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Introduction

1.1. The present paper consists of two parts. The first part contains proofs

of theorems describing the behavior of the partial sums of trigonometric se-

ries. The second part gives corresponding results for the partial sums of power

series on the circle of convergence.

Let us consider the trigonometric series

(1.1.1) |ßo + X) (a> cos "0 + b* sm v&)
r—1

and the conjugate series

00

(1.1.2) £ (a, sin vd — bv cos vd).

The partial sums of these two series will be denoted by s„(0) and s„(0) respec-

tively. The Cesäro means of order a of the series (1.1.1) and (1.1.2) will be

denoted by cr"(0) and cr^(0)(1). We also introduce the following notation:

liminf <r°(0) = <rtt(6),       lim sup <r°(0) = a"{B),      a (6) - ca{6) = ® Jfi).
n—* oo n—* oo

The last expression represents the oscillation of the sequence {<r°(0)} for

«—>+ <» . If cx^(0) tends to + oo or to — oo, we write co„(0) = + co . Hence the

condition wa(d) —0 is both necessary and sufficient for the series (1.1.1) to

be summable (C, a) at the point 0.

Similarly, we write

lim inf är°(0) = aa(6),       lim sup b\{6) = f{6),      $*(0) - SJfi) = cSa(0).
n—* oo n—* oo

Theorems 1 and 2 which follow connect the behavior of the series (1.1.1)

and (1.1.2). By summability A we mean Abel summability.

Theorem 1. Suppose that the series (1.1.1) is summable A to sum s(fi) at

every point of a set E of positive measure, and that for an a > — 1
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0) In §1.5 below a few properties of the arithmetic means are collected which will be used

in the sequel.
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(1.1.3) ffa(0) > - oo ford EE.

Then at almost every point of E we have the following relations:

(1.1.4) <r«(0) < + oo,

(1.1.5) - x, < cTa(0) ^ 9"(0) < + oo,

(1.1.6) Za(6) = »„(»).

Moreover the series (1.1.1) and (1.1.2) are summable (C, a + e), e>0, a/ al-

most every point of the set E, and

(1.1.7) s(8) = * {*„(!) + <r°(0)},

(1.1.8) ?(0) - i|c?„W +f"Wj

almost everywhere in E, where s(d) denotes the (C, a-\-e) sum of the series (1.1.2).

If the hypotheses of Theorem 1 are satisfied, we have therefore that the

ath Cesäro means of the series (1.1.1) and (1.1.2) are bounded at almost every

point of E.

From (1.1.6) we see that the oscillations of the sequences {<t£(0)} and

jjj(ö)} are equal at almost every point of the set E. In particular, if one of the

series (1.1.1) and (1.1.2) is summable (C, a) at almost every point of E, so is

the other.

The relations (1.1.7) and (1.1.8) show that the limits of indetermination

of the sequences {ct£(0) } and {ct£(0) } are situated symmetrically with respect

to the (generalized) sums of the series (1.1.1) and (1.1.2).

It follows at once from Theorem 1 that, if the series (1.1.1) is summable A

at every point of the set E, and if aa(0) = — » in E, then <ra(0) = + oo almost

everywhere in E. The question whether we also have

cra(6) = - oo,   cr°(0) = + oo

almost everywhere in E is left open.

Theorem 2. Suppose that the ath Cesäro means (where a> — 1) of the series

(1.1.1) are bounded at every point of a set E of positive measure, that is, that

(1.1.9) 0-1(6) = 0(1) for every 6 G E.

Then at almost every point of E the series (1.1.1) and (1.1.2) are summable

(C, a + e) («>0) and we have the relations (1.1.5), (1.1.6), (1.1.7) and (1.1.8).

The hypothesis (1.1.3) of one-sided boundedness, in Theorem 1, is replaced

in Theorem 2 by the stronger hypothesis (1.1.9); but, on the other hand, no

assumption is made in Theorem 2 concerning the summability of the series

(1.1.1).
Theorems 1 and 2 are known. Special cases of Theorem 1 have been proved
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by Kuttner(2) and Plessner(3), and the general result stated above was proved

by the authors (4).

The original proofs of Theorems 1 and 2 are however rather difficult. In

the first part of this paper we give new proofs of these theorems, using certain

ideas of Plessner, in particular the application of summability (C*, a) (de-

fined in §2.1 below(6))- The chief simplification in comparison with the earlier

proofs (in particular with Plessner's proof) is that we do not require the theory

of higher generalized derivatives.

1.2. Theorems 1 and 2 raise the problem of the behavior of the Cesäro

means of a power series on the circle of convergence. Let us begin first with

the case of partial sums.

Let

(1.2.1) F{z) = y£c,z% |*| <1.
»-o

be a function regular inside the unit circle. We may suppose for the moment

without loss of generality (subtracting a constant from F(z) if necessary) that

Co is real. If

cn = an — ibn for 11 = 1, 2, 3, • • • ,

then the real and imaginary parts of the series

00

(1.2.2) E«M

may be written in the forms (1.1.1) and (1.1.2) respectively.

Let us assume that the partial sums of the series (1.2.1) are bounded at

every point z = eie of a certain set E situated on the circumference \z\ =1. We

shall also denote by E the set of the corresponding arguments 9; this, however,

will not lead to any confusion. By Theorem 2 the series (1.2.2) is summable

(C, 1) to sum t(6) at almost every point of E. It follows from Theorem 1,

therefore, that for almost every point 0 of E the limit points of the sequence

n

*»(») = n = 0, 1, 2, • ■ • ,

(2) Kuttner [l] proves that if the series (1.1.1) converges in E and the series (1.1.2) is

summable (C, 1) in E, then the latter series converges almost everywhere in E.

(3) The result of Plessner [l ] coincides with Lemma M of the present paper in the case

/3 = 0, 1, 2, • • • . Plessner only sketches the proof of the result.

(4) See Marcinkiewicz and Zygmund [l].

(5) That notion was considered independently by one of the authors and applied to the

theory of Fourier series. See Zygmund [l, p. 61, Example 4].

It must however be observed that the expressions

e"(e + hn) + «r"(S - hn)

which play an essential part in our argument have been studied for the first time bv Rogosinski

[1].
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belong to the square with center t(6) and sides coo(0), parallel to the axes.

Here coo(0) denotes the oscillation of the real part of the series (1.2.2). By

Theorem 2, this square cannot be replaced by a smaller rectangle with the

same center and sides parallel to the axes. On the other hand, not every

point of the square need be a limit point of the sequence {tn(9)}, as simple

examples show.

In fact, take the series

(1.2.3) 1 + z + z2 + ■ • • ,

the partial sums of which are bounded and summable (C, 1) at every point z

of I z I =1 except z = 1. Here

I gi(n+l)8

*(ö) = ^—z'    tn(6) - m = - -—->
1 — e'e 1 — eie

so that all the partial sums of the series (1.2.3), with z = e*e, 0^0 (mod 2tt),

are situated on the circle with center (1— ei6)~l and radius | 1— e'e\~l. The

same is of course true of the set of the limit points of the sequence \tn(6)}.

Moreover, if 0 is not commensurable with w, every point of the circle just

defined is a limit of the sequence {t„(d)}.

Let us modify this example slightly by considering the power series

(a + 0) + az + (a + ß)z2 + a23 + • • •

(1.2.4)
= o(l + Z + Z2 +••■)+ 0(1 + 22 + 24 + • ■ ■ ),

where a and ß are any constants. It may be verified without difficulty that in

this case, for 6 different from 0 and tt, the partial sums tn(9) are situated on

two concentric circles, with center

a

1 - eie     1 - e™

and radii
1 I    , §

-.-r •   a H-
I 1 - eie \    I       1 + e±

These two circles are different if the ratio ß/a is not real. If 0 is incommensur-

able with 7T, every point of these two circles is a limit point of the sequence

Similarly, in the case of the series

(1.2.5) «(1 + z + 22+ • • • ) +0(1 +z2 + z4+ . . . ) +7(i + z3 + 26+ . . .

the partial sums t„(6) are situated on six (generally distinct) circles with center

a ß y
t(6) = -+-+-,

1 - eie     1 - e2ie     1 - e3i»
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and if 0 is incommensurable with it, every point of each of those six circles

is a limit point of the sequence \tn(d)}.

A slightly different example may be obtained by considering the series

(1 + z + z2 +•••)+ «(1 + eiXz + e2iXz2 +•••).        « = eie,

where a^O and X is a real number incommensurable with 7r. If 0 is linearly

independent of X, and n is suitably chosen, the fractional parts of (ra-f-l)0 and

(w-f-l)X may be as close as we wish to any preassigned numbers of the interval

(0, 1). Using this fact, we easily obtain that, except for a denumerable set of

values of 0, the limit points of the sequence of the partial sums of our series,

with z = eie, form an annulus not reducing to a circle or a circumference.

By combining this example with the preceding ones, we may obtain a

power series such that for values of 0 belonging to a set of positive measure the

set of limit points of the partial sums will consist of several concentric annuli.

The particular series which we have just considered illustrate some gen-

eral theorems which will be stated in a moment. It will be convenient to in-

troduce certain notations.

By
A{z0; a, ß)

where 0tsa = ß^i 00, we shall mean the annulus consisting of the points z

satisfying the inequalities |z—z0| ^ß. The circle A{z0; 0, ß} will be de-

noted simply by

K{zo;0},

and the circumference \ z — za\ =ßby

C{z0;ß}.

We shall say that a plane set Z is of circular structure, if there is a point

Zo (center of Z) such that whenever a point f belongs to Z so does the whole

circumference C{z0; |f — z0| }.

Given a function F(z) defined by (1.2.1) we shall write

M(6) = MF(6) = lim sup I tn(6) - t(6) \,
n—»oo

m(6) = mF(6) = lim inf | tn(6) - t(6) \,
n—*»

where t(6) is the (C, 1) sum (provided it exists) of the series (1.2.2). The set

of the limit points of the sequence {tn(6)}, when 6 is fixed, will be denoted by

LP(0), or simply by L(0).

Now we may state the following

Theorem A. Suppose that the partial sums of the series (1.2.1) are bounded

at every point of a set E situated on the circumference C {0; 1} and let t(d) denote
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the (C, 1) sum (existing, by Theorem 2, almost everywhere in E) of the series

(1.2.2). Then, for almost every BEE, the set L(0) is of circular structure, with

center t(d).

In other words, for almost every value of 0 contained in E the set of the

limit points of the sequence \tn(d)} consists of a finite, denumerable, or non-

denumerable set of circumferences with center at t(6). The set L(0) is obvi-

ously contained in the annulus A{t(d); m(6), M(6)}. The set L(0) being closed,

the extreme circumferences C{t($); m(B)\ and C{t(6); M(0)} of that annulus

belong to L(0).

If the partial sums of the series (1.2.2) are bounded for some 0 = 0o, the

coefficients cn are bounded. The examples of the series (1.2.4) and (1.2.5)

show that the set L(0) need not coincide with A {/(0); w(0), M(6)}. This how-

ever will be the case, if we assume additionally that the coefficients c„ tend

to 0.

In other words, we have the following theorem:

Theorem B. Suppose that the series (1.2.2) satisfies the conditions of Theo-

rem A and that cn—>0. Then

L(0) = A{t(e);m(d), M(6)}

for almost every 0 of E.

The deduction of this theorem from Theorem A is obvious. Since

/„(0)-/n-i(0)-*O, every annulus A{t(8); ru r2}, with miß) <n<r2<M(9),

contains infinitely many points tn(6), and so also points of the set L(0). For

every value of 0 for which the set L(0) is of circular structure that set must

contain all the circumferences C {t(0); r} with m(0) ^ r = M(8). This completes

the proof.

Assume that for almost every GEE, m(9) =0; that is, that for almost every

value 0 of £ there is a sequence {w^} (which may depend on 0) such that

(1.2.6) tm(8) -*t(0).

Let us suppose furthermore that cn tends to 0. Then obviously

L(0) = K{t(e);M(d)}

almost everywhere in E. This is certainly the case if the real part of the series

(1.2.2) is a Fourier-Lebesgue series. For then, as is well known,

I t(6) - tn(d) \"d6 -* 0     for every 0 < p < 1(6),
o

and so there is a sequence {nk\, independent of 0, such that (1.2.6) is satisfied

almost everywhere.

(6) See, e.g., Zygmund [l, p. 153].
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1.3. The results stated in the preceding section for the partial sums of

power series can be extended to the arithmetic means of power series(7).

Let t"(0) denote the ath Cesäro means of the series (1.2.2). By

Lf(6) = L"(0)

we shall denote the set of the limit points of the sequence |t£(0) }.

Theorem 3. Suppose that the series (1.2.2) is summable (C, a+1) (where

a> — 1) at every point 6 of a set E, to sum t(8). Then at almost every point 8

of E the set L"(0) is of circular structure, with center t(8).

In particular, the set L"(8) is of circular structure almost everywhere in E, if

the arithmetic means rj(0) of the series (1.2.2) are bounded at every point 8 of E.

That the second part of this theorem is a consequence of the first part fol-

lows at once from Theorem 2.

1.4. Theorem 4. Suppose that the conditions of Theorem 3 are satisfied for

some aS;0 and that cn—»0. Let

(1.4.1) m"(d) = lim inf | r"(0) - t(6) |,     m"(6) = lim sup | r"(0) - t(8) \.
n—* oo n—* oo

Then

L«(0) = A{*(«);*(*), m(d))

almost everywhere in E.

This theorem follows in the same way from the preceding theorem as

Theorem B follows from Theorem A, provided we prove that

(1.4.2) t>) - d(0) -> 0

which is immediate (cf. §5.3).

In the remainder of Part II we give a proof of a theorem (Theorem 5 be-

low) which was already stated without proof in an earlier paper, and indicate

extensions of the previous results to the case of Dirichlet series.

1.5. In this section we state without proofs a few known results from the

theory of Cesäro arithmetic means. We state only the facts we shall actually

need in the sequel.

Given a series

CO

(1.5.1) IX
n=0

(7) For the theory of Cesäro means, see Andersen [l ] and Kogbetliantz [l J. All the results

required for the present paper will be found in Zygmund [l ].
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and a number a, we define numbers s„ (n = 0, 1, • • • ) by the equation

00 A 00

Za   n 1 n
SnX   = — 2—1 U"X •

„=„ (1 - x)a+1 „_0

Let us consider the numbers Aan defined by the formula

00 1

to (1 - *)<"+I

If the ratio

a a a

(1.5.2) crn = S„/;4n

tends to 5 as n tends to infinity, the series (1.5.1) is said to be summable by the

Cesäro method of arithmetic means of order a, or simply summable (C, a), to

sum 5. The numbers sj and <r£ are called respectively the Cesäro sums and

the Cesäro means of order a of the series (1.5.1). If the ratio (1.5.2) is bounded

[bounded below] as n—>°°, the series (1.5.1) is said to be bounded (C, a)

[bounded below (C, a)].

From the above definitions one can easily deduce the following properties

of Cesäro means.

(i) If the series (1.5.1) is summable (C, a), where a> —1, to sum s, then

the series is also summable (C, ß) to sum s, provided that ß>a.

If the series (1.5.1) is bounded [bounded below] (C, a), then it is also

bounded [bounded below] (C, ß) for ß >a > — 1.

(ii) If the series (1.5.1) is summable (C, a), a> — 1, to sum s, then it is

also summable by Abel's method (summable A) to 5. In other words

00

lim       unz" = s.
•-►1-0 . „

Here the variable z tends to 1 along the real axis, but the result holds if z

tends to 1 from inside the circle \z\ <1 along any non-tangential path, that

is, along any path contained between two chords of the circumference | z\ = 1

passing through the point z = 1.

(iii) If the series (1.5.1) is summable (C, a), a> — 1, then un = o(na).

(iv) We have

(a + l){a + 2) ■ ■ ■ (a + n) n"
An =

r(« +1)

where the relation an—bn means that a„/b„—>1.

In particular, the numbers A„ are non-negative for a> — 1, form an in-

creasing sequence tending to + =° when a>0, and decrease to 0 when

— 1 <a<0. Moreover ^4^=1 for all n.
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(v) The numbers A„ and s% satisfy the following relations

(1.5.3) y j AyAn—v = An     j        y j sv An—V — sn
v—0 v—0

In particular,

and

T a" - a"+1      y,"- ca+1

a+1 a+1 , o a+1 a+1 a

■**n Ti—1        ^ni Sn— 1 Sn.

(vi) If [€„} is any sequence tending to 0, then

(1.5.4) i,*j£-Ai-, - o(A"n+ß+1) for a > - 1, ß > - 1.

This follows from (i) and from the second formula (1.5.3), if we put

eyA" = s", and observe that the series summable (C, a) to 0 is also summable

(C,a+ß + l) toO.

(vii) It is easy to see that (1.5.4) holds if we replace the upper limit of

summation n by n — k, where k is any fixed positive integer. Hence

n-k

(1.5.5) 2 o(A"v)An-v = o(A"n     ) for et, ß > — 1, k = const.
»-o

Part I

2. Lemmas on summability (C*, a)

2.1. Let tr"(ö) denote the ath Cesäro means of the series

00

(2.1.1) fa0 + 22 (a> cos "0 + °, sin i*0).

We shall say that this series is summable (C*, a) at the point do to sum s, if

c"(0o 4" Ä«) -+ «

for every sequence h„ = 0(l/n). This property is equivalent to the following

one: to every constant A >0 and to every «>0 corresponds an integer

n0 = n0(A, e) such that

(2.1.2) I cr"(0o + h) - s I ^ e       for | h\ = 4/«, n > n0.

Lemma A. A necessary and sufficient condition that the series

00

(2.1.3) 2>,
>.=o
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should be summable (C, a), where a> — 1, to sum s is that the series

QO

(2.1.4) X) a* cos "0
»=o

should be summable (C*, a) at the point 0 to sum s(s).

Proof. The sufficiency of the condition is evident. For the proof of the

necessity we may assume that 5 = 0. We begin with the case of integral a,

so thata = 0, 1, 2, • ■ • .

We write

ivS (n) a

fj>v — e     , Cj. = €v      — JLn^vßv.

Let t" denote the ath Cesäro sums of the series (2.1.3), and let cr£(0) be the ath

Cesäro means of the series

00

(2.1.5)

It is sufficient to prove that, if t^ = o(na), then

(2.1.6) oC(0) = o(l) for I nd\ g A.

Applying Abel's transformation a+1 times, we may write

n n—a—1 ^ a     k k

(2.1.7) A"<f"(0)  =  £ <M- =  Z + E «„-* = + <2n(9),
»—0 »=0 *—0

say. The numbers /i„ being bounded, the expressions A*€„_fc are also bounded

for k = 0, 1, • • ■ , a. Since the relation t" = o(na) implies

k a
t„-k = o(n ) for « —> oo, and k = 0, 1, ■ • • , a,

it follows that

Qn = o{n").

In order to estimate the expression P„, we use the formula

i

(2.1.8) A%Vn = 2ZCi,A%Al-'Vn+i, I = 0, 1, • ■ • .
1=0

Hence, taking into account that

(8) Lemma A of the present paper is a special case of Lemma D. The latter lemma is stated

in Plessner [l ], for a = 0, 1, 2, • • • .

(') We use the notation

Acv = c, — cr+i,     A*c„ = A^A^hy).
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Am, =      - e^+v* = e<Wi/W.(- 2* sin \d),

and generally

A'fiy = ei<'+»/2)«(- 2t sin §0)',

we obtain

a+l

A    .e» = 2JC„+l,,'il,^»-rJi Pv+j

3=0

C«+1,,^„_„(— 2t sin 50)      e e .

j=0

It follows that Pn is equal to the sum of the expressions

(2.1.9) e ( — 2i sin J0)      C0+i,,- 2^ t,An-,e

for j = 0, 1, • • • , a. The absolute value of (2.1.9) does not exceed (cf. (1.5.5))

n—a—1

I 0| C„+i,y 2^ «(■<*» M*w = I 0| 0(» ) = 0(» ),

provided that \nd\ ^A. Hence Pn = o(n"), and since the same relation was

obtained for Qn> Pn-\-Qn = o(na). This and (2.1.7) give (2.1.6), so that the

lemma is established in the case of integral a.

2.2. In the case of fractional ct> — 1, we write

a\ + 1,   (i, = e   ,    t,„ = r?,   (0) = ^4„_„(ju„ — p„).

Hence ß is a non-negative integer greater than a. We write

n n n

(2.2.1) Ala-lid) = pnJ^A^a,, + £ <M»» = o(n") + £
p=0 v=0

To the last sum we apply Abel's transformation /3 + 1 times:

n n—8—1 -
•r-v V->    ß   3+1 V"-<   k k

(2.2.2) 2-J a'^' =   2-J Vv +  2-, tn-kA ifn-t  =  Pn + Qn,
y—0                r=0 1

say. Now

A t\v =  2-, Ck,jAn^rA      ße+j + in-i(M»+i — M»)

(2.2.3)
k-l , __,

= E Ct.jA^A + 0( I 0 I )
J=0
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for v = n — k and k = 1, 2, • • • , ß. Since the series (2.1.3) is summable (C, a)

and so also (C, ß) to 0, we obtain

t ß
in-k = o(n ) for k = 0, 1, • • ■ .

Hence

ß
(2.2.4) Ö» = Z o{nt)0{ I 61 ) = o(nS~l) = o{n")

k-l

for \nd\ f^A.

It remains to estimate the sum Pn. On account of the first equation

(2.2.3) with &=/3 + l, Pn is a sum of /3 + 1 expressions

n-0-1       a_.   ß+1_ .

(2.2.5) Cß+i,,- 22 t,An-,& ixv+j, j *=0, 1, • • • , ß,

and of the expression

n-ß-l a_ß_,

(2.2.6) 22   hAn-p     (ßv+ß+l — ßn) ■

The sum (2.2.5) is

~, I  _ IP-HI—J\ "^r1    .    3.   .«-)' .   J-/3-1.    .   a+0-j+l. a
0(| 9\      )  22 = 0(n      )o{n )=o(n),

and the sum (2.2.6) does not exceed in absolute value

£ o{A%A«5~\n - v) I 0 I = 0( I 0 I ) "22
»=0 v=0

= 0(\ d \ )o(n"+1) = o{n").
It follows that

(2.2.7) JV» «(««),

From (2.2.1), (2.2.2), (2.2.4), (2.2.7) we deduce (2.1.6), and so the proof

of Lemma A is complete.

2.3. Lemma B. A necessary and sufficient condition that the series

(2.3.1) 22 6, sin v0
»-0

should be summable (C*, a), a> — 1, at the point 0 = 0, is that the sequence

[ v bp} (i»~0, 1, 2, • * • ) should be summable (C, a +1) to 0.

Proof. The argument is similar to that of Lemma A. We begin by proving

the sufficiency of the condition, and we assume first that a is a non-negative

integer. Let
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(n) sill ¥V (n) a

(2.3.2) vb„ = c„,      p„ = ju„  (6) =->       7„ -  7„  (0) = An-„pv.
vd

By (7^(0) we shall denote the ath Cesaro means of the series (2.3.1) and

by m* the iterated sums of the sequence \c, \, so that

0 £ Jq_i £_i k_1

» = 0, 1, • • • ; k ™ 1, 2, • • • .
Hence

(2.3.3) Ayn(6) = dJ^Al-^h- = 0 £ c,y,.

Applying Abel's transformation a + 1 times we have

n n— a—1 a       Je   1 fc

(2.3.4) «Sct, = 6 2Z «'   A"+ 7- + 0}2 Un-kA 7n-k = BPn + 6Qn,

say. By hypothesis, «"+1 = o(wa+I), and so also u„+1 = o{na+1) for & = 0, 1, • • • , a.

This gives

(2.3.5) 0Qn = 0o(w"+1) = o(«°),

if only \n8\ = A. Since

A°+1> = lic„+1,3A^n-,A"+1"V+J- = ECo+i.^Od 0|O+W)(10),
j-0 j-0

9Pn is a sum of a +1 terms of the form

O{\0\      ) 22 o(Ar   )AH_v=0{\e\      )o{n ),
»-o

where j = 0, 1, • • • , a. Hence, if \ nd\ = A,

(2.3.6) 0P„ = o(n°).

From (2.3.3), (2.3.4), (2.3.5) and (2.3.6) we see that

(2.3.7) <r"(0)-+O for 7i —► °o and|reö|^,4.

This completes the proof of sufficiency in Lemma B for the case of integral a.

2.4. If a is fractional, we write

(I0) Here (and in the sequel) we use the known fact that if a function (j>{u) has a pth. deriva-

tive, and if <j>(v)=<j>v, then

&p<t>, = (- + op)

where 8 is a number contained between 0 and 1.
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ß = [a] + l,     £, = t\e) = AZ-,<j*. - mn),

where /*„ is defined by (2.3.2). Then

n n

^nGr»(0) = tf),£i^, + 0EC^"
i—0 I—0

First „

(2.4.1) »M-E^S-^ = ÖMno(«»+1) = o(n«)
>—0

for I «0 I iS .4. Now

" n-8—1   „ fi
•v-v x-<     3+1  3+1 *+l k

(2.4.2) e}2 c& = e E «r a   f, + #E m„_tA      = 0i>n + 6Qn,
i—0 »=0 t—1

say. But

A 5r = 2^ 0*,,vl„_„A + ^4„_„(ju„+i — (un)

(2.4.3)
j-0

k-l

= E CujaUa' V»+> = o( I e I)
y-o

for £ = 1,2, ■ • • , ß and v = n — k. By hypothesis, the sequence {c„} is summa-

ble(C,a+l),andsoalso(C,|3 + l),to0.HenceMj;_:i = oK+1)for/fe = l,2, • • •, ß.

This gives

(2.4.4) 6Qn = 0-O(| d\ )o(nP+l) = o(#-') = o{n")

for I w0| =a.
Substituting into the formula for pn the first formula (2.4.3) with k =ß+1,

we see that 0P„ is a sum of /3 + 1 expressions

(2.4.5) eCß+i.j E •C^Mt^**"^/,      ; = 0, 1, • • • , ß,
i—O

and of the expression

n-0-1        ß a_p_x

(2.4.6) 0 E °(A>   )aI-,   (mm-3+i - Mn).
»=0

The absolute value of (2.4.5) is

0(1 0|      )  E o(^»  M„_„=O(|0|      )o{n )=0(n),
v—0

and the absolute value of (2.4.6) is

O(02) n~2Z o{AT)0{aanZl) = 0{6)o{n+i) = o{n).
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Hence dPn = o(n"), which in view of (2.4.1), (2.4.2) and (2.4.4) gives (2.3.7).

2.5. In order to prove the necessity of the condition in Lemma B, we have

to show that, if the series (2.3.1) is summable (C*, a) at the point 0=0, then

the expression

" 1   n vd
(2.5.1) 2 An-yvbv = —X A*—sin vd-

,=o & m sin vd

is o(na+1). We shall prove a slightly more general result, which will be required

later on and which may be stated in the form of the following

Lemma C. Let {hn\ be a sequence of numbers tending to 0 and satisfying

for n>n0 the condition

(2.5.2) 0 < 8 ^ nhn ^ t - 8,

where 5 is any fixed positive number less than \ir. If for some such sequence the

Cesäro means <r£(0), where a> —1, of the series (2.3.1) satisfy the condition

(2.5.3) o-„a(Ä„)-*0 for v —* oo and n ^ v

then the sequence { vb„} is summable (C, a + l) to 0.

Proof. The argument does not differ appreciably from that of the preced-

ing lemmas. We write

vd („) a
/U„ = JU»(ö) =-) e, =  e„     = An-,li,(hn),

sin vd

(2.5.4) o -2, *        -A i-i
Vn{d) = »»(0) = £ b, sin vd,    v„(6) m 2Z %   (0).       k = 1, 2, ■ • • ,

i/=0 p—0

and we suppose first that a is an integer. If we substitute d = hn into the right-

hand side of (2.5.1) and denote the resulting expression by /„, then (for n>n0)

1

Jn = h„   £ e„6„ sin vhn
»=0

(2.5.5)
.  n— a— 1 a

— 1 a a+1 —1 k k — 1 —1

= hn    2-, M«*)A   e, + hn JLi vn-k{h„)A en-k = hn Pn + h„ Qn*
v=0 k—0

say. From (2.5.3) we see that v"(hn) =o{v") =o{na). Hence

vl{hn) = o(n") for v —> + oo , n Si v, k = 0, 1,

and so (cf. (2.5.2))

(2.5.6) hnQn = 0(*)£<K»")O(l) = 0(«"+1).
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Since

o+l
a+1 ^ a-]   a+l-j , .

A      €„ =   ^ Cc+l./^n-^A, fly+j(nn),

j=0

hn~1Pn is a sum of expressions

.   n—a—1

0( I K |    )  £ of^iCr = »(»   ), / - 0, 1, • • • , a + 1.
y=0

From this and from (2.5.5) and (2.5.6) we see that the left-hand side of (2.5.1)

is o{na+v), which proves Lemma C in the case of integral a.

2.6. If a is fractional, we write

ß =   [a] + 1, r\v = V^n) = An-y(ß,(hn) — ßn(hn)),

where //„ has the same meaning as in (2.5.4). We get

-1 *       a —1 "

Jn = K un(hn) 2 An-rbr sin vhn + hn £ rjA sin vhn

r—0 y 0

= o{n    ) + hn 2\Z V>by sin

Furthermore,

t .   ,      -i-^r1*     a+1      -i * k *
I'", Sin f«„  =   &„      2rf   M»»)A     T]y+hn    2-1 »n-*(«n)A TJn-fc

i/=0 f=0 fc=l

=  Än'P« + *üö».

From (2.5.3) and from the inequality ß>a we get

ß ß
Vy(hn) = o{n ) for v —> =o, » S; j/(

whence

Now

it j3
»,(A„) = o(« ) for v -r* oo, n Si    £ = 0, 1, ■ • • , ß.

k-l . a_h

(2.6.1)    a t], = £Ca,,v4"Ja„ 'ßy+j(hn) + A"^v(fiy+k(hn) - |»»(Ä»))i
j'-O

so that

1 \    ^ ß \ ß 0c^* ̂

Ä» Qn= K 2\Z °(w )°(w ) = o(« ) = o(n ).
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If we substitute &=/3+l into (2.6.1), and observe that hn lPn is correspond-

ingly a sum of expressions

hn   2\Z o(A„)AanJO(n B  ) = o(na+1),       j = 0, 1, • • • , ß,
v-0

and of the expression

j n—ß—l        ß ß  1 4-1

h„   £ o(An)Al^  0((w - v)hn) = o{n ),
v=0

we easily get

/„ = o(n"+i),

which completes the proof of Lemma B as well as that of Lemma C.

2.7. Lemma D(n). Let <r"(0) denote the Cesäro means of the series

CO

(2.7.1) \aa + £ (a> cos vd + b, sin v6).

A necessary and sufficient condition that this series should at the point do be

summable (C*, a), where a> — 1, to sum g, is that

(i) this series should be summable (C, a) at the point do to sum g;

(ii) there should exist a sequence {hn} satisfying for n>n0 the condition

(2.7.2) 0 < 8 ^ I nhn \ ^ tt — 8, 8 independent of n,

and such that

a"(do + hn) —> g, v —s- go , n = v.

Proof. That the condition is necessary is obvious. In order to prove its

sufficiency we may suppose that 0o = O. By hypothesis, the series

00

is summable (C, a) to g, and so on account of Lemma A the cosine part of the

series (2.7.1) is summable (C*, a) to g at the point 0 = 0. Hence, the sine part

of (2.7.1) satisfies the hypothesis of Lemma C. It follows that the sequence

{nbn} is summable (C, a + 1) to 0. Consequently (Lemma B), the sine part of

(2.7.1) is summable (C*, a) to 0 at the point 0 = 0, and so the series (2.7.1)

is summable (C*, a) to g at that point. This completes the proof of Lemma D.

2.8. Lemma E. // the series (2.7.1) is summable (C*, a), a> — 1, at a point

do, then the sequence

(n) Cf. Footnote 8.
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(2.8.1) nBn(do) = n(bn cos nd0 — an sin nda)

is summable (C, a+1) to 0.

Assuming for simplicity that 0o = O, we see at once that Lemma E is a

consequence of Lemmas A and B(12).

3. summability A*. lemmas on numerical series

3.1. We shall say that the series

00

(3.1.1) Jao + £ (a> cos vd + by sin vd)
y=l

is summable A* at a point 0O to sum g, if the harmonic function

00

hao + H (ay cos vd + by sin vd)r"
y—l

tends to g when the point reie tends to eie" along any non-tangential path.

Lemma F. If the series (3.1.1) is summable (C*, a), a> —1, at a point do

to sum g, it is also summable A* at that point to g.

Proof. Let us assume that 0o = O. From the hypothesis of Lemma F it fol-

lows that both the series

00 00

|flo + X"' cos "0>       £ by sin vd
y=l y—0

are summable (C*, a) at the point 0, the sum of the first of these series being g,

the sum of the second being 0. It is sufficient to show that

. 00 00

(3.1.2) |a0 + ]C a'r' cos vd -> g,      \T, byr" sin vd —> 0,
y=\ y=\

provided that

(3.1.3) %-+1,       I 1 - z| ^ C(l - r), where z = rei9.

Now,

QO / 00 \

(3.1.4) |a0 + 2\Z a'r" cos "0 = 9?( 2«o + X)a-2");
F-1 \ y=l I

(u) From Lemmas E and G (see below) it follows at once that if the series (1.1.1) is sum-

mable (C*, a),a>-l, at a point 0O, and if the series (1.1.2) is summable A at that point, then the

series (1.1.2) is also summable (C* a) at the point 0O.

This result, with summability A replaced by summability C, and with a = 0, 1, • • ■ , is

stated by Plessner [l].
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and since the series §ao+ai+02 + - is summable (C, a) to g, the very well

known extension of the Abel-Stolz lemma gives(13) that, under the conditions

(3.1.3), the function

|a0 + diz + a2z2 + • • •

tends to g. In view of (3.1.4), we get the first relation (3.1.2) under the same

conditions.

Furthermore, denoting by u" the ath Cesa.ro means of the sequence { vb,},

where v = 0, 1, • • • , we may write

dt52 &*f sin v6 = f ( £ vb„r" cos vt\dt = f $ ( 52

= /V{(i:w;+v)(i-f)a+1}^

where f = reii. Taking into account that

I fl -r,       I 1 - r| is C(l - r), = 0(/+1),

we see that the absolute value of the last integral does not exceed

o(-Yca+1(l - r)a+1 = o(l).
\(1 - rY^J,(1 - ry

This proves the second relation (3.1.2) under the conditions (3.1.3). The proof

of Lemma F is thus complete.

3.2. Lemma G which follows is known(14). We give its proof here for the

sake of completeness only.

Lemma G. // the series

00

(3.2.1) 52 a,

is summable A, and if the sequence {cv \ = \ vav\ is summable (C, a + 1) to 0,

where a> — 1, then the series (3.2.1) is summable (C, a).

Proof. Let
i

Sn

Ay

denote the 7th Cesäro means of the series (3.2.1). We shall say that the series

(3.2.1) is summable by the method A (C, 7) to sum s, if

(«) See §1.5 (ii).

(") See, for example, Andersen [l]
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CO

lim (1 - r) £ air* =
r—1 -o „_0

Summability A(C, 0) is plainly identical with summability A. For the proof

of Lemma G we shall require the following three supplementary proposi-

tions^6) :

(i) If the series (3.2.1) is summable A to s, it is also summable A (C, y) to s,

provided that y 5; 0.

(ii) If the series (3.2.1) is summable A(C, y), where y>0, to s, and if

ay = o(\/v), then the series converges to s.

(iii) If a, = o(\/v) and if the series (3.2.1) is convergent, then it is summable

(C, — 1+e) for every e>0.

In order to prove (i) we may assume that y >0 and that 5=0. We observe

that

7—A-i J0
(1 — u)i-xundu    7 > 0; n = 0, 1,

Al       J 0
Hence, if

00

f(r) = S a,r' for 0 g r < 1,

then

7
S„

(1-(1-OE ^r
n=0 rj-0    ^4 ^

/' 1 -1 "

(1 - «)7 £jl(«r)"a«
0 71-0

= (1 — r)y I -(1 — m) aw.

Let M denote the upper bound of f(x) for 0^x<l, and let us suppose

that |/(x)| ^5 for 1 — ef^x <l. The last expression in (3.2.2) does not exceed

in absolute value

r (1-e)r_1 (i - uy-1               rl    (i - «)v_1

M^ - r^ 7,-w« du + 5(1 - r)7-— du.
J0 (1 - ruy+l J<i-*)r-* (1 - ru)y+1

Here the first term tends to 0 as r—>1, and the second term does not exceed

-1 (1 -^ c u -
5(1 - r)7 T—

0    ( 1 —(1 - ruy+!
du = 6

(15) Propositions (i) and (ii) are taken from Zygmund [l]. Proposition (iii) was proved by

Hardy and Littlewood [l], even with o replaced by 0.
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(in order to verify the equation, it is sufficient to substitute f(x) = 1, i.e.,

<r^ = l for w = 0, 1, • • • , into the extreme terms of (3.2.2)). This completes the

proof of (i).

In order to prove (ii), it is sufficient to show that the summability A(C, y)

of the series (3.2.1) and the condition a„ = o(l/w) imply the summability A

of (3.2.1), for then the result will follow from Tauber's classical theorem. We

may of course assume that 75^0. Let sn denote the wth partial sum of the

series (3.2.1). We shall show that then

(3.2.3) o-I-Sn-^O for n-> 00.

For

1 "
(3.2.4) <r« — s» =-X) O4"— - Al)a„

At „=0
n

and

(3.2.5) Al-ALr=   X   A1"1, Q<v£n.
v+1

Hence

0 £ Al - At* £ vAT*  for y Jfc 1,

0 £ ai - aZ-, ^ vAIZ]  for   0 < 7 £ I-

Consequently, since ra„ = o(l), we obtain

A
\cZ-sn\ g —S'O) =°(1), if

1 ™
I ffl - j» 1 g — x, o(i)4i:' = o(i), if 0 < 7 ^ 1.

This completes the proof of (ii).

In order to prove (in), we observe that

-i+t        1     [n/2'  -i+< 1 "

On        =    ■   , ,       X An-v  a„ + ———      X     An-,  Ü, = P„ + Q„,
A~1+t   r*0 A-l+' „_[„/2j + i

say. Now

Q-l = -^--o{l/n)-2ZAn-: = o(l).

Denoting by sn the partial sums of the series (3.2.1) and applying Abel's

transformation we easily get
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1      '"^T1     -2+, 1
(3.2.6) P„ — - 2—1     S'An-v    H-;-i(n/21^n-[a/2]-

A— 1+e " A—l+e

n [n/2]

Assuming, as we may, that j„—>0, we see that the last term on the right of

(3.2.6) is o(l). The first term on the right is

—— o(^2+o     = o(i/«) e i * i - o(i).
n

Hence

which completes the proof of (iii).

3.3. We now pass on the proof of Lemma G. We may assume that the

series is summable^4 to 0 and that a0 = 0. Let <r'n = s'n/A'n denote the ath Cesäro

means of the series (3.2.1), and let us suppose first that a is an integer. We

write

va, = c,   C„ = c„,   C„ = e 0m   ,       v = 0, 1, 2, • • • ,

(n) a 1
to = 0,      e„ = e„    = An_v —> v = 1, 2, • • • .

V

Then

(3.3.1) sn = e e"c" = e 0,   A    e„ + £CB_*A «»_* = P« + <2„,
i-=0 y=0 Jfc=0

say. From the formula

(3.3.2) a\, = e CkjA^A'' —.
1=0 v + J

and from the relation

cr1 = o(w+i)
it is easy to deduce that

(3.3.3) Qn = o(n«).

Substituting &=a+l into (3.3.2) we get

A i 01 A  "+1      ^ I A 1  a_^' A a+1-' f

A    e„ = An_vA-h EC«+i.j^»-»a -:
"       >-i " + J

v       £J V"+2->/

Hence
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n— a— 1 1 a+l n—or—1 . /      1 \

»—«—1    o j        j   1 a+l n— a— 1    ^ j

= E ^n"-Cr Aa-rl  I ^"_'o(^' )
»=1 V J=l f-1

n—a—1 -1 1Ea       a+l   a+l   - a
^4„_„Cv   A-\- o(n ).

f=l

We may also write

Ea    „a+l   a+l 1
A^JZ,   A-h o(« )■

From this and from (3.3.1) and (3.3.3) we get

In 1
a 1     a  i      a       a-t-1   a+l 1

(3.3.4) an = -E^n-,C,A+ —+ o(l).
A" v

n

The first term on the right is the ath Cesäro mean t" of the series

(3.3.5) o + ec;y1-,
f-1 V

whose terms are o(l/sO- By hypothesis, the series (3.2.1) is summable A to 0,

and so on account of (i) summable A(C, a) to 0. From (3.3.4) it follows that

the series (3.3.5) is summable A(C, a) to 0, and so converges to_0. Hence

Tn—*0, which on account of (3.3.4) gives

(3.3.6) <r"->0.

Lemma G is thus established in the case when a is an integer.

In the case of fractional a> — 1 the proof is similar. We write

r  1 (n) «/ 1        1 \ ,
j8 = [a\ + 1,      tjo = 0,      r/» = r/„    = AA-)      for 0 < v g n.

\v      n /

Then

a 1     " a " a ß

s„ = — £ C,An-v + £ r/„c = o(« ) + 22 W»
"    f=l »=1 f— 1

since the sequence {c,} is by hypothesis summable (C, a + l) to 0. On the

other hand,

Z^loCi/ =  /r G,   A    !7f + ,^C„_tA 77n_i.
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Arguing as before (we omit the details, which remain essentially unchanged)

we get instead of (3.3.4) the formula

a 1    t\      a       8+1   8+1 1
(3.3.7) cr„ =-XX_,CT A*+ - + o(l),

A: ->

which in the case aStO gives (3.3.6) (the argument is then the same as in the

case of integral a).

If —l<a<0, then summability (C, a+1) of the sequence {c,\ implies

summability (C, 1) of that sequence, to the limit 0, and so on account of the

formula (3.3.4) with a = 0 we have

5   i 1
Sn =  X)C„A-(- 0(1).

,_l V

The series (3.2.1) being summable A, the series EC'Al/p, whose terms are

o(l/V), is convergent, and so summable (C, a) (cf. (iii)). In other words, the

right-hand side of the formula (3.3.7), where —l<a<0, ß = 0, tends to 0.

This proves (3.3.6) also in the case — 1 <a<0, and so"Lemma G is proved.

3.4. Lemma H. If a series is summable A and its Cesäro means of order a

are bounded (a> —1), then the series in summable (C, a + e) for any e>0.

This lemma is well known(16).

Lemma I. If the Cesäro means an = s<n/Acn, where ct> — 1, of a series

ao+ai+ • • • are bounded below, and if the series is summable A, then the series

is summable (C, a +1).

In the case a = 0 the lemma reduces to a very well known theorem of

Littlewood. The general result may either be deduced from Littlewood's theo-

rem by a certain comparatively simple argument(17), or may be proved ex-

actly in the same way as the Littlewood theorem. We shall follow the latter

course, using the familiar device of Karamata(18).

Without loss of generality we may assume that the expressions o" are

all positive. By hypothesis,

OO 00

anr  = (1 - r) s"r ~* s asr—»1,
n-=0 n=0

where s is the A-sum of the series a0+ai+ ■ ■ . Replacing r by rk+1, where k

is any non-negative integer, we easily obtain from the last relation

(16) See Andersen [l], A proof may also be found in Zygmund [l ].

(") See Zygmund [2, p. 329].

(1S) Karamata [l].
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(1 — rl      >. snr —*- =- I    x   log— ax,

and so, if P(x) is any polynomial,

(3.4.1) (1 - r)"+1i: j^r^—f '/>(*) (log-Y**.
„_o T(a + 1) J o \      x /

Let Q(x) be any function denned and bounded in the interval O^x^l.

Let us assume furthermore that Q(x) is continuous except at some point where

it has a jump. Approximating Q{x) above and below by polynomials and tak-

ing account of the positiveness of the expressions s", we deduce from (3.4.1)

that

(3.4.2) (1 - r)a+l Evß(fVr--T f1Q(x)(\og-Xdx.
n=o r(a + 1) J o \      x /

Let us define Q{x) by the conditions

1
Q(x) = 0   for   0 ^ x < e~\        Q(x) = —   for   e~l ^ x ^ 1.

The right-hand side of (3.4.2) is then equal to s/T(a-\-2). Hence, if we set

r = e~UN, and make Attend to + °o, the relation (3.4.2) gives

1        N f

N»+1 „=0        T(a + 2)

or, since An+1~na+1 /T(a + 2),

-> 5.

4 JV

This completes the proof of the lemma.

3.5. Let cr"(0) denote the Cesäro means of the trigonometric series

00

(3.5.1) 5<30 + X (a» cos n6 + bn sin no).
71=1

The series will be said to be finite (C*, a) at a point 0O, if for any A >0 there is

a number B =B(A), such that

I    a j I      I A

I °-n(0o + h) \ ^ B for \ h \ ^ — and n = 1, 2, ■ ■ ■ .
n

Similarly the series (3.5.1) will be said to be finite A* at the point 90, if for

any C>0 the harmonic function
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00

hao + X (an cos n6 + b„ sin nd)rn
Mawl

is bounded in the neighborhood of the point ei$0 satisfying the inequality

I reie — eiH\ ^ C(l — r). It is plain that Lemmas D, E, F, G have the following

analogues.

Lemma Di. A necessary and sufficient condition that the series (3.5.1) should

be finite (C*, a), a> —1, at the point do, is that

(i) the series (3.5.1) should be finite (C, a) at the point do',

and that

(ii) there should exist a sequence {hn} satisfying the condition

0 < 5 ^ I nhn I S * — 8, 8 independent of n,

and such that

<r°(8o + K) = 0(1) for v -»■ oo£ n.

Lemma Ex. If the series (3.5.1) is finite (C*, a), a> —1, at a point d0, then

the sequence n(bn cos ndo — ansm ndo) is finite (C, a +1).

Lemma Fi. If the series (3.5.1) is finite (C*, a), a> — 1, at the point 0O, it is

also finite A* at that point.

Lemma Gi. If the series a0+ai-\- ■ ■ ■ is finite A, and if the sequence {vav)

is finite (C, a + l), then the series a0+ai+ • • ■ is finite (C, a) (a> — 1).

4. Proofs of fundamental theorems

4.1. Lemma J. If G is any measurable set of positive measure and do a point

of density of G, then for any X > 0 there is a sequence of numbers {a„} such that

na„ —> X,
(4.1.1)

do + a»   belongs to G for all n > n0.

Proof. Since 60 is a point of density, the average densities of the set G in

the intervals

/        X-e X + e\/        X + e X-e\
I 0o H-' do H-),  ( 0o — -' 0o-),
\ n n   /     \ n n /

where 0 < e < X,

tend to 1 as n tends to infinity. It follows that for n large enough these average

densities exceed 5, and so there is a number ßn such that

X - e X + e
- ^ ßn ^ -> d0 ± ßn G G, n> W„.

« n
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Thence it is not difficult to deduce the existence of a sequence {«„} satis-

fying the conditions (4.1.1).

Lemma K. If the series
CO

(4.1.2) |a0 + X (a" cos nS + °" sm wö)
71=1

is summable (C, a), a> — 1,/or 6EE, /Aew /Ae series is summable (C*, a) almost

everywhere in E(LS).

Similarly, if the series (4.1.2) is finite (C, a) at every point of E, the series is

finite (C*, a) almost everywhere in E.

Proof. Let us suppose that the series (4.1.2) is summable (C, a) for 6EE,

and let s(6) denote the (C, a)-sum of the series. Let G be any subset of positive

measure of E, such that the Cesäro means <Tn{d) of the series (4.1.2) tend to

s(6) uniformly on G. In particular, s(d) is continuous on G. Let 6oEG be a

point of density of G, and let (a,| be any sequence of numbers such that

jtt ^ nan ^ jTT,       0O + an £ G

for all w > Wo. Since

0-^(00 + a.) — s(60 + an) t* 0 for c —> co , n Si

and since s(d0+an)—>s(6Q), it follows that o-"(00+a7i)—>s(90) for y^-co, n^v.

An application of Lemma D shows that the series (4.1.2) is summable (C*, a)

at the point 0o, that is, is summable (C*, a) almost everywhere in G.

Since the measure of E — G may be arbitrarily small, this proves the first

part of the lemma. The second part may be proved in a similar way.

4.2. Lemma L. Let

F(z) = u(r, 0) + iv(r, 0), z = reie,

be a function regular inside the unit circle, and let us suppose that there is a set E

of positive measure situated on the circumference \ z \ = 1 and such that for any

ZoEE the function u(r, d) is bounded when z tends to Zo along non-tangential

paths. Under these conditions for almost every point ZoEE the functions uir, 0)

and v(r, 6) tend to finite limits when z tends to z0 along any non-tangential paths.

This lemma is known(20). It plays an essential part in our proofs of Theo-

rems 1 and 2. It may also be stated in the following form: If a trigonometric

series is finite A* at every point of a set E of positive measure, then the series itself

and its conjugate are summable A* almost everywhere in E.

(19) See Plessner [l] fora = 0, 1, 2, • • • .

(20) Privaloff [l]. A more general result, obtained by an argument similar to Privaloff's,

will be found in Plessner [2].
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4.3. From the preceding results we may deduce without difficulty the fol-

lowing special case of Theorem 1:

Lemma M. If a trigonometric series is summable (C, ß), ß> — 1, at every

point of a set E, the conjugate series is summable (C, ß) almost everywhere

in £(21).

Proof. If the series (4.1.2) is summable (C, ß) in E, then it is summable

(C*, ß) almost everywhere in E (Lemma K). It follows (Lemma E) that

(4.3.1) (C, ß + \)n{bn cos nd — an sin nff) —> 0 at almost every point of E.

On the other hand, from Lemmas F and L it follows that the conjugate series

(4.3.2) £ (a« sm n6 ~ ö» cos n&)
n—1

is summable A*, and so also A, almost everywhere in E. From this and from

(4.3.1) we see (cf. Lemma G) that the series (4.3.2) is summable (C, ß) almost

everywhere in E.

4.4. Lemma N. If at every point d of a set E of positive measure the series

00

(4.4.1) \ao + X (fln cos na + bn sin nd)
n=l

is summable (C, a +1), where a > — 1, to sum s(d), and if

(4.4.2) ffa(0) > - co ford EE,

then

(4.4.3) C{6) < + oo,

(4.4.4) s(d) = h{o-a(d) + <r«(0)}

at almost every point of E.

Proof(22). Let us suppose first that a is an integer. From (4.4.2) and from

Egoroff's well known theorem we deduce that there is a subset G of E, of

measure differing as little as we please from that of E and such that

(4.4.5) o->) > orjß) - 6„ for d EG,

where Ci, **i * • ; is a sequence of numbers independent of 9 and tending to 0.

The functions 5(0) and <ra(9) are measurable, and so if we remove from E

subsets of arbitrarily small measure, these functions will be continuous on the

(21) See Plessner [l] (for the case a = 0, 1, • • • ), Marcinkiewicz and Zygmund [l].

(B) Lemmas N and 0 of this paper are taken without essential changes from Marcinkiewicz

and Zygmund [l ].
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remaining set. Without loss of generality we may assume that the functions

s(d) and <Ja(d) are continuous on G.

Let do be any point of density of the set G and belonging to G, and let

{/3„} be a sequence of numbers satisfying the conditions nß„—>w, d0+ßnE.G

(cf. Lemma J). It follows from (4.4.5) that

(4.4.6)      h{c"n(6o + ft) + <T„(0O - ft.)}   > Mff«(0O + ft) + <*»(«<> ~ ft) }   ~ 4» •

If we introduce the notation

Co(0) = §<Zo,      C,(d) = a, cos vd + o„ sin vd for

X„ = \'n> = A°i-v cos vft for 0 5= v ^ n,

the left-hand side of the last inequality may be written

1 "
! {o-„(0O + ft) + O-"(6>0 - ft) }   = - Z ^»UCXöo) COS Pft

A" „=0

(4.4.7)
1 •

= -£ C„(0o)X„.

Let sn(6) denote the kth Cesäro sums of the series (4.4.1). Applying sum-

mation by parts a + 2 times, we may represent the last sum in the form

1     n-a-2 q+2 J a+l

- £       (öo)A°+ X, H-£ 5n_,(fo)A3X„_i = P„ + £>„,

say. Since Alrl = A?1 = 0 for p > 0, we may write

A°+2X, = £ Ca+2,,v4i;_„)Aa+2 ' cos (v + i)ft = 2- C0+2,^°Ja°+S ' cos (f + j)/3„
3=0 3=0

= E^^o^r"-2) = o(W-2)
3=0

for O^v^n — a — 2. Assuming for simplicity that s(0o)=O, that is, that

a+l.„ . . a+l

Sr.     (do)  = 0(1I ),

we see that P„ is equal to a sum of a+l expressions of the form

n— a—2

so that

(4.4.8) Pn = o(l).

Since
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* a—h '—ft

A X„ = £ C,-,ft4„_„A    cos (f + Ä)f9„    for 0 ^ v g « —
ft—o

the coefficient of sjn_j(do) in AanQn is equal to

a-j '~l a-h j-h

A,-   cos nßn + £Cj,ft4,-   A     cos (n — j + A)/3„

= 4/ 'cos w/3„ + £ 0(w   ) = 4,- 1 cos nßn + 0(n )

forj=0, 1, • • • , a + l. On the other hand, the condition 5„+1(0o) = o(ma+1) im-

plies

i a+l

Sm(öo) = o(w    ) for j = 0, 1, • • • , a.

Hence,

cos nßn °±1 ,■ a-j cos nßn  * i
<2„ = —~- £ 4_,(0o)4r + 0(1) = —r^ £ *Lf(*o)4,   + o(l)

(since A J1 = 0 for j > 0).

The left-hand side of the inequality (4.4.6) is equal to P„ + <2„, and so on

account of (4.4.8) we get

e   a a i COS W'Pn j a—j

(4.4.9)      I{<rn(0o + ßn) + Cn(0O — ßn) \ =-£ *-»(«o)4, +0(1).

The function o-„(ö) is by hypothesis continuous at the point 0o with respect

to the set G. The right-hand side of the inequality (4.4.6) tends therefore to

0"a(0o). From this and from (4.4.9) we deduce that

COS nßn   A    ,• a-j
lim inf-£ s„_,-(0o)4 ,-    = <xo(0o)

or, since nßn-^-K,

lim sup-E Sn-j(0o)4     g — <ra(0o)-
*-*«   4« ,=0

4.5. Let us now consider the difference

a a+l

a,    .            a+l ,    ,                  „ ,   ,   (An—V        4n—p)

<Tn(0o) - LT»    (0o)  =  la-—— >
f=o        I 4" 4a+1j

(4.5.1) ••■    . "
1 "

E f4n-„C,(0o).
(# + « + 1)4«:

The last expression is analogous to (4.4.7), except that the factor cos vßn is

replaced by
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(n) V

(4.5.2) > = 7.   =—-—.
n + a + 1

which for our purposes possesses the same properties as cos vßn, namely

A»T, = 0(n-k), k = 0, 1, • ■ •

(as a matter of fact, Akyv = 0 for k > 1). Hence, repeating the argument which

gave (4.4.9), we get

. ft \ a

(4.5.3) al(flB) - a"  (Oo) =-£4-,(0oMr +o(l).
n + a + 1 4 • ;=0

From (4.5.3) and from the inequality

1       "      j a-j
lim sup-£ sn-j(60)A,    g — <7„(0O),

we deduce that

or that

lim sup {cC(0o) - o-r+1(öo)| =5 - tTa(0o),

<r«(0o) + <r«(t?o) ̂ 0.

This inequality was established under the hypothesis o-£+1(0o)—>0. In the gen-

eral case, which may be reduced to the former by subtracting the constant

s(6o) from the series (4.4.1), we obtain

(4.5.4) <r«(0o) + ct°(0o) S 2s(e0).

This relation holds almost everywhere in G, and so almost everywhere in E.

Hence (4.4.3) is true at almost every point of E.

Let us now change the signs of all the coefficients of the series (4.4.1) and

let us apply the inequality (4.5.1) to the new series. We get that

(4.5.5) cra(0o) + (r«(flo) ̂  2s(0o)

almost everywhere in E, which on account of (4.5.1) gives (4.4.4) at almost

every point of E. Thus Lemma N is proved in the case of integral a.

4.6. Passing to the case of fractional a> — 1, we set

(4- {«] + I,

so that a<ß <a + l. Let us assume that the series (4.4.1) is summable not

only (C, a + l), but also (C, ß) on E. Let us define the set G in the same way

as before, and let OoEG be any point of density of G. Let us assume for sim-

plicity that

<rn(0o) 0.
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Applying summation by parts 0+1 times to the right-hand side of the equa-

tion

1 "
(4.6.1) I { <7>0 + ßn) + ffn(0O - ßn) }   = - Z G(0«)X,

(cf. (4.4.7)) where nßn-^ir, 6a+ßnEG, we get the expression

1     n-0-1 1 a

—-  £ sr(d0)A   X„ H-£ s„-,-(0o)A X„_y = P„ + £>„,

say. To estimate P„ we use the formula

0+1 v a—j   3+1—3 a— 0—1

A    X„ =        Cf3+l,,4n_„A cos (c + j)ßn + 4„_„    cos (jv + 0 + l)ßn

for 0 j£ * S * - ß - 1.

Correspondingly,

» ex«'-"-1) "z^1    „            1  "z^1 s a_0_!
P* = Z -—-       Z o{An)An_, H-        ' £ 5,(0o)4n_,   cos (v + 0 + 1)0»

3—0 A" v=tj 4° »=0

1     »±?  0 a_(3_l
= o(l) +-        Z *(*)4_   cos (v + 0 + 1)0».

On the other hand, the last expression is equal to

COS «0„ ß „_g_i        1    "Z^1       ß   .     ttHj_, .

Ai   a 4; s

cosW0»          s        _0_i     0„ ß a-ß
=- Z s,(0o)4„_,   H-£ o(,4„)0(,4„_„)

cos flßn "^T1 a
= —-— Z s,(e0)An-, +0(1),

A" ,_0

so that

COS flßn   "^T1   f3/    s a-ß-l

P» - - Z   S,(fl0)An-, +0(1).
A n "=°

Furthermore, from the formula

' a— '    '— h

A;X„ = £C/.iM*»-*A      cos (v + A)0„

we get
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1      3 '~l a-' -h 1      9 a-'

Qn = — X s«-/(0o) 52c,-,fci4,-  0(ßn  ) H-2 5„_;(0oM° ' COS «ft

1    JL, S -1 COS ftßn j a_,-
= — £ o(» )o(» ) + —— £ C-(0o)4,

cos nß„  '    j „_,■

4«

Hence the expression (4.6.1) is equal to

cos nßn  ( "Cf^1 B a-ß-l       J-y   i a-i)

(4.6.2) -— <^   E M0oM_,   + E*UMAf   > +»(1).

Since wj3n—>tt, OoißnEG, it follows that

J     / n-/3-l oHS_l "      i a-,)

(4.6.3) limsup-<   £ sv(do)Al-v    + E *—*(<W4i   } ^ - <ra(0o).

Let us now consider the equation (4.5.1). The argument which transformed

(4.6.1) into (4.6.2) gives

O"n(yo)  — Ö"n (0o)

(4.6.4) n 1   f „

8+14«  I    r-0 ,=0 Jn +

Comparing this with (4.6.3) we get

limsup {<t"(0o) — trn'+1(0o)} ^ — o-„(0o),
n—*m

or

o-»(0o) + ».(«)) ^ 0.

If s(d0) 5^0, this inequality is to be replaced by

(4.6.5) <ra(0o) + <r«(0o) ̂  2s(0o).

This gives <ra(0o) < + oo , and so (4.4.3) is true almost everywhere in E. Hence

applying (4.6.5) (with do replaced by general 6) to the series obtained from

(4.4.1) by changing the signs of the coefficients of the latter series, we obtain

o-°(0) + <ra(0) = 25(0)

and so (4.4.4) is true almost everywhere in E.

4.7. We have therefore proved Lemma N also in the case of fractional a,

but under an additional assumption, namely that the series (4.4.1) is sum-
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mable not only (C, a + 1), but also (C, ß) in E. To remove this assumption

we may argue as follows.

First of all, the argument of the preceding section shows that if

(4.7.1) Ca{ß)  >   -   CO, £(0)   = 0(1)

for 0GE, then o-°(0)<+°o, that is,

(4.7.2) <»->)= 0(1)

almost everywhere in E. On the other hand, since ß>a, the hypotheses of

Lemma N imply that

cTB(e) > - co,      »-»(#)-* s(6) on E,

and applying Lemma N in the case of integral a (now ß) we get that

ß
tTB(0) = 0(1) almost everywhere in E.

It follows that under the conditions of Lemma N (in the case of fractional a)

the relations (4.7.1) are true at almost every point of E, so that also (4.7.2)

holds almost everywhere in E. Now, on account of Lemma H, the series

(4.4.1) is summable (C, ß) at every point 0 at which

<tb(0)=O(1),      <rB+1(0) -»s($).

Hence, under the conditions of Lemma N, the series (4.4.1) is summable (C, ß)

almost everywhere in E. This completes the proof of Lemma N in the case

of fractional a.

4.8. Lemma O. Suppose that for some a> — 1 the series

(4.8.1) |a0 + £ (a, cos vd + b, sin vff)

satisfies at every point of a set E of positive measure the condition

(4.8.2) - oo < o-a(6) ^ <r°(0) < + oo,

and that the conjugate series

(4.8.3) £ (a„ sin vd — o, cos v6)

is summable (C, a+1) in E. Then at almost every point of E the following condi-

tions are satisfied:

(4.8.4) - oo < aa(6) g ca(6) < + co,

(4.8.5) 5(0) = +ff"(0)}.
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(4.8.6) ?«(#) - cjfl) = <r"(0) - ».{«).

Proof. The argument is so similar to that of Lemma N that we may con-

dense some parts. Let G be a subset of E such that the functions oa(ß) and

<ra(6) are continuous on G, and that

fa(0)  — in ^  tT„(0)  ^  tTB(0) + «B On G,

where { eB} is a sequence of numbers tending to 0 and independent of 0. The

measure of G may be as near to that of E as we please. Let 0O be any point

of density of G belonging to G, and let ßn be a sequence of numbers satisfying

the conditions

(4.8.7) w0B^|7r 00 + ftGG.

Using the notation

Co(0) = 0,      C,(0) = a, sin v6 - b, cos vB for v > 0

we have the formula

(4.8.8) § { -7^(00 + ßn) - <Tn(do ~ ßn)}   =   ~ — £ Cr(6n)Asin
4; ,_.

Here the right-hand side is analogous to the expression (4.4.7), with C„(0O)

replaced by C„(0o), and cos »>j8,, by —sin vßn. Let ^(0) denote the Cesäro sums

of the series (4.8.3), and let us assume first that s(60) =0.

In the case of integral a we get from (4.8.8) the formula

sin fto a

|{«r«(0« + ßn) - ^(0o - ßn)) =- E sLi(60)A"~' + o(l)

analogous to the formula for Pn + Qn in §4.4 (cf. (4.4.9)). Hence, making n

tend to + co and using (4.8.7) we obtain

1 "
(4.8.9) - lim inf — £ S»-,-(0oM /    S i| - <r«(0o)}.

Simultaneously we consider the formula for 5B(0O) —cr„+1(0o), which is anal-

ogous to (4.5.1), with C„(0o) replaced by C„(0O). It follows that

3£(0o) - ^+1(0o) =-— £ ~sLi(do)A"~' + o(l)
tl + a + 1 4^ ,_o

(cf. (4.5.3)). From this and (4.8.9) we get

- ff„(00) ^ h{cra(do) - <ra(0o)}.

If s(0o) 5*0, this formula takes the form
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ff«(0o) - 3(öo) =5 - §{ffa(60) - ffa(0o)}.

Applying this inequality, which is true for almost every point 60 of E, to the

series (4.8.3) multiplied by —1, we get the inequality,

c«(60) - s(d0) = iM^o) - <r„(0e)}.

The last two inequalities show that the series (4.8.3) is finite at the point 0o,

and so almost everywhere in E.

Subtracting the last two inequalities we get the inequality

äa(do) - Za(8o) ^ ca(60) - ff jfl»),

true almost everywhere in E. The inequality opposite to this is also true, for

the series (4.8.1) is summable (C, a+1) almost everywhere in E (Lemma M),

so that under the hypotheses of Lemma O the series (4.8.1) and (4.8.3) play

symmetric parts. (In particular, (4.8.5) is a consequence of the formula (4.4.4)

in Lemma N.) It follows that (4.8.6) is true at the point 6o, and so almost

everywhere in E. This completes the proof of Lemma O in the case of inte-

gral a.

4.9. In the case of fractional a> — 1, the argument is identical with that

of §4.6, provided we assume that the series (4.8.3) is not only summable

(C, a+1), but summable (C,ß), where ß = [a] + l, in E (or almost everywhere

in E).

It is therefore sufficient to show that if a is fractional the hypotheses of

Lemma O imply that the series (4.8.3) is summable (C, ß) almost everywhere

in E. First of all it may be remarked that if the series (4.8.1) is finite (C, a)

and the series (4.8.3) finite (C, j3) almost everywhere in E, then the series

(4.8.3) is also finite (C, a) almost everywhere in E (the proof is substantially

the same as the proof of the fact that if the series (4.8.1) is finite (C, a) and the

series (4.8.3) summable (C, ß) in E, then the latter series is finite (C, a) almost

everywhere in E). On the other hand, the conditions of Lemma O imply that

the series (4.8.1) is finite (C, ß) and the series (4.8.3) summable (C, (8 + 1) in E,

so that, using the lemma in the case of integral a, we see that the series (4.8.3)

is finite (C, ß), and so also finite (C, a), almost everywhere in E. Being finite

(C, a) and summable (C, a + 1) almost everywhere in E, the series (4.8.3) is

summable (C, ß) almost everywhere in E (Lemma M). This completes the

proof of Lemma O in the case of fractional a.

4.10. Theorems 1 and 2 may now be proved in a few lines. Let us start

with Theorem 1.

If the series (1.1.1) is summable A, and if cra(d) > — 00 at every point of a

set E, then that series is summable (C, a + 1) in E (Lemma I). The conjugate

series (1.1.2) is then summable (C, a + 1) almost everywhere in E (Lemma M).

Theorem 1 is then a consequence of Lemmas N and O.

In order to prove Theorem 2, it is sufficient to show that under the hy-
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potheses of that theorem the series (1.1.1) is summable A almost everywhere

in E, for then Theorem 2 will follow from Theorem 1.

From the hypotheses of Theorem 2 it follows that the series (1.1.1) is

finite (C*, a) almost everywhere in E (Lemma K), and so finite A* almost

everywhere in E (Lemma Fi). From Lemma L it follows that the series (1.1.1)

is summable A almost everywhere in E.

This completes the proofs of Theorems 1 and 2.

Part II

5. The case of power series

5.1. By K°(f; r) we shall denote the interior of the circle K(f; r), that is

the set of points z such that | z — f | <r. Similarly, by A°(f; r, R) we shall de-

note the interior of the annulus A(f; r, R).

Let us suppose that the power series

00

(5.1.1) E

is summable (C, a + 1) at a point 0 to sum t(B). Let r"(0) denote the ath

Cesäro means of the series (5.1.1). It will be convenient to consider the set of

the limit points of the sequence of numbers

r2(6) - t(6), H - 0, 1, %     • .

This set of limit points we shall denote by L?(0). The set L"(0) is obtained

from L„(0) by translating the latter by —t(d).

The proof of Theorem 3 will be based on the following lemma.

Lemma P. Suppose that the series (5.1.1) is summable (C, a+1) (where

a > — 1) for every 6 of a set E of positive measure, and that for every 6 of E the set

does not contain any point of a fixed circle K°(f; r), with |f| =r. Then, for

almost every 6 of E, the set La(ö) does not contain any point of the annulus

A°(0; |fI -r, |f| +r).

Proof. Let { 8n(d)} denote the sequence of functions defined on the set E

by the equation

5n(6) = max (0, 5B(0)),       where r - 5„(0) = inf | r°(0) - t(6) - f |(23).

The functions 5„(0) are measurable on E. They form a sequence decreasing

monotonically to 0. For a fixed 6 and for v = n, the numbers r"(9)—t(6) lie

outside the circle K°(f; r- 5n(0)).

(S3) By infrä,, c, we mean the largest lower bound of the sequence c„, c„+i, • • ■ .
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Let G denote any subset of E on which the functions on(6) tend uniformly

to 0 and such that the function t(6) is continuous on G. Let do denote any point

of density of G belonging to G. Lemma P will have been proved when we have

shown that the set L"(0o) contains no point of the annulus A°(0; |f| —r,

I f I +r). Without loss of generality we may assume that

(5.1.2) t(80) = 0.

Let X be any real number and let {ßn} denote a sequence of numbers such

that
nß„-^\,   do + ßn G G for n = 0, 1, 2, • ■ •.

By '»(0) we shall denote the kth Cesäro sums of the series (5.1.1). On setting

CM = c„eire for v ^ 0,

we get the formula

(n) a ivßn

ix, = fiy    = An-,e for 0 ^ v ^ n,

1    n                 "         1 n

rl{6o + ßn) = -£ At.jC,%)e' " =-E C,(0oW
^n v=0 An v=0

This formula is entirely analogous to the formula (4.4.7). Since for our pur-

poses the numbers e'"0" have the same properties as the numbers cos vßn

(namely

Ale* = 0(| ßn |*) for k - 0, 1, 2,   • • ),

the argument which led from (4.4.7) to (4.4.9) gives in the case of integral a

the formula

(5.1.3) T"(fl0 + ßn)   = ^ E + 0(1).
4; J=0

Similarly, starting with the formula

1 1 "
Tn(do) - rr+1(0O) =-E ^°_,C,(0o),

w + a + 1 4^ „=0

analogous to (4.5.1), we get the formula

(5.1.4) t:(öo) - t? (do) =-— t.cmat1+
n + a+ 1 !=0

corresponding to (4.5.3).

From (5.1.2), (5.1.3) and (5.1.4) it follows that

(5.1.5) tI(8o + ßn) = e4nßn n + a+ 1 T"(öo) + 0(1).
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Since t„+1(0O)->O (cf. (5.1.2)), we have /„+1(0o) = o(na+l), so that

<»(0o)  = *»    (0o) - /n-l(So)  = 0(w )•

Hence

= o(n).

It follows that the factor (n+a + l)/n on the right-hand side of (5.1.5) may

be suppressed, and the formula may be rewritten in the form

(5.1.6) e~xnß\l{eü + ßn) - r>o) +o(l).

This formula was obtained under the condition (5.1.2). The general case

may be reduced to this special one by subtracting t(ßo) from the constant term

of the series (5.1.1). The formula (5.1.6) then takes the form

e~lnßn{Tn(6o + ßn) - t%)\ = {r„(0o) - t(60)} + o(l).

Since however the function t(6) is by hypothesis continuous at the point do

with respect to the set G, so that

t(60) - t(e0 + ßn) -* o,

we get

(5.1.7) e'inß"{ran(do + ßn) ~ f(0, + ßn)} = {ran(6o) - t(00)\ +0(1).

The formula (5.1.5), and so also the formula (5.1.7), holds in the case of

fractional a> —1, for then instead of (5.1.3) we have

r>o + ft) = —{ "sAä.M^1 + T,Li(eo)ATf\ +o(i)
An \   „=„ j-o )

(cf. (4.6.2)), where ß= [a] + l, and instead of (5.1.4)

a Orfl

Tn(Oo) — Tn (60)

=-\   E tv(do)AaJv   + 2ZCi(6»)A"  > +o(l)
n + a + 1 A l K   v=a ,=o )

(cf. (4.6.4)).
By hypothesis, the points do+ßn belong to G, so that the number

Tn(8o+ßn)—t(So+ßn) lies outside the circle K°(f; r—dn), where

5„ = sup§„(0)(24) for 0 GG.

It follows that the left-hand side of the equation (5.1.7) does not belong to

the circle K0(^e~ina-; r— 5„).Since nßn-+k and 5„-^0, the set L"(90) lies outside

(24) In other words, S„ is the least upper bound of the sequence { 6„j on G.
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the circle K°(fe_ix; r). It is now sufficient to observe that X is an arbitrary real

number, so that the set L?(0o) lies outside the annulus A°(0; | f | — r, | f | +r).

This completes the proof of Lemma P.

5.2. It is now easy to prove Theorem 3.

Let Z denote the set of points 0 belonging to E and such that the corre-

sponding set L"(0) is not of circular structure. The sets L"(0) are closed. For

every 0 of Z there is then a circle

(5.2.1) K»(f; r) with |f| f,

such that

(i) me) contains no point of K°(f; r);

(ii) L"(0) contains points of the annulus A°(0; |f| — r, |f| +r).

We may suppose that the circle (5.2.1) is rational, that is, the three num-

bers £, r/, r, where £+*»j=f, are rational.

Let Zt.r denote the set of points 6 of E satisfying conditions (i) and (ii).

By Lemma P, every set Zj-,r is of measure zero. Since

Z = 2~1 %t, n

where it is sufficient to extend summation over all rational circles K°(f; r),

the measure of Z is equal to 0.

This completes the proof of Theorem 3.

5.3. We now pass to the proof of Theorem 4. The theorem being obvious

for a = 0, we may assume that a>0. We have already observed in §1.4 that

it is sufficient to prove the relation (1.4.2).

From the formula
a    n + a „

An = An—\
n

we deduce that
a a

or a in& /A-n—v 1\ ivB

t„(0) - t„_i(0) = cne   + 2-1 —;-;-) c'e

tnfl «  >  « n—v ivv

= cne   +2- —r~ vc-e ■
,=o nAa

It is therefore enough to show that the expression

a—1
n—1  J^^ [n/2] n

£ —— ̂  | c" I = £ +   £    = Si + S2, •
„_0   flA^ y=d      v_[n/2] + l

say, tends to 0. Now

5i =- £ * |ft | = 0(«-2) £ * | ft | - o(l),
»=0 F-0
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o(n) «,_, «   "    _! _„ „
52 = ——    E   4„_„ = o(w   )2-^M    = o(«   )4„ = 0 (1).

«4° »-t»/si+i d-o

This completes the proof (25).

6. Strong summability of trigonometric series

6.1. We shall now prove a theorem on the strong summability of conju-

gate trigonometric series.

The series £"=0cv is said to be strongly summable (C, 1)—or simply strongly

summable—with index 3>0, to sum s, if

1
-H\ s> — 5 13 —> 0 forra—»«,
tt+l,=o

where s, denote the partial sums of the series considered.

Theorem 5. // the series

00

(6.1.1) \a§ + £ (a, cos vd + bt sin vd)
r—1

is strongly summable, with index qs^l, at every point of a set E, then the conju-

gate series

00

(6.1.2) £ (a„ sin vd — b, cos vd)
v=l

is strongly summable, with index q, almost everywhere in E.

This theorem was stated by us in an earlier paper(26), with a sketch of

proof. Since however the theorem has meanwhile been used in the proof of

another result(27), we shall repeat here the proof of Theorem 7 in more detail.

Proof. Since g/3:1, the condition

(6.1.3) —*—-*w|«-*e

implies

(6.1.4) —— it I *»w - m\

for 0G-E- In particular, the series (6.1.1) is summable (C, 1) in the set E. It

(M) A similar argument shows that the theorem holds in the case — 1 <a<0, provided we

replace the condition c„—>0 by cn = o(n").

(28) See Marcinkiewicz and Zygmund [l],

(27) See Marcinkiewicz [l].
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follows (Lemma M) that the series (6.1.2) is summable (C, 1) at every point

of a set Ei contained in E and of the same measure as E. Let f(0) denote the

(C, 1) sum of the series (6.1.2), and let G be a subset of Ei such that

(i) the function s(d) is continuous on G,

(ii) the relation (6.1.3) holds uniformly on G.

Theorem 5 will have been proved when we have shown that (6.1.2) is

strongly summable at every point 0O of G which belongs to G and is a point of

density of G. Having fixed such a point 0o, we may assume without loss of

generality that

ff»(0o) -» 0.

Let {an} be any sequence of real numbers such that

(6.1.5) nan —* §t, 0O + an £ G for all n > «0-

From the formula

5,(0O + a„) — 5r(0o — an) = — £ (a^ sin ^0o — ta cos /i0o) sin ixan

n=l

= — 5,(0O) sin van — S„_i(0o)A sin (y — l)a„

— 2-, Wo)A sin pan

it is easy to see that

j„(0o + a„) — s,(0o — otn) = — 5,(0O) sin van + «,,„ for 0 ;S c ^ «,

where €,,„ tends to 0 when v—» », h^.

Hence

I 5,(0») H sin ran |« ^ { | 5,(0O + a„) - 5(0O + ot„) \ + \ s(d0 + a«) - 5(0O -a„) |

+ I 5(0o - On) - 5,(0o - an) \ +\ t,,n I }«

and so

1     t> 4?-i »
-Z, I S»(0o) |9 I sin Ka„\" ^ -£ I *»(0o + «n) - 5(0o + an)\"
« + 1 ,=i « + 1 ,=i

^.g—1 n

H-£ I *(0o + «*) - ^(00 - «n) I9
«+1,-1

(6.1.6)
1 «

H-£ I 5(0o - a») - 5,(0o - a„) 15
«+l,-i
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The first and third terms on the right tend to 0 as n—> * , since the points

0o + an belong to the set G, on which the relation (6.1.3) holds uniformly. The

second term on the right also tends to 0, for it does not exceed the expression

4*-11 s(60 + an) - s(60 - an) |« -> 0

(cf. condition (i)). Since the last term on the right obviously tends to 0, the

left-hand side of (6.1.6) tends to 0. On account of the first relation (6.1.5) we

get

n

(6.1.7) £ I *V(0e) K« m

Let Sn denote the sum on the left of (6.1.7). Then

n n n—1

5_ I Uh) \9 = E (S, - S„-i>-* = E S,(r-* - (y + 1)-«) + 5»»-«
,= 1 v=l v=l

n—1

= £o(»«+1)0(r'-1) + o{nq+l)n-q =

This completes the proof of Theorem 5(28).

6.2. A slight modification of the above argument gives the following more

general result.

Theorem 6. Let 4>{u), u St 0, be a convex strictly increasing function vanish-

ing for u = 0. There is an absolute constant X > 0 with the following property. If,

for any series (6.1.1), the sequence <p(\s„(d) — s(6) |) is summable (C, 1) to 0 at

every point 6 of a set E, the sequence <p(\\ sy(6) —s(6) \), where s(6) is the (C, 1)

sum of (6.1.2), is summable (C, 1) to 0 almost everywhere in E.

We may take for example X = l/10.

7. Generalization

7.1. Theorem 3 deals with power series; Theorems 1 and 2 with real parts

of power series. It is natural to inquire how far the results we have obtained

hold for Dirichlet's series

00

(7.1.1) S c,rx'», Xi < X2 < • • • < X„^ =o ,

or, more generally for the Stieltjes integral of the type

(7.1.2) f e-XsdC(X),
J o

(2S) The above proof holds in the case 0<g<l, if we add the condition that the series

(6.1.2) is summable (C, 1) in E.
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where C(X) is a function which is of bounded variation over any finite interval,

and s = u-\-iv is a complex variable.

It is not difficult to show that the results we proved for power series hold

mutatis mutandis for Dirichlet's series and for the more general integrals

(7.1.2). The extensions must of course use the theory of arithmetic means of

the integrals of the form (7.1.2).

The arithmetic means t£ of order a. for the integral (7.1.2) are defined by

the formula

(l - — J e-*'dC(\),

where w is a continuous variable tending to + *>, and a is any non-negative

number. In the case of a Dirichlet series the expression (7.1.3) reduces to

M. Riesz's typical means.

Let A(X) and B(\) denote respectively the real and the imaginary part of

the function C(A), so that

C(X) = A(X) - iB(\).

If we suppose that the variable 5 is purely imaginary,

s = — iv,

then the real and imaginary parts of the integral (7.1.2) are respectively equal

to the integrals

(7.1.4) f cos XvdA (X) + sin \vdB (X),
J o

(7.1.5) f  - cos \vdB(\) + sin \vdA (X),
J o

and the second of these integrals will be spoken of as the conjugate to the first.

If we denote the arithmetic means of order a for these two integrals by oZ(v)

and SZ(v) respectively, then

«*•*(«) = J" (1 _     (cos Xz"^(x) + sin *»*?O0)i

°C(0) = J*       - —) (- cos \vdB(\) + sin \vdA(X)).

Let us write

lim inf aw(v) = <ra(»),      lim sup <r„(v) = ^(v),
W—► oo w—♦ so

ffa(v) — <Ta(v)  = Ua(v),
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and let us define similarly the functions äa(v), aa(v), wa(v) corresponding to the

conjugate integral. Then the analogues of Theorems 1 and 2 for the integrals

(7.1.4) may be stated as follows:

Theorem 1'. Suppose that the integral (7.1.4) is summable A to sum s(v),

at every point of a set E of positive measure, and that for an a St 0

<ra(v) > — 00, v G E.

Then at almost every point of E we have the relations

(7.1.6) c"{v) < + oo,

(7.1.7) - CO < ?„(») g or«(u) < + 00,

(7.1.8) Za(v) = o>a(v).

Moreover the integrals (7.1.4) and (7.1.5) are summable by the arithmetic

means of order >a at almost every point of the set E and

(7.1.9) s(v) = ±{<ra(v) + o-"(v)},

(7.1.10) s(v) -ijjMO +?-(»)},

almost everywhere in E, where s(v) denotes the value of the integral (7.1.5) by

the method of arithmetic means of order a.

Theorem 2'. If the arithmetic means oZ(v) °f order a of the integral (7.1.4)

are bounded at every point of a set E of positive measure, then at almost every

point of E the integrals (7.1.4) and (7.1.5) are summable by the arithmetic means

of order >a, and we have the relations (7.1.7), (7.1.8), (7.1.9), (7.1.10).

In order to state the analogue of Theorem 3, let us suppose that the in-

tegral

(7.1.11) f e"xdC(X)
J o

is at every point of a set E summable by the method of arithmetic means to

the value t(v). By ha(v) we shall denote the set of limit points of the expression

rliy) - t(v) n

(considered as a function of w), so that La(v) is the set of the numbers

f = lim {rlM ~ 'W}

(29) By r*(t») we mean the expression
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where {wn} is an arbitrary sequence of real numbers tending to infinity. Then

we have the following.

Theorem 3'. Suppose that at every point of a set E the integral (7.1.11) is

summable by the method of arithmetic means of order a+1, where a — 0, to the

value t(v). Then at almost every point of E the set ha(v) is of circular structure

with center t(v).

There is no need to give here the proofs of Theorems 1', 2', 3', since they

are wholly analogous to the proofs of Theorems 1, 2, 3. The theories of arith-

metic means for ordinary series and for the integrals of the form (7.1.2) re-

semble so closely one another, and the technique of dealing with the arith-

metic means of integrals is now so developed and so familiar (thanks mainly

to the work of M. Riesz and G. H. Hardy(30)) that the passage from series to

integrals usually requires no new ideas.
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