) [UE*:E*'-°] = II [Uhu,  ] II [VBt-.HT].
t=i >—i

The first r factors in (1) involve the number of classes of crossed characters

of T in an infinite cyclic group e< generated by one of the r chosen independent

units €i of eC\E*. Since the elements of e are invariant under the operators

of r, it results that these crossed characters are all ordinary characters. But

r is a finite group, hence it has no non-trivial ordinary characters in an infinite

cyclic group. The first product in (1) is therefore 1.

The second product in (1) involves both ramified and unramified unit

groups Hi. Consider for the moment a ramified group P, associated with an

automorphism 5 of order 2, which generates the corresponding decomposition
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group. As in definition (10) of §17, the group P then has n/2 generators P"\

where <r,- are representatives of the left cosets of T modulo {1, ci}. An element

A of the group P can be represented (but not uniquely!) in the form

(2) A = fm.fm ■ ■ ■ p»«»«, m = n/2.

We again associate with A the "trace" as an essential invariant(67),

(3) a = t(A) m a\ + <h + • • • + am (mod m).

Since the representation (2) of A can be altered only by using the relation

l = Pffl • ■ • P*™, the function t(A) is uniquely determined by A, modulo m.

Furthermore

t{AB) = l(A) + t(B) (mod m),
(4)

t(AT) es t{A) (mod m), t in T.

Given a crossed character U(o) of V in this group P, we define

(5) x(<r) = t[U(a)], all c in T.

The definition of a crossed character (§7) implies at once that this function

is an (ordinary) character of T in the group of integers modulo m, with

(6) x(<rr) as x(<r) + x(r) (mod m).

We say that a crossed character <7P lies in the principal genus GP if and only

if the corresponding function X is the identity, so that the principal genus

consists of all functions G(cr) on T to P with the properties

(*23.1) G(o-t)=G(.o-)[G(t)]*, t(G„)=0 (mod m).

By using the homomorphism which carries each crossed character U into the

character X of (5), we shall prove

Theorem 23.1. For a ramified abstract unit group P whose decomposition

group is generated by S (52 = 1) the number of classes of crossed characters is given

by

(7) [r/PiP1-*] = [GP:Pl"][r:{r', 5}],

where the first index measures the number of classes of crossed characters in the

principal genus, while the second factor is the index in V of the subgroup gen-

erated by 5 and the commutator group T'.

Proof. The index [Tl \T', 5} ] is simply the number of (ordinary) char-

acters of the abelian factor group T/{V, S}. The homomorphism principle

of §9 applied to the map U—»x will therefore yield the conclusion (7) directly,

(") The character group of P in the group of real numbers modulo 1 is a cyclic group gen-

erated by x{A) =t(.A)/m. This is the reason for the importance of t.
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once we prove that the characters x obtained by this homomorphism are in-

deed the characters of T/ {V, 8}. To achieve this goal we prove two lemmas,

from which the desired description of the X will follow immediately.

Lemma 1. For any a in [V, 8], x(o")=0 (mod m).

Proof. This lemma asserts that x can be considered as a character defined

for the cosets of the factor group r/{r', 5}. First observe that (6) shows

that x(c)=0 (mod m) whenever cr is a commutator in V. It remains only to

prove x(8)=0 (mod m). By the definition (5), x(h)=t[U(8)]. As in (2), we

use for £7(5) the notation

m m

(8) C/(5) = TJ PdiJi.      x(«) - £ it (mod m).
i=l i=l

For a crossed character, UCU"T = U„, by definition. With ct = t = 1 and a = r= 8

this gives the conclusions

(9) 17(1) = 1,      [U(8)Y+S = t/(o2) = 1.

We proceed to express the second of these conditions in terms of the expo-

nents d, entering into the value x(5) of (8). For

m mm

[u(s)]s = n (p^o5 = n vdiSci = n ^
i=l i-1 i=l

where cry (J=ji) is the representative belonging to the left coset <ry{l, 5} in

which the product Scr,- lies. The correspondence i*^>j%=j is an involution, so

^diO-j=^djO-i and

mm m

[u(8)  = n p^npi<<7i = n
,=1 t=l i—1

where Si=di-\-dj. This product is 1 by (9), and this must be a consequence

of the basic relation Y[T° iP"'= 1 for our abstract ramified unit group P. There

is therefore an integer g such that

(10) di + dj = g, i = 1, 2, • • • , m, j = /<.

If i = l belongs to the coset of l,jt is also 1. Consequently g=di-\-di = 2di is

even. If i runs over all integers from 1 to m, so does j'j. Adding (10) over all i,

we get

m m

2 £ di = gm,       £ di = (g/2)w * 0 (mod w).
»=i t=i

According to the formula (8) for x(5), this yields x(S)=0 (mod m), as re-

quired for the lemma.
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Lemma 2. Any character x of r/{r', 5} can be realized as a trace (5) of

some crossed character UY.

Proof. We observe first that 5 has order 2, whence { V, 5} has even order

and r/{r", 5} has as order a divisor of m = n/2. This means that any one of

the [r: jr', S} ] characters of the abelian quotient group r/{r\ 5} can in

fact be expressed as a homomorphic mapping o—^>x(a) OI F on the integers

modulo m. As is well known, the representation of the abelian group Y/ {V, 8}

as a direct product of cyclic groups makes it possible to write any character of

r/ {r', 8} as a product of characters, each of which is defined on a cyclic

quotient group of V. To consider such a sample quotient group, let 12D {V, 5}

be a subgroup of T such that Y/Q is cyclic of order h, and let a be a representa-

tive of some coset of V/Q which generates this cyclic group. Then any <r in Y

can be written as

(11) <r = a*w;        i = 0, 1, • • • , h — 1; co in 12, ah in 12.

To realize all possible characters x of Y by crossed characters it will thus

suffice to realize any character of the form

X(a) = m/h (mod m) ,

x(co) =0 (mod m), all co in 0.

Let 12 be decomposed modulo {1, 8} into m/h left cosets, 12=£,-co,{ 1, 5},

with representatives coy. Define next an element C in P by the equations

(13) C = II P"'. 7 = 1, 2, • • • , m/h.
i

This element C has the properties

t(C) = m/h (mod m),

^ C = C, for co in 0.

In terms of this element C we propose to define for every group element <r,

given as in (11), a value

(15) f/(ay) = <?*+«+■ cr = cA),

of a crossed character U{cr). This definition is given only for i = 0, ■ • ■ , A — 1,

but the formula holds good for all values of i, because ah lies in 12 and because

the definition of C implies that C1+a+'1 -+ara-1 = l. With the formula (15), so

generalized, a straightforward computation then shows that the function U(a)

is a crossed character. By (14) and (15)

x(a) = t[U(a)] = t(C) m m/h (mod m),

x(co) = t(C0) m 0 (mod m).
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Therefore this crossed character does realize the sample character x given in

(12). This completes the proof of Lemma 2 and with it, of Theorem 23.1.

It remains to consider the unramified abstract unit groups H. In such a

group an arbitrary element A =Y\_*Ha{'')'! again has a trace, given by

(16) t{A) m £ a(cr) (mod n).

The principal genus consists of those functions G on T to H which satisfy

(*23.2) G(crr)=G(o-)[G(r)]', t[G(c)]=0 (mod n).

The subsequent argument proceeds as in the ramified case, with appropriate

simplifications. The result is

Theorem 23.2. For an unramified abstract unit group H the number of

classes of crossed characters of T in H is

(17) [UH-.H1-"] = [GH:Hl-'][T:r'],

where GH is the principal genus, T' the commutator group.

In many cases this approach will actually yield explicit answers. For a

solvable group T, A. H. Clifford has shown [12] that the principal genus index

in the unramified case is 1,

(18) [GH:H1-] = 1.

The authors have extended Clifford's proof to the ramified case, for T abelian.

These results can be combined to give the number of crossed characters

for the whole Herbrand unit group E*. For the ramified cases this will involve

the index [r:{r', 5}] which will have the value [r:T']or [T:r'12-1 accord-

ing as the automorphism d of order 2 does or does not lie in the commutator

group T'. Now 5 was introduced as a generator of the decomposition group

of a factor P„ of one of the ramified infinite prime divisors px of K/k. The field

of elements left invariant by 5 is then the largest subfield of K in which pm

is unramified. Consequently the statement that 5 lies in T' is equivalent to the

statement that px is unramified in the field K' corresponding to V. Only in

this case is the index [r: Jr', 5}]equal to [r: T']. All told, the ri-pi ramified

unit groups Pi contribute to the crossed character formula (1) a term

[r:r']n-« 2~"', where

(*23.3) p' = the number of infinite prime divisors of k which are ramified

iniT.

The combination of Theorems 23.1 and 23.2 yields

Theorem 23.3. The number of classes of crossed characters for any Herbrand

unit group E* is
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(19) [UE*:E*}-*] = [t:t']'+l[gh:h1-'']>'i+r*2-i>'ll [GPrP1-"],
POO

where H is an abstract unramified unit group, and where the last product is taken

over all the unit groups P = Ps belonging to the ramified prime divisors px of

K/k, while GH, GP refer to the principal genus defined in (*23.1), (*23.2).

Chapter IV. The final formula

24. The composite result. The unit index J(E) has now been evaluated

in terms of the correction factor <p = J{E)/J{E*) and in the explicit computa-

tions of Theorems 23.3 and 22.1. If these results are put in the formula (15)

of §16, we obtain

Theorem 24.1. For any normal extension K/k and any module M which

involves all prime divisors p of k ramified in K/k, the least common multiple

J = J(T) of the orders of the elements of the Galois group T can be expressed as

(1) / - n*n-^(A', £)co(2T, (A'))-l2>J(At)-lJ(E),

where J(U*) = [(72l#: 2ll1-"] [F2l#: rSl']"1 depends only on the structure of the

class group 21*, while J(E) depends only on the structure of the group of units

in K, by

j{E) = c6[r:r']2-"'{ [gh-.w-'^fh-.thY1]^

• n {[GP^pMtFP.irp,]-1}.

Alternately, J{E) may be expressed by the formula of Theorem 20.1. All the in-

dices appearing in these formulas are finite.

We pause to identify the various invariants which appear in these formu-

las. In /, n* is an integer which is a divisor of n and a multiple of J(T), as

given explicitly by formula (*13.4);

T' = the commutator group of T;

p' = the number of infinite prime divisors in k ramified in the com-

mutator subfield K' of K;

21* = the groups of ideal classes in K;

.4'(21')=the groups of numbers (ideals) in K which are relatively prime

to M.

The class group enters in the numerator only in terms of [F2l#: T%*\, the num-

ber of extensions of 2I# by V, in the denominator only in terms of [f/2l#: 21#w],

the number of classes of crossed characters (see §7) of 2l#. The groups A', 21'
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occur only in connection with the deficiency invariants which were defined

in §15.

In the unit index (2) the correction factor J(E)J(E*)~1=4> is the quantity

considered in §19. It need not be 1, as it would be in the cyclic case. It depends

on the position of the Herbrand unit group E* within the whole group E of

units in K.

p = the number of infinite prime divisors p of k ramified in K;

Pi+f8 = the number of infinite prime divisors p of k which are unramified

in K;

H=the abstract unramified unit group for T;

Pi = the abstract ramified unit groups belonging to 5<: the generator

of a decomposition group for the ith ramified infinite prime

divisor of k.

It should be noted that the group H, as described in §17, depends only on

the Galois group T of K/k and not on the further structure of K/k, while

the various groups P< depend only on V and the position in T of the auto-

morphisms 5i. Each cSj may be described as an automorphism in V of order 2,

such that the corresponding ramified infinite prime divisor px,i of k has a fac-

tor Pi which is unramified in the subfield of K left invariant by 5,-.

The groups H enter into the formula (2) in two fashions:

(a) through the number \FH: TH] of extensions of V by H, and

(b) through the number [GH'.H1-*] of classes of crossed characters in the

"principal genus" of crossed characters, defined by (*23.2).

These quantities are explicitly computed in the case of abelian groups, as

stated in §§22 and 23. Furthermore r = T' in these cases.

Theorem 24.2. // the Galois group T of K/k is an abelian group, the direct

product of t cyclic groups of the respective orders nii, then the least common multi-

ple J= [mi, ■ ■ ■ , mt] is

(3) / = d>n*{o>(A', E)»(W, (A'))-i}jm-t i TJ («*. »4

where r4-1 is the number of infinite prime divisors of k.

The quantities which appear in our formulas (1) and (2) are all invariants

of the extension K/k. This follows at once liom the definition of the quanti-

ties, except for the quotient <p = J(E) J(E*)*1 and the deficiency invariants co,

which apparently depend on the module M. That the deficiency invariants co

are in fact independent of M, if M has the properties of Theorem 24.1, was

shown in §16. Since all the other indices in the formulas (1) and (2) are then

invariants of the field K/k, it follows that the correction factor cp is an invari-
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ant, too. In other words, <p is independent of the particular way in which the

Herbrand unit group is chosen.

The invariants of K/k which we have connected here are, roughly speak-

ing, of four types: well recognized invariants, such as T', pi, p', n* (in essence);

invariants depending on the number of certain group extensions of groups be-

longing to K/k; invariants having to do with crossed characters; the invariant

(b depending upon the explicit structure of E. In particular, all these invari-

ants can be defined without reference to the auxiliary notion of factor set,

except in the case of the invariant <p.

One may also specialize the composite formula to the cyclic case. The in-

variant n* is a divisor of the order n and also a multiple of the order n, so that

n*=n. The correction factor <f> is 1 according to Theorem 19.1. The order of

the multiplicatorUi<j(w,-, m,-) is always 1.

Theorem 24.3. If Z/k is a cyclic extension of k with the class group 21*'

then the number [F2l#: TW] of group extensions of this class group by the Galois

group is related to the number of crossed characters of the Galois group in 2l# by

the equation

If the cyclic field and all its subfields have class number 1, all the terms in the

equation (4) turn out to be 1.

25. Examples. As an illustration and check of our composite formula we

consider in this section some examples of biquadratic fields. We take biquad-

ratic fields over the field of all rational numbers which have, with all their

quadratic subfields, the class number 1.

The field K = R{7112, i), with i = (— l)l/2, is the join of two quadratic fields,

R(i) and i?(71/2), each of which is known(68) to have class number 1. By

Hilbert's form of a theorem of Dirichlet [27, p. 51] the class number of K

is a factor of the product of the class numbers of R(i) and R(71'2). Hence in K

every ideal is principal. The same is true for the third quadratic subfield

R{{ — 7)1/2) of K. The terms involving the deficiency co and the terms involv-

ing ideal classes fi* in the final formula for the abelian case are there all 1,

hence formula (3) of §24 becomes

The Galois group of K/R is the four group, so the least common multiple J

of the orders of the group elements is 2. The order IJi<,(wi, mi) of the multi-

plicator turns out to be 2. The quantity n* can be computed, as in §13, in

terms of the ramification orders of the various rational primes in K. The three

(58) See the list of quadratic fields in the back of [35].

(4) CO(21', 04'))[(72I#:2I#1-*] = a(A', E)\PW:TW\.

(1)



370 SAUNDERS MAC LANE AND O. F. G. SCHILLING [September

quadratic subfields i?(71/2), R(i), —7)1/2) have respectively the discrimi-

nants 7-22, — 4, and 7. It follows then that the only ramified prime divisors

for K/R are 2, 7, and pK, the infinite prime divisor of R. The ramification

orders are ei = e7 = ew = 2. All the ramification orders are thus divisors of the

index J, so that, according to Theorem 13.2, «* = m = 4.

Finally, the correction factor J(E)J(E*)~l may be found directly, by the

normalization method of §19, if one first computes the group E of units in K.

In the field i?(71/2) the basic unit is p = 84~3(71/2). By a computation resem-

bling that in Lemma 3 of §19 one finally discovers that p is the relative norm of

a unit 77 = (3-r-71/2)(l-H)2-1 in the field K. One then shows that every unit

in K has the form iarjb. In the Galois group of K/k let ß, y, and 5 denote re-

spectively the automorphisms which leave fixed the subfield R(i), R(7112), and

R(( — 7)1/2). The generating units i and r] then behave under the various auto-

morphisms as follows:

iß = i,      i* '— is = i3,

= irj-1,      jj* -   i3r),      t]s  - if1.

As an Herbrand subgroup one may choose the group generated by the unit

P = z3r/2, which has the appropriate behaviour, P" = P, J>1+y=l, relative to the

generator ß of the decomposition group {1, ß} belonging to the only infinite

prime divisor of R. The correction factor then involves the groups D and D*

defined in Lemma 2 of §19. One finds that D is the group generated by i and

v2, while D*—E*. Therefore

J{E)J{E*)~l = [ö:/}*]-1 [«:1h1 = 8(4.2)-! = 1.

These values, substituted in (1), give an identity.

A similar check has been carried out for the field R(2lt2, i). The ramifica-

tions are ex = 2, e2 = 4, consequently n* = 2. The class numbers for this field

and its quadratic subfields are again all 1, so that (1) holds. The group of

units E is generated by a primitive 8th root of unity X = (1-H)(2l/2)_1 and

by p = 14-21'2. The unit p2 may serve as generator of the Herbrand subgroup

E*. One finds D*=E*, while D is generated by i and p2, whence the correction

factor J(E)J(E*)~1 is 2. This again checks equation (1).

Another biquadratic field with class number 1 and with quadratic sub-

fields of class number 1 is R(3112, i). The equation (1) again holds, this time

with e2 = e3 = e» = 2,«*=4, E= {X, (l-r-31'2)(14-i)2-1},X a primitive 12th root

of unity, and /(£)/(£*)-' = 1.

Chapter V. Generalization of the classical symbols

26. A conductor for factor sets. One can construct an analogue to the con-

ductor of the classical theory if one recalls that the conductor of a cyclic field

Z/k can be defined in terms of the local conductors (see [37]). For a local
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cyclic extension Zp/kp the conductor c(Zp/kp) = ph is defined as the smallest

power of p such that a = 1 (mod ph) implies that a is a norm.

We first prove the existence of a power of P which will have the analogous

property for factor sets. Consider a normal extension Kp/kp of degree mp = m

with Galois group A(P) =A. Denote by AP = A the multiplicative group of the

field Kp. Let At,, denote the components of the factor sets in FA, while TA

are the analogous transformation quantities(59).

Theorem 26.1. For any normal extension Kp/kp there is a non-negative

power Ph of the prime divisor P of KP such that every factor set FA with com-

ponents £{-,,= 1 (mod Ph) is a transformation set; in other words,

(1) Ft,, = 1 (mod Ph) implies Ft,, = TBt for suitable Bt in A.

Proof. Consider first the case where P is a finite prime divisor, so that (1)

is an ordinary congruence modulo the ideal Ph. As in the cyclic case, we may

then furnish a proof by using the P-adic logarithm, log A, and the correspond-

ing exponential, exp [(log A)/m]. The exponent h may be chosen so large

that these expressions are uniquely defined(60) whenever A=l (mod Ph).

Each such A then has in Kp a unique mth root, P = exp [(log A)/m]. For

any factor set Ft,, of (1) there will thus be a set of mth roots

(2) Bt„ = exp [(log *>.,)/«].

The associativity conditions for this set can then be derived from the condi-

tions for Ft,, by elementary properties of exponent and logarithm. Conse-

quently Ft,, = B™, is the mth power of a factor set, so it is a transformation

set(61) by Lemma 1 of §1.

It remains to establish (1) in the case when P is an infinite prime divisor.

To insure the validity of the theorem in this case, we must use a new conven-

tion as to congruences modulo such a divisor. An infinite prime divisor px of k

is in effect an isomorphic map ^j/P{a) =a' of k in a subfield k' of the field of all

complex numbers; The valuation belonging to p«, is the valuation ||a|| = |a'|

induced on k by the natural valuation of k'. If p«, is real(62), then

(3) a m 1 (mod px) if and only if \pp(a) > 0.

On the other hand, if p„ is complex(63), we define

(**) We omit the subscripts P. Of course, all terms are defined with respect to P.

(60) According to [23, p. 149], it suffices to take AS [V(Po-l)]+l+<, where p„ is the ra-

tional belonging to p and where VP(pa) — s, Vp{m) =t in the P-adic valuation Vp of Kp, normal-

ized by Vp(P) = 1. Logarithm and exponential are also defined by Chevalley [l0].

(61) This proof is a slight variant of the one given by Tannaka [38, Theorem 2]. We do not

follow his exposition because in his conductor in the large he has omitted the (essential) infinite

prime divisors.

(62) In other words, if k' consists of real numbers.

(63) In other words, if k' contains complex numbers.
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(4)

(5)

a = 1 (mod px)
2

a = 1 (mod px)

if and only if a ^ 0,

if and only if \f/p(a) is real and positive.

A congruence modulo phx, h>2, is to have the same meaning as the same con-

gruence for p2x. This congruence (5) is an acceptable definition, because the

elements = 1 (mod p\) do form a multiplicative subgroup of the group of all

nonzero elements of k.

These conventions differ at (5) from the usual ones (see [20, 22]). Our

reasons for the adoption of such a definition are: first, we need a congruence

modulo p2x which is not trivially true for all a9^0; secondly, the convention (5)

agrees with the convention as to the ramifications. For, let kx be the field of

real numbers, Kx the field of complex numbers. Then the prime divisor px(u)

of kx is ramified in Kx, with px=P2x, according to the usual convention. The

possible congruences then agree for any a in kx:

2
(6) a = 1 (mod px) if and only if a m 1 (mod Px).

In other words, the formal decomposition px = Px may be actually substi-

tuted in congruences. This possibility of substitution may be readily extended

to the decomposition of any px in a normal extension K/k, which would not

be possible with the conventions of Hasse.

The infinite case of Theorem 26.1 is embodied in the following:

Theorem 26.2. Let A,<T be a factor set of complex numbers belonging to the

(cyclic) Galois group of the field Kx of complex numbers over the field kx of real

numbers. Then A„,T = \ (mod P2X) implies that A„,T is a transformation set from

Kx, provided this congruence is interpreted as in (5).

Proof. The proof will depend on the analysis of the algebra determined by

A„,T as a quaternion algebra. The Galois group A of Kx/kx is a cyclic group

of two elements {l, f}. Consequently the crossed product (Kx/kx, A, AC,T)

has a cyclic generation (Kx/kx, if, a) where the constant a in the normalized

generation may be computed as a=At,;Aitl. The condition At,t=A\,\ = \

(mod P2X) means that a is real and positive, hence a norm in Kx/kx. The

algebra is therefore a total matric algebra, as asserted in Theorem 26.2.

The local conductor Cp(K/k) for any P of K may be defined as the least

power Ph, with A^O, for which the conclusion (1) of Theorem 26.1 will hold

for the corresponding local extension. The conjugate prime divisors P" of P

determine equivalent extensions, thus

The characteristic property of these local conductors can be stated "in the

large" as follows:

(7) [CP(K/ k) ]' = CP°{K/k).

(M) That is to say, the natural valuation.
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Theorem 26.3. Let F, G be two factor sets for T in K, such that at every

prime divisor p of k one has for at least one factor P of p the multiplicative con-

gruences

(8) Fr„ = Gfl, (mod CP(K/k)); f, r, in A(P).

Then one can conclude F~G; that is, that there is a transformation set TA with

F = GTA.

Proof. The hypothesis, as a multiplicative congruence, means that the

quotient factor set PC-1 satisfies the conditions (FG_1) = 1 (mod Cp(K/k)),

for all P. According to formula (7) of §2 this factor set (-FG-1)r,„ is exactly

one giving the local component (K, V, FG~l)p of the algebra determined by

FG~l. The congruences (1) therefore just suffice to insure that every local

component is similar to one, which in turn implies FG~1~1 in the large, by

the fundamental theorem for algebras over algebraic number fields.

As a matter of fact, the congruences (8) in this theorem need only be as-

sumed for a finite number of prime divisors P.

Theorem 26.4. The local conductor CP(K/k) is 1 if and only if P is un-

ramified in K/k.

Proof. This conclusion is trivial for an infinite prime divisor P. For a finite

P we recall the convention ([20, 23])

(9) A = 1 (mod P°) if and only if A is relatively prime to P.

Suppose first that P is unramified in K/k. Then the requirement Ff,„ = l

(mod P°) means that Ft,v is relatively prime to P. But by Theorem 12.1 a

factor set of P-adic units is always similar to 1 for an unramified local exten-

sion. Hence P° is the local conductor. Conversely, suppose that the power P°

functions as the local conductor. This means that every factor set of units is

similar to 1. According to Theorem 12.1 the factor sets of local units yield a

group of algebras with order equal to the ramification order ep. Therefore they

can all be similar to 1 only if ep = \.

This theorem suggests that we introduce as the conductor for factor sets

of K/k the finite divisor

(10) C(K/k) = T[Cp(K/k).
p

This conductor need not agree with the ordinary conductor for abelian (non-

cyclic) fields. We remark that our principal class (see §6) P2l'(P") contains

the "ray" modulo C(K/k). This is a strict generalization of the classical re-

sults, provided we take for the module M a multiple of C(K/k).

Theorem 12.1 can also be used to obtain a somewhat closer estimate of

the size of the conductor. According to this theorem, the eth power of any
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factor set of local units is similar to 1. To make F-~l we may then, as in (2),

represent F as the eth power of a set: Br,v = exp [(\ogF{,v)/ep]; f, v A(P).

The original congruence Ft,v = l (mod Ph) must then have a module h so

chosen as to make the exponential and logarithmic series converge. Let Vp be

the P-adic valuation of K, and assume

VP(ep) = r,      Vp(po) = s,

po the rational prime which is divisible by P.

Then, if h>s/(pQ— 1), log F converges and has P-adic order h. The exponen-

tial function has as argument a quantity (log F)/ep of P-adic order h — r. To

insure the convergence of the exponential series this must again exceed (see

[23, p. 149]) j/(p0-l). Therefore A>r4-s/(p0-l) suffices.

Theorem 26.5. If a finite prime divisor P is ramified in K/k in such a

fashion that PT is the highest power dividing the ramification order ep, while Ps

is the highest power dividing the rational prime po, then the local conductor

CP(K/k) is a divisor of P\ where A = r4-l-f [s/(j>a — l)].

Corollary. If a finite prime divisor P has no higher ramifications in a nor-

mal extension K/R of the field of rational numbers, and if P is ramified in K/R

and relatively prime to 2, then the local conductor Cp(K/k) is P.

In the case of a cyclic extension the factor sets can be normalized to single

quantities. It follows that the conductor for factor sets is identical with the

ordinary conductor(65).

27. A generalized norm residue symbol. The investigations of Chevalley

and Hasse [9, 11, 21, 22] showed that the norm residue symbols ((a, Z)/p)

for a cyclic field Z/k can be defined purely locally, in terms of the invariants

of the corresponding algebra (Z, X, a). In a similar fashion, crossed products

may be used to define a generalized "norm residue" symbol for a factor set F

of a normal extension (66) K/k. Unlike the classical symbol, this new symbol

is not an element of the Galois group Y of K/k, but its formal properties are

similar to the ordinary ones (see [20, Part II]).

Let F be a factor set for K/k, p a prime divisor of k, and define

(*27.1) (K/k, F; p) =exp (jip/n) =e^i""i",

where

pp = uP(K/k, r, F) = u(K/k, T,F)P (mod ft)

is the additive invariant, mod n, of the algebra determined by F. Immediately

one establishes the following properties of this symbol:

(65) [37, Theorem 3]. Here also other inequalities for the conductor are given.

(66) The introduction of such a general symbol is originally a suggestion due to Hasse.
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(1) (K,F1-p)(K,F2;p) = (K,F1F2;p),

(2) (K,F;p)-i = (K,F^;p),

(3) (K,TA;p) = l.

Hence the norm residue symbol maps the group FA/TA of similarity classes

of factor sets homomorphically in the cyclic group of nth roots of unity.

To further analyze (3), recall that the p-component of a crossed product

(see §2, (7)) is (K, V, F)P~(KP, A(P), FC\A) where FC\A is the factor set

consisting of those elements Fr,v of F whose indices rj lie in the decomposi-

tion group A=A(P) of a fixed factor P of p. Hence

(4) (K, F;p) = l if and only if F H A ~ 1.

In terms of the local conductor Cp, this may be written as

(5) (K, F; p) = 1 if and only if (F H A)(TAP)-1 m 1 (mod Cp)

for a suitable transformation set(67) TAp. In terms of multiplicative con-

gruences (see [10, 20, 23]), this last congruence can be written as

Pf,, = (Ap)r(Ap)sv(Ap)fv1 (mod Cp). This result specifies the sense in which our

symbol is a "norm residue" symbol. Thus we have proved

Theorem 27.1. The symbol (K, F; p) depends only on the (multiplicative)

fesidue classes oj the elements Ft,, modulo the conductor Cp, where f, tj run over

the elements in the decomposition group of some prime factor P of p in K.

Theorem 27.2. // (K, F; p) = i for every factor set F, then p is totally de-

composed in K; that is, p has in K n distinct prime factors p=PiP2 • • ■ Pn.

Proof. If P is not totally decomposed in K, then each factor P of p has a

decomposition group A(P) of order [Kp\kp]=mp greater than 1. If / is any

rational prime factor of the degree mp, there must then be a local algebra Sp

which has the invariant u(Sp) =n/l^0 (mod n). By Theorem 14.1 the algebra

Sp is the component of an algebra S in the large. Any factor set F for such an

algebra 5 would have (K, F;p)?±l, counter to the assumption of the theorem.

The sum relation (68) for the invariants of an algebra implies a product formula

for the norm residue symbol

(6) lJ(K,F;p) = 1.
p

The question of the existence of a factor set F with certain given values for

(K, F; p) is identical with the question (see §§13-14) of the existence of actual

algebras 5 with specified local components.

Consider next a normal subfield L/k of K, belonging to the subgroup A

(*') The associated vector (Ap){ has components in Kp for f in A.

(6S) As stated in the proof of Theorem 6.f.
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of T. Let F\ = F' be a factor set belonging to L/k. A formula of the theory of

algebras (see [13, p. 63]) expresses the crossed product given by F' as a

crossed product for K/k by the relation

(7) (L/k, T/A, F') ~ (K/k, T, F'U T),

where f'LT is the factor set obtained by extension of F' with T, as in

(8) F' U r = [FC,T] where F,,, = F^a.tA = Fss,

for cr, t in T/A and a, r arbitrary representatives of the cosets ä, f. The fac-

tor set f'Ur is "Asymmetric." In general, a factor set F„,T is called A-sym-

metric if the components F„tT depend only on the position of a and t in the

cosets of T/A.

Since similar algebras have the same invariants, (8) yields

(9) (L/k,F'-p) = (K/k,F'KJY;p).

This rule determines (K, F; p) only for those factor sets F which are similar

to A-symmetric factor sets(69). Rule (9) is the analogue of the simple rule

"((a, K)/p) induces ((a, L)/p)" of the classical theory.

Consider next an arbitrary finite extension L of the base field k, which

"translates" the extension K/k to the extension KL/L. The Galois group of

the join KL/L is isomorphic to that subgroup A of V which leaves fixed all

elements of the intersection K(~\L. On a crossed product the extension of the

base field k to L has the effect (see [13, p. 61]):

(10) (K/k,T,F)L~(KL/L,A,Fr\A),

where FPA is the factor set whose components are those elements Fr,T of F

which have subscripts a and t in the group A. On the other hand (see [28,

Theorem 5]), it can be shown that for any prime divisor q in L the g-invariant

of an extended algebra SL is obtained by multiplying' the additive p-invari-

ant (mod 1) of 5 by h= [LQ:kp], where q\p. In terms of the norm residue

symbol, these two facts may be combined as the "translation law"

(11) (K/k, F; pY = (KL/L, F H A; q).

A special case of (11) is the rule for a subfield: if kCLCK, while P'\p

is a prime divisor in L, A the corresponding group, then

(12) (K/L,FC\A;P') = (K/k,F;p)»

where h= [LP':kp].

Consider a field K which is the join over k of two fields Ki and K2, each

normal over k. In the Galois group V of K/k each automorphism cr induces

(69) Even if pis not A-symmetric, its local component FC\A at some of the P\p may be so

symmetric; this makes possible a slight extension of (9).
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an automorphism <ti of Ki/k and an automorphism cr2 of Ki/k. Since K is

generated by Ki and K2, the original <r is uniquely determined by its homo-

morphic maps <Ti and cr2, so <r may be represented by the formal product(70)

o- = o-i<r2. As in (7) a crossed product (Ki/k, Tu Pi) for the first extension is

similar to a crossed product (KiK2/k, T, F), where the factor set F is obtained

from Fi by the formulas (8) as

(13) FnC2,rir2 = Fi!*i.Tlt o-io-2 and nr2 in T.

The crossed products (K2/k, r2, F2) are similarly extended. For the direct

product of two such algebras, we then have

(14) (Ki/k, Tu Fi) X (K,/k, Tt, Ft) ~ (KiKt/k, T, F)

where the factor set F is given by formulas such as (13)

Prjrj.fir, = •f7i;a1,r1-f72;I2,T2 with ci and n in Tu 02 and t2 in T2.

This means that the matrix of F is obtained from the Kronecker product

Pi® F2 of the given matrices by taking that submatrix belonging to the group

r (see [34, p. 691 ]). This yields for the norm residue symbols a rule

(15) (KiKi/k, (Fi ® Ft) n T; p) = (Ki/k, Ff, p)(K2/k, F2; p).

Formula (15) is a direct generalization of one of the rules for the ordinary

norm residue symbol (see [20, Part II, p. 27, (8)]).

The rules for the values taken on by the classical norm residue symbol

(see [20, Part II, p. 35, VI and VII]) break down in our case. The p-invariant

of an algebra S always has the form x(n/mv) for an integer x. Hence the corre-

sponding norm residue symbol is an mj,th root of unity. Not all such roots

need occur, because not all local algebras are components of algebras in the

large (see §14).

Theorem 27.3. If p is unramified in K/k, the norm residue symbol

(K/k, F; p) for variable factor sets F takes on all values exp (\/mv) in a cyclic

group of order mv. If p is ramified, the norm residue symbol takes on some, but

not necessarily all, of these values.

For factor sets F which are relatively prime to a given prime divisor p

the corresponding local factor set consists of P-adic units, and the results of

Theorems 14.4 and 14.5 determine the range of values of the norm residue

symbol in this case.

Theorem 27.4. If p is unramified in K/k, the norm residue symbol

(K/k, T;p) for variable factor sets F which are relatively prime to p is always 1.

If p is ramified, the norm residue symbol for F relatively prime to p takes on all

(70) Here eri is an automorphism of Ki (not of K). This formula represents T as a subgroup

of the direct product Vi X T2 of the groups Ti and T2 of Ki/k, Ki/k, respectively.
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values exp (y/(ep, n)), with y integral, in a cyclic group of order (ep, n). Here

n = fii is determined from p = pi as in Theorem 14.5.

28. A generalized Artin symbol. The invariants of ideal factor sets, as in-

troduced in §4, may be used to set up an Artin symbol resembling the symbol

(K/a) of the classical theory ([20, Part II]). The ideal a which is relatively

prime to the conductor is to be replaced by a factor set ft of ideals which are

relatively prime to the conductor C(K/k). We define(71)

*(28.1) (K\ft) = (K/k;ft)=exp E*(g)«-'|,

where the sum is to be taken over all unramified prime divisors p for K/k,

while Up is to be the invariant defined in (*5.6). In terms of the explicit for-

mula §5, (16) for this invariant we may also write, for any factor P of p,

(1) {KI ft) = exp { £ £ m-WP(ftsi,s) \
\   P   j=0     ■ !

where T/p(21) denotes the P-adic order of an ideal 21, while 5= [(K/k)/P] is

the Frobenius automorphism for P, of order m = mp.

Our symbol may be obtained for any ft once its values are known for the

p-primary factor sets. We know that the invariant pP(ft) depends solely on

the p-primary factor ft1-"'' of ft. Specifically, any ft which is relatively prime

to the conductor can be represented uniquely by a product

(2) ft = gtMgd) • . . ft(>\

where ftu) is a pi-primary factor set, while pi, pi, ■ ■ ■ , p, are all the various

(unramified) prime divisors of k involved in ft. Since Ui{ft) =Ui(ft{i)), we have

(3) (KI ft) = (KI ft^)(K I g<») ■■■(K\ $<«>).

For a p-primary factor set ftip) all invariants uq(ft(p)) for q^p are zero, so the

original definition of the symbol may be rephrased as

(4) (!T|§<*>) =exp \ßP(ft^)/n}.

The equations (4), (3), (2) might have been adopted to define the Artin sym-

bol (K \ ft). Alternatively, (4) may be inverted to give a definition of the p-in-

variants in terms of the Artin symbol:

(5) up(ft) = (»/2xi)log [(X I &<»>)],

where ft(p) denotes the p-primary factor of the given ideal factor set ft.

Theorem 28.1. The Artin symbol affords an isomorphic mapping ft—>(K~ \ ft)

of the group FW/TW{F") onto the group of Jth roots of unity.

(") We let exp« = e2T'".



1941] NORMAL ALGEBRAIC NUMBER FIELDS 379

The quotient group in question is exactly the group whose order was com-

puted in Theorem 6.1. Much as in Artin's reciprocity theorem, the Artin sym-

bol thus furnishes an explicit realization of the isomorphism of the class group

FW/TW(F") to a substitute for the Galois group (7th roots of unity).

Proof. To show that g—>(2£| ft) is a homomorphism, we need only refer to

the corresponding properties of the invariant u„(ft), as given in §5. We find

(6) =

(7) (AlSr1 = (Air1),

(8) fti ~ §2 implies (K | |0 = (K | ft2).

Lemma 5.1, combined with the Tschebotareff density theorem, indicates that

every 7th root of unity appears as the value of some Artin symbol | f5)-

If ft is taken as the principal ideal (F"), then by Theorem 6.1 ft has the same

invariants as the algebra (K/k, T, F"). The sum of these invariants is 0

(mod n), hence

(9) ft in (F") implies (K\ ft) = 1.

It remains only to prove

(10) (K\ ft) = 1 implies ft lies in TW(F").

But (KI ft) = l means according to definition (*28.1) that£ppp(rj) =0 (mod n).

This implies that the invariants uP(ft) are the invariants of an actual algebra

S' relatively prime to M. By Theorem 6.2, S' has a crossed product represen-

tation with a factor set {F"). By Theorem 5.4, uP((F")) =pp(S') = uP(ft), so

that, by Theorem 5.2, ft(F")~l is a transformation set TW, as asserted.

Since the norm residue symbol can also be defined (see §27) in terms of

invariants of algebras, we may obtain it from the Artin symbol, applied to

the p-primary component (77)(p) of a factor set of principal ideals

(11) (K, F; p) = (KI (F)^i),    if p is unramified in K/k.

According to Lemma 4 of §5 the p-invariants uP((F)ip)) run over all multiples

of nrnf1. Hence we obtain the following result, which resembles the deter-

mination of the decomposition of unramified prime divisors in terms of the

abelian class groups (see [20, Part II]).

Theorem 28.2. If p is unramified in K/k the degree f = mp of a prime fac-

tor of p is the least integer f such that {K\ftip))f = 1 for every p-primary factor

set ft^K

Remark. In general not every coset of FW/TW(F") will contain p-pri-

mary factor sets. The least common multiple J(r) may be a proper multiple

of every residue class degree / which is permitted by the structure of the

Galois group. The simplest example is furnished by fields K/k with the sym-
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metric group of 3 letters as the Galois group. Here 7(r)=2,3 and/=2,3.

Thus, the two classes of order 6 in the cyclic group FW/TW(F") are free

from primary factor sets. This is another instance which illustrates the dis-

crepancy between the classical class field theory and our theory.

The cosets which contain primary factor sets can easily be determined

by means of Theorem 28.1. A coset contains a p-primary factor set if its

order in the class group is equal to a permissible residue class degree of an

unramified prime divisor. These degrees are exactly the orders of the cyclic

subgroups of r, as follows from the ramification theory. Now J(T) is the

least common multiple of the orders of the group elements, hence J(T)=0

(mod/) for every possible/. The Frobenius density theorem then proves that

at least one class of order / must contain infinitely many primary factor sets.

Consider next the symbol referred to a subfield L of K such that

(12) k C L C K,      L/k normal.

If A is the subgroup of T belonging to L, then the Galois group of L/k is T/A.

If a prime divisor P of K has a multiple Q in L, then the Frobenius auto-

morphism [(K/k)/P] = 8 of P induces in T/A the Frobenius automorphism

[(L/k)/Q] = 8A = { of Q (see [20, Part II, p. 6, Rule III]). A factor set ©
for A can be extended to a factor set ft for K by the rules

(13) OV.r = ®,A,rA;

the result is a A-symmetric factor set of K. By (1), the Artin symbol is

(K I ft) = exp (EE m-WP{ftti,t)\ , m = mp.
V   p   J=0 j

The order Vp is the same as Vq, since p is unramified, while the order np

of the automorphism f is a divisor np = mp/r of the order mp of 5, so this equa-

tion becomes

(K I ft) = exp j £ ir/mp) £ FQ(®r.-,f) j , i = 0, 1, • • • , n„ - 1.

Since r/mp = l/np, this yields the result

(14) (K/k; ft) = (L/k; ®).

Given the situation (12), with ft defined by (13), this gives the Artin symbol

(K \ ft) for the A-symmetric sets ft.

On the other hand, one may consider the symbol for K/L.

Theorem 28.3. If the subgroup A of T corresponds to the subfield LQK,

while ftT*\A denotes that part of the factor set ft' which refers to the subgroup A,

then
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(15) (K/L; ft' n A) = (K/k; ft'Y, where d = [L:k].

This is a special case of the following general "translation law" for the

norm residue symbol:

Theorem 28.4. Let L be any finite extension of k such that the intersection

LC\K belongs to the subgroup A of T. Then

(16) (KL/L; g'HA) = (K/k, ft')d where d = [L:k].

Proof. It will suffice to prove (16) for the case of a p-primary factor set

g_g(p)i wnere p [s unramified in K/k. Let the decomposition of p in L be

(17) p = ql\i ■ ■ ■ qn,      NL!kqj = p'' (j = 1, • • ■ , h).

In the join KL choose for each j a factor Qj of c3, and let Pj be the prime fac-

tor of Qj which lies in K. The translation rule for the ordinary Artin symbol

asserts that qj is unramified in KL/L and that the Frobenius automorphism

5,-of <2, (see [20, Part II, p. 8]) is

bj = [(KL/L)/Qj] = [(K/k)/P,]fi.

Since the original Frobenius automorphism 5= [(K/k)/Pj] has order mp, the

derived automorphism 5,- must have the order

—1 n

»i = mp(mp, fj)   , where NxLuQj = qj' ■

In L the only primary components of ft are the g,-primary ones, forj = 1, • • •, h.

Hence the translated Artin symbol has by definition the value

(KL/L; ftC\ A) = exp { £ nj* ("j^Wj[fts<Sj]

where Wj denotes the valuation belonging to Qj. Since P,-| p is unramified,

the ramification order of Q, \ Pj must be exactly the ramification order e3 which

figures in the decomposition (17). Therefore the power Wf[tl] to which Qj

divides any ideal §1 of K is e,- times the power F3 [§l] to which P3 divides the

same ideal, and

(KL/L; ft Pi A) = exp \ £ («</»,)("£ Vfö»'.»]

But the order Vj of the product involved here was computed in (18) of Lemma

5.7, and is (njfj/n)pp(ft), where r = »3 is the order of the cyclic group on 63,

while t =fj is the exponent in 53-= 8'. Therefore

(18) (KL/L; ft Pi A) = exp i £ («^/»»)p,(5)
1 ,=i

■



382 SAUNDERS MAC LANE AND O. F. G. SCHILLING [September

But £ej/i is exactly the degree d= [L:k], while exp {uP(ft)/n} is exactly

(Jt|g) by (4). Therefore (18) gives the desired conclusion (16) of the theorem.

This translation law seems superficially out of agreement with the analo-

gous law (see [20, Part II ]) for the norm residue symbol, because in that case

the exponent was [Lq:kp], while here it is [L:jfe]. The divergence disappears

if one recalls that the factor set ftip) splits up into h p-primary factor sets over

L, each of which involves an exponent [Lg:kp], for a total [Lq:kp]h= [L:k].

This remark may be explicitly checked by using the theorem of (11).

As in §27 we may consider the case of the join K = K\K2 of two normal

fields, and a factor set (gi^S^nr obtained from the Kronecker product of

two ideal factor sets gi and g2 which are relatively prime to the conductor of

K/k. This factor set can be represented as a product(72)

«nrHt/^ynr],

to each factor of which the subfield rule (14) for symmetric factor sets may

be applied. The result is

(19) (Mi I (gi ® 8ft) n r) - (jr, | go • (k2 | g2).
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