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Introduction

0.1. This paper presents an investigation of the following problem. Ex-

hibit a class X of topological spaces which contains all peano spaces and which

has the following properties: (1) a cyclic element theory exists in each space

of the class, (2) the abstract set consisting of all cyclic element of any space

X of the class can be topologized so as to be a member of the class X, and

(3) the hyperspace thus obtained is acyclic. Since the class <P of all peano

spaces does not satisfy the condition (2), it is clear that any solution of the

problem lies in a generalization of peano spaces. (For cyclic element theory,

see Whyburn [5](1), and [6], or Kuratowski and Whyburn [4].)

One such generalization has been proposed by R. L. Moore [5 ] ; another

by one of the authors (Youngs [9]). Moore employed two primitive concepts:

region and contiguity (compare this with satelliticity 4.8). Youngs used the

notion of arc as primitive. In the following pages a solution is given which

is based upon the usual concept of open set.

0.2. The work is divided into four sections. The first of these is devoted

to the definition and a brief discussion of the class X of spaces to be used

in the remainder of the paper; namely, locally connected topological spaces.

No separation or countability properties are assumed. Thus, in particular, a

single point need not form a closed point set. The use of such a weak topology

is not dictated merely by a desire for generality; indeed, it is shown in later

sections that this weakness is fundamental in the consideration of hyper-

spaces of peano spaces.

The development of a theory of cyclic elements for spaces of the class X

occupies the second section. In such spaces, the standard definitions of "cut

point" and "cyclic element" (Kuratowski and Whyburn [4]) fail to yield cer-

tain important properties of these concepts. However, the properties are

easily recovered by generalizations of the definitions mentioned. The degree

of similarity achieved between the cyclic structure of spaces of the general

class X and of peano spaces seems remarkable in view of the weak topology

assumed in the former.
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The third section of the paper contains a discussion of the hyperspace of

cyclic elements of any locally connected topological space. In particular, it is

shown that the class of all such spaces solves the problem stated in 0.1. More-

over, it is shown that the hyperspace can always be defined as the strongly

continuous image (see 3.4) of the original space.

0.3. It is easily seen that the solution offered for the problem of 0.1 is not

unique. The concluding section of the paper is devoted to a discussion of cer-

tain subclasses of X which also solve the problem. In this study a new con-

cept, that of hereditary classes of spaces, arises naturally. Briefly, a subclass

3C of X is called hereditary if, whenever X is in 3C, the hyperspace of X is in

3C and every true cyclic element of X is a member of 3C. The class fP of all

peano spaces is not hereditary. However, X is a hereditary class that con-

tains CP. It is interesting to note that there are highly restricted hereditary

subclasses of X which contain the class f. For example, one such subclass is

composed of all the locally connected topological spaces which satisfy the

To separation axiom, and which are, in addition, strongly continuous images

of the closed unit interval of the number axis. This class of spaces yields con-

siderable insight into the nature of the hyperspaces of peano spaces.

I. The space X

1.1. The symbol X will denote a class of elements (the space); elements

of X, to be called points, will be denoted by small Latin letters; point sets

will be designated by capital Latin letters. The usual logical concepts and no-

tations will be employed in dealing with point sets.

It will be supposed that there is defined in X a definite class O of point

sets. A set will be called open if and only if it belongs to £3. The collection X

is called a topological space if':

Al. The class X and the empty set are open.

A2. The product of any two open sets is open.

A3. The sum of any number of open sets is open.

Only spaces of this character will be considered.

1.2. A point set will be called closed if it is the complement of an open set.

1.3. If A is a point set in X, the symbol A will denote the product of all

the closed subsets of X that contain A. The set A will be called the closure of

the set A.
1.4. A space in which the closure A of an arbitrary set A is the primitive

concept is called a Kuratowski space whenever the closure function satisfies

the axioms:

A + B =1 +~B,        A C~A~,        A C'A,      "0 = 0.

A topological space is completely equivalent to a Kuratowski space. The proof

of this theorem is well known (Alexandroff and Hopf [l, p. 41 ] or Hausdorff
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[2, p. 227]) and will not be reproduced here. The following consequence of the

result will be used in the sequel without further mention.

If p is a point and A is a set, then pÇzA if and only if every open set that

contains p intersects A.

1.5. The symbol F(A) will denote the set

~I-(X -A)

which is called the frontier of the set A. It is easily seen that the frontier of

any set is closed.

1.6. A point set E will be called connected if it cannot be decomposed into

two nonvacuous sets A and B such that A -B = 0 = A B. Any degenerate set

(the empty set or any set consisting of a single point) is connected. If E is

connected and ECZCQE, then Cis connected. (For other results on connected

sets in general spaces see Knaster and Kuratowski [3].)

1.7. If S¿¿0 is a maximal connected subset of E, then 5 is called a com-

ponent of E.

1.8. The topological space X will be called locally connected if each com-

ponent of any open set is open. This definition is equivalent to the usual one

in peano spaces.

In the remainder of the paper it will be assumed that X is a locally connected

topological space.

1.9. Lemma. Ifd and G2 are open, disjoint point sets, then Gj. • G2 = 0 = Gj • G2.

and G1G2CA —(G1+G2).

1.10. Theorem. If E is a closed point set and S is any component of the set

X-E,then F(S)CE.

Proof. Let R be the sum of all the components oi X — E which are distinct

from 5. Since 5 is open F(S) CX^S = X-S. On the other hand, F(S)CS

and SR = 0 since 5 is a component of S+R. Therefore, F(S)(ZX — S — R — E.

II. Cyclic elements

2.1. In this section a definition will be given for a class of subsets of the

space X which will be called cyclic elements. The concept as introduced here

is easily shown to reduce to the familiar one in case A is a peano space.

The structure of a locally connected topological space will depend only

upon the structure of its individual components. Thus, there will be no loss

in generality in assuming that the space X is connected and this will be done.

The restriction will be removed in 3.18.

2.2. A point p will be said to separate two points a and b if: (1) p = p, and

(2) the points a and b lie in distinct components of the set X — p. Any point

of this character will be called a cut point oi the space X.

The exclusion of all points which are not closed from the class of cut points
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is not an artificial condition. The reader will recall that in peano spaces the

essential tool in the use of cut points is the property that the components of

the complement of any cut point are open sets. This property would be lost

here without the condition (1) on cut points.

2.3. Two points a and b will be called conjugate (denoted by a~b) if they

are separated by no point of X. Conjugacy is reflexive and symmetric.

Note that, as the term separate does not apply toa point/»such that p9*p,

two points a and b may be conjugate even though they lie in distinct compo-

nents of the set X — p.

2.4. Lemma. If a~#i~ • • • ~x„~è, and the point z separates a from b,

then z = Xifor some i = l, • • ■ , n(2).

Proof. If the statement is false, then all the points a, Xx, ■ ■ ■ , xn, b lie in a

single component of the set X — z.

2.5. Corollary. 7/a~#~2> and X9*x, then a~¿>.

2.6. Corollary. 7/a~xi~ • • • -~;tn~è, o~yi~ • • ■ ~ym~b and all the

points xx, ■ ■ ■ , xn, yi, • • • , ym are distinct, then a~6.

2.7. A point set E will be called coherent if for every pair of points a and b

contained in E it is true that a~ö(2).

2.8. A point set E will be called complete if E contains every point z which

is conjugate to each of two distinct points contained in E(2).

2.9. Lemma. If E is any coherent set and x is any point such that x = x, then

the set E — x is contained in a single component of the set X — x.

2.10. A point set TV which is nondegenerate, complete, and coherent will

be called an N-set.

2.11. Theorem. 7/a~6 and ai*b, then there exists a unique N-set contain-

ing a and b.

Proof. Denote by TV the totality of points which are conjugate to both a

and b. If x and y are any pair of distinct points in the set TV, then by 2.6,,

x~y. Thus TV is a coherent set. Suppose that z is a point conjugate to both x

and y. Since :x:~a~y, it follows by 2.6 that z~a. Similarly, z~2>. Thus z is

in the set TV, and 7Y is a complete set. By definition 7Y is an TV-set.

If TV' is any other TV-set containing a + b, it follows directly from the com-

pleteness of the sets TV and TV' that they are identical.

2.12. Theorem. If TVi and TV2 are distinct N-sets, then TVi ■ TV2 is either vacu-

ous or a single point x which separates any point of Nx—x from every point of

N2-x.

(2) The importance of Lemma 2.4 and the definitions in 2.7 and 2.8 were noticed first

by Radó and Reichelderfer [8].



1942] LOCALLY CONNECTED TOPOLOGICAL SPACES 641

Proof. By 2.11, the product Ni ■ A2 is either vacuous or a point*. Let a,,j± x

be in Niior i= 1, 2. If xt^x, then by 2.5,ai~a2. If x = xbut* does not separate

ai from a2, then by 2.4, ai~a2. In either case ai~a2~* and thus by the com-

pleteness of Ni it contains a2. This contradicts 2.11.

2.13. Theorem. Any N-setis closed.

Proof. Suppose that the point p(E.N. Choose any point a£N. If there is a

point* such that x = x and a¿¿x¿¿p, let 5 be the component of A—* contain-

ing p. Now 5 is open by 1.8, and so contains a point of the set N. As N is

coherent, .S contains the point a. Thus £~a. If no such point * exists, £>~a

by the definition of 2.2. But the point a was arbitrarily chosen in N. Since N

is nondegenerate and complete, ¿>£A.

Remark. In connection with the remarks of 2.2, the theorem of the present

section would be false without the generalized definition of cut points intro-

duced in 2.2.

2.14. Consider any A-set, N. Define the subset k(N) of A by: the point *

is in k(N) if and only if (1) * £ A, and (2) for no component 5 of the set X — N

is it true that x€EF(S). The set k(N) will be called the kernel of the set N.

Clearly, by 1.10, N = k(N)+¿ZF(S) where the summation extends over

all components ,S of the set X — N.

2.15. A subset M of the space X will be termed a true cyclic element if:

(1) it is an A-set, (2) the set 5 being any component of X — M, the frontier

F(S) is a single point, and (3) the kernel k(M)is nondegenerate. The symbol

M will be employed as a generic notation for true cyclic element.

2.16. If the space X is peanian, it can be shown that every A-set given by

the definition of 2.10 is a true cyclic element under the definition of 2.15.

Moreover, since every point in a peano space is a closed set, the definitions

of cut point and conjugate points given in 2.2 and 2.3 reduce to the standard

notions for such spaces. It follows readily that, for peano spaces, the definition

of true cyclic elements given here reduces to the usual definition (Kuratowski

and Whyburn [4]).

2.17. A point which is not a cut point of the space and which is contained

in no true cyclic element will be called singular. Cut points and singular points

will be termed degenerate cyclic elements. It follows immediately that:

2.18. Theorem. The cyclic elements of the space X cover it.

2.19. Theorem. If M is a true cyclic element and x is a point of M, then

xÇLM — k(M) if and only if x is a cut point of the space X.

Proof. Suppose * is a cut point of X. Using 2.9 select a component S of

X—x such that SM = 0. Then S is also a component of X — M. But x = F(S),

so xGM-k(M).
Suppose xÇlM—k(M). There exists a component 5 of X — M such that
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x = F(S). If R denotes the sum of all the remaining components of X — M, it is

easy to show by 1.9 and 1.10 that

S-[(M - x) + R] = 0 -~S- [(M - x) + R]

and since X — x= [(M—x)+R]+S, the lemma follows.

2.20. Corollary. If M is a true cyclic element and S is any component of

X — M, then the point x = F(S) separates any point in S from every point in

M-x.

2.21. Lemma. If E is any closed set, then

F(22S) = 22F(S),

where the summation extends over any class of components S of X — E.

Proof. Clearly ZF(S) C77 (Z^)> ar>d as the frontier of any set is closed (see

1.5),

5XS)CF(ES).
Suppose pGF(2~2S) and pGX— 2~2F(S). Consider U, the component of

X-22F(S) containing p. For some term 5 of_ZS, US9*0. Now U=U-S

+ (U-S). Since US is open (1.8), (U-S) ■ (U-S) =0. Also (U-S) ■ (ILS)
= (U-S) [U- S+F(U -S)] = (U-S) ■ F(U • S)C(U-S) -[F(U) + F(S)]

= (U—S)F(S)=0. This contradicts the connectedness of the set U (1.6).

Thu8F(ZS)C2>GS)-
2.22. If M is a true cyclic element and if E is a subset of M; then E* will

denote the set E+J^.S where the summation is taken over all components S

of X- M such that F(S)GE.

2.23. Lemma. If M is a true cyclic element and the set E is closed in M,

then the E* is closed in X.

Proof.

e~* = E + J2s = e~ + Zs = e + 2Zs + f(J2s)

= e + 2Zf(s) + Y,s = e + J2s = e*.

The various equalities follow easily from 2.21 and the fact that E is closed

in*.

2.24. Corollary. If M is a true cyclic element and the set E is open in M,

then E* is open in X.

2.25. Lemma. If the set E is connected in M, then E* is connected in X.

The lemma follows at once from the fact that if E is connected in M it is

connected in X by 1.6.
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2.26. Lemma. If A and B are subsets of some true cyclic element M and

AB^O, then A*B* = 0.

Proof. If ¿ZaS and ¿ZbS denote the sums of all components of X — M

whose frontiers are in A and B respectively, then by 2.21

A*B* = (a + £ sY (bTTTs)

-(a + Zs)f(b + Es)

= (i + Z5J. ^F(B) + En«]

c M + E sYs c ( Z -sYs = o,

since AB = 0 and SCMCA-X^S.

2.27. Theorem. 7/ Z is a connected set and M is a true cyclic element, then

MZ is connected.

Proof. If MZ is degenerate, the theorem is obvious (1.6). Suppose

MZ = A+B, where A^O^B and AB = 0 = AB. Now if p£.Z-M, suppose

that S is the component oi X — M that contains p. Clearly F(S)(ZMZ, for

otherwise Z = (SZ) + (Z — S) would be a decomposition showing that Z is not

connected.Thus£G(MZ)*.HenceZC(MZ)*=4*+5*,and,4*5* = 0 = 1*5*

by 2.26. On the other hand ZA*^0^ZB*; hence the connectedness of Z is

contradicted.

The validity of this theorem seems surprising in view of the fact that the

proof given for peano spaces (Kuratowski and Whyburn [4]) depended upon

the metric and the fact that the number of components of an open set is at

most denumerable. The consequences of this product theorem are as varied

and important here as in peano spaces.

2.28. Corollary. If x is a point such that x=x and M is a true cyclic ele-

ment, then the set M—x is connected.

The truth of this corollary follows from 2.9 and 2.27.

2.29. Theorem. A true cyclic element is a connected, locally connected, topo-

logical space.
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Proof. The connectedness follows from 2.27 and the fact that X is con-

nected. Let G be open in a cyclic element M. It will be shown that each com-

ponent of G is open in M. By 2.24 the set G* is open in X. Let S* be any

component of G*. By 2.27 ,S*M is connected and non vacuous., Using 2.25, S*M

is a component of G. But 5* is open in X by 1.8; hence S*M is open in M.

Using 2.25 it is easy to see that all the components of G are obtained in this

manner.

Finally the subsets of M which are open in M clearly satisfy Al, A2 and

A3 of 1.1.

III. The hyperspace

3.1. Paralleling the notation in the space X, the symbol Xh will be re-

served for the abstract set composed of all cyclic elements (both true and de-

generate) of the space X. Elements of the set Xh will be denoted by small

Greek letters; sets of elements in Xh will be denoted by large Greek letters.

3.2. It follows easily from 2.12 and 2.17 that, if x is any point of the space

X, there exists a smallest cyclic element in X which contains the point x.

This fact makes possible the definition of a single-valued transformation

T(X)=Xh from any locally connected topological space X to the class Xh

of its cyclic elements as follows :ifxis any point of the space X, then T(x) = £,

where the element £ of Xh is the smallest cyclic element of X which contains the

point x.

The following familiar conventions will be employed.

If A is a subset of X, then T(A) =E([£= T(x), xGA ] will be called the

image of the set A.

If A is a subset of Xh, then T_1(A) = Ex [T(x) GA] will be called the inverse

of A in X. A set D in X will be called an inverse set if and only if there is some

set A such that T^(A) =D.

It is clear that the inverse of a single element of Xh is either a degenerate

cyclic element in X or the kernel of some true cyclic element in X (see 2.15).

3.3. The transformation, T, will now be used to topologize the set Xh in

accordance with the convention : a subset Y of Xh will be called open if and only

if its inverse, 7T_1(r), is an open set in the space X.

Theorem. The class of open sets in Xh satisfies the axioms hl, A2, and A3.

Proof. The theorem follows at once from the formulas 7"~1(ri-r2)

= T-i(Tx) ■ T-^Ti), and T-!(2Ya) = XT-*(Ya).
The set Xh may now be thought of as a topological space. As such, it will

be termed the hyperspace of X.

3.4. A transformation from one topological space to another is said to be

continuous if the inverse of an open set is open. The transformation is said to

be strongly continuous if, in addition, any open inverse set has an open image

(Alexandroff and Hopf [l, p. 65]).
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3.5. Theorem. The transformation T(X) = Xh is strongly continuous under

the topologization of Xh given in 3.2, and this is the only topólogization which will

make T strongly continuous.

3.6. Lemma. A set $ is closed in Xh if and only if the set r-1(i>) is closed

in X.

3.7. Lemma. If E is connected in X then T(E) is connected in Xh.

The first of these lemmas is obvious; the second is well known.

3.8. It will be shown that the hyperspace Xh is a locally connected topo-

logical space. The proof requires the

Lemma. 7/A is any set in Xh and 2 is a component of A, then T~l(~Z) is the

sum of certain components of the set T~1(A).

Proof. Let ï£r-1(S) and let 5 denote the component of T^(A) which

contains x. Now T(S) is connected by 3.7 and intersects 2. Thus T(S)QZ.

Hence 5C7"_1(2) and the lemma follows.

Theorem. The space Xh is locally connected.

Proof. If T is open in Xh and S is a component of Y, then ^'(S) is the

sum of certain components of 7"~l(r). But, as T is continuous, the set T_1(Y)

is open ¡since X is locally connected, each component of 7"-1(r) is open. There-

fore r-!(2) is open by A3. But T~lCS) is an inverse set so Z = T(T-1(H)) is

open by the strong continuity of T.

3.9. Consider the results achieved so far. If X is any locally connected

topological space, then by 2.29, so is each true cyclic element of X; and, by 3.3

and 3.8, so is the hyperspace Xh- Thus a type of permanence of form is ex-

hibited by the class of all locally connected topological spaces. This remark

will furnish the basis of the discussion of the final section of the paper (§IV).

It has also been shown that the hyperspace Xk is always related to the origi-

nal space Xby a strongly continuous,single-valued transformation,and that,

relative to this property, the topology in Xh is uniquely determined.

To complete the solution of the problem proposed in 0.1 it remains only

to show that the hyperspace Xh is always acyclic. The proof of this result

seems to be difficult. It will be accomplished through a sequence of lemmas of

which the first four are concerned with the components of certain sets in Xh,

and the remainder deal with the relationship of conjugacy in Xh.

3.10. Lemma. A subset E of the space X is an inverse set if and only if, M be-

ing any true cyclic element, Ek(M)j*0 implies E~)k(M).

The proof is obvious (3.2).

3.11. Lemma. If E is an inverse set of X such that for any true cyclic ele-

ment M whose kernel is not in E the set E- M is degenerate, then any component
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S of X — E is an inverse set, and if E is closed, then T(S) is a component of

Xh-T(E).

Proof. Consider any component S of X — E. Let M be any true cyclic ele-

ment such that k(M)-Sr¿0. Then E-k(M)=0 by 3.10. If EM = 0, then
SDMas M is connected (2.29). If E-M = x, then x<£k(M) and x = x (2.19).

Hence M — x is connected (2.28), and lies in X — E. Therefore, k(M)(ZM

— x(ZS. Hence, by 3.10, the set 5 is an inverse set.

Now suppose E is closed. Let R denote the sum of all the components of

X — E distinct from S. As above, R is a sum of inverse sets and so is an inverse

set. Moreover, S and R are open ; hence T(S) and T(R) are open and have no

points in common (3.2). Therefore, T(S) ■ T(R)=0=T(S) • T(R) by 1.9. Now

T(S)(ZXh—T(E) and is connected (3.7). Therefore T(S) is a component of

Xh-T(E).

Corollary. If M is a true cyclic element and S is a component of X — M,

then S is an inverse set and T(S) is a component of Xn—T(M).

3.12. Lemma. With the hypotheses of 3.11, every component 2 of Xn — T(E)

is the image of some component S of X — E.

Proof. The set T~*(E) is a sum of certain components of X — E (3.8). By

3.11, each of these components is an inverse set and their images are compo-

nents of Xh — T(E). However, these images all intersect 2 and therefore are

identical to 2.

3.13. Lemma. // E is a subset of a true cyclic element M and S is a compo-

nent of X — M whose frontier is in E, then S is a component of X — E.

Proof. Consider any A^S such that ACX-E. Let B = A—S. Now

BS = 0 and S-B=[S+F(S)]-B=B-F(S)=Q, as F(S)EE and BCX-E.
Hence S is a component of X — E.

3.14. Lemma. If M is a true cyclic element in X and if a^M-k(M) and

a = T(a), ß = T(k(m)) ; then a~/3.

Proof. Suppose that a is not conjugate to ß; then there is some point

£ =1 in Xfcsuch that £ separates« from ß. Let b£k(M). Then a + bCX-T~l(Ç)

and the components of X — T~l(£) that contain a and b, respectively, must be

distinct (3.7). Now T~l(£) cannot be a single point for if it were it would

separate a and b, denying the fact that a~6 as M is coherent.

Then r_1(£) =k(M0) for some true cyclic element Mo, and M ¿¿Mo since

^ß and T~1(ß)=k(M). Thus a + bCMCX-T-^Ç). But M is connected

(2.29) and this contradicts the fact that the components of X— T~l($¡) which

contain a and b are distinct.

3.15. Lemma. If a and ß are distinct conjugate points in Xh, then either (1)
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one of the sets T~1(a), T~l(ß) is the kernel, k(M), of some true cyclic element M

and the other is a single point in M — k(M) ; or (2) both T~1(a) and T^1(ß) are

single points which are conjugate.

Proof. The proof is left to the reader. It follows easily from the fact that

if the two inverse sets 7"_1(a) and T_1(ß) are separated in X by a point x

(which is a closed inverse set in X), then a is separated from ß by T(x) in Xh

(see 3.11).

3.16. Lemma. If A is an N-set in Xh suck that the inverse of every point ££ A

is degenerate, then T~r(A) = TV is an N-set in X and k(N) = T*1 [k(A) ].

Proof. Let a and ß be distinct points in A whose inverses are a and b re-

spectively. By 3.15, a'~è. It follows by 2.11 that there exists a unique TV-set,

NGX, which contains a+b.  By the coherence and completeness of TV,

r-KA)C7V.
If y is an arbitrary point of TV, it will be shown that the image T(y) = rj

is in A. If this were false, then by 2.10 one of a~77 or ß~v would be false. If

some point £ in Xh separates a from v, then T~1(£) is closed; moreover, if Sa

and Sy denote the components of X — 7"-1(£) containing a and y, respectively,

Sa-Sy = 0. Otherwise, Sa = Sy. Then, by 3.7, T(Sa) is connected, contained in

Xh — £, and contains a+r¡. This contradicts the separation of a and r\ by the

point £. Since a~y, it follows by 2.2 that T~X(Ç) is nondegenerate. But then

r_1(£) =k(M) for some true cyclic element M. Three cases arise : (1) TV-T17 = 0,

(2) TV-if is a single pointa;, and (3) TV = M (see 2.12 and 2.15).

Cases (1) and (2). In either case the set TV —TV- M is contained in a single

component 5 of X-N-M (2.9). Thus a+yCNCSCX-k(M). But T(S) is
connected (3.7) and contained in Xh — T[k(M)] =Xh — £. This contradicts the

separation of a and n by the point £.

Case (3). If N=M, then r-*(£) =k(M) and 3.15 together imply that

T~1(a)=aGM-k(M). Hence, by 3.14, £~a. Similarly, £~/3. But then ££A

and r-1(£) is nondegenerate which contradicts the hypothesis.

It has been established that T-1(A)=TV. It remains to show that

T-i[k(A)]=k(N).
Let £ be any point in ¿(A) and set x= 7T-1(£). If xGk(N), then for some

component 5 of X — TV, xGF(S). Since TV fulfills the hypotheses of the set E

of 3.11, the component S is an inverse set and T(S) is a component of

Xh — T(N)=Xh — A. If T is any open set containing £= T(x), the set T~1(Y)

is open and contains x. But then xGF(S) implies r-r(.S)^0 and thus

£GF[T(S)] contrary to ÇGk(A). Thus xGk(N), and T~l[k(A)]Ck(N).
Finally, k(N)CT~1[k(A)]. To see this, let xGk(N) and suppose that

T(x) = £Gk(A). Since ¿£A, there is some component 2 of Xk — A such that

££7^(2). By 3.12, 7^(2) is a component of X-N. But xGk(N) implies

x£7;'[r-1(2)]; therefore xQT-^Z). Moreover, by 3.10, ^(2) is an inverse
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set so X— !r_1(2) is an open inverse set containing x. Thus the open set

T [X — T"1 (2) ] contains the point £ and is disjoint of 2; this contradicts

ÉGF(2).
The lemma follows.

3.17. Theorem. The hyperspace Xh contains no true cyclic elements.

Proof. Consider any A-set, AC A». There are two cases.

Case (1). If there exists a point a£A such that 7*_1(a) is nondegenerate,

it will be shown that aZ)k(A) and so A cannot be a true cyclic element (2.15).

Now T~l(a) =k(M) for some true cyclic element M. By 3.15 for any point

|r^a contained in A, 7*-1(£) is a point x — F(S) for some component 5 of

X-M. By 3.11, T(S) is a component of Xh-A and £EF[T(S)]. Thus

<0*(Â).
Case (2). For every point «GA, T~1(a) is degenerate. By 3.16, 7"_1(A) = N

is an A-set and T~ï[k(A)]=k(N). If A is a true cyclic element in X or if

k(N) is degenerate, then k(A) is a single point. In these cases A is not a true

cyclic element (2.15). If Ais not a true cyclic element but k(N) is nondegener-

ate, then for some component S of X — N the frontier F(S) contains * and y

where xj^y. By 3.11, the set T(S) = 2 is a component of Xn — A. Also, x and y

are distinct inverse sets. This implies that F(2) is nondegenerate. By 2.15,

A is not a true cyclic element and the theorem is established.

3.18. In 2.1 the space X was assumed to be connected. That this restric-

tion imposed no loss of generality is easy to see. If the space X is not con-

nected, the definitions in 2.2 and 2.3 of separation and conjugacy need only

be regarded relative to the individual components X* of the space X. Thus,

a point p will be said to separate two points a and b if (1) the points a, b,

and p lie in a single component X* of X, (2) p = p, and (3) a and b lie in dis-

tinct components of X* —p. Similarly, two points a and b are conjugate if they

lie in the same component A* of X and are separated by no point of A*.

The hyperspace Xh of X will be the totality of cyclic elements of all the-

components of X, each being topologized according to 3.2.

A locally connected topological space is said to be acyclic if its hyperspace

is topologically equivalent to itself. If a space has no true cyclic elements,

then it is easily seen to be acyclic; conversely, if a space is acyclic, it has no

true cyclic elements.

Theorem. If X is a locally connected topological space, then each true cyclic

element of X and the hyperspace Xh are locally connected topological spaces.

Moreover, the hyperspace Xh is acyclic.

Proof. The proof is a direct consequence of 2.29, 3.8, 3.17, and the re-

marks above.
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IV. Hereditary classes of spaces

4.1. The theorem of 3.18 suggests the following definition. A subclass 3C

of the class X of all locally connected topological spaces will be called heredi-

tary if whenever X is in 3C, the hyperspace Xh is in 3C and each true cyclic ele-

ment of X is a member of 3C. The theorem of 3.18 can now be phrased as:

The totality of locally connected topological spaces is a hereditary class of

spaces.

Remark. Any hereditary class is cyclicly reducible (Kuratowski and Why-

burn [4]).

Consider the class <P of all peano spaces. The example consisting of two

tangent circles in the plane is a member of the class. However, the hyperspace

for this example contains only three points. Since such a space cannot be con-

nected and metric, it is not a peano space. Thus, the class <P is not a hereditary

class. On the other hand, every peano space is a locally connected topological

space ; therefore there exists a hereditary class which contains <P..An immedi-

ate question is : what is the smallest class (if it exists) which is hereditary and

which contains all peano spaces? This question is answered in 4.3 and 4.4.

4.2. Theorem. The logical product or sum of any number of hereditary

classes is a hereditary class.

The proof is immediate from the definitions.

4.3. Let <P* be the product of all the hereditary classes which contain the

class <P of all peano spaces. One immediately obtains the

Theorem. The class fP* is the smallest hereditary class which contains all

peano spaces.

This result demonstrates the existence of an answer to the question posed

in 4.1. A constructive definition of the class <P* is found in the following sec-

tion.

4.4. Theorem. A necessary and sufficient condition that a space X be con-

tained in the class <P* is that X be either a peano space or the hyperspace of a

peano space.

Proof. Let Í5 and A[f] denote, respectively, the class of all peano spaces

and the class of all their hyperspaces. The class "P+Afi5] is hereditary by

3.18 and because every true cyclic element of a peano space is in i\ Then by

the definition of <P* one has £P*C£P+A [*P]- The reverse inclusion follows since

any hereditary class that contains "P must contain kfi*].

4.5. The class <P may be defined as the totality of compact, metric spaces

which are connected and locally connected. It would be interesting to know
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an analogous intrinsic definition for the class <P*. With this in view, the re-

mainder of the paper is devoted to a list of intrinsic properties of Í5*.

4.6. A subclass of X is invariant with respect to strongly continuous trans-

formations if every strongly continuous image of a member of the class is

again a member of the class (3.4).

Theorem. Any invariant subclass ofX is hereditary.

Proof. As the hyperspace Xn of a space A is a strongly continuous image

of X (see 3.5), half of the theorem is proved. For the last part we need the

Theorem. A true cyclic element of X is a strongly continuous image of X-

Proof. Let M denote any true cyclic element in the space X. Define the

transformation f(X) = M by

-, \ _jx if the point * is in M,

\F(S) if the point * is in the component S oí X — M.

Let A be any open set in M; then f~1(A) = A* ; and A* is open (2.22 and 2.24)"

On the other hand if A is a set in M such that/_1(^4) =A* is open in X, then

A is clearly open in M because A = M-A*. Thus/(A) = M is strongly continu-

ous. (Mis, in fact, a retract, see Borsuk [10].)

4.7. The reader will have no difficulty in proving that these subclasses

of X are invariant and hence hereditary (4.6) :

(1) the class of connected spaces,

(2) the class of separable spaces,

(3) the class of compact spaces (for any of the usual interpretations of

compactness),

(4) the class of spaces having the property that the number of compo-

nents of an open set is denumerable,

(5) the class of spaces which are strongly continuous images of some fixed

space.

An interesting subcase of (5) occurs when the fixed space is the closed unit

interval. In this case the class is a subclass of the four preceding classes.

A tabulation of hereditary classes might be continued on the above lines.

However, there are hereditary classes which are not invariant and some of

these will be considered in the concluding sections of the paper.

4.8. Before turning to this topic some remarks should be made about the

following separation axiom, attributed to Kolmogoroff (Alexandroff and Hopf

[Lp.58]).

7*o : If x and y are distinct points, then at least one of them is contained

in an open set that does not contain the other.

This axiom will be referred to as the TYproperty and topological spaces in

which it is satisfied will be called TYspaces.
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If x and y are distinct points of a TVspace such that xGy, then x will be

called a satellite of y.

Clearly, if x is a satellite of y, then y cannot be a satellite of a:. This follows

from the hypothesis xGy and the TVproperty which then requires y-x = 0.

Thus one has the

Theorem. In a To-space, the relation 'x is a satellite of y' is asymmetric.

4.9. It will be shown in 4.10 that the class of locally connected 7Vspaces

is hereditary. This result requires the

Lemma. If x is a point in any locally connected topological space, then the

set x is coherent (see 2.7.)

Proof. The lemma is trivial if x = x. Suppose that for y9*x, it is true that

yGx, and z is a point distinct from x and y and such that z = z. \f S denotes

the component of X — z containing x, then x+y is contained in S since x+y

is connected (1.6). Thus y~#. The lemma follows by 2.5.

Corollary. If a point x in any locally connected topological space is an in-

verse set, then so is x an inverse set (see 3.2.)

Proof. Let M be any true cyclic element and suppose that xk(M)9*Q.

It follows by the coherence of x and the corollary of 2.20 that xGM. But x

is an inverse set so xGM-k(M). Thus, by 2.19, it is true that x = x, and the

theorem follows. If x-k(M) =0, then x is an inverse set by 3.10.

4.10. Theorem. The class of all locally connected To-spaces is hereditary.

Proof. Let X be any space in the class X; suppose the 7Yproperty satisfied

in X. Let £ and n be distinct points in the hyperspace Xh- There are two cases

according as (1) at least one of the inverses 7"_1(£) and T~1(rj) is nondegener-

ate, or (2) both inverses are degenerate.

Case 1. Suppose T~i(i/)=k(M) for some true cyclic element M\ If

M-T~1(r¡)=Q, let 5 be the component of X — M which contains T^1^);

S exists by 2.29. Now S is an open inverse set so T(S) is an open set con-

taining r; but not £ (3.11). If M- T~1(r¡)9*0, then T-^r,) =yGM-k(M) by

2.12 and 2.15. Let S be the component of X — y containing k(M) (2.28). Since

y = y, it follows that S is open and T(S) is an open set containing £ but not v

(3.11).
Case 2. Let x = r_1(£) and y=r_1(i7). By the TVproperty in x, either

yGx or xGj', assume the former. By 4.9, x is an inverse set. Hence 3.11 may

be applied as in Case 1 to obtain an open set containing n but not £.

Remark. The example of 4.1 shows that the class of all locally connected

7Vspaces is not hereditary (Alexandroff and Hopf [l, p. 58]).

4.11. The hereditary classes discussed so far have been of a general nature.
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In those to follow, attention is focused more explicitly on certain properties

of peano spaces.

If M is any true cyclic element in a peano space, then the kernel of M

is such that its closure contains M. Let 3Ci be the totality of spaces in X for

which k(N) = N for any A-set.

Theorem. The class 3d is hereditary.

Proof. Let X be any space in the class 3Ci and let A be any A-set in Xh.

There are two cases.

Case 1. If every point in A has a degenerate inverse, the result follows

from 3.16 and the hypothesis that k(N) = A in A.

Case 2. Suppose that some point £GA has a nondegenerate inverse k(M),

where M is a true cyclic element in A. By 3.15, T~l(A)dM. By the continuity

of T and the hypothesis, k(N) =N, it is true that 7*(M)CA. Hence M is the

inverse of A. It follows (3.11) that ¿(A) = £ and £ = A.

4.12. Lemma. If X is in 3Ci, then for every point £ in Xh, one has 7*_1(|)
= T=W).

Proof. Clearly r-1(£)DT-1(£) and hence

r-l(£) = r-*(£) D r-*(£).

To see the reverse inclusion, consider first the case in which T~l(£)=x, a

single point. Since* is an inverse set, the same is true of * (4.9). Thus if any

point y is not in x = 7*_1(£), then y is in some component 5 of X — x. By the

corollary of 4.9, * satisfies the hypotheses of 3.11. Hence S is an inverse set

and T(S) is a component of Xh— T(x)<Z.Xh — £. Thus there is an open set,

T(S), containing T(y) but not £. Hence 7*(y)G£- Therefore 7*-1(?)C7*_1(Ö-

In case 7*~'(£) =k(M) for some true Cyclic element M, it follows that

J-1© = M = k(M) = T-l(¡i) and the lemma is proved.

4.13. Corollary. Under the hypotheses of the lemma, if £ and n are dis-

tinct points in the hyperspace Xh of X, then £G>i if and only if either: (1) 7*_1(£)

and T-^-n) are single points such that T~l(Ç) G 7*-'(77), or (2) T-l(n) = k(M) for

some true cyclic element M, and 7*_1(£) =*GAi— k(M).

The proof is easy and will be left to the reader.

4.14. Let 3C2 be the class of all spaces X in 3Ci having the property that

if * is any point, the frontier of any component of X — x is a single point.

Theorem. The class 3C2 is hereditary.

Proof. Consider AG3C2. If M is a true cyclic element in A it certainly

has the property (2.25). Let £ be any point in Xh. If £ = £, the result is im-
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mediate. Suppose £^£. By 4.12, T~l(Z) = T~l(i)- If T~l(Ç) is degenerate, then

any component of X — T_1(£) has a single frontier point by hypothesis. If

T~1(£)=k(M) for some true cyclic element, then Af=r_1(£) and again any

component of X — 7"_1(£) has a single frontier point. It follows easily with the

help of 3.11 and 3.12 that every component of Xh — £ has a single frontier

point.

4.15. Let 3C3 be the totality of spaces X in X2 such that if TV is any TV-set,

then the frontier of any component of X — TV is a single point.

Theorem. The class 3C3 is hereditary.

Proof. Suppose X£3C3. Let A be any TV-set in Xh, and let 2 be any com-

ponent of Xh — A. If for some point ££A, it is true that T~1(£)=k(M) for

some true cyclic element M, then T_1(£) = M and £ = A. The frontier 7^(2) is

a single point by 4.14. Suppose that for every point ££A the set T~1(¡;) ¡s de-

generate. By 3.16, r-!(A) = TV is an TV-set and k(N) = F"1 [¿(A)]. By the as-

sumption on the inverses of points in A, the set TV is not a true cyclic element.

It follows by 2.15 that the kernel k(N) is degenerate. But k(N) = TV and hence

TV is of the form »where x is a single point. Then F(2) is a single point by 4.14.

4.16. Theorem. Let X be in 3C2. If x is any point in X such that X9*x, then

the set x is an N-set.

Proof. The set x was proved coherent in 4.9. Let y be any point in X — x.

Let 5 denote the component of X — x that contains y and let R denote the

sum of the remaining components of X — x. As in the proof of 2.19, one shows

that the point F(S) separates y from every point in x — y. It follows that * is

complete and the theorem is proved.

Corollary. Let X be any To-space in SC2. If the point xGX is a satellite

of the point y, then y is not a satellite of any point.

Proof. If xGy and yGz, then zj*x since yx = 0. Moreover, zy = 0. Let 5

be the component of X — y that contains z. Now zQS = S+F(S) and F(S) is a

single closed point. Thus F(S)y*y since y9*y. But then yz = 0 which is con-

tradictory.

4.17. Conclusion. Let T denote the totality of all locally connected topo-

logical spaces which are (1) strongly continuous images of the closed unit line

interval, (2) TVspaces in X3. By the theorem of 4.2, T is a hereditary class.

Moreover, it contains the class <P* (see 4.3). More restrictive hereditary

classes which contain <P* will suggest themselves to the reader. The class T

has been mentioned because it yields considerable insight into the nature of

the hyperspaces of peano spaces.

It is a consequence of 2.15 and 4.15 that in any space of the class T every

TV-set is either a true cyclic element or a set of the form * where x is a point.

Thus, in any peano hyperspace, the only TV-sets are of the form £ where £ is
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a point. The corollary of 4.13 states explicitly how such A-sets arise; namely,

from the incidence in the original peano space of a degenerate cyclic element

on a true cyclic element. This relationship is certainly not symmetrical. There-

fore, the asymmetry of the TYproperty seems particularly fitting in this con-

nection.
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