
INEQUALITIES FOR HARMONIC POLYNOMIALS
IN TWO AND THREE DIMENSIONS

BY

A. C. SCHAEFFER AND G. SZEGÖ

In what follows we discuss certain inequalities involving harmonic poly-

nomials of two and of three variables, that is, polynomials w(x, y) and

w(x, y, 3) which satisfy Laplace's equation uxx+uyy = 0 and uxx+uyy-\-uzz = 0,

respectively. The inequalities in question furnish bounds for these polyno-

mials and for their derivatives under proper conditions. Of particular interest

are inequalities of the type of S. Bernstein's theorem, as discussed by the

second author in a recent paper [7](I).

The first part of the present paper deals with the two-dimensional and

the second part with the three-dimensional case. Of fundamental importance

throughout the paper is an interpolation formula which is stated and proved

in §2 of Part I. In fact the results of Part I may be regarded as systematic

applications of this formula. Several inequalities of this part are generaliza-

tions and refinements of earlier theorems. Most of the problems of the second

part are new.

In an Appendix we consider a generalization of the main problem treated

in Part II, and another problem which deals with ellipses and is only in loose

relationship with the other topics considered in the present paper.

Part I. Two-dimensional harmonic polynomials

1. Definitions and notations

1. We consider polynomials u(x, y) of degree n in the cartesian coordi-

nates x, y satisfying Laplace's differential equation. Let n = \. Introducing

polar coordinates r, <p we write w(x, y) = U(r, <p). The standard representation

n

(1) U(r, d>) = a0 + 2 yj rm(am cos mcj> + bm sin mcp)

is well known. For the sake of simplicity we assume (except in the Appendix,

§2) that the am and bm are real, although many of the following results can

be extended to harmonic polynomials with complex coefficients. The bound-

ary function 7/(1, <p) = 77(<p) is the most general real trigonometric polynomial

of degree n,
n

(1') 77(<p) = a0 + 2     (am cos m<b + bm sin mcb).
__ m=l
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The conjugate harmonic polynomial V(r, <f>) is unique except for an additive

constant; we write

n

(2) V(r, <j>) = 2     rm( — bm cos m<b + am sin m<b).
m= 1

Then U(r, <p) and Vir, 4>) are the real and imaginary parts, respectively, of

the polynomial

n

(3) F(z) = a0 + 2YJ (om - *&m)zm

when z — rtf*.

2. Let be the class of trigonometric polynomials J7(<p) of degree n

satisfying the condition

I U(vT/n) I = 1, 0 = v = 2n - I.

Replacing this condition by

U(vv/n) = 0, 0 = v i 2« - 1,

we refer to the corresponding trigonometric polynomials of degree n as those

of the class Ln.

3. Let Xo, po, Xi, pi, • • • , X„, pn be given real numbers with p0 = p»i = 0. In

the following development we are interested in obtaining inequalities for the

expression

n

(4) G = XoflO 4" 2 52 (Xm<Zm 4" Pm&m)
wi=l

where am and 6m are the coefficients of an arbitrary trigonometric polynomial

of the class Kn or Ln. In these investigations the trigonometric polynomial

n

g(<t>) m Z]C'        cos m<t> — Vn-m sin

(5)
n

= 2 yj (Xm cos in — m)<p — pm sin in — m)<p)

will be of primary importance. Here the symbol yjf=n means that the first

and last terms (m = 0 and m = n) are to be multiplied by J. The above defini-

tions and notations are used throughout the text. Of course (4) can be written

in the form

G = — f   U(<t>) ixo 4- 2 yj (Xm cos m<b + pm sin m<j>)\d(b.
2-k J ^        \ m=i ;
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2. Fundamental formulas and theorems

1. Our starting point is the following important

Interpolation formula. Given the real numbers Xo, po, Xi, pi, ■ ■ • , X„, p„

with po=Pri = 0 and the trigonometric polynomial U(4>) of degree n, we have by

using the notations (1'), (4), (5)

(6) G =       £ (- \)<>g{vir/n)U{vir/n).
in v=0

Special cases of (6) due to M. Riesz [2] and Szegö were discussed in [4].

These cases were used in the proof of S. Bernstein's theorem and the "gradient

theorem" (cf. §4) of Szegö, respectively. The interpolation formula of

M. Riesz [2] is the special case corresponding to \m = cos ma, 0 = m^n,

wm = sin ma, 0 = m~n — 1; it is the following:

U(a) = 2b„ sin na

j 2n-l

4-22 U(vir/n) {1 4- 2 cos (a - vir/«) 4" 2 cos 2(a - uw/n) + ■ ■ •
2« v=o

(7)
4- 2 cos (« — l)(a — vv/n) 4- cos «(a — fir/«) }

sin na 2J!z1
= 2&„sin«a4-—  22 (~ tVV(v*/n) cot (a/2 - vir/(2n)).

2« ,=o

We also note the formula for the corresponding harmonic polynomials (re-

garding (8) see [5, p. 75]):
I 2n-l

U(r, a) = 2bnr" sin na 4-22 U (vir/n) {1 4" 2r cos (a — vv/n)
2n „=0

(8)

(9)

4- 2r2 cos 2(a — vr/n) + ■ • ■

4- 2rn_1 cos (« — l)(a — vir/n) + rn cos «(a — vir/n)},

J 2n-l

F(r, a) = — 2£>nr" cos «a 4-22 U (vir/n) {2r sin (a — vir/«)
2» „_o

4- 2r2 sin 2(a - pit/m) -f~ • « •

4- 2rn_1 sin (n — I) (a — vir/n) -\- rn sin n(a — vir/n)}.

2. From the formula of M. Riesz, (6) can easily be derived. A direct proof

of (6) can be based on the well known remark that for any trigonometric

polynomial f(<p) of degree 2« — 1,

(io) i 22/W«) = ̂  r Md*.
2n ,=o 2-k J—r

Now,
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(— 1)" cos [(n — m)vr/n] = cos (mvir/n),

(—1)" sin \(n — m)vir/n] = — sin (mvir/n),

so making use of (5), the right-hand side of (6) is equal to

J     2n-l n

—  22   22 2U(vir/n)(\m cos (mvir/n) + fim sin (mvir/n)).
2n „_o ™=o

On changing the order of summation and using (10) we find that this is equal

to G. It has to be taken into account that

1 2n-l

—  22 X„ cos (nvir/n)(2an cos (nvv/n) -\- 2bn sin (nvw/n)) = 2\nan.
2n v_o

3. As a first consequence of this interpolation formula we prove

Theorem A. Let X0, Mo, Xi, pi, • • • ,\n, ßnbe given real numbers, p0 = ßn = 0,

for which

(12) g(w/«) = 0, 6 $ *-JS 2» - t

7/ U(cb) belongs to the class Kn, then

(13) \G\ = + Pm&m) = X».

7/ (12) is wo/ satisfied (that is, if for at least one value of v the sign < holds),

then there is a member of K„for which G >X„.

Remark. Let v\, v2, ■ ■ ■ , vi denote all the values of v, 0 — v = 2n — 1, for which

in (12) the sign > holds. Then \G\ =X„ if and only if ( — l)"U(vir/n) =y,

v = v\, v2, • ■ ■ , vi. Here y represents either +1 or —I. If in all the inequalities

(12) the sign > holds, then \ G\ =X„ if and only if U(<p) = +cos n<p-\-c sin n<b,

c real.

This result was proved by Szegö in the less precise form that (13) follows

if, in place of (12) and the condition that U(cb) belongs to Kn, we have g(<p) = Q

and I U(4>) I = 1 for all real <p. The above generalization of the theorem was

proved by S. Bernstein [l ] using the method of best approximation. The pres-

ent method is similar to Szegö's.

4. Inequality (13) is a simple consequence of the fundamental interpola-

tion formula; for under the hypotheses of Theorem A,

(14) — 22 (- \)"g(vT/n)U(vTr/n)
2n „=0

1 2n-l

= — 22 «("*■/«) = x„.
2n „=o

Now let g(kir/n)<0 for a special value of k. We construct a trigo-

nometric polynomial of class K„ for which G>X„. The function /(<p)
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= (2»)_1 sin n<b cot (<p/2) is a trigonometric polynomial of degree n vanish-

ing at (p = vir/n, l = v = 2n — l, and equal to 1 at (p = 0. [This function serves

as a basis for the interpolation formula of M. Riesz. See (7).] Then the trigo-

nometric polynomial defined by

2n-l

(15) 7/(</>) = E (~ !)'/(* - **» sgn
»=0

belongs to K„. But from (6)

(16) G = ^ 2£ I fW») I > T E f(W») = X-
2n v=o 2n „=o

But more than this is true. If g{kir/n)<0 for a special k, there is a trigonometric poly-

nomial of degree n which is bounded by 1 for all real <j>, but for which G>X„. To show this let e

be a small positive number and let

WMi = (1 - « - €3'2)(cos n<j> + tV(4>))

where U{(j>) is denned by (15). Suppose Ut(<j>) attains its maximum at <j>i, which of course

must lie within a distance ir/(2n) of some point vir/n. Then

eU'{<j>\) = n sin nfa,

so, from the inequality (sin 8)/6^2/tt,

11 U'{<t>\) I = n I sin n(<t>i — vir/n) | ä (2n/ir) | <f>i — vt/h\ .

Thus 4>i lies in fact within a distance Cie of some point vir/n, C\ independent of e. Then the mean

value theorem furnishes

I/.foi) - Ut{v*/n) = (1 - e - e3'2)(*i - vw/n){- n sin n8 + et/'(0))

where | 0 — t>ir/n\ £ \ <j>i — vw/n\ gcie. The last factor on the right will be less than en, Ci inde-

pendent of e, so

! V,(<h) I < (1 - e - €3/2)(l + € + CiC2e2) < 1

for all small «.

But

G = Gt = (1 - e - «"*)/(» Z «("t/») {1 + ■ sgn g(w/n)}
v-o

ä (1 - e - e3'2) {X„ + eX„ + (e/n) | g(kw/n) | } > X»

if eis small enough.

If all g(vw/n) are greater than zero the equality occurs in (14) if and only

if ( — 1)' U(vir/n) = y, 0 = v = 2n — 1. Here y represents 4-1 or —1. In this case,

however, the function yU(<p) — cos n<p vanishes at vir/n, Q = v = 2n—\, and

so is identically equal to c sin n<p where c is a real constant. The more general

statement in the Remark to Theorem A is also clear. The values of JJ(yir/n)

for the remaining v^Vi, Vt, • • • , vi are obviously immaterial.

5. A result which is closely related to Theorem A is the following:

Theorem B. Let Xo, po, Xi, Mi, • ■ • , X'„, p„ be given real numbers, po=Pn = 0,

for which
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(17) (- l)'f(«r/«) = 0, 0 = v = In - 1.

If U(<p) is a member of the class Ln, then

n

(18) G = Xoflo + 2E (Xmflm + Pmb.m) ̂ 0.
7/1 — 1

If (17) is not satisfied (that is, if for at least one value of v the sign < holds),

then there is a member of L„for which G <0.

Remark. Let vu v2, ■ ■ ■ ,vi denote all the values of v, 0 = v = In — \,for which

in (17) the sign > holds. Then G = 0 if and only if U(vir/n) = 0, v = v\, v%, ■ ■ ■ ,vi.

If in all the inequalities (17) the sign > holds, then G = 0 if and only if

Inequality (18) follows immediately from (6). Now suppose ( — l)kg(kir/n)

<0 for a special value of k. Then

belongs to the class Ln, and U(kir/n) = 1. But for this function

1   2"-' 1
G = —  TJ (- \Yg(vw/n) U(u7r/n) = — (- \)hg(kir/n)U(kir/n) < 0.

2n „=0 2«

If for all v, ( — l)"g(vir/n)>0, the equality occurs in (18) if and only if

U(vTr/n)=0, 0^v^2n — l. But this implies that U(<p)=c sin n<p, c real. The

more general assertion of the Remark to Theorem B is also clear.

6. Theorems A and B are "dual" theorems in the following sense. Let

Xo, Po, Xi, pi, ■ • • , X„, nn; po = Pn = 0; be given real numbers, and suppose that

the function gi(<p) = 2TJm-o(X«-»n cos m<b — nn-m sin m<b) satisfies (12). If

|Xm', ßm } is a new sequence defined by Xm' =X„_m, pm' = —pn_m, the func-

tion g2(<p) =2yjm=o(^«-»> cos mcp—pn-m sin mcp) will satisfy (17). In fact it fol-

lows from (11) that g2(vir/n) = (— V)vgi(vw/n). Thus if the sequence {Xm, pm}

is such that Theorem A is applicable to polynomials of the class Kn, the se-

quence {Xm', p.™ \ will be such that Theorem B will be applicable to polyno-

mials of the class Ln. The converse is also true.

7. Finally we note some identities which will be useful in the later consid-

erations (cf. [5, p. 75]):

U(<p) sb c sin ncp, c real.

U(4>) = (1/2«) sin n(4> — kir/n) cot %(<b — kir/n)

n

4=21' rm cos mA>

(19)
(1 — r2)(l — r" cos n<p) + 2r"+1 sin n<p sin <j>

1 — 2r cos 4> + r2
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n

B = 2 yjV"-"1 cos m<p

(20)
m=0

(r2 — l)(r" — cos n<$>) + 2r sin sin

1 — 2r cos 4> + f2

n

(21) C = 2 E'cos      = sin tub cot (<p/2).
m=0

For <p = vir/n, v an integer, we have

(22) sgn A = + 1, sgn B = (- 1)"   if   r < 1,

(23) sgn /I = (— 1)%      sgn 73 = + 1      if   r > 1,

and

(24) sgn C = 0   or 4-1

according as v is not or is divisible by 2n.

3. Applications

1. In this paragraph we consider several applications of Theorems A and B.

I. Let U(r, <b) be a harmonic polynomial and let 17(1, <p) = U(<p) belong to

the class Kn. Then for R > 1

(25) I U(R, vir/n) 4- SRnU(R-\ vir/n) \■£ Ä* + I, 0S»i2»-l,

where 5=4-1 or — 1. In the special case v = v0 of (25) i/te equality occurs if and

only if L7(l, vir/n)=y either for all even v or for all odd v according as

vv\-\(A— ^)    even or °dd; here y= 4-1 or — 1.

From this follows

I'. Let U(r, <b) be a harmonic polynomial of degree n satisfying the condition

I 77(1, <p)| Sil, (p arbitrary real. Then for R>1,

(25') I U(R, <p) 4- 5RnU(R-\ <b) \ = R* + 8, <j> arbitrary real,

where 6=4-1 or —1. The equality occurs in (25') if and only if ± U(r, <b)

= 1— X4-Xr" cos n(<f> — tj>o) where <j><, is real, O^X^l.

To prove I it will be sufficient to consider the special case v = 0. Let

\m = Rm + 8Rn~m,   y.m = 0, 0 ~ m — n,

where 6 = +1. Then

n n

g(<t>) = 2^'Rn~m cos m<p 4- 25 YJ''Rn~m cos (» - m)tf>,
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and making use of (11) we obtain

n

(26) g(vir/n) = 2(1 4- 8(- 1)')]C'Ä*~* cos (mvrr/n).
m«=0

The last sum is positive if R>1 [see (23)]. Consequently g{vir/n) is greater

than zero either for all even v or for all odd v, and vanishes for the remaining v.

Then (13) furnishes

ÜB(1 4- öR") + 2jJ am(Rm + 8Rn-m) ^ Rn + s,

that is, inequality (25). The conditions of equality in (25) follow from the

Remark to Theorem A. Suppose for example that vo = 0 and 5=4-1- Then

(26) shows that g(vir/n) >0 for even v and =0 for odd v. Thus the equality

holds if and only if 77(1, vir/n) =y for even v, whereas 77(1, nr/ri) is arbitrary

for odd v.

2. Inequality (25) is true if 5 is not required to be +1, but is allowed to

have any value between —1 and 4-1- This follows by the argument used in

the proof of I, since (26) is non-negative if — lJÜÖrgl. It is interesting to

note, however, that if —1<5<1 inequality (25) may become an equality,

but under conditions different from those stated in I. For if — 1 < 5 < 1, then

g(vir/n)>0 for all v, so (25) becomes an equality for the narrower class of

functions U(r, <p) = + rn cos n<b+crn sin n<p, c real.

3. Inequality (25') is obtained from (25) in a familiar way. However the

question of (25') becoming an equality requires special consideration. Let the

sign " = " hold in (25') for <p = 0, and let 5=4-1. In virtue of the result on

the conditions of equality in I we have 77(1, vir/n) =7 for v = 0, 2,4, • • • ,2n — 2.

Then the derivative of 7/(1, <p) with respect to <j> must vanish at the same

points. Thus, if X is any real constant the function/(<p) = 7 77(1, <p) — cos n<p

—X(l — cos «(p) will have n double zeros, mod 2tt. But choosingX = 7 77(1, 7r/(2«))

there will also be a zero at <p = ir/2n; that is,/((/>) will have 2w-f-l zeros, mod 27r,

and so will vanish identically. This furnishes 7c7(l, <j>) =.X4~(1 —X) cos n<j>; in

order that | 7/(1, cp) | gl be satisfied it is necessary that 0=\= 1; finally we

substitute 1 —X for X.

4. The dual of I is

II. Let Z7(r, <p) be a harmonic polynomial and let 77(1, <p) = 7/(<p) belong to

the class Ln. Then for R>1

(27) I U(R, vir/n) I g R"U(R-\ vw/n), 0 = v = 2n - 1.

The equality holds if and only if 7/(1, vir/n) =0 either for all even v or for all

odd v.

A consequence of this is the following theorem of Szegö [3, p. 333]:
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IF. Let U(r, <p) be a harmonic polynomial of degree n satisfying 77(1, <p) — Q,

<t> arbitrary real. Then for R > 1,

(27') I 77(7?, <p) I = RnU(R~\ <t>), <p arbitrary real.

The equality occurs if and only if U(r, <p) =X {1 +r" cos «(<p —<p0)}, <po and X

real, \ = 0.

To prove II it is again sufficient to consider the case v = 0. Let \m = Rn~m

-f-57?m, fJLm = 0 where, as before, 7?>1 and 5 = +1. Then by the remark of

§2.6 and by (26), the function g(<p) constructed with the present choice of

\m and Mm will satisfy (17). More precisely, ( — \)'g(vir/n) will be greater than

zero either for all even v or for all odd v, and will vanish for the remaining v

in the range 0gv^2n — 1. Thus, according to Theorem B

n

a0(Rn + 8) + 2Y_) (R"~m + 8Rm)am = 0

m=l

or

(28) R»U(R-\ 0) + 8U(R, 0) = 0.

This shows that (27) is true for v = 0.

If (27) is an equality (for »> = 0) then (28) will be also for proper choice

of 5. Then the Remark to Theorem B shows that 77(1, vir/ri) must vanish,

either for all even v or for all odd v. Conversely, if 77(1, w/w)=0, v even,

we choose 5 = +l; then according to (26), g(vw/n)=0 for all odd v so that in

(28) the equality holds. The same is true in (27). The argument is similar if

77(1, v-w/n) =0 for all odd v.

5. From the extensions of I and I' given in §3.2 we obtain for 5 = 0:

If 77(r, <p) satisfies the conditions of I, then for R > 1

(29) I U(R, vT/n) \ g: Rn, 0 = v = 2n - 1.

If 77(7?, <p) satisfies the conditions of V, then for R>1

(30) I 77(7?, <p) |^7?n, <p arbitrary real.

The second of these is already known [3 ]. In the second part of the present

paper we deal with the space analogues of (29) and (30).

6. Here we insert a direct proof of ff' different from that given above or in [3]. ft is suffi-

cient to prove (27') for the special case 0 = 0; also considering §{ U(r, <j>) + U(r, —<£)} instead

of U(r, <t>) it suffices to prove (27') for the case in which 0 = 0 and U(r, <j>) contains only cosine

terms, that is, for

U(r,<t>) = an + 22T, amrm cos m<j>.

Finally we can assume U(r, <j>) >0 for Ogr < 1. Now U(r, 4>) is the real part of the polynomial

F{z) = Fire*) = a0 + 2 E a»zm 5* 0, | z | < \,
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so p(z) =z"F(z~1)/F(z) is regular for \z\ <1. According to a familiar argument, p{z) has the

constant modulus 1 for |z| =1, so

I z»F(z-') I < F(z), |z|<l,

unless p(z)=const.= +1. This inequality furnishes (27') by choosing z — R-1, R>1. The as-

sumption p(z) = +1 implies a0 = + 2a„, from which, since £7(1, <#>)=0, we concluded)

that t/(l,0)=X(l±cos«0),X>O.

Returning again to the general case, the equality can hold in (27') at 0 = 0 only if

V(l, 0) = X(l + cos »0) + 5(0)

where 5(0) is a sine polynomial. This again implies Z7(l, 0) sX(l +cos «0).

7. An inequality of S. Bernstein states:

Let 77(<p) be a trigonometric polynomial of degree n satisfying | 77(1, <p) | = 1,

<p arbitrary real. Then | U'(<p)\ gn, <p arbitrary real, with the equality if and

only if 77(<p) = cos n(<b — <pB), cp^real.

This will be a consequence of the following(3):

Let 77(<p) belong to the class Kn. Then \ U'(j/(2n)) \ — n with the equality if

and only if U(<p)= ±cos «(p + c sin neb, c real.

To prove this, let

\m — m sin (m%/(2n)),      pm = — m cos (mir/(In)), 0 = m — n.

Then

n

g(d>) = 2 E'(w ~ w){cos (m-w/(2n)) cos m<p + sin (mir/(2n)) sinw^}
m—0

jsin |»(x/(2») - 0)"! 2

I sin §(*7(2«j - (?) /

is the classical Fejer kernel, and g(vir/n) >0. It follows from Theorem A that

2 E m {am sin (wir/(2»)) — om cos (wir/(2n)) j
m-l

which is the assertion.

4. The "gradient theorem"

1. Szegö proved the following results [4] which for ease of reference we

call the "gradient theorem" and the "generalized gradient theorem." They

are refinements of S. Bernstein's theorem.

(2) L. Fejer, Über trigonometrische Polynome, Journal für die reine und angewandte Mathe-

matik, vol. 146 (1915), pp. 53-82; p. 72.
(3) Cf. G. Pölya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, 1925,

Problem IV, p. 201, and pp. 35, 218, 219; see in particular p. 219.
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Gradient theorem. If U(r, <p) is a harmonic polynomial of degree n satis-

fying I U(r, <b)\ =l in rgl, then |grad U\ ^» in r=l. The equality holds if
and only if U(r, <p)=rn cos »(</> — <po), <po real.

Generalized gradient theorem. If U(r, <j>) is a harmonic polynomial of

degree n satisfying \ U(r, <j>) \ gl in rg 1, then

(31) I grad U(r, <p) | + n \ an(r, <p) \ = n in r — 1.

Except at points (1, <p) where | 7/(1, <p)\ =1 the equality occurs if and only if

± U{r, 4>) = \-\-\-\rn cos «(<p-<p0), X and </><, real, OgXgl. .

Here and henceforth an{r, <p) denotes the wth Cesäro means of first order;

if U(r, <p) is given by (1), then

n

(32) ffn(r, 4>) = a0 + 2^2 (I — m/n)rm(am cos md> + bm sin md>).
m= 1

If U(r, <p) and V(r, <b) are conjugate harmonic polynomials we note that

I grad U I = {(r-'U^y + (r"1^)2}1'2 = {(£/r)2 + (r"1^)2}1'2

(33) = {(ury + (vry}n*.

In particular it follows from the gradient theorem that | 77r| gwand | U$\ —n.

The last inequality is S. Bernstein's theorem.

2. Incidentally the conditions of equality for the generalized gradient

theorem were not discussed in [4]. To obtain this theorem by the method of

the present paper we first show that

(34) I cos aUr(l, a/n) 4- sin aVr(\, a/n) -\- nan{\, a/n) \ = n

for every real a. Now 7J(r, <p — ß), ß real, also satisfies the conditions of the

generalized gradient theorem; so (34) will imply that

I cos a77r(l, (p) 4- sin aVr(l, <j>) + nan(l, <p) | = n.

Inequality (31) will be an immediate consequence of this, at least for r=l.

To prove (34) let

Xm = m cos (a — ma/n) -\- in — m) cos (ma/n),

Mm = — wsin (a — ma/n) -\- (n — m) sin (ma/n).

Then

n n

g(4>) = 2E (n—m) cos(w<p — ma/n) 4- 2 yj'(w — m) cos(ma/n + n<f> — m<$>)

SO
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g(vn/n) = 2{l + (— 1)"} E'(w — m) cos (**(« — vv)/n)
m=0

,               . C sin ((a - wr)/2) ) 2
=  l + (---r^} =0.

1 " (sin ((a - wr)/(2«))J

A little algebraic manipulation will show that |G| is equal to the left-hand

side of (34), hence (34) is a consequence of Theorem A.

To discuss the conditions of equality note that g(vir/n) =0 if and only if v

is odd or a—vw is of the form a — vw = 2kir where k is an integer not divisible

by to. Consequently, if a/ir is not an integer (34) is an equality if and only if

77(1, vir/n)=y, y = +1, for all even v. If a/w is an integer the same is true

unless a = 0 (mod 27r). In this exceptional case we see that the left-hand side

of (34) is equal to

I 77,.(1, a/n) 4- »<r„(l, a/n) \ = \ «77(1, a/n) \

and this is equal to w only at points where 77(1, a/n) = +1.

The same argument which was used in §3.3 shows that at points on the

unit circle where | 77(1, <p)| <1 the equality holds only if + 77(1, <p) = l— X

4-X cos n(<p — <pa), OgXg 1, <b0 real.

This proves the generalized gradient theorem for r=l. If 77ä denotes the

directional derivative of 77 in a fixed direction s, then 77s(r, <p)-\-n<rn(r, <p) is

a harmonic function. It follows that

(35) I U,(r, <f) + nan{r, <p) | g «, r < 1.

But now, if (r, <j>) is a fixed point in the interior of the unit circle and s is

allowed to vary we have

I grad 77(r, <p) | + n | an{r, <j>) | = max | 77„(r, <p) 4" no-n(r, <j>) \ g «.
a

According to the maximum principle, (35) can be an equality only if the

corresponding equality is identically satisfied. In this case 77s(l, <p) 4-«cr7l(l, <p)

as + to for all real cp so + 77(1, <p) =1— X4-X cos n(<p—(p0).

3. In the further course of this paragraph we prove the following general-

ization of the gradient theorems.

III. Let U(r, <p) be a harmonic polynomial and let 77(1, </>)= U(<j>) belong

to the class Kn. Then if p>q^0, p+q^2, and a is real,

I cos a{ U(p, a/n) — U(q, a/n)} + sin a{V(p, a/n) — V(q, a/n)} |

4- I pnU(p-\ a/n) - qnU{q-\ a/n) | = pn - qn.

The equality occurs if and only if 77(1, vir/n) =y, y= +1, either for all even v or

for all odd v, the only exception being the case to = 2, p-f-g = 2, a/ir an integer.

From this follows:
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III'. Let U(r, (b) be a harmonic polynomial of degree n satisfying | £7(1, (p)|

g 1, <b arbitrary real. Then if p >g2:0, p-\-q^2,

(36') ^ U(P' *} " U(q' *^*+ IV{P' ^ ~ V(q' 0)'2]1'2
+ I pnV(p~\ <j>) - qnU(q-\ 4>) \ g p" - q".

The equality occurs if and only if + £7(r, <j>) =X + (1 —X)r" cos «(</> —<p0), X and

<po real, OgXg 1, the only exception being the case re = 2, p-f-g = 2(4).

These results include the generalized gradient theorem as a limiting case.

For, let each side of (36) and (36') be divided by p — q and let p—»1, q—»1. We

obtain

I cos a£7r(l, a/n) + sin aFr(l, a/n) \ + #| <rn(l, a/») | g «

and

[{77r(l,<p)}2 + {Fr(l,<p)}2]1/2 + W|ff„(l,<p)| g n, ■

respectively. The first inequality states slightly more than (34); the second

inequality is the generalized gradient theorem.

4. To prove III let

Xm = (pm — qm) cos (a — main) -f- 8(pn~m — qn~m) cos (ma/n),

lim = — ipm — qm) sin (a — ma/n) + 8(pn~m — q«~m) sin (main).

Here 5 represents 4-1 or —1. Then

n

g(<t>) ~   E (pB_m — qn~m) I cos (ma/n — m<j>) + 8 cos (ma/n + neb — md>)}
711=0

SO

n r*

g(vw/n) = {1 4- (- 1)»5} yj'(p"-m - qn~m) cos (ow/* - mvw/n).

m-= 0

If we can show that

n

F(<p) = yj'(pn_m — o»-m) cos f»(p

(37)
n n

= Z [{(/>-      - (q ~ 1)*} Z'C„-m,* cosmcp] = 0,     4> real,

it will follow that g(4>) satisfies (12). But Zm=oCn-m,k cos w<p^0if £5:1, this

expression being, apart from a positive factor, the Cesäro means of &th order

of the series |4-cos <p-|-cos 2(p4" ■ • • . Moreover, from the hypotheses of III

(4) In this case (36') is an equality for (j> = (j>' whenever U(l, <t>') = + 1. (Compare the gen-

eralized gradient theorem.)
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we have p — 1 >g — 1 and p —1 «gl — q, so p — l=^|g — 11. This furnishes (37).

In case »5:3, F(<b) is even positive since (p — l)3 — (q —1)3>0 and the Cesäro

means mentioned are positive if £2:2. In this case g(vir/'«) >0 either for all

even f or for all odd v.

Now,

71

G = 2 2 (pm — qm)(am cos (a — ma/n) — om sin (a — ma/n))

m=l
n

+ §{(p" — qn)a0 + 2^2 (pn~m — qn~m)(am cos (ma/n) + bm sin (ma/n)))

m=*l

= cos a{ U(p, a/n) — 77(g, a/n) ) + sin a{ V(p, a/n) — V(q, a/n))

+ b{pnU(p~\ a/n) - qnU(q-\ a/n) } ;

so an application of Theorem A proves (36).

5. If «2:3 and the equality occurs in (36), G will be equal to ±X„ for

proper choice of 5. But, since g(vir/n) >0 either for all even v or for all odd v,

we must have 77(1, viv/n)=y for the same v, where y represents either +1

or -1.

The inverse statement is also clear. Assuming 77(1, vK/n)—y for even v

we choose 5= +1. Then (for «^3) g(vw/n) =0, v odd, so G = y\n holds. This

means that the equality holds in (36) since

I G I = I cos a{ U(p, a/n) — U(q, a/n)} + sin a{V(p, a/n) — V(q, a/n)} |

+ I p"U(p-\ a/n) - qnU(q~\ a/n) \ g X„.

In case n=\, F(4>) = h(p — q)>0 so the same conditions of equality hold.

This is true also for n = 2 since F(<b) =(p-%){§(>+§-2) +2 cos2 (0/2)}, the

only exception being the case p-\-q = 2 when at the same time a is an integral

multiple of it. [For the calculation of g(vir/2) we need only F(\(a — vir)), which

is 0 only if p-\-q = 2 and (a — vir)/2 is an odd multiple of it. ]

Regarding the special case p>l, q=l, see the joint paper of Rogosinski

and Szegö in Mathematische Zeitschrift, vol. 28 (1928), pp. 73-94, in par-

ticular p. 81, (39).

6. The dual of III is:

IV. Let U(r, <p) be a harmonic polynomial and let 77(1, </>)= U(<b) belong

to the class Ln. Then if p>q<^0, p+q^2,

I cosaj 77(p, a/n) — U(q, a/n)} + sin a{ V(p, a/n) — V(q, a/n)) \

g pnU(p-\ a/n) - qnU(q-\ a/n).

The equality occurs if and only if 77(1, v-ir/n) vanishes either for all even v or

for all odd v, the only exception being the case n = 2, p+q = 2, ct/ir an integer.

From this follows:
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IV. Let U(r, <p) be a harmonic polynomial of degree n satisfying (7(1, <j>)

3:0, <p arbitrary real. Then if p>q^0 and p-f-g2:2,

,    [ { U(p, </>) - U(q, <p)}2 + {V(p, <b) - V(q, <t>)}2]"2

g pnU(p~\ <p) ~ q"U(q-\ <p).

The equality occurs if and only if U(r, cb) =X {1-f-r" cos n(cj> — <bo)}, X and <po

real, X2:0, the only exception being the case n = 2, p-\-q — 2.

To prove IV we set

XOT = (pn~m — qn~m) cos (ma/n) + 8(pm — qm) cos (a — ma/n),

Mm = (pn~m — qn~m) sin {ma/n) — S(pm — qm) sin (a — ma/n)

where as before, 5 = +1. In virtue of the remark of §2.6, it is only necessary

to compute the corresponding quantity G, that is,

71

G = (p* — qn)aa + 2YJ (p"~m — qn~m)(am cos (ma/n) + bm sin (ma/n))

m=l
n

+ 25Z (pm — qm)(am cos (a — ma/n) — bm sin (a — ma/n)).

m=l

By Theorem B, we have G5:0; or

pnU(p-1, a/n) — qnU(q-1, a/n) + 5 cos a{ U(p, a/n) — U(q, a/n) }

+ 5 sin a { V(p, a/n) - V(q, a/n) } ^ 0.

7. The dual of the generalized gradient theorem is the following:

V. Let U(r, <p) be a harmonic polynomial of degree n satisfying 77(1, <p) 2:0.

Then for r g 1,

(39) I grad 77(r, <p) | g nan(r, <p).

The equality occurs if and only if U(r, <p)=X{l+r" cos n(<p — <po)}, X and <ba

real, X 2:0. The only exception is the case in which 77(1, <p0) = 0; then the equality

holds in (39)forr=l, 0 = <po-

Incidentally V may be obtained by dividing each side of (38') by p — q

and letting p—->1, j—»1. The left-hand side approaches [{ 77,(1, (p)}2

+ { VT(l, cj>)} 2]1/2, while the right-hand side approaches wer„(l, <p). This shows

that (39) is true for r—1. But then, by a familiar application of the maximum

principle it follows for r<\.

8. In terms of rational polynomials, III' may be stated in the following

equivalent form:

VI. Let F(z) =^2m=0cmzm be a polynomial of degree n satisfying \ dlF(z) \ g 1
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in \z\ g 1. If p and q are real numbers, p>gS:0, p4-<Z = 2, then for \z\ gl,

(40)        I F(pz) - F(qz) I + I W.\pnF{p-h) - q"F(q-h)} | g p" - g".

The equality holds if and only if F(z)=azn-\-b where \ a\ -\-\Wb\ =1, the only
exception being the case n = 2, p-\-q = 2(s).

Finally we observe that from the fact that (37) is non-negative the fol-

lowing refinement of a theorem of Rogosinski-Szegö follows, cf. loc. cit., p. 77,

(21):

Let {sn(z)} be the partial sums of a power series f(z) = co4-Ciz-r-C2Z24- • • •

convergent in the unit circle \z\ <1 and satisfying the condition |/(z)| gl for

I z I < 1. Then

ri Sni/xz) — r2 sn(r2z)
< 1

rrn — r2n

where \z\ gl, ri>0, r2>0, ri?*r2, rr1+rrls^2.

9. Let
n

F(2) = Z cmzm

be a polynomial of degree n satisfying the condition |3?F(z)| gl in \z\ gl;

according to the gradient theorem

F'OO = Z mcmzm-1 s n, z  < 1.

By repeated application of this theorem we obtain

F (z)
(n-k)l

or:

(41) ,kCmZn g Cn,k', z  g 1, 1 g k g n.

In all these inequalities the sign < holds unless F(z)=ezn, | e| =1.

Using (41) we now prove:

VII. Let 7o, 7i, • • ■ , y„ be real numbers satisfying

(42) & - 25.(7 iy+mC>,m7m ^0, 0 g v g n.

If F(z) =Em=ocms"1 *s a polynomial of degree n with real or complex coefficients

(5) See the footnote to HP.
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satisfying | 3t.F(z) \ gl in \z\ gl we have

(43) S. JmCmZ" gyn- «0(1 - I F{z) I ),

203

ill.

The equality holds if and only if F(z)=ez", |e| =1, \z\ =1, or 70 = 71 = 72

= • • •  =7n = 7-

If dr is defined by (42) the known inversion formula

(44) ^ 1 Cm,v&v

may be proved in the following way. Expanding ez and using Cauchy multi-

plication we verify that

22 (— l)m — zm = ezE (— l)m-z •
m=o ml m_0 w!

Bringing e2 to the left and again using Cauchy multiplication we obtain (44).

Then (44) implies that

n n /    n \

Z 7r»cmzm = 2ZS"Z"\ Z Cm,«-»-' V ;

so, according to (41),

^ So I F{z) I+ I'C.., g So I F(») I 4- 7n - So

in |z| =1. If the equality holds, then f(z)=ezn, \e\ =1, |z| = 1; or 5i = 52

= • • ■ =5„ = 0. The second   possibility is equivalent to  the relation

7o = 7i= • • • = 7» = 7-
10. As a very simple application, (30) follows. Indeed, assuming that

U(r, <b) is even, and defining f(z) as in §3.6, the coefficients cm are real.

Putting ym = rm, we obtain

v

«' = £(- iy-mrmc,,m = (r - iy > o.
m=»Q

Also f(r)=U(r, 0), so from (43) for z = l,

(45) U(r, 0) = *• - (1 ~ 1^(1, 0)|).

This is slightly sharper than (30).

11. Another simple application follows by choosing ym=pm — qm where

p>g>t0. Then 8,= (p —1)' —(g —1)" so (42) is equivalent with p+q^2 pro-
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video! n^2. If F(z) satisfies the conditions of VII it follows that

I HP) ~ F(q) \£f>-
This is slightly less general than VI.

12. Finally we point out that the following classical theorem of A. Markoff

(cf. [2, pp. 359-360]) is also a simple consequence of the gradient theorem:

Let h(x) be a polynomial of degree n with real coefficients(6) satisfying the

condition \ h(x) | gl in — 1 gx g 1. Then \ h'(x) \ <n2 in —I <x < 1, n > 1. For

n= 1 we have \h'(x) \ gl.

Let
n n

A(cos <p) = yj am cos m(p,      F(z) = amzm.
771=0 771=0

We have for 0<(p<ir, z = e<*,

" sin m<b "
Ä'(cos (p) = 2-, ma"> —:-        =       mam(zm — zm)/(z — z)

m=i sin 4> m=i

— ZJ i    \ m_i

m2am^-l\d^

the integration extending along the chord from z to z. Since |9tF(z)| gl,

z|gl, we have |F'(z)|gw and | {zF'(z)}'| gn2, |z|gl, so for n>l,

&'(cos<p)| <«2 follows.

5. Direct proof of V

1. Writing U(<i>) and V(<p) for £7(1, <j>) and V(l, <j>), respectively, to prove V it will be suffi-

cient to show that

I £7'(0) 4- iV'(0) I g »<r„(0)

where <r„(0) is the nth Cesäro means of first order of £7(0). The proof of this inequality can be

based on a theorem of Fejer which states: Let £7(0) be a trigonometric polynomial of degree n

which is non-negative for all real values of 0. Then there exists a polynomial A (z) =22n,=ffivz" such

that f/(,p) = |^(ei*)|2.

In our case

i/(0) = I A^) |2 = I fl <M^*f

= X ayäp cos I » - m| 0 -HZ! ayäß sgn (v — p) sin | v — y. | 0,

F(0) = X! aväß sin | v — n \ <t> — «E      sgn (" — m) cos | v — p | 0

and

(46) £7'(0) 4- iP'(0) = i~) [v - M)a^ + jTJ | „ - M | a^,

(47) >w„(0) = E (» - I " - mI )<VV

In these and the following expressions the summation extends over the range 0gi<gn,0g/iS«.

(6) This is not an essential restriction.
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The quadratic form with coefficients | f —ju| was studied by Szegö [6]. He showed that the

second sum in (46) may be written in the form

(48) £I'-m|«*-(»/2) E<J -(2/»)E 'fTh
i i>—o    i m—l   I l     zm I

where zm = e'l2m~l>is a root of the equation zB + l =0. Thus the linear transformation

it, = («/2)"2(a„ + o, + • • • + aj = («/2)"24(l),

4„ = (2/«)"2(a0 + at*. + • • • + «w£)/(l - «-) = (2/»)"24(z„.)/(l - 3„),   1 g m £»,

furnishes the canonical representation

n

E I v — p |a„ä„ = |40|2 — E I ̂ "l2-
m-l

Also, from (47)

«o-„(0) = 2Uo|2-Uo|2 + EU»l2 = EU».|!!.
m-l m-0

Next we express the first sum in (46) in terms of the 4,„. Since

E Mbfy = ( E      ( E "<h) = 7(1)4'(1)

and since E/^^m is the conjugate of this,

(50) U'(0) + iV'(0) = - 23{7(1)4'(1)} +tj| 4„|2 - EUm|2[-
( m-l )

Let w(z) = (zn-r-l)(s — 1). Making use of (49), the Lagrange interpolation formula furnishes

a/\     / m,i,v <o(z)4„(l - zm) «(z)
4(z) = («/2)l/2E -,-, „  .  + (2/«)1'Mo-

m_i   (z — zm)w'(zm) (z — l)o)'(l)

and this may be written

(51) A{z) = (2«)-"2E Amzma(z)/iz - *») + (2«)-i'24„(z» + 1)
m-l

since w'(zm) =«(1 — zm)/zm, w'(l) = 2. Differentiating (51) and setting 8 = 1,

(52) 4'(1) = (2/«)V2E 4mzm/(l - z„) + (tt/2)«24„.
m-l

Using Cauchy's inequality

I - 23{7(1)4'(1)} |2 =£ I (4/n)7"oE 4™zm/(l - zm) f
(53)

(16/»2)|40|2j E Mm|2| j El 1 -Zmh2f =4|4„|2EU„
I m—1 )  ( m—1 ) m-l

In the last equality the special case ao=l, fli = a2= ' * ' =an = 0( of (48) is used in order to

obtain Sm-J 1 ~"2m| ~2. From this

( n  n \ 2 l 1/2 n

(54)    I U'(0) + iV'(G) I g ]4|40|2EU».|2+   M»1'-LU»I!   [    = I 4o |2 + E I 4» |2
( m-l \ m-l /   ) m-l

follows, which is the statement. The equality holds if and only if (53) is an equality;

that is, if and only if either 4o = 0, or 4m = X/(l—zm), m=\, 2, • • • , n, X a constant and

4(1) {A '(1) — \nA (1)} pure imaginary. The second condition implies 4(z„) =const.,

w = l,2, so 4 (z) =pz"+g where p and q are constants. The additional condition regard-
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ing A(l) and A'(I) furnishes \p\ 2 = |g|2, so A(z) = p(zn+y), \y \ =1. The other condition for

equality, namely Ao=*0, is equivalent with £7(0) = £7(1, 0) =0. This establishes the statement.

2. The generalized gradient theorem is an immediate consequence of V. If £7(r, <j>) satisfies

the conditions of that theorem, then l + SU(r, 0) is non-negative in the unit circle where

S— +1 or —1. Thus by what we have just shown

(55) n + 8«<r„(r, 0) ä | grad U(r, tf>) |.

Here 1 + Scrn(r, <j>) is the Cesäro means of the harmonic polynomial 1 + 5 £7(r, <t>).

Part II. Three-dimensional harmonic polynomials

Introduction

In this part we deal with harmonic polynomials u(x, y, z), that is, poly-

nomials in the cartesian coordinates x, y, z satisfying Laplace's differential

equation Au = 0. We frequently prefer to use polar coordinates r, 0, <p (in

the usual notation) writing: u(x, y, z) = U(r, 0, <p). Then the standard repre-

sentation

U(r, 6, <p) = iZria^P„(cos 6)

+ E sin 0P„ (cos 6) («„, cos v<p + b,,, sin v<p) >
»=i )

holds; here P„(x) is the nth polynomial of Legendre in the customary nota-

tion.

1. As already mentioned, our main task in Part II is to prove the three-

dimensional analogue of inequality (30) of Part I, that is:

Let u(x, y, z) be an arbitrary harmonic polynomial of degree n satisfying the

condition

(2) I U(x, y, s) I ä 1,      x2 + y2 + z2 g 1.

Let »§£ 1, Then at a point (x, y, z) in the exterior of the unit sphere, that is, for

x2+y2+z2 = i?2>l,

1 2-4 • • ■ In

2 3-5 • • ■ (2«4- 1)
—1(2» + W

n2 - (n+ l)2
4- (In - 3)-— i?"-2

«2 - (n - 2)2

(3) v
«s-(»4 l)2 n2 - (n - l)2

4- (2n - 7)- R«
n2 - (n - 2)2  n2 — (n — 4)2

+ ■ ■ • 1 = Cn(R).
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This bound cn{R) is attained exclusively for the polynomials u(x, y, z) whose

boundary values on the unit sphere appear in the form + cos ny where y is the

spherical distance of the variable point (1, 6, <f>) from a fixed point (1, 6o, <po)-

For the polynomials mentioned the bound cn(R) is attained only when (x, y, z)

lies on the line connecting (1, 0Q, <p0) with the origin.

A direct characterization of c„(P) is the following: Write cos nd as a linear

combination of Legendre functions P„(cos 6):

(4) cos nd = An0Po(cos 0) 4- A„iPi(cos 8) + ■ ■ ■ + «„„P„(cos 6).

Then

(5) cn(R) = hn0 + hnlR + ■ ■ ■ + hnnR",

so cn(R) is a polynomial of degree n in R.

It is easy to show (§7) that for R> 1

(6) cn(R)~Wl2(l ~ R~2)ll2nll2Rn   as »->«>,

so the result is slightly different in character from the corresponding result

in the two-dimensional case in which the maximum in question is precisely Rn.

The proof of the Theorem mentioned requires a rather elaborate appara-

tus, in particular a discussion of the trigonometric polynomials

n-l

(7) cn(R) + 2 X Cn-m(R) cos md + c0(R) cos nd.
M 1

This discussion is made possible by the following remarkable representation

of cn(R):

Cn(R) m R» + f -(FJ - 1)(Z2 - 1)

4/2

(8) -
( t ) 3/2

■ <->   (Rn - tn)dt, R>1.
\(R-t)(Rt-l)f

We prove (8) by function-theoretic considerations applied to the "generating

function" of the sequence {cn(R)}.

2. In order to prove (3), say for 0 = 0, we might try to use an argument

similar to that in §4.10 of Part I. Since

U(R,9,4) = 2J-:—1-> ,
m=o      ml      {      drm Jr=1

it would suffice to show that all the expressions in the braces { } assume

their maximum value if 77(1, 9, <b) =cos nd. This is indeed the case for m = 0,

and, according to a recent result of Szegö [7], also for m = l. In §6 of Part II
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we shall prove this for m = 2; however the proof (or refutation) of the general

assertion seems to be difficult.

. The theorem of Szegö just referred to states even more generally that un-

der condition (2) the directional derivatives \du/dl\ where (x2-\-y2-\-z2y12

= r=l and / is an arbitrary direction, assume their maximum value only for

functions with boundary values of the form + cos ny. [This is of course equiv-

alent to an estimate of | grad u\.] More generally, we might ask for the maxi-

mum of

d d d

dl\   dh dlm
1,

where h, h, ■ ■ ■ , lm denote arbitrary directions. The former problem is a spe-

cial case corresponding to coinciding directions h, h, ■ ■ ■ , lm-

1. Preliminaries

1. Considering the set of harmonic polynomials of degree n which satisfy

condition (2), we see that the maximum of |m| at an exterior point (x, y, z)

is the same at all points on a sphere with center at the origin. Therefore we as-

sume that x=y = 0, z = R. Also, by taking the mean-value

(27t)"1 f_U{r, 0, <b)dcp,

we see that the maximum remains the same by restricting the set in question

to the polynomials u(x, y, z) = U(r, 6, <p) independent of <p. This leads to the

following equivalent formulation of the problem:

Let u(6) be a cosine polynomial of degree n,

n

(9) «(0) = X cxmPm(zo% 6)
m— 0

expanded in terms of Legendre polynomials, and let \ u(d) \ gl for 0 g 6 g it. What

is the maximum of |Xm=oa»>P"!| ?

2. Since

(10)

we have

am = i(2m + 1) f w(0)Pm(cos 0) sin 0 dd,
J o

n /» it /    n \

(11)        X = I   «W \ X l<2* + l)Pm(cos 0)Rm \ sin 0 dB.
m=0 * 0 1 m=0 l

We shall prove that the maximum in question is attained when u(d) = +cos nd
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and that this maximum is

(12) cn(R) = f coswöi E 4(2« + l)Pm(cos 8)Rm\ sin B dd.

This will imply (5). Representation (3) is obtained by taking into account

the well known expression of cos nd in terms of Legendre polynomials (7).

3. The polynomial cn(R) contains only terms Rn, Rn~2, Rn~*, • • • , the

first coefficient being positive and all the remaining coefficients being nega-

tive. Since c„(l) = 1, this implies, as is easily seen, that all derivatives of cn(R)

are positive when R 5:1. We have

c0(R) = 1,      Cl(R) = R,      c2(R) = 4P2 - I

c,(R) = |P3 - iR, c<(R) = MR* - if*' - A-

2. Generating function of the sequence {cn(R)\

1. The following important result is to be proved.

Let R>\. The generating junction of the sequence [cn(R) \ is, for \ z\ <R~\

00

F(R, z) = F(z) = Jco(Ä) + E c*(R)zn
n=l

1 - z2 /z(R - z)\1'2
(14) = |(i?2 - 1)-r— z1'2 arc tan (- )

{(22- z)(l - icz)}3'2 V 1 - Rz )

1 - z2

2   (£ - z)(l - Rz)

The determination of the multi-valued functions involved in this formula

is evident: for small positive z we take {(R — z)(l — Rz) }3/2>0, z1/2>0,

{z(R— z)/(l — Rz)} 1/2>0, and the branch of arc tan co which vanishes at w = 0.

The starting point of the proof is definition (12) of cn(R). We make use

of Legendre functions of the second kind (cf. Szegö [7, p. 58]).

2. Let <2n(£) be Legendre functions of the second kind in the usual nota-

tion. It is well known that

(15) lim {Qn(u + ie) - Qn(u - Ü)} = - i-irPn(u),  - 1 < u < 1,
.->+<>

so if z = reie, 0<r<l, O<0<tt, then

2
(16) P„(cos 6) = — lim 30„(i(* + z-1)).

X J—»1-0

(7) See E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge

University Press, 1931; p. 47, (48).
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Hence

sin 0X) 1(2» + l)Pm(cos 0)2cm

= lim     —       X §(2w + Dö»(J(« + «-•))«•
r->l-0 2l

s-1   2     f »-3< X*
It IT       V m=0

(17) = lim «|^—^-E|(2- + l)Q.(*(s + r-1))ll4-
r->l-0       (     7TZ     m=o '

Now

can be expanded into a power series of z convergent for \ z\ < 1; the first non-

vanishing term of this series is czm+1, cy^O. Also (8)

(is) |f|<i,»-»«,

so the series
00

£ i(2« + 1X2.(1(1 + z~'))Rm
m=0

is convergent for \z\ R<1.

According to (12) and (17), e„(2?) is the real part of

2  r *          71 - z2 " )
lim —     cos«0-{-X§(2w+ l)Qm(Kz + 3-I))^m>^-

r->l-0 ir Jo (    2z     m=o )

-This is simply the coefficient of z" in the expansion of the function of z in

the curled brackets. [For n = 0 this gives twice the constant term of this ex-

pansion.] However, this coefficient does not change if the sum Xm=o is re-

placed by Xm=o! so we obtain for the generating function (14) the representa-

tion

(19) F(R; z) = 1~— X \{2m + l)0>(J(z + *-*))R«
2z m=0

3. In order to calculate the last expression, we use the formula(9)

(20) Q„(iO + z-1)) = ^ (+1^z + 2_1) + ^ ~ z) cosh A~m-ldr.
2  J -a,

For sake of simplicity we assume that z is real and positive, 0 <z <i?_1. Since

|(z 4- z-1) 4- Kz-1 - z) cosh r >: |(z + z"1) + §(z_1 ~ *) - z"1 > 2?,

(8) Cf. for instance, G. Szegö, Orthogonal Polynomials, American Mathematical Society

Colloquium Publications, vol. 23, 1939, p. 195, (8.23.2).
(8) See, for instance, Szegö, loc. cit., p. 90, (4.81.2).
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term-by-term integration is permitted and we obtain

1 — z2 p+°° 00
F(R; z) =- I      X (2m + I) {l(* + z-1) +        - z) cosh r} ~m-lRmdT

8z     J _oo m=n

(21)

where

-co m=0

1 - z2 r+x    |(a + z~l) + P + £(z-1 - z) cosh r

J-« ill8z J_M {§(z + z-1) - R + Kr* - z) cosh t}2

1   p+°°   A + cosh r   .       f00    1 + *2 + 2At
dt,

1   p +00    A + COSh r /•

4 J_„   (5 4-cosh t)2 T~Ji (14-<24-25/)2

1 4- 2i?z 4- z2 1 - 2i2z 4- z2
(22) A =-, £ =

1 - z2 1 - z2

Obviously ^ >1, -1<5< + 1.

4. The primitive function of the last integrand in (21) is

1 - AB (    t + B    )      B - A      Bt 4- 1
arc tan

(    t + B    1     B - A

1(1 - /32)l'2J + 1 - B* T(1 - 52)3/2 (.(1 - 52)i'2j      1 - £2 1 4- t2 + 2Bt

Hence, omitting trivial details, we find that

(i?2 - l)4z2(l - z2)   fir /II" Rz\ml
F(R;z) =-r^-—-f—-arc tan (-)

{4z(R - z)(l-J?z)}3'2L 2 \z   R-zJ J

2J?z(l - z2)
+

Az(R - •)(! - R%)

which easily furnishes (14).

Another way of writing (14) is

1 1 - z2 V 1 - Rz )
F(R; z) = — (i?2 - 1) -:— z1'2 log-■

ii {(R - z)(l - Rz) 3'2

(14') , 1 - z2
+ $R

J<R - z)V

V 1 - Rz )

= G{R;z) + \R

(R - z)(l - Rz)

1 - z2

(2? - z)(l - Rz)

Obviously

(23) G(R; z) = G(z) = T, \cn(R) - h(Rn + R~n)}zn.
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3. Discussion of the function G(z)

The function G(R; z)=G(z) defined by (14') and (23) is regular except

perhaps at the points

- I, 0, R~\ 1, R, oo.

We intend to discuss the behavior of G(z) near these points; also, we wish to

calculate the limits of G(z) on the "upper" and "lower" border of the real

segments [ — =o , — 1 ] and [J?-1, 1 ].

1. — oo <z<—1. First, for — 1 <z<0 we have

z{R - z)\1'2/-z(F-z)y

V   1 — Rz )

b i /-z(F-z)y'2

1

G(z) = l(R> - 1) f-     ^7(- zY'* log
/-z(F-z)y

V   1 - Rz )

Here { }3'2>0, (-z)1'2>0, (-z(R-z)/(l-i?z))1'2>0, and the log is real.

This easily furnishes, for — °o <z < — 1,

/ /-2(ig-z)y/2

l-z2 )     \ l-Rz )
(24)   G(ä)=1(ä*-1)1-5— (-z)"2 (log-±*w

\{R-z){\-Rz) 3'2 /  h /-z(R-z)yi*/-2(F-z)y

\ 1-Fz /
+ 1

where the signs 4- and — refer to the upper and lower border, respectively.

2. i?_l<z<l. First, for 0<z<i?_1 we have the formula (14') in which

{ }3/2>0, z1'2>0, (z(i?-z)/(l-i?z))'/2>0, and the log vanishes for z = 0.

If z increases from 0 to R~l, the expression z(R — z)/(l — Rz) increases from

0 to 4" =° and the imaginary part of the log increases from 0 to it.

If z describes a small circle around R~\ from (1— i?z)3'2, z<R~l, we ob-

tain by analytic continuation (i?z—l)3/2e:F3iT/2, z>i?_1, on the upper and

lower border, respectively. Also, from

iC-^>)"\
\ 1 — Rz /

we obtain + (z(R-z)/(Rz-l))u\ z>R~\ Thus we find for z>R~l

fz{R - z)\1'2

1 l-z2
G(z) = — (R2 - l)e±3i"i2-.-:—z1/2log

/<r - «)y

V Rz - 1 /

4iv" {(R - z)(Rz - l)}3'2" /z(R - z)\1'2

± V J?z - 1 /

where the imaginary part of the log approaches w as z—^P_1-f-0.
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This can be written in the form

Rz-1 V2
1+1

1-z2               ) \«(22-z),
(25)  G(z)=i(2c2-1)--;-zWlog-+ ix

(2?-z)(2?z-l)}3'2       /  6 /7?z-l\"2

/ 2?z-l V

\z(R-z))

/ 22z-l Y

V 2(22-8)/

on the upper and lower border, respectively.

3. 1 <z<R. If z increases from R~l to 1, the expression (2?z — l)/(z(22—z))

increases from 0 to 1; at z=l the log becomes singular. Encircling z=l, we

obtain
Rz - 1 V'2

W - z)/1 - z2 \z(R - z)
G{z) = l(R2 - t)-.-r—z"2log

(22- z)(Rz - 1) 3'2 6

(26)

= K2?2 - 1) T--—--rr--;z1/2log

/Rz-1 Y/2

\8(22 - z)/

/z(22 ~ g)V

\ 2?z - 1 /

1

1/2

1 +

(2? - z)(2?z - l)}3'2 /z(2? - z)V/z(22 - z)y

\ Rz - 1 /

on both borders. Here the log is real.

This shows that the branch of the function G(z) which we have considered

is single valued for z>l; it has a simple pole at z — R.

4. Integral representation of cn(R)

1. Since 67(0) = 0, we have for nStl

(27) cn(R) - 1(22» + R~n) = — fG(z)(z-" - Rn)g-%ia
2iri J

where the integration curve consists of the following parts:

(a) a "large" circle |z| = P, |arcz| gw — e, e—»4-0;

(b) the segment [ — P, — 1 ] described twice, the upper border in the in-

creasing, the lower in the decreasing way;

(c) the segment [2?_!, 1 ] described twice, the upper border in the increas-

ing, the lower in the decreasing way;

(d) a "small" circle around z = R described in the negative sense.

The circle in (d) furnishes the negative residue corresponding to z = R.

2. Since

G(z) = 0(| z]-1'2) as z^oo,

the contribution of the large circle in (a) vanishes as the radius P approaches w.

According to (24) we obtain as the contribution of [— <», — l]:
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1 - Z2

i(*2- 1) f
(- z)1'2(z-" - Rn)z~ldz

. \(R- z)(l - Rz) 3/2
(28) <V ■ '

r-1 1 - r2
= - l(R2 - 1) -:— (- /)-"2(<" - «»Jr1^.

Jo   {(Ä - H)(l - tfr1)}3'2

The contribution of [£"*, l] is, according to (25),

C1 1-z2
- |(ic2 - 1)      -j-j—z1'2(z-" - R*)trldz

JJR-i{(R-z)(Rz-l)}*<>

C1 l - r2
= K-R2 - i) -!— <-»«(#» - Rn)t-ldt.

JR {(R-t-^iRT1 - l)}3'2

These integrals are convergent.

Around z = R, the function G(z) is single valued, and from (26) we find

1 - z2 MM - z)\1/2
G(z) = ICR2 - 1) -j-^z1'2^!---) +■■■

{(R — z)(Rz — 1)}3/2 \Rz-lJ

(1 - z2)z 1
= UR2 ~ l) 7^-h ~B-+ ■ •' = hR{2 ~ R)~l + • • •

(Rz — l)2 R — z

where the terms not written out are regular at z = R. Thus the contribution

of (d) is

- %R(R~n - Rn)R-' = %(Rn - RT»).

Recapitulating, we obtain the important result

(30) cn(R) = R»+ f p(R; t)(R" - t")dt,
J -lgfgO.lgiSR

where

(R2 - 1)(/2 - 1) ( t ) 3'2
(30' P(R; t) = p® =--<-} .

4<2 \(R - t)(Rt- l)f

Formula (30) is trivial for « = 0. We note that (except / = 0) sgn p(R; t)

= sgn (/2-l).

5. Solution of the maximum problem

1. Returning again to the maximum problem formulated in §1 of this

part, we start with the remark that, as a generalization of (12),

(31) Cy(R) = f cos v9< X) 4(2- 4- l)Fm(cos 6)Rm\ sin 8 dB,      0 g v g n,
J 0 I m=0 J

holds. Indeed,
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r

cos v6Pm(cos 0) sin 6 dB = 0, v < m.I,
Therefore, the cosine expansion of the function 7rXm=oi(2m + l)PTO(cos 6)Rm

sin 8 begins with the terms

n

c0(R) + 2 2 cos vO.

Thus we obtain from (11)

n /* t i n \

(32) X) a«>Rm = Tr_1 I         \ C"(R) + 2 £        cos "ö f
m-0 "0 1 v=l /

2. Application of Theorem A of Part I to the last expression shows that if

n

(33) Cm(R) = 2Z'cn-m(R) cos (mvT/n) > 0, 0 g v g n,

then the maximum of (32) will be attained only by u(6) = +cos nd. Here, as in

Part I, the symbol E»=o means that the terms m = 0 and m = n have to be

multiplied by \. It is needless to say that J?>1.

Our next purpose is to prove these inequalities. Note that having done

this we have proved much more than the original statement, namely the in-

equality \'%2m=oocmRm\ =cn(R) under the condition that | u(vir/n) | g 1,

Ogvgn.

Since cn(R) >0 (cf. §1.3), it suffices to prove (33) for Igvgn.

3. We combine the representation (30) with formula (20) of Part I and

find that

Rn + (- l)-1

Cm(R) = -£(*' - 1)

(34) 4-    p(R;t)U(R2- 1)/ P(R;tyh

1 - 2R cos iyv/n) 4- R2

R» + (- l)-1

1 - 2R cos {vTv/n) 4- R2

- W - 1)-\dt
1 - 2t cos (vw/n) + t2)

where the integration extends over — lg/gO and lgtgR. Then to prove

(33) it will be sufficient to show that

C (      t2-\   f+i-iy-1 1-2R cos (vir/n) + R2)
(35) 14-    p(R;t)\l-—-}dt>0.

J I      R2-l Rn+i-iy-1   l-2*cos (vT/n)+t2 J

We consider only the case n ^ 3, since (33) may be proved directly for n = 1, 2.

Now, let us consider the expression
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. 1 - 2R\ + R2
-{!•+(- 1)-» - = k(\)

1 '   1 - 2t\ + t2

as a function of X, — 1 gX g 1. We have

1 - Rt
(36) *'(X) = 2(R - t) *•+(- l)-1]

(1 - 2/X + 22)2

Let v be enera. In this case k'(\)<0 whether — l<r<0 or Kt<R, so

mini (X) is attained for X = +1. Since (35) is positive f or v = 0, it must be posi-

tive for all even values of v.

It remains to show that (35) is satisfied for odd v.

4. First let 1 <t<R. Since v is odd,

(/2-l)(r4-l) (t2 - l)(tn + 1)
qw =

1-2/ cos (vw/n) + t2     (t - ei"rln){t - er***'*)

is a polynomial of degree n with positive highest coefficient, all of whose roots

are on the unit circle \ t\ =1. (For v = n the presence of the factor t2 — l is es-

sential, however not for 1 gvgn — 1.) Then q(t) is a convex function for t>l,

and it vanishes at t = l. Thus 0<q(t)<q(R)(t-l)/(R-l) for Kt<R. The

expression in curled brackets { } in (35) is of the form 1 —qit)/q(R) and so it

must be greater than (R — t)/(R — Y), \<t<R.

Thus the contribution of the range 1 <t<R to the integral of (35) will

be greater than

R -f- 1 rR t2 - 1
(37)-dt.

4    Ji tll2(R - t)ll2(Rt - l)3'2

Now,

|(i?-0(^-l)|1/2gK7?2-l)/v-1/2, |FJ-l| gR2-l for Kt<R,

so (37) is greater than

UR + D-KR - i)-2 J* V - D4 = i(* + 2)(ä + l)-1 > i

5. Let —1 <r<0. Referring to (36), we see that in the present case k(\)

is increasing (since v is odd). Then, by what we have just shown, (35) will

be a consequence of the following inequality

7       r" (       t2 - 1    i* 4- 1   (R + l)2)
(38)       — +      P(R;t)\l--}dt>0.

6     J_i I      i?2-l  2?" + 1 (t+1)2)

To prove (38) we divide the integrand into two parts, and estimate them

separately. First,
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1 - P
- f°p(R;t)dt = \(R2 - 1) fl

J -1 " o 2l'2(7v + f)3/2(22ü + 1)3/2

< |(222 - l)7t-3'2 f rV*(Jte + i)-3/2<7/
J 0

= §(222 - \)R-*i\R + l)-"2

< UR2 ~ l)^-2 < l(7?2 - l)/(222 — 12+1).

The absolute value of the remaining portion of the integral of (38) can be no

larger than

4(72" + 1) J0 F/2(72 + 03/2(-R< + l)3'2

The integrand will be largest when 22 = 1. Then, since w^3, (39) cannot ex-

ceed

(R + l)2  C1   1 + ** 13     R + 1
■ dt = —

r1 i 4-

Jo /l/2(l4(223 4- 1) J o <1/2(1 4-0        30 722 - R + 1

6. Our assertion will now follow from the inequality

(40) \{R2 - 1) 4- ÜK22 + 1)< i(R2 - R + 1), R > 1,

which is easily verified. This proves (33).

The non-trivial character of (33) becomes clear from the remark that the

inequality
n

(R) cos m0 ^ 0
m—0

is not true for all real values of 6 and 2? = 1. Indeed [cf. Part I, (21)]

n * n

2J Cn-m(l) cos w0 = X cos fnQ = \ sin ra0 cot (0/2).
jn=0 jn=0

This expression changes its sign at 6 = vir/n, lgvgn.

7. Since Cvn>0, Ogvgn, the equality sign in our main inequalities holds

only for the special harmonic functions pointed out in the theorems of Part I.

In order to discuss the conditions of equality in (3) we take into account the

preliminary remarks of §1. Then we see that for x = y = 0, z = R the equality

holds only if (2x)-1/l,77(l, d, <p)d<b= +cos nd. Since | 771 g 1 we conclude (cf.

[7, p. 58]) that 77(1, 6, <p)=+cos nd.

6. Discussion of c„'(1) and c„" (1)

1. According to the results of the previous section, we have for \gvgn

C„(72)>0, 22>1; C,„(l)=0;so £„'(1) =0—that is,
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n

(41) S'cLm(l) cos (mvir/n) ^ 0, 1 $ v £ ».

This is trivial for iv = 0 because £„' (1) >0. The constants c„' (1) =p„ are identi-

cal with the constants introduced by Szegö [7, p. 60]. Inequalities (41) furnish

the following theorem:

Let u{x, y, z) be a harmonic polynomial of degree n satisfying the condition

I u{x, y, z) I g 1 in x2-\-y2-\-z2 g 1. Then on the unit sphere we have

(42)
du

dr
g c„(l) = p„.

7/ f &e boundary values of u on the unit sphere are of the form + cos ny, y being the

spherical distance of the variable point from a fixed point of the unit sphere, then

the equality occurs in (42).

This is slightly less than the main theorem of [7]. It is shown there that

(42) is an equality only if u = + cos ny.

The representation

(- l)" r1 (i - t)tn-v*
(43) Pn = c»(l) = him- I 4----     i--it

2    J0     (1 + f)2

is the analogue of (30). It follows from (30) by differentiation. Another way to

obtain (43) is to calculate

and to apply to this function considerations similar to those in §§3, 4. This

generating function was used in [7].

A direct proof of inequalities (41) is possible based on the representation

(43) .
2. Now let r„ = §c„" (1). We discuss the following inequalities, n~^2,

\ i   « n

— C„„(l) = — X Cn-m(l) cos (mvir/n) = X/Tn->» cos (mvir/n) > 0,
(44) 2 2 m=o m=0

0 g v g ».

It was pointed out in §1.3 that c„" (1) >0; so inequality (44) is trivial for v = 0.

Let Igvgn. It is advisable to calculate

/ 32 \        / 32 V * •

Voa' /b=i     XdA" /ä=i   „=i „=2

Introducing the abbreviation (7c — z)(l — Rz) =Kwe obtain
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-G(R, z) = (1 - z^i^RK-w
dR

- l(R2 - 1)7X-6'2(1 - 2Fz + z2)} arc tan f—--^-\

+ (1 - z2)z1/2|(7v2 - l)iC-,'J§*w*£~w?.

so (cf. [7, p. 60, (28)])

(—G{R, z)\    m jh, pnz" = z"2(l - z)-2(l + z) arc tan (z1'2).
\ dR / b_i „=i

Furthermore

d2 . , /z(ic - z)\1'2
-G(R, z) = (1 - z2)z"2 X"3'2 - 3F.A--S'2(1 - 2Rz + z2)   arc tan-)
dR2 1 ' \ 1 - Rz )

+ (1 - z^z^RK-3'2^11^-1!2

+ (1 - zty^RK-u^z^K-1!2 + ■ ■ ■

where the terms which are not written out vanish for R = \. This furnishes

(—G(R, z))    = - 2z1'2(l - z)"2(l + z) arc tan (z1'2) + z(l - z)"3(l + z),
\dR2 /fi=i

or

X (2r„ - «2)z" = - 2Ep«z" + T, »***;
n=l n=l n=l

so, on account of (43),

T„ = §c„(1)  =  — p„ + M2

(45) t   .    , . , (- D"+1 rl (l - <)/"-1/2
= W2 — iir» + h -\-I -

2      Jo      (1 + t)2

3. By use of formula (21) of Part I we find

"                         1 / d\2
2_j m2 cos md =-1 — I (sin nd cot (6/2)).

Then for \ gvgn we have

n

X' (w " w)2 cos (mvir/n)
m=0

n n

= X w2 cos ("7r — ntvir/n) = (— 1)"X w2 cos (mvir/n)

/ n cos »0 \
= (-l)'(-)

\2 sin2 (0/2)/«_„,»

m=0

2 sin2 (nr/(2*))
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Also

A,,        ,      ,      , ,      1 /sin2 (nd/2)\ 1 - (- 1)*
> . (« — w) cos (mvir/n) = — I-|        =->

2 \ sin2 (0/2) 4 sin2 (wr/(2n))m=0

so from (45) [cf. Part I, (21), (20) ] we obtain

A, a    » - Ml - (- 1)")
> . T„_m COS W0 = -

2 sin2 (0/2)
(46)

l r1 (i - o<-1/2     i - *2
— -—-((-1)' - (- <)•)*

4 J0    (14-02    1 4-2/cos 0 4-/2

where d = vir/n, \gvgn.

Let p be ewew. The first term as a function of cos 6 is increasing; the integral

in the second term is decreasing. Therefore the total expression is greater than

1 fl r

2 J0 1
nil-I -it = nil - tt/4

which is positive for n ^ 2.

Let v be o<M. Then, the integral in the second term of (46) is negative and

n — 7r/2 >0, so the statement is clear. Thus, we have proved the following

Let u(x, y, z) be a harmonic polynomial of iegree n satisfying the coniition

I u(x, y,z) \ gl in x2-\-y2Jt-z2g 1- Then on the unit sphere

d2u

dr2
g -        c"(l)  ■ T„

with the sign " = " if ani only if the bouniary values of u on the unit sphere are

of the form + cos ny, y being the spherical iistance of the variable point from a

fixei point on the unit sphere.

7. Asymptotic formula of c„(R) as m—>«o

From (30) and (30') we obtain for fixed R > 1 and n—> °° ,

cn(R) = 0(R») + f p(R; t)(Rn - t')dt

(R2 — l)1'2 fR   Rn - tn rR   R" — tn(r2 - l)1'2 rR   rn - tn CR
= 0(rn)+ --—I -it + 0(1) I

47c1'2    Ji (r-ty2 Ji (r-tyi2

(r2 - iyt* rR rn -1"
= 0(r") +-—

4F1'2 Jn

it

it
(r - ty2

(r2 - l)1'2

/. 1     1 __ p.
-it.

o (1 - t)3'2
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But

1  1 - tn ?zl r1     tm "r*      2-4 ■ ■ • 2m/• 1     ^ _        £n n—l    n 1 ^Tn n—1

I -dt = 2Z \ -Ü = 2 I
Jo (1 - t)3'2       m=o Jo (1 - t)w »=o 3-5 • • • (2m + 1)

Xi1'%-"!^2i"!»1'!,

which furnishes (6).

Formula (6) also follows directly from (3).

Appendix

1. Generalization

A problem similar to that treated in Part II can be formulated for har-

monic polynomials in any euclidean space. By using classical results on the

representation of such harmonic polynomials in terms of ultraspherical poly-

nomials(10), we are led to the following problem:

Let P„\x) denote the ultraspherical polynomials, X>0, and let R be fixed,

R > 1. Considering all cosine polynomials

(1) u(6) = £ aroPlX)(cos 9)
m=0

of degree n ^ 1, satisfying the condition \ u(6) \ gl for real 8, what is the maxi-

mumof\lZl^ocmP^(\)Rm\ ?

1. In case of harmonic polynomials of p 4-1 variables we have to take

A = i(p — !)• However the problem mentioned has sense for arbitrary X>0.

The two-dimensional case (Part I) corresponds to the limiting value X—»0,

the three-dimensional case (Part II) to the value X = l/2.

Again the maximum in question is attained for u(d) = +cos nd if and only

if the following condition is satisfied. Let

(2) cos nd = E hnmP{m (cos 8),        ™(R) = £ hnmpl\\)Rm;
m=0 m=0

then

(3) 2Z'cn-m(R) cos (rnvrr/n) ^0, 0 g v g ».
m=0

2. The proof of this inequality for general X seems to be rather difficult.

(I0) See, for instance, E. Heine, Handbuch der Kugelfunctionen, vol. 1 (2d edition, 1878);

see in particular pp. 454 and 461. Regarding the notation of ultraspherical polynomials we

follow Szegö's book quoted in Part II, §2; see in particular p. 80.
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In the limiting case X^O cf. formula (24) of Part I. In the case X = l/2 we

have inequality (33) of Part II.

Another simple case is X = 1. Since

1 sin (« 4- 1)0      1   sin (» - 1)0
(4) cos nd =-> n ^ 1,

2 sin 0 2        sin 0

we have

(5) ™(R) = i(« + i)Rn - \(n - I)*""2,     » 5:1;       c"'(2c) = 1,

so that <

2^'cnlm(R) cos (mvT/n)
m=0

14 1 Ai 1
=-< (R - R-1) 2J Rn~m cos (mrr/n) V

2  dR v m=o /

(6) -i(- ^ — (jr-ä-O + K- 0*
ait

- !<1 4- 2?"2) X'-K"-"1 cos (mvTr/n)
to—0

n

4- |(1 - P-2)X'(> - m)Rn-m cos (mvir/n) + |(- 1)'(1 ~ 2c""2).
m—0

According to well known properties of Fejer's kernel, the second sum of the

last expression is positive. The first sum is [cf. Part I, (20) ]

(2?2 - i)(ä- - (- 1)0
2 '

1 - 27c cos (vr/n) + R2

This furnishes the positivity of (6) when v is even. Let v be odd; then we

have only to show that

CR2 - l)(Rn + 1)

(1 4- R-2)-> 1 - R~2,
1 - 22? cos (vr/n) + R2

which is clear.

Thus we established the following theorem:

Let n^l and let

sin (m 4- 1)0

sin 0
(7) u(d) = Xp\,
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be an arbitrary cosine polynomial of degree n satisfying the condition \ u(9) | j£ 1,

6 real. Then for R>1

(8) £ (m + l)ßmR* g \(n + l)ic" - |(« - l)i?""2

with the sign " = " if and only if u(d)= + cos nd.

2.  A PROBLEM ON ELLIPSES

1. Some time ago W. E. Sewell(u) dealt with the following extremum

problem:

Let E be an ellipse in the complex z-plane. If f(z) is a polynomial of degree n

satisfying the condition |/(z)| Sal, z£2i, what is the maximum of max |/'(z)|,

zE£?

Sewell obtains an upper bound for this maximum, which is, however, not

the precise one. His bound is of order n as re—>■ °° ( which is the precise order(12).

2. For sake of convenience we consider an ellipse Er with foci at —1 and

+ 1 and with semi-axes UR + R~l), R>i- Let a = |(^+P"1)- We prove the

following result of negative nature:

Let n 2:5. There exist polynomials f(z) of degree re satisfying the condition

|/(z)I gl, z£2iÄ, such that

2n      Rn - R~n TUk)
(9) f'(a)   >-= ■

R - R-1 Rn + R-" Tn(a)

Here F„(z) is Tchebychef 's polynomial; obviously | Fn(z)/Tn{a) \ g 1 when

z^Er. This shows that for re 2:5 the solution of the problem mentioned is

not furnished by Tchebychef's polynomial. This is remarkable since Tcheby-

chef's polynomial does furnish the maximum in question for all re in the limit-

ing case i?—>1, that is, in the case of the segment ( — 1, +1).

3. Let 2z = i?ei*+i?-1e-i*. If <p runs from 0 to 2?r, z describes ER\ <p = 0

furnishes z=a. We have with certain complex coefficients cm

n

/(z) = Z) cm(Rmeim* + R~merim*)

m— 0

n n

(10) = X cm{Rm + R~m) cos m<b + i^ cm(Rm - R~m) sin m<p,

m=0 m=0

n J£m _        j^>— to

f'{a) = X 2mcm-— •
m=0 R — R 1

W. E. Sewell, On the polynomial derivative constant for an ellipse, American Mathe-

matical Monthly, vol. 44 (1937), pp. 577-578.
(12) G. Szegö, Über einen Satz ton A. Markoff, Mathematische Zeitschrift, vol. 23 (1925),

pp. 45-61; see in particular p. 53.
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Substituting in the interpolation formula of Part I, §2:

2m      Rm — R~m

(11) Xm =->       Pm = 0, 0 i t» i »,
R - R-1 Rm + R~m

we obtain

1 2n-l

/'(«) = — Z (- t)"G,f(zr),      zr = i(Re*"i" + R-le-«"»),
2n ,_o

(12)
4 n J^n—m _ (n— m)

G„ = -52 (n — m)-cos (mvir/n).
R - R-1 „To Rn~m +

4. Our next purpose is to show that for «St5, for some v = v(n, R) and

for sufficiently large values of R, the inequality G„ <0 holds. Indeed as R—* oo,

1 gvgn,

n

l(R - R-^G, = Y,' O - ») cos (rnvw/n) - 2R~2 cos ((» - !)**/•) + 0(2?-*)

(13)

= T 7^-^T7 " 2^2-(- 0' cos (vt/») 4- 0(R-*).
2  1 — cos {yiv/n)

Let f be even and 0 O <w/2; then the last expression becomes negative if R

is sufficiently large. The condition regarding v implies n/2>2, n^5, and in-

deed for n^5 values v = v(n) of the kind mentioned always exist.

5. Finally let w?i5, G„(„)<0 (R sufficiently large) and

(14) /OO - Tn(z)/Tn(a) - r,h(z)

where v >0 and h(z) is a polynomial of degree n satisfying the following con-

ditions:

(a) that h(z) has real coefficients;

(b) that (-1)" Wi(z,)>Q, Qgvg2n-\\

(c) that

*'(«) = — £ (-
2w ^=n

(15)

= — Sr{goA(*o) + 22Z (- $*<*,*(**) + (- l)"GnA(z»)<< 0.
2m   ( „i J

In (15) we have taken into account that G„+^ = G„_M, 2n+(< = z„_^, which follows

from (12).

Such a polynomial h(z) can easily be constructed. We write if z£2iB

n

(16) h(z) = 2Z hm(Rmeim* 4- R-me~im*);
m—0
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the coefficients hm being real,

n

(17) 9tÄ(z„) = £ hURm + R~m) cos (mvT/n).

Now we determine the real coefficients hm such that 9JA(z„) assumes preas-

signed values for Og vgn, in particular such that (b) is satisfied for Ogvgn;

then the same condition (b) is satisfied for Qgvgln — 1 since z„+f, = z„_M.

Finally (c) follows if the further condition is imposed that (— l)"9t/z(z„) should

be so large for v = v{n) as to furnish the dominant term in h'(a).

Since max| F„(z)|, z(£ER, is attained only for z = z„, dgvgln — 1, we ob-

tain by a familiar argument, |/(z)[gl, z(E:Er, provided t\ is sufficiently

small. From

f(a) = Fn'(a)/Fn(a) - ,*'(«)

we conclude that |/'(«)| >F„' (a)/Tn(a) provided 77 is sufficiently small.

This establishes the result stated.
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