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This paper adapts the method of F. Riesz to the proof of certain general

ergodic theorems for Abelian semi-groups of operators on a Banach space to

itself. The main features of the method are that no measurability conditions

are imposed on the semi-group under consideration and that consistent use

of the second conjugate space and its compactness properties make it possible

to replace the compactness conditions often imposed by a more natural re-

striction on the transforms of points. Theorem 1 and the various supplemen-

tary results include as special cases theorems of Lorch [10], Dunford [7],

Yosida [15], F. Riesz [12], and Cohen [ó]. It overlaps the work of Alaoglu

and Birkhoff [3] at those points where they consider Abelian cases; for ex-

ample, Corollary 8 is a great generalization of their Theorem 5.

Section 1 contains some introductory material on conjugate spaces and

adjoint operations. Section 2 introduces bounded Abelian semi-groups of oper-

ators and near invariance of a system of set functions on such a semi-group ;

this section also contains the principal theorem (Theorem 1) of the paper.

The form of this theorem raises three questions ((A) to (C) at the beginning

of §3). The answer to (A) shows, among other things, that every Abelian

semi-group has a property much like "ergodicity" in the sense of Alaoglu and

Birkhoff; Theorem 3 is the main result here. The answer to (B) again indi-

cates the importance of reflexivity in theorems of this type; Corollary 8 is

one example. Two special cases of (C) give a generalization of Dunford's

theorem (Theorem 5) and a theorem on bounded Abelian semi-groups of

projections (Theorem 6) which has not, so far as I know, been considered

before.

1. Some properties of Banach spaces. If B is a Banach space(2), let B*

be the set of all linear—that is, additive and continuous—real-valued func-

tions on B. If, for ß in B*, \\ß\\ = supn¡,||gi \ß(b) \, then B* is also a Banach

space. As is usual, the weak neighborhood topology in B is defined as follows:

For each è0 in B the weak neighborhoods of bo are the sets of the form(3)

{b | \ßi(b) —ßi(b0)\ <efor i = l, ■ ■ ■ ,k\ for every choice of e>0, k a positive

integer, and ßi, ■ • ■ , ßk in B*. With this topology Tí is a linear topological

Presented to the Society in two parts, the first under the title A norm ergodic theorem on

April 27, 1940; the second under the present title on September 5, 1941 ; received by the editors

April 4, 1940, and, in revised form, March 21, 1941.

(*■) Part of the work on this paper was done at the Institute for Advanced Study while the

author held the Corinna Borden Keen Research Fellowship of Brown University.

(2) See Banach [4], A Banach space is a complete norm vector space.

(3) [b I • • • J is the set of all points b satisfying the condition after the vertical bar.
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space (see Wehausen [12]) and hence is a regular Hausdorff space in which

addition of elements and multiplication by real numbers are continuous oper-

ations.

Since 73* is a Banach space, it has a weak topology defined just as in B;

however, there is another topology in a conjugate space which cannot be

defined in every space. This is the weak* topology in which the neighborhoods

of a point ß0 in B* are the sets of the form {ß \ \ß(bi)— ßo(bi)\ <e for

i = l, ■ • • , k] for all choices of e>0, k a positive integer, and bx, • • • , bk

in B. Each weak* neighborhood of ßo is a weak neighborhood of ßo but the

converse is not true unless B is reflexive. The importance of the weak* to-

pology in this paper arises from

Lemma 1. The unit sphere in B* is always compact^) in the weak* neigh-

borhood topology.

This has been proved by Alaoglu [2], Kakutani [9], and Smulian [13].

If B is a Banach space, let B** be the space (73*)*. Then there is a natural

imbedding of B in 73** which associates to each b in B the point b& in B** such

that bb(ß) =ß(b) for every ß in B*. B is reflexive if B fills up B** under this

imbedding. For the rest of this paper B will be considered to be imbedded in

this way in 73** whenever it seems convenient.

If T is a linear operator defined on B with values in B, let T*, the adjoint

of T, be the operator on B* to 73* such that ß(Tb) = T*ß(b) for every ß in B*

and b in B. Then:

(i) ||r*||=||r||.
(2) (TxT2)* = TfTf so Tx* and T2* commute if Pi and T2 do.

(3) If T** = (T*)*, then T** agrees with T in B ; that is, T**bb = bTb, since

T**bb(ß) = bb(T*ß) = T*ß(b) =ß(Tb) = bTb(ß) for every ß in B*.

For brevity T will sometimes be used for P**.

If Y is any set of elements y, Mr is the Banach space of all real-valued

bounded functions <p on Y with(6) ||</>||jiij, = sup,,£r |<Ky)|- If 5 is any Banach

space, My(B) is the Banach space of all bounded functions/on F with values

in 73 where ||/||Afr(B) =sup„Gr ||/(y)|U- If T is any element of My*, it is possible

to define U on MY(B) to 73** by letting U(f) be that point b of 73** such that

b(/3) = X(j3/) for every ß in B*, where ßf is the element of Mr defined by

ßf(y)=ß(J(y))- F01" each Ï in Mr* there is defined a unique, bounded, addi-

tive^) set function SF by the relation ^(E) = T(<j>E), where (¡>e is the charac-

(4) E is compact (bicompact in the sense of Alexandroff and Hopf, Topologie, I) if

every covering of E by open sets contains a finite subcovering; that is, if Ed22aOa, where the

Oa are open, there exist a\, • • • , an such that £XZS»S*0«'> tn's ls equivalent to the following

condition on closed sets: If the closed sets CaC_E are such that every finite set of the Ca have a

point in common, then|TaCa is not empty.

(*) The subscript on the norm symbol indicates the space in question; it will be omitted

when there is no danger of confusion.

(*) * is bounded if t(£)iï if jEC Y, * is additive if *(£l + £2) = *(£i)+*(£s) whenever
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teristic function of E. Conversely, for each bounded additive ^f, setting

T(0) =f<pd<ir defines an T in MY*, where the integral is, say, that of Radon-

Stieltjes(') ; moreover || ï|| = W( Y). Because of this relation between ^ and T

it is possible to define Jfd^b for / in My(B) to be the element 6 of B** for

which b(ß) =fßfd*ir for every ß in B*. All integrals used hereafter will be of

thisnature(8).

A set X is directed if there is a relation > ("follows") among some pairs

of its points such that x>x' and x'>x" implies x>x" and such that each

pair, x' and x", of points in X has a common successor, x in X; that is, x>x'

and x>x". If for each x in X, sx is a point of the topological space S, then

s = limI sx if and only if for each neighborhood N oí s there is an Xn in X such

that SzGA if x>x#.

Lemma 2. If X is a directed set, if for each x in X bxis a point in B** (B any

Banach space), and if \\ bx\\ is ultimately bounded—that is, if there exist K>0 and

xoElX such that || bi|| ikKif x >xo—then there is a ba in B** such that bo is in the

weak* closure of {bx> \ x'>x} for every x in X; that is, for every e>0,ßi, • • • ,ßk

in B* and x in X there is an x' in X such that x'>x and \b0(ßi)—bX'(ßi)| <e

fori = l, ■ ■ ■ , k.

For each x in X let Ex = { bX' \ x' >x} ; since X is directed, any finite num-

ber of the Ex have a point in common, so the sets Fx which are obtained by

taking the weak* closure of Ex are weak* closed sets with non-empty finite

intersections. Since the sphere \\bx\\ ^K is weak* compact, by the condition

for this in terms of closed sets some bo exists in all these Fx; the last clause in

the lemma is merely a full statement of the fact that bo is in the weak* closure

of every Ex.

2. The principal theorem. The terms next defined are the ones used in the

statement of the theorem and not merely in its proof.

A set Y is called an Abelian semi-group if there is defined for each pair

of elements y, y' in Fa sum y+y' in Fsuch that y+y' = y'+y, and such that

y + iy'+y") = (y+y')+y"> that is, addition is commutative and associative.

If E is a subset of Y, then E—y is the set {y' | y'+y£7i}. It is clear that if

{E} is any partition of Y into any number of disjoint sets, then {E— y} is

also such a partition.

Let X be a directed set and Y an Abelian semi-group ; for each x in X

let S^z be a bounded, additive set function over Y. For each y in  F and

Ei and E^ are disjoint subsets of Y. If * is bounded V^{Y) =sup2"Z»g*| *(E,)| ¿2K, where

the "sup" is taken over all partitions of Y into a finite number of disjoint subsets E¡.

(7) The pertinent properties are these: (1) If <t>=2^,i£ka¡<f>Ei, /^d*=2^,át«i*(^»). (2) If

II*»— <¿>||aík—*0> then f<t>„dif—*f<j>d9. See Fichtenholz and Kantorovich [7].
(8) Integrals whose values lie in B** instead of in B were introduced by N. Dunford, Uni-

formity in linear spaces, these Transactions, vol. 44 (1938), pp. 305-356, and I. Gelfand, Ab-

strakte Funktionen und lineare Operatoren, Recueil Mathématique, (n.s.), vol. 4 (1938), pp. 235-

284.
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i in I let ^x» be the bounded additive set function over Y defined by

^xy(E) =^x(E — y) —tyx(E) for every EC Y; the system of set functions {**}

is called nearly invariant over Y if lim^ V^zy( Y) = 0 for each y in Y, if V<S?X( Y)

is bounded, and if limx ~^X(Y) = 1.1> is called invariant if ty(E-y) =^(E) for

every PCF and ^( Y) = 1.

If F is an Abelian semi-group and 73 is a Banach space and if for each y

in Y, Tv is an element of Ï, the space of linear operators on 73 to B, the semi-

group { Ty} is called a bounded representation of F if TVTV' = Tv+V' for every

y and y' in F, and if there is a 7£2:0 such that \\Tv\\ i=K for every y. If { T"}

is any bounded representation of Y, let B' and P" be the subsets of B defined

by B" = {b | Tyb = b for every y in Y) and B' is the smallest closed linear

subset of B containing all the points b — Tvb for every b in B and y in F; M is

the smallest linear subset of B containing 73' and B". Clearly, b£M if and

only if one (or all) T"b £ M, since b = T"b + (b - r»&) and b - Tyb is in B '.

Theorem 1. Let Y be any Abelian semi-group, B a Banach space and

{Tv\ a bounded representation of Y in %. Let X be a directed set and {^x}

a nearly invariant system of set functions over Y, and for each b in B and x

in X let Txb=Jfbd&x where fb in MY(B) is defined byfb(y) = Tybfor each y in Y;
for each b in B let rb be one of the points which Lemma 1 associates with the

points rxb. Then:

(1) rb can be taken in B instead of merely in B** if and only if b is in M.

(2) M is a closed linear subset of B and is the direct sum of B' and B",

that is, each b in M is the sum of a b' in 73' awa* a b" in B", where b' and b"

are uniquely determined; in fact b" =rb.

(3) rb is uniquely determined if b^M and, in M, r is a linear operator with

values in 73".

(4) If b(E.M, TTb=rb and Tyrb =rb =rTyb for every y in Y.

(5) rb = b if and only if 6£P"; rb = 9, the zero element in B, if and only if

bC-B'.
(6) 7/6GA7, ||tx6-t6||b—>0.

The main body of the proof will be divided into a number of simple steps.

(a) TyTxb=TxTyb for every x in X, y in Y and 6 in P.

For each ß in B*,

T»rxb(ß) = rxb(Ty*ß) =  f Ty*ßfbd-*x = f ßf*d9x = rxTyb(ß)

since

T"*ßfb(t) = Ty*ß(Tlb) = ß(TyTlb) = ß(T'Tyb) = ßf'^t)

for each tin Y.

(b) || T"Txb-Txb\\^0 for each b in B and y in F(9).

(9) It should be noted that the condition that V^ly{Y)—>0 for each y which is used in the
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\\TyTxb - rxb\\ = \\TxT«b - r^H =  sup   | rxT"b(ß) - rxb(ß) |
WISl

=  sup    f ßfTVbd*x -  f ßfbd*x
WIISi IJ J

=  sup I  f 0/wJ ^ H/Il F^XI/(F)
Mail-' I

which tends to zero for each y. The only difficulty is in justifying the last

equality which can be done as follows: since ß/'GATy for each ß in B* and

b in B, it suffices to prove that f<pd^xy = /(pyd^fx—fcpd^'x where <pv is defined

by <t>v(y') —<t>(y+y') and <p is any function in ATy. If 0 is a simple function;

that is, <j> ^^iZkOHipEi where the 7£¿ are disjoint subsets of F and the a¿ are

real numbers ;then f<pd^xv=Yliákai^Xy(Ei) -^¡¿kOi&^Ei—y) — Y,iékCL&x(Ei)

=f(pvd^x—f<pd^x since (j>„ = ^"1.g*<*,-<£g.^,, ; since the simple functions are dense

in ATy the same is true for any <f> in ATy.

(c) TyTb = rb for any y in F and b in B.

It suffices to show for any e>0 and ß in B* that | 7"tZ>(/3) — rb(ß)\ <«. But

| T«rb(ß) - rb(ß) I g I T*rb(ß) - T"rxb(ß) I

+ I TyTxb(ß) -r rxb(ß) I + | rxb(ß) - rb(ß) I ;

by (b) the middle term is less than e/3 if x>x0. The first term is equal to

| rb ( T"*ß) — Txb ( T"*ß) \ ; by the definition of rb and Lemma 1, rb is in the weak*

closure of \rxb | x>x0} so there is an x>x0 such that \rxb(ß)— rb(ß)\ <e/3

and \Txb(T»*ß)-Tb(T»*ß)\ <e/3. For this x all three terms are less than e/3

and (c) follows.

(d) lïd£B', then ¡¡TrdW^O.
Ud = b-T«b for some b in B and y in F then Ht^H =|| T"rxb-Txb\\^0 by

(b). Since all the operations in question are additive and homogeneous,

llr^H—*0 if d=Yli£kcti(bi—T!'<bi) lor any choice of y, in F, bi in B, and a,
real. If dÇ£B' then there is a d, of this last form such that ||¿ — d«|| <e; then

||r^]| <||ra:(íf-¿e)|| +||t*¿«|| < (K+l)e, where K is the upper bound of Wx( Y),

if x is large enough.

(e) ||txT&— rb\\—»0 for each b in M', where M' is the set of those b in B

such that rb can be chosen in B, not only in B**.

definition of near invariance is stronger than the corresponding condition used by Alaoglu and

Birkhoff [3]. Since this property is used only in this step of the proof of the theorem, it is easily

seen that the property that must be required of the system {**} is that H/P^iull—>0 for each

b and y. This shows that the hypotheses on {**} can be weakened if some restriction is placed

on the semi-group { 7""} ; for example, it is sufficient that *x„(.E) —»0 for each Ed Y provided

that the semi-group {7"»} is so restricted that each/6 is integrable in the sense used in [3].

It seems to me that the extra restrictions are more properly placed on the system {*»} than

on the semi-group { T" \ since the results are to a large extent independent of all but the exist-

ence of {**) and since (see Theorem 3) a nearly invariant system always exists.
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TxTb(ß)=JßfrbdVx, but by (c) fb(y) = TyTb=Tb for each y so rxrb(ß)

= fß(Tb)<j>Yd^x=^x(Y)ß(rb)=ßCifx(Y)rb), and ||txTö-tö[| = ||tô|| \*,{Y) - 11
which tends to 0 by the hypotheses on {^x}.

(f) b-rbEB' for each b in M' so ||tx&-Txt7>||-^0 for each b in M'.

If bx = b-rb is in B-B', there exists a ß0 in B* for which ß0(d) =0 if ¿£P'

while /3„(6i) = 1. Then Txb(ß0) =Jßofbd<bx, but ß0fb(y) =ßo(Tyb) =ß0(b) for each

y so rxb(ßo) =*x(Y)ßo(b) and lim* Tx¿(/30) =limx *x(F)/?0(ô) =/3oW- On the

other hand, for each x in X and e>0 there is an x' in X such that x'>x

and |tx'ô(/3o)-/3o(to)| <é, so ßo(rb)=ßo(b) and /30(6i)=0 contrary to the

choice of ßo-

The conclusions mentioned can now be drawn. ( 1) is true if M' = M.B'CZM'

by (d) ; if ÔGP", Txè=^x(F)ô so ||o-Tx&|Ho and P"CM'; hence Af'DM. If
b<EM', by (c) rbGB" and b-rb<=B' by (f); hence b = b + (b-rb)EM if
bEM' and M'CM. (6) follows from (e), (f), and (1). For (3) note that (6)

implies that rb is uniquely determined if bCM; r is clearly additive on M

and for each J in I ||rè|| ^supx ||txô||=suPx ||//6á^x|| ^||/6|| supx WX(Y)

á ll&ll sup„ || Ty\\ supx Vtyx( Y), so t is linear on M. All of (2) is proved except

that M is closed ; let TV = {ö | r0ö = linix rxb exists in the norm topology in B**}.

Then 7Y, as the set of points of convergence of {tx} , is a closed linear mani-

fold and M is the inverse image by t0 of B (considered as imbedded in B**).

Hence M is closed in N and therefore in B. For (5) the remarks above showed

that to = & if ö<EP";if rb = b, Tyb = Tyrb=rb = bby (c), so b(=B". (d) shows
that rb = 6 if b<EB'; ííto = 0, ö = ö-To£P'by (f) since&GMin this case. For

(4) tô£P "if ö£ M so TTb=rb and ris idempotent; Tyrb=rb by (c) ; if ö£A7,

T»b = (T»b-b)+bCM too, since T»b-bCB'CM; then tP"ö =linix rxTyb
= limx r^Txè = r»(limx rxb) = Tyrb=rb.

3. Related and supplementary theorems. One point stands out strongly

in this set of conclusions: most of them do not directly involve X or {Sf'x}

except in so far as the existence of the nearly invariant system {^x} was re-

quired to prove existence here. M is already defined in terms of the bounded

Abelian semi-group {Ty\ and (5) defines t in M in terms of {Ty\ alone, so

that M and t are the same no matter what X and \^x\ are used so long as

the system {^x} is nearly invariant over F. This raises three questions:

(A) If F is a given Abelian semi-group, is there a nearly invariant system

}*x} for some A"?

(B) Under what conditions on Fand {Ty\ does M = B?

(C) If some natural choice of X and {^x} is suggested by the nature of F,

is this system nearly invariant?

(A) can be completely answered (yes, for any X); (B) partially; (C) de-

pends on the case in question and obviously has no general answer. This sec-

tion contains the discussion of (A) and (B).

Theorem 2. If a nearly invariant system {^x} of set functions over Y exists
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then there is an invariant function ^; that is, a Sf1" such that ty(E-y) =^f(E) for

every EC. Y and ydY and ^( F) = 1.

Proof. If {*FI} is the nearly invariant system, let Tx be the element of

ATy* defined by Tx(<p) = f(pd^x for every <j>EíMy. Applying Lemma 1 with

B* = My, bx = Tx gives an T in ATy* such that T is in the weak* closure of

every set { Tx | x>x0} for every x0 in X. Let ^(E) = T(<bE) for each EC F,

then ^ is additive and bounded, of course, since F^(F)^lim supx V^X(Y)

and, since lim* >FX(F) = 1, >F(F) = 1.

To show M' invariant it suffices to show that for each e>0 \"ty(E—y)

-V(E)\ <e. Now

| *(E - y) - ¥(£) | á | ¥(£ - y) - VX(E ■*■ y) \ + \ *X(E ■*■ y) - ¥,(£) |

+ | ¥,(£) - *(£) |

= | T(<bE+y) - T,(fe,„) | + | T,(^,») - Tx(<j>E) |

+ \rx(<pB) -Tf>*)|.

By the near invariance of {^Fr}, there is an x0 such that the middle term is

less than e/3 whenever x >x0 ; then by the fact that T is in the weak* closure of

{Tx|x>Xo} the other two terms can be made less than e/3 by proper choice

of x>xo, so ■&(E^y)=V(E) for all ECFandyGF.

Note that the full strength of near invariance is not used in this proof but

only that ^„(Ti)—>0 for every 7¿C F. Naturally if an invariant function ^

exists, the system {^x} such that every iSrx=iSf for each x in X, is nearly in-

variant over F no matter what X is.

Corollary 1. If Y is a family of subsets y of a given set A, with addition

in Y ordinary addition as subsets of A, then there exists an invariant function Sl>

over Y.

This can be proved directly by proper application of the Hahn-Banach

theorem. To derive it from Theorem 3, let X= Y, order F by letting y>y'

mean y~Dy', and let S^,, for each y in F be defined on the subsets £ of F by

^(7i) = lifyG7i,^r!/(i3)=0 if not. To show that the system {*•„} is nearly in-

variant, for any y0 in F let yZ)yo\ then ^„(Ti — y0) = 1 if and only if y is in

E—y0, that is, if and only if y+y0 is in £, but y+y0=y if yDyo so1F!/(£— yo) = 1

if and only if y£-£, i.e., if and only if *„(£) = 1. Therefore Vy(E) =Vy(E^y0)

for every E or V^VVo( Y) = 0 if y >y0.

This particular nearly invariant system will be used later.

Corollary 2.  To the conclusions of Theorem 1 can be added:

(7)   There exists an invariant function SF defined over Y such that Tb=Jfbd<$?

if bGM, while ffWEB** if bQM. Moreover ffbd^ is in the weak* closure of

{rxb | x >x0 { for every x0 in X.

Letting tyx' =Sfr for any X gives a nearly invariant system ; Trb = Tx b=ffhd'<it
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shows that r'bCB if and only if ¿>C AÍ (by Theorem 1) and in Mr'b=rb. The

definition of T, and hence of >?, in Theorem 2 shows that ff'd'ir lies in the

given sets.

The important result is

Theorem 3. If Y is an Abelian semi-group, there is an invariant set func-

tion ^ over Y such that ■$( Y) = V&( Y) = 1 and ^(E)=0if ECY.

The proof is essentially that of a result of Morse and Agnew [l, Lemma

2.01]. Let To be defined on the multiples of <pY by T0(a<£y)=a; then by the

Hahn-Banach theorem there is an "Cx in Mr* such that ||Til| =1 and Tx(a<pY)

= To(a<j>Y). For each y in F let T" be .the function on MY to MY defined by

Ty(j>(y')=4>(y+y') for each <p in My and y' in F. \\Ty\\ =1 for each y since

sup„<£y |</>(y+y')| ^supV'£y |0(y')| for every y in F and Ty(pr = <pr; T0 is

invariant under all T". Following [l] let

1    "
p(4>) = inf [sup— 22 Ti(r«T'«*)]

yn&v n ,-_i

where the "inf" is taken over all choices of the integer n and the points

yi, ■ ■ • , yn in Y. As in [l] it can be shown that p(a<p) =ap(<p) if a^O, that

p(4>+<p')-=p(<P)+p(<p'), and that p(<p)S\\<f>\\ for every <p in Mr- Since

To(a<t>Y) Sp(a4>Y), applying the Hahn-Banach theorem again gives an T in

My* such that t(a<pY) -a and T(cf>) ̂p(4>)-=\\<p\\ for every <j>; the proof that

Ï is invariant under the T" is as in [l ].

Let *(E) = T(0*) if PCF. Then ^(E^y) = T(<pE^) = T(Tycj>E) = T(<j>E)

= *(E), so ^ is invariant; ||t|| =T(</>F) = 1 so V^(Y)=^(Y) = 1. ^ is non-

negative, for if E exists with V(E) <0, then V$r(Y) = \^(E)\ + \^r(Y-E)\

= --*(E) + l-*(E)>l.

Corollary 3. |!Tö||Bg||/!'||A/r(ii) =suPl,er ||r"o||ß^||6|| supy<=r ||r»|| if

b<=M.

If o CAÍ, rb =ffbdty where * is defined by Theorem 3 ; hence ||tô|| = U/fWH

ú\\f\\vnY)=\\fb\\.

Corollary 4. If o£ Ai, then rb is in the closed convex hull K(b) of the set

\Tyb\ yGY}.

For each ß in B*, ß(rb) = ¡ßpd* = V^(Y) supy(=Y ßf(y) = supyGY ß(T"b). If

ôo is not in K(b) there is a ßo such that ßo(bo) >sup„ ßo(Tyb) (by a theorem of

Mazur [9]) so rb is in K(b).

Alaoglu and Birkhoff call a point b in B ergodic relative to the bounded

semi-group { Ty) if there is just one point of B" in K(b) and all K(Tyb)(i0).

(10) This is not their definition but one of the properties shown to be necessary and suffi-

cient.
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Corollary 5. b is ergodic if and only if £>G AT.

If ôGAT,TèG-S"and to K(b) by Theorem 2 and Corollary 4; all T«b are

in AT too and rTvb=rb, so rb is all K(Tyb) also and b is ergodic if these sets

contain no other points in B"; this is asserted by Lemmas 1 and 2 of [2].

If b is ergodic and b0 is the unique point in B"K(b), then 8 is the unique

point in B"-K(b — bo)\ let bi = b — b0. Since 6 is in the closed convex hull of

the set { Tvh |yG Y], for each e>0 there is a point bi=^liskaiT''ibi with

\\bi\\ <e/K, where K = suptter || T»\\. If Tb'=Jf>'d&, with ^ as in Theorem 3,
then Tb2=j^iSka,rT«'bi=Tbi and |[-r¿»i(J = J[-rô2f| <e. Hence Ut^H =0 or biEB';
so b = bi + b0EM.

To complete the relation of these results to those of Alaoglu and Birkhoff

requires some study of Problem (B).

Lemma 3. If fCMy(B) and ^ is a bounded additive set function over Y,

ffdty is in Y if P, the smallest closed linear subspace of B containing all the

points \f(y) | y CY], is reflexive.

Each ß in B* defines a Wß in P* by irg(p)=ß(p) for each p in P; then

ffd^(ß) =fßfd^T =firäfd^i. Since the irß cover P* this defines a unique p in P**
such that p(ir) =firfd<íf if xGi3*. Since P is reflexive there is a p in P such that

*■(/>) =firfd* if jrGT**. Hence /3(£) =xs(p) =Jirgfd^=fßfd^; so ffdV = pEP
CB.

Corollary 6. 7/ ¿Âe se/ { 7y& | y G F} lies in some reflexive subspace of B,

then bCM.

Corollary 7. If B is reflexive, M=B..

Corollary 8. If B is reflexive and \TV] is any bounded Abelian semi-

group of operators on B to B, then each b in B is ergodic; that is, for each b in B

K(b) contains just one fixed point rb of all the Tv.

It is to be noticed that this is a great strengthening of Theorem 5 of [2]

since, as is known, every uniformly convex space is reflexive, and since

\\Ty\\ ^1 can be replaced by \\TV\\ ̂ K. On the other hand, that result can be

proved with far less machinery.

Corollaries 3 and 7 together imply that if B is reflexive the set B" of com-

mon fixed points of any bounded Abelian semi-group { 7} of operators on B to

B is the range of a projection operator r defined on all of B and ||t|| iïsup ||7||.

A trivial result is this:

If { Tv\ is any bounded Abelian semi-group of operators on B to B and if

there is a y0 such that ||7"°|| <1, then B' = B\ in fact lim,, ||7"¡| =0 if y is di-

rected by letting y>y' if there is a y" such that y=y"+y'.

For each e>0, there is an «such that ||(7!"))n|| <e/K, wherein is the bound

of the norms of all 7", then || T"(T>">) "|| <e for every y or ||r»|| <e if y>ny0.
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In some cases a certain X and a nearly invariant system {^i} over F arise

naturally. Under certain conditions on X the reflexivity condition of Corollary

7 can be weakened (at least formally). A directed set X has a countable cofinal

subset if there is a countable subset X' of X such that each x in X is followed

by some x'in X'.

Theorem 4. If {Ty\ is a bounded representation of the Abelian semi-group

Y, if X is a directed set with a countable cofinal subset, and if the system {^x}

is nearly invariant over Y, then i£M if and only if there is a countable cofinal

subset {x„} of X and a bo in B such that lim„ rXn b(ß) =ß(b0) for every ß in B*.

In this case bo = rb.

For such an X this sequential compactness condition assures that rb is

in B ; that is, that b is in AÍ. Since norm convergence implies weak convergence

this condition is satisfied if 6 CAÍ.

Corollary 9. 7/P is a Banach space with sequentially weakly compact(n)

unit sphere, if \TV\ is a bounded Abelian semi-group of operators on B to B,

if X has a countable cofinal subset and if \^x} is a nearly invariant system such

that Jfbd#xÇLB for each bin B, then M = B.

Since every reflexive space has a sequentially weakly compact unit sphere,

this result is related to Corollary 7 ; since it is not known whether or not se-

quential weak compactness implies reflexivity, it is not known whether the

hypotheses on X and {^x} are needed.

4. Special semi-groups and systems of set functions. A theorem of Dun-

ford [6] uses E„, euclidean «-space with coordinatesyi, • • • , yn, for Fand the

class of «-dimensional cubes x— \y \ ctj<yj<a.j+r,j=l, ■ • ■ ,»},wherer>0

and the ctj are arbitrary real numbers, for X, defining <f?x(E)=m(Ex)/m(x),

where m is Lebesgue measure, for every Lebesgue measurable set PCF. (He

has then to assume measurability for each /* in order to integrate.) rxb, then,

is the arithmetic mean of fb over the cube x; that is, rxb = irnfxfb dm, where V is

the length of edge of the cube x. X is ordered by the size of the cubes, that is,

x>x' if the edges of x are longer than those of x'.

A more general result follows from a simple property of convex bodies with

interior points in £„. In what follows let Sa(y) be the closed sphere about y of

radius a: as in any linear space if P, P'CPn let E+E' = \e + e' \ e in E and e'

in E'\ and for any real a and ECZEn let aE= {ae \ e in p}.

Lemma 4. If E is a convex subset of En and if E contains a sphere Sr = Sr(0),

and ifSa = Sa(0), then Sa+EC[(r+a)/r]E(12).

(n) A set Bí¡(Z_B is sequentially weakly compact if for each sequence JiujC-ßo there is a

subsequence {«<} and a b„ in B0 such that lim; ß(b„.) =ß(ba) for every ß in B*.

(12) This proof is due to the referee who notes that it holds in any normed vector space.
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yCSa if and only if y = (a/r)y' for some y' in Sr. For each y in Sa and y"

in E
a r + af    a r ~~\      r + a

y + y" = -y' + y" =- —— y' + —— y"   =-y»
r r     \_r + a r + a      J r

where y0G7i  since y',  y"CE,  a/(r+a)+r/(r+a) = l,  and  a/(r+a)>0'

r/(r+a)>0. Hence 7£+SaC[(r+a)/r]£.

For each bounded convex set E with interior points contained in En let

r(E) be the least upper bound of the radii of the spheres contained in £.Then

there will be at least one sphere of radius r(E) contained in E, the closure of E,

since any bounded closed set in En is compact.

Lemma 5. If X is the set of all bounded convex sets with interior points in En

and if X is directed by the relation x>x' if and only if r(x)^r(x'), then for each y

in En, ViTnx m[x(x—y)]/m(x) = l.

Since x—y=x(x—y)+[(x — y)—x], it suffices to show that m[(x— y)

—x]/m(x)—>0. If a is the distance from y to 0, then x— yCx + S«; by Lemma

4, x + ,Sa is contained in a dilation of x in the ratio (r(x)+a)/r(x) about the

center of any sphere of radius r(x) contained in x. The ratio of the measures of

the dilated set and x is precisely [(r(x)+a)/r(x)]n so m[(x—y)—x]/m(x)

Úm[(x+Sa)— x]/«z(x)iï \(r(x) + a)/r(x)]n— 1 which tends to 0 as r(x)—»».

Lemma 6. There is a non-negative additive set function p, defined on all sub'

sets of En of finite outer measure, suchthat p(aA — y)= \ a\p,(A) and such tha^

p(A) = m(A) if A is Lebesgue measurable and of finite measure.

This follows from the work of Morse and Agnew [l ] ; they gave the con-

struction for the case « = 1.

Theorem 5. Let A be any convex set with interior points in En and let

Y= {ay | y in A and a 2:1} ; then Y is an Abelian semi-group under vector addi-

tion in En;for any Banach space B let \TV\ be a bounded representation,of Y.

Let X be the set of all convex sets of finite nonzero measure contained in Y and

for each x in X define ^x by ^X(E) =p(Ex)/p(x). Then the system {^x\ is nearly

invariant and the conclusions of Theorem 1 hold.

Near invariance of {^x} is all that needs be verified. V^X(Y)=^X(Y)

= p(x)/p(x) = l;

*xy(E) = *X(E -•- y) - ¥,(£) = [M(x)]-'{4(7: - y)x] - p(Ex)\

=  [p(x)]-i{p[(E - y)(x - y)] - p[(E - y)((x - y) - x)]

+ m[(£■*■ y)(*- O*-5- y))] -KEx)}

= [p(x)]-i{p(Ex - y) - p(Ex) -/,[(£- y)((x - y) - *)]

+ ß[(E ^ y)(x - (x ^ y))]}

= kx)H - p[(E - y)((x - y) - x)] + p[(E - y)(x - (x - y))]}.
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If Y=22iSkEi with the P¿ disjoint, then the sets P<—y are disjoint and

have sum F. Hence

£ | *„(&) | = U*)]"1 E {m[(P< - y)((* - y) - *)]
iSk »S*

+ M[(Pi-y)(x-(x- y))]}

g Íjx(*)]-1{m[ £ (£•• - y)((* ■*■■ y) - *)

+ cÍE(£¡i#- («-1- 3'))
L i£k

= [ß(x)]-i{ß[(x^y) -x]+ti[x-(x^-y)]\.

By Lemma 3, this is small for r(x) large, independent of the decomposi-

tion of F into the sets P„ so Vtyxy(Y)—>-0 and this system {^x} is nearly in-

variant.

The set X' of cubes used by Dunford if ordered by edge length has the

same ordering as if ordered by the radius of the largest sphere inside; so X'

is a cofinal subset of this family X of convex sets of finite, nonzero measure;

so linv rX'b exists for every b in M since lim, rxb exists for such b ; moreover if

the functions/6 are all measurable, the rm> reduce-to Dunford's transforma-

tions and Theorem 5 offers a simple proof, without differentiation theorems,

of Dunford's result.

Note that this X has a countable cofinal subset, in fact any sequence

{x„} C^ such that r(xv)—->°° will do. Hence if the assumption is made that

each Tyb is a measurable function, each TxbdB and Corollary 9 can be applied

with proper choice of B.

For a second application (not considered anywhere in the literature so far

as I know) take F to be the stack A whose elements are the finite subsets of

some given set D of elements d where addition is, as in Corollary 1, ordinary

point set addition. If B is a Banach space and { P5 | ô CA} is a bounded repre-

sentation of A in the space of linear operators on B to B, TSTS=TS+S = Ts so

every T* must be a projection; moreover Ts=Y[dGsTd for each 5CA. A is also

a directed set if 6> 8' means ôDô'; for each SCA let ^j be defined over the

subsets of Aby^ä(E) = l if ÔCP, ^s(E) =0 if 8&E. Then, as in Corollary 1,

the system {^j} is nearly invariant over A.

Theorem 6. If B is a Banach space and the Td are commuting projections

on B to B such that \\ Ts\\ ̂ K for all b, where Ts =Yld^tTd, then limä T*b exists

(in the norm topology) if and only ifb(EM (where M is defined as in Theorem 1)

and for such b, lima || Tsb— rb]] =0.

By Theorem 1, ||tío-t¿||—>0 with rb in B if and only if o CAÍ. But

T¡b=ffbd'í's = Tsb, and if the Tsb converge at all their limit must be in B.

I
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It is to be noted that this theorem has a much stronger conclusion than

can be obtained in general ; this is true because the bounded representations

of a stack are so greatly restricted.

Corollary 10. If B is reflexive and if Td are commuting projections with

|| Ts\\ uniformly bounded, then limä Tsb=rbfor every b in B, where r is a projec-

tion defined on all of B which has all the properties ascribed to r in Theorem 1.

One more consequence of Theorem 1 is this : If the collection { Ty} of

operators on B to B is a bounded representation of the semi-group F, then

the collection {Tv* ) is such a representation in the set of operators on B*

to B*. In general, defining £<"*> by induction from £<"*> = (B«"-»*>)*, and

T(n*) = (2\(n-«*})* the same is true 0f the cDllection { 7"<"*>}. Hence Theo-

rem 1 defines in B(7I*> a set M(n*) consisting of the direct sum of B'">"*', the

set of fixed points of the 7î/(n*), and B'(n*\ the smallest closed linear set in

£/"*> containing all 7*<"*>*><"*> -ô<»*> for all choices of y in Fand 6(n*' in £<"*>.

Since £«»+2>*05C»*) for every n, and the 7"«"+2»*> agree with the 7«(n*> in

5(n*)> _£//«„+«*) .£<„*> =B//(»*> and similar relations hold for .B'<"*> and M^*\

(c) of the proof of Theorem 1 shows that for any b in B and any possible choice

of rb, rb is in B"®*\

An example of the results obtained from this point of view is

Theorem 7. If B is reflexive and if { Ty | y G F} is a bounded A belian semi-

group of operators on B to B, then there exists a projection r defined over all B such

that for every nearly invariant system of set functions \^x\ over Y,limx\\Txb—Tb\\

= 0 for each b in B and limx \\rfß — T*ß\\ =0 for each ß in B*. t and r* have in

their respective spaces the properties specified by Theorem 1.

All that need be verified is that t0*, the projection in B* that exists by di-

rect application of Theorem 1 to that space, is equal to t*, the adjoint of t.

Since ||r */3-t0*/3||->0 for each ß in B*, rfß(b) -r0*ß(b) =ß(rxb) -t0*/3(6)-»0 for

each b in B but ß(rxb)-^ß(rb) so r*ß(b) =ß(rb) =r0*ß(b) for each b in B and

ßinB*, orr*=To*.

I see no way of proving anything quite of this nature if M^B.

It may be noted that neither the methods nor the results of this paper

carry over to noncommutative semi-groups; in fact, an example [2, §13, Ex-

ample 1 ] shows that for non-abelian semi-groups the set AT and the set of

ergodic points of B need not be the same.
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