
NÖRLUND SUMMABILITY OF DOUBLE FOURIER SERIES

BY

JOHN G. HERRIOT

1. Introduction. Throughout this paper the function f{t, u) is assumed to

to be Lebesgue integrable over the square Q { — w, it; —it, tt) and to have

period 2ir in each variable. The double Fourier series of / is denoted by cr(J)

and the rectangular partial sums of a(J) are denoted by smn{x, y;f). To say

that a method of summability S possesses the localization property means

that if / vanishes in a neighborhood of {x, y) then 5 sums <r(/) at {x, y) to 0.

It is well known that the Cesäro method (C, 1, 1), for example, does not

possess the localization property. G. Grünwald [2](1) has shown that at any

point {x, y) of continuity of / the square partial sums snn{x, y; /) are sum-

mable {C, 1) to/(x, y). Thus {C, 1) applied to the square partial sums pos-

sesses the localization property. We show in §5 that this is the best possible

result.

In this paper we shall apply Nörlund means to <r(j). To define the Nörlund

mean of {snn{x, y;f)} let {p„} be any sequence of constants. Let P„ =32*=oPk

5^0. The Nörlund mean is

1 S
(1-01) tn{x, y;f) = —~yj pn-kSkk{x, y,f).

Pn k-0

If tn{x, y;f) tends to a limit as w—> oo the sequence {s„n(x, y;f) \ is said to be

summable Np to this limit. We shall consider only regular Nörlund methods

of summability. The conditions of regularity for Np are(2)

n ,

(1.02) JJ| pk\ = 0(| Pn\),      Pn/Pn^O   as n-^n.

Cesäro (C, a), a>0, is clearly a regular Nörlund method.

We shall also consider a double Nörlund transform of [smn{x, y;f)}. Let

{pn*} (*=1, 2) be two sequences of constants. Let P^ = Yi^0pf ^0. Then

the double Nörlund transform is

(1.03) tmn{x, y;f) = £ P™iP™kSik(x, y; f).
PWP}2' j,k-0

m n

We shall restrict the manner in which m, w—> oo . If, for any X = 1, tmn{x, y;f)

tends to a limit when m, n—* oo in such a manner that m/n=\, n/m = \, this

Presented to the Society, September 11, 1940; received by the editors May 26, 1941.

(') The numbers in square brackets refer to the bibliography at the end of the paper.

(2) See, for example, Hille and Tamarkin [4, p. 758].
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limit being independent of X, then a(J) is said to be restrictedly summable Np

at (x, y) to this limit. (C, a, ß) is clearly a double Norlund method.

In §§5 and 6 of this paper local conditions are imposed on the function

whose double Fourier series is under consideration in order to discover which

of these methods of summability possess the localization property and which

do not. In §§7 to 11 methods of summability which sum <j(J) almost every-

where to/are studied. Theorem 5 is a generalization of and includes the re-

sult of Marcinkiewicz and Zygmund [6]. When the present paper had been

prepared for publication the author received a copy of a paper just published

by Grünwald [3] in which it was shown that the sequence {snn(x, y; /)} is

summable (C, 1) almost everywhere to/(x, y). However, by Corollary 6.1 of

the present paper, this result is true also for (C, a), <x>0. Both Corollary 6.1

and Theorem 6 from which it follows were established several months before

the appearance of Grünwald's paper. Indeed the result of Corollary 6.1 was

known much earlier, for, on reading the proofs of a paper of Marcinkiewicz

[5] in which it was shown that the sequence {snn(x, y;f)} is summable (C, 2)

almost everywhere to/(x, y), Zygmund pointed out that the result could be

extended to (C, <x),a>0. But Marcinkiewicz did not wish to change his paper

and so the result was not published.

2. Basic formulas. The following notation will be employed throughout

this paper. Let

(2.01)
<PxV(t, u) = f(x + t, y + u) + f(x + t, y - u) + f(x —    y + u)

+ f(x - t, y - u) - 4/(x, y).

It is well known that

1
(2.02) «•»<*. y,f) =— I     I   f(x + t,y + u)Dm(t)Dn{u)dt&u

where Dm(t) denotes the Dirichlet kernel. Then

(2.03) tn(x, y,f)=\     I   f{x + t, y + u)K„(t, u)dtdu

Kn(t, u) = —— Z pn_kDk{t)Dk{u)

l     "   pn-k sin (k + \)t sin (k + \)u

ir2Pn k=o 4 sin \t sin \u

Clearly Kn{t, u) is an even-even function of t and u and
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It follows that

4>xv(t, u)Kn{t, u)dtdu.

In order to obtain alternative forms for Kn(t, u) we set

n n n

(2.06) <$M) = Z pkeikt = Z pk cos kt +       pk sin kt = £„(/) + »©„(*).

Now sin (& + J)/sin (& + J)^ = —J[cos (& + — cos (k + %)(t — u)] and

n n

Z £„_i COS (Ä + %)(t + u) = yj pk COS (» — k + \){t + U)
*— 0 /. = ()

= (S„(< + «) cos (» +       ± «)

+ ©„(/ ± u) sin (w + §)(/ ± «).

Substituting in (2.04) we have

JC„(', w) = - (87t2Pn sin \t sin j«)-1 {<£»(/ + «) cos (» + §)(/ + «)

(2.07) + ©„(* + «) sin (« + !)(/ + «)- S„(< - u) cos (»+1) (t - u)

— ©„(< — w) sin (m + \){t — u)}.

If we apply the mean value theorem to this we obtain

Kn(t, u) = - «(4irsi>n sin |< sin |»)-*{ - <5»(|i) •(» + §) sin (n + Dfc

(2.08) + <5„' (e,) cos (» +      + ©.(«■») ■(» + *) cos (n +

+ ©„' (JO sin f> + I)!,}, « - « ^ |b ?2 ̂  I + «.

Forming the double Nörlund transform of 5™„(x, y;/) we have

(2.09) tmn(x, y;f) = j   J f(x + t, y + u)N™{t)Nn\u)dtdu

where

(k)           1     "    (*) 1     "          sin (j + %)t
<2-10> #» w =         S= — E      '    ,  lf > k=\,2.

TrP^"> 3=,0 7r-'n    )-0 2 sin ^

ThusiVf (<) is an even function of / and

J Nn\t)dt =1, « 1, 2,

We easily deduce that

*«,(/, «)#» (m)^m.
j
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Defining ^'(t), (S^(t), ®f(t) analogously to (2.06) and proceeding as in

the deduction of (2.07) we obtain

(2.12) Nn\t) = (2xpr sin sin (n + §)/ - Bn'(t) cos (n + *)*},

£ = 1, 2.

3. Estimates of the kernels. We require estimates for K„(t, u) and N„k\t).

We shall assume throughout this section that the sequences {pn} and {pnk) }

(k=l, 2) satisfy (1.02) and that n\pn\ =0(| P„\), n\p?\ = 0(\P„k)\). All
{pn} and {pnk)} used in our theorems satisfy these conditions.

Since \Dk{t)\ g/fe + 1/2, it follows from (2.04) that(3)

(3.01)

Also from (2.04) we have

(3.02)

In the same way from (2.10) we obtain

(3.03)

K„(t, u) I g An2,

KJt, u) I ̂  AI tu,

Nn\t) \=An,

n = 1, all /, u.

0 < t, U ^ T.

n = 1, all *, & = 1, 2.

In order to obtain further estimates for the kernels we need to estimate

%(t) and      (/). We put

(3.04) Pn \ — fn, Pn =  Z r*, o,   f„ = yj I />* - p*-i I»

and introduce the step functions

(3.05) r(u) = rM,      R(u) = RM,      V(u) = Vlu],

where [u] as usual denotes the largest integer less than or equal to u. Let us

note that by (1.02)

(3.06) -Pn = ^  £ I Pk ! = Rn = E I Pk \= A I Pn

Proceeding as on p. 768 of the paper of Hille and Tamarkin [4] and noting

that t~lr{\/t) =AR(l/t) we have

(3.07)      \%(t)\ =a[r (—} + —\rn + Vn-V (—YI1 ,
{  VI /     t L \t/j) n

k d   t    k \

Vi = ijlje^^—l Ee'" ,
i-o dt \ j_o )

^ t <
3ir

If we set

(3.08)

(3) Here and in the sequel the letter A denotes an absolute constant. The constant need

not be the same at every occurrence.
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then for l/n£t£tor/2 we have \ tUi | = An (k = 0, 1, 2, • • • , n). Using this
fact and proceeding as in proving (3.07) we get

(3.09) +     + i^is
3x

2

Then for /, u>0, \/n^t + u = J>ir/2, \ t — u\ äl/nwe have

(3.10)

km, u)\^^—{r f—-1—) + [f„ + U„ - Ulf——)~]
Rju {   \t + u}    t + u L \t + u/J

+ R(. I t - «l) ~*~ I t - u\[*""    Vn w|)]}

Mt-la
22„(«! + w) l   V *-« /

, An
km, u) I

\t — u\\_ \t + m/J;

Relation (3.10) follows from (2.07) and (3.07); (3.11) follows from (2.08),
(3.07) and (3.09) if we note that KM, u) = Kn(u, t) and that t + u = 2t in case

t — u= 1/w.

Analogously to (3.04) and (3.05) we can define rf, Rf, r<*>(«),

R(k)(u), Vik)(u) and obtain an estimate for l^'Wl similar to (3.07). Then

from (2.12) we have

(3.12) i N?\t) i &A{ Mn\\t) + Mnt\t) + Mn\\t)}, l/n £ t% *, k - 1, 2,

where

(3.13)

Estimating $»(/) and ^^(O as on p. 767 of the paper of Hille and

Tamarkin [4] we obtain from (2.07) and (2.12), respectively,

(3.14) \Kn(t,u) \ ^ {A(5)/Rn}{V„ + rn},

0 < 8 ^ t, u = ir, t + u = 2ir - 8, \t — u\=8,

(3.15) \Nnk\i)\ S {A(8)/Rnk)}{V„k)+ rnk)],     0 < 6 g * 'sr, i - 1, 2,

where ^4(5) depends only on 5.

Finally we consider the (C, 1) kernel K\{t, u) which is a special case

of KM, u) when pn = l. In case n=l, 0 = t^ir, O^m^tt/2 or 0£t£v/2,
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tt/2 ^M^irwe shall show that

I Kn(t, u) I =
(l + »«/S/»/a)(l +w3/2M3/2)

(3.16)
^4«2

+
[1 + «3'2 I / - u |3'2] [1 + rc3'2^ + «)3'2]

the positive square root being taken in all cases. Since pn = l, we have rn = 1,

Pn = i?„ = «+1, i/„ = 0 (w = 0, 1, 2, • • • ). Then, from (3.01), (3.02), (3.10) and
(3.11) we have, respectively,

(3.17) I Kl(t, u) I = An, n = 1, all t,«,

(3.18) I #„(*, w) I ̂  AItu, 0</, »£ *,

,    i       , ^ ^4       \ 1 3x
(3.19) | £„(*,«) |    —-- + —i-r — St + u^—,

ntu(t + u)     ntu \ t — u \ I n 2

■   i       . A (  , .1
(3.20) \Kn(t,u)\^--;- )   \t — u\= —> t, u > 0.

I t — u I (t + u) I n

Let D\ be the part of the domain under consideration in which t — 2/n,u = 2/n,

Ds that part in which t>2/n, u = \/n, Dt the part in which O^t — u^l/n,

t>2/n, u>\/n, Z?6 the part in which t>2/n, l/n<u^t/2, Ds the part in

which t>2/n, t/2<u<t — \/n, and D$, D$, Dt, D$ the domains symmetric to

Ds, D4, D6, Ds, respectively. Then (3.16) follows from (3.17) in Du from (3.20)

in D2, from (3.18) in D4, and from (3.19) in Z>6 and Z?8. It follows in D3, D5

D-i, D9 by symmetry. Thus (3.16) is completely established.

4. Preliminary lemmas. The following lemmas concerning the Nörlund

coefficients pn and P„ will be useful.

Lemma 1. // YZ-Mpk-pk-i\=0(\Pn\), then n\pn\ = 0(\P„|) and

£Z-o|p*| =0(| P„|).

Lemma 2. If nJJ;.^\pk-pt-x| = 0(| P„|), thenn = 0{\ Pn\) andj^l,i\Pt\/k
= 0(|P„|).

It is clear that the hypothesis of Lemma 2 implies that of Lemma 1. These

lemmas follow easily from the relations

pk = (k + i)pk + - pi),

pk = pn + E (pi-i - pi),      k - 0, 1, 2, • • • , n - 1.
i-k+l

We may also easily establish the following analogue of Abel's partial sum

formula.
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Lemma 3. Let {ajk}, {bjk} be two sequences. Let

Al0<I;4 = O-jk — Gj+l.k, Aoiöji = a.jk — ö;',fc+l, AllO-ik ' AoiAioöji.

Similarly define Ai0iV> Aoibjk, kiibjk- Then

m.n m.n m

31   ajkAnbjk =   31   bjkAnaj-i,k-i — 31 °id^ioOj-i.d-i
3=c,k=d j=c,k=d i=c

(4.01)
+ 31 ^/.n+l^lOlj'-l,» —  31 bck^Oiac-l,k-l

j=c k=d

n

-f" 31 bm+l.kAoiQ-m.k—l + O-c-l.d-lbcd
k-d

am,d—lbm+l,d       ac—l,nbc,n+X ~T~ "m»S«+l,n+l'

5. Local results making use of square partial sums. Our first theorem ex-

tends the result of Grünwald [2 ] in two directions and also includes his result.

Theorem 1. Let Np be a regular Nörlund method of summability satisfying

the condition

n— 1

(5.01) 31 O - *) I Pi - Pk-A = o(| Pn\ )•
k=l

Then at any point (x, y) such that

J» h /» k
dt I    I (t>xV(t, u)\ du = o(kk),

o      •' o

(5.02)
C h    Ck\      /t - u   t + u\

$*(A, k) = I   dt \    \<bzy(-, -)
Jo     Jo   \      \ 21'2      2i'2 /

du = o(hk)

as h, k—+0 simultaneously but independently, the sequence {snn(x, y\f)} is sum-

mable Np tof(x, y).

It should be noted that the second condition on the function at (x, y) is

similar to the first. The first is applied to rectangles along the axes, the second

to rectangles along the bisectors of the angles between the axes. The factors

2~i/2 are not essential, but are introduced for convenience.

Proof. A regular Nörlund method Np includes (C, 1) if(4)

71-1

(5.03) n I po I + 31 (» - k) I pk - pk-i I < -4 I Pn I •
fc=l

Hence if Np satisfies (5.01) and is regular, then it includes (C, 1). Thus it

(*) See, for example, Hille and Tamarkin [4, p. 782].
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suffices to prove the theorem for (C, 1). Let t„(x, y; /) denote the (C, 1) trans-

form of the sequence {snn(x, y;f)}. From (2.05) we have

u)dtdu(5.04) tn(x, y;f) - f(x, y) = f   f <pxM, u)Kn{t,
Jo   J 0

where Kln(t, u) is given by (2.04) with p„ = l. Fix (x, y).

Given e>0 we can choose 5 such that 0<5<ir/4 and such that

(5.05) i $(/,, k) i < e i hk i, i **(/t, *) i < e| ää|, forO < | h\, \ k\ = 28.

Suppose n>2/8. Let B,= [0, tt; 0, tt]- [0, 5; 0, 5]. Then

tl(x, y; f) - f(x, y) \ £ J + JJ ) [        «)£*(*, «0 i
(5.06)

Then by (3.16)

/i = An2f f
J o o

0    ^ 0

= /l + a

I «^i»^, «) i dtdu

0    J0   (1 + «3/2/3/2)(l + «3/2M3'2)

<j>xy(t, u) i dtdu

' o   [1 + w3'2 i t - u is'2] [1 4- W3'2(j + m)3'2]

P      A     t    C C
+ An2 I     I y———-,.„ir, .—rrrr :——r =     + Ji

J n   •/ n

Integrating /u twice by parts and applying (5.05) we get

,4w2e<52     An7l28e rs u3'2du

' J n«353       »3/253'2J0 (1 + ra3'2«3'2)2

n« tzi2u3l2dtdu

j0    " 0   (1 + W3/2/3/2)2(l + W3/2M3'2)2

But
/*8       w3'2^ /• !'n     /"5      11       1   rs   du 3

Jo  (1 + n*iW2)2 ~ Jo    + Ji/n~ n n3'2+ n3J 1/n w3'2 = n5'2

Hence, since n8>2, we easily obtain Jn — At. Applying the transformation

t = 2~ll2(t' — u'), u = 2~ll2(t'-\-u') to Ji» and proceeding as above we get

JugAe. Thus J1 = Ae.

Next let Bi be that part of Bs in which t=8, u^8'< 5/4, B2 the domain

symmetric to Bi, B3 that part of Bs in which 11,— u\ — 5', Bi the rest of Bs.

Clearly Bi-B3 = B2-B3 = 0 since 5'<5/4. In Bx + B2 + B3 we have \K\{t, u)\

^/(35/4)2. This follows from (3.20) in 5i+52 and from (3.18) in B3. Since

4>Xy(t, u) is integrable we can choose 5' depending only on 5 (and hence on e),

0 < 8' < 5/4, such that

(5.07) II i <bxy(t, u)K~l(t, u) i dtdu < t.
J J Bl+B^+B3
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Fixing 5', we see that, on account of (3.14), K\{t, u)—>0 uniformly in Bt. Thus

for all sufficiently large n we have J2 <2eand consequently | t\{x, y;/) —f(x, y) \

fsiAe. That is, t\{x, y; f)—*f(x, y) as n—» °o. This completes the proof of the

theorem.

Corollary 1.1. Let Np be a regular Nörlund method of summability satis-

fying (5.01). Then Np applied to the square partial sums of the double Fourier

series possesses the localization property.

For iff vanishes in a neighborhood of (x, y), <pxy{t, u) satisfies (5.02).

Before showing that (5.01) is also partly necessary in order that Np ap-

plied to the square partial sums should possess the localization property we

prove the following lemma.

Lemma 4. Let Np be a regular Nörlund method of summability with pn — Q,

pn non-increasing, pi<po, w/P„-^°° as n^x. Suppose 0<8<tt. Let

E= [ — it, tt; — tt, it] —( — 8, 8; —8, 8). Then there exists N>0 such that

(5.08) ess sup | Kn{t, u) \ > An/P„, all n > N, A > 0.
U,u) G E

Proof. From (2.04) we have

Kn(T, 6) = — X pn-k-\{- r)k{k + i)
TT'Fn lc-0

( — 1)" " (— 1)" 2

2iriPn *-0 27t2P„ i_0

= Ji - u

Since pn is non-increasing we have immediately \ Ji\ ^n(p0—pi)/2ir2Pn.

If we set Wk =    i_n( — lV7'. then | JF*|      and we easily get

E (- D4^ E ^(^ - f *+0 + wnpn

n

= X i» g p..

fl-1

Hence | J2\ ^ 1/27t2. But we can choose N>0 such that n/P„>2/(p0 — pi) for

all n>N. Then for n>Nwe find |-£„("-. 0) | ^|/,| -| J2\ ^n(p0-pi)/4-ir2Pn

= An/Pn, A >0. But P. is closed and for each n, Kn(t, u) is continuous. Thus

(5.08) follows.

Theorem 2. Let Np be a regular Nörlund method of summability with pn 0,

pn non-increasing, pi<po, n/Pn~^ 00 as ra—>oo. Then there exists f vanishing in

a neighborhood of (0, 0) such that lim supn^M | tn(0, 0;/) I = 4- 00.
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Proof. Let E= [ — it, it; —it, it] — {— b, b; —8, 8), 0<5<ir. Consider the

class of functions/GL[ — tt, it; —it, it] which vanish in (—5, 5; —5, 5), that

is, the class of functions/GL(£). Then

(5.09) tn(0, 0; /) = jJ j% u)KM, u)dtdu = Tn(f)

defines a linear functional on the space L(E) with norm

(5.10) || Tn\\ = ess sup I Kn(t, u) |.
(t, a) e e

Now suppose that the conclusion of our theorem does not hold. Then for

every/GL(£), lim supn-.«, | Tn{j) \ < °o. By a well known theorem of Banach

and Steinhaus(s) it follows that ||P„|| —M< <*> for all n. Thus by (5.10) and

(5.08) we have An/Pn = M, A>0, for all n>N. This contradicts the hypothe-

sis.

Corollary 2.1. Let Np be a regular Nörlund method of summability with

pn^O, pn non-increasing, p\<pt,. Then (5.01) is necessary as well as sufficient

for Np applied to the square partial sums of the double Fourier series to possess

the localization property.

Proof. To prove the necessity we first note that n/Pn is non-decreasing

since pn is non-increasing. Then in order that Np applied to the square partial

sums should possess the localization property^we must have n/Pn bounded

by Theorem 2. The condition (5.01) is an immediate consequence of this.

The case in which pn = 0, pn non-increasing, is especially important as it

includes Cesäro (C, a), 0 <a = 1. Because of the simplicity of the result in this

case we state it separately.

Corollary 2.2. Under the hypotheses of Corollary 2.1, a necessary and suffi-

cient condition that Np applied to the square partial sums of the double Fourier

series should possess the localization property is n = 0(P„).

From this it follows that (C, a) applied to the square partial sums pos-

sesses the localization property if and only if a= 1. Thus Grünwald's [2] re-

sult is the best possible in the sense that it cannot be extended to (C, a), a < 1.

6. Local properties of restricted summability. We turn now to restricted

double Nörlund summability of the rectangular partial sums of the double

Fourier series. The results are similar to those in §5.

Theorem 3. Let Np be a double Nörlund method of summability satisfying

the conditions

(6.01) n-±\ pT - p% I =Ö(| P™ I), * - 1, 2.
i—l

(6) See, for example, Banach [l, p. 80].
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Then at any point (x, y) such that

/> k /» k
dt I    I <pxM, u)\du = o(hk)

o Jo

as h, k—*Q simultaneously but independently, a(J) is restrictedly summable Np

tof(x, y).

Proof. Let X^ 1 be any fixed number. It suffices to show that tmn(x, y;f)

~~y) as m< n~>0° m such a manner that m/n = \, »/jra=X. Fix (x, y).

Given €>0, we can choose 5 >0 such that 1/5 is an integer greater than 2 and

such that

(6.03) $(h, k) < ehk,

whenever 0<h, k^8. Then from (2.11) we obtain

i    J S J 0    J h J i    J 0

(6.04) +J  J ^ I 4>XM, «)Nm\i)Nn 1 («) I dudt

= Ji + Jt + ft + /*

On account of Lemma 1, the estimates of §3 may be applied here. From

(3.15), (6.01) and Lemma 1 we have that N^(t)Nn2)(u)~^0 uniformly in

[5, tt; 5, ir]. Thus J\ is small for all sufficiently large m and n. If m/n=\,

n/m=\ we see from (3.03), (3.15), (6.01) and Lemma 1 that N% (t) (u)

is bounded in the domains of integration of J2 and .TV Thus we can find 5'

such that 0< 5' < 5 and so small that

( Jo  JT + /,'/')' *xv(t' W"®1**^*) I dudt

is uniformly small. In the remainder of the domains of integration of J2

and J3, A7^)(/)A7„2)(w)^0 uniformly and thus J2+J3 is small for all sufficiently

large m and n such that m/n ^\,n/m=\. Thus we can find iV0> 1 /5 such that

Ji-\-Ji+J3<Ae if m, n>N0, m/n^\, n/m—\. In the following we suppose

m,n> N0. Then

a»l/m     /» 1 / n        /» 5       /» 1 / 71        /» 1 / m     /» 5

J        + J J        +J J0 v 0 •> 1/m •' 0 «' 0 1/n

(6.05) + f     f ^ I *x»(/, tf)iV»)0)iV„S)(») I dudt
J l/m •/ 1/n/

= -^41 + -^42 + •/« + Ja.
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Then from (3.03) and (6.03) we have at once J4i^Ae. Also by (3.03) and

(3.12) we have

du j     i <f>xM, u) i \Mill{t) + M[]l(t) + Mmkt)\dt
a J l/m

1 2 3
= ^42 + ^42 + J 42-

Then from (3.13)

m-l     /.1/n        n l/l \ / 1 \

J42 = AnYl,   I     du j \<t>xv(t,u)\-Ra)[ — )dt
m

An   r^;1 C1)       /I 1\

.,„•{ £ *(-,-)[o--n)^,-x']
F(1)   1   j_i/S       \J »/

+ — i?".*lf«, —- mJ?")*('—, — )\
8 \   n / \m    n))

At  ( ^\   R-'l+jr-+l w\
= -rj^7<)  1^ -:-\-Ri/i> ■

But by Lemma 2 and (3.06) we get

(6.„7)     £ S 2 r» + 2 2 £2 S ̂ 1".       * - 1, 2.
i-1/ä J )=i/6 3-i/J J + 1

Thus J]^ = At. Substituting from (3.13) in J^, integrating twice by parts and

using Lemma 1 we have J% = At. Again from (3.13) we have

j'« =AnY.   (''"du C"    |0„(/,„)|_J_\v«  - VW(—\]dt

An
E(; + i)V:,,-F:iv(i,i)

R^   i=l/5 \J »/

F^l) l,=i/5  \; «/

_L   1   CT/(1) T/(1)

0*

»i*.p >w, ,„k:.»-v!v/i,;»-,si

,)4('ä,i)_„V.,,-i'"-.)*(-.1)l

s^{E^i(Fl"_K«.) + l(,..._CtM)}.
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But by (3.06) and (6.01)

E^(C-rD^3 E E I P.k) - p*\\
i-l/t       J j=l/S s=j+l

= 3   2^    2^ I P> «-i

(6.08)
«-<l/o) + l j-1/5

^3   E - =Si4Ä» , *= 1,2.
»-(l/«) + l

Likewise

(6.09) - (V™- r{ä_0 ^ WE I ̂  - p% \£AR?,       k - 1, 2,

Thus J^^^le. Substituting in (6.06) we have J^^-^e. In the same way

Ji3 = Ae. Turning now to Ju we have by (3.12)

Ju ̂  A f   dt f   I <j>xu(t, u) I {Mm\\t) + M%(t) + JfS(<)}
l/m 1/n

(6.10) • {Mn\\u) + Ml*i\u) + M„l\u)}du
9

=  E -^44-
J-l

We now show that J^ — At (j = 1, 2, 3, • • • , 9) as was done with the J1^. For

example, let us take J±\. Then from (3.13)

/« = i  L ^1 *xV(f,«) - F„   - F    —) \du

Applying Lemma 3 and dropping clearly negative terms we obtain

Ar™ f*-1^-1   /J_ JA

■ (2j + 1) [(2* + l)(Fi2) - V?) - k21 p? - pZ I

+ E  *(-, «V (2; + 1)1 (Ff - 7w»_0

+ E I"— *f5> — / - ™^(—> —S)\

+

.[iik + mT-v^-k^pT-pZA]

l(Fn2)- vZ-r)mv + mV(y? - vZ)*(-' l)\
54 \w n/l



1942] DOUBLE FOURIER SERIES 85

Again dropping those terms which are negative and applying (6.03), (6.01),

(6.08), (6.09) and Lemma 1 we obtain Jii = Ae. Altogether, then, Ji4 = Ae.

Combining our estimates in (6.05) and (6.04) we have | tmn(x, y;f)—f(x, y)|

SAt if m, n >No, m/n^X, n/m±=\. This completes the proof of the theorem.

Corollary 3.1. Let Np be a double Nörlund method of summability satisfy-

ing (6.01). Then restricted Np summability possesses the localization property.

Before showing (6.01) is also partly necessary in order that restricted Np

possess the localization property we prove the following lemma.

Lemma 5. Let Np be a double Nörlund method of summability with p^^Q,

p^n non-increasing (k = l, 2). Then

(6.11)       I Ni%) I ̂  (plk) - tF)f2*P?,    I ivf J(0) I = n/2ir,   k = 1,2.

Proof. From (2.10) we have

n     ' n

The first inequality of (6.11) follows immediately. Also from (2.10)

*?m = ~ ±    + » - ±+£in - j)pT
ttPw ,=o 27t     irFik) j=o

n     ' n

l l= - + —l- T pw
2t    7tP<*> ~i '

Thus

(6.i2) |iVfW|^_J_gp<;>.

But since P^' is non-decreasing we have {P^-^IoPf ^n and thus

0 = B-w2Lpt =7^2:(Pn -p. )-t^E 2./.

1    »     w       1    " _(*)       1   "a1 (*)

or
2 5>r

Substituting this in (6.12) we obtain the second inequality of (6.11).

Theorem 4. Let Np be a double Nörlund method of summability with pnK) ̂ 0,
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p„*] non-increasing (k = l, 2). Suppose pi)<p<o>, w/P^—>« as n—><x> fork=l

or 2 or both. Then there exists f vanishing in a neighborhood of (0, 0) such that

lim supn,„ I tnn(0, 0; /) I = + «>.

The proof is analogous to that of Theorem 2, using Lemma 5 instead of

Lemma 4. '

As in §5 we may prove the following corollaries:

Corollary 4.1. Let Np be a double Nörlund method of summability with

pnt]=0, p„k) non-increasing, pf <pf] (k = l, 2). Then (6.01) is necessary as

well as sufficient in order that restricted Np possess the localization property.

Corollary 4.2. Under the hypotheses of Corollary 4.1, necessary and suffi-

cient conditions that restricted Np summability should possess the localization

property are » = 0(PB*)) (k = l, 2).

It follows that restricted (C, a, ß) possesses the localization property if

and only if aS: 1, ß}z 1.

7. Preliminary lemmas for almost everywhere results. We turn now to

the study of methods of summability which sum the double Fourier series al-

most everywhere. The results are generalizations and extensions of those due

to Marcinkiewicz and Zygmund [5, 6] and Grünwald [3]. The proofs are

based on those given by Marcinkiewicz and Zygmund. We shall require the

following lemmas.

Lemma 6. Let a be any fixed positive number. For (x, y) belonging to the

square Q [ — it, it; — it, tt], we write

1       pah /» h

(7.01) f*a(x, y)   = sup-—       du      \f(x + t,y + u)\ dt,
h   Iah1 j _aä    j _h

** l   rah    rh 1 /    t — u      t + u\
(7.02) /. (*, y) = sup — j_Ju j_  /(* +        , y + —) dt

where the number h is so small that the rectangles over which the integrals are

taken are contained in Q' [ — 2tt, 2tt; —2tt, 2it\. Let

•   e.*(0 = e [/!(*, y) > Ii,   er«) = e [fT(x, y) > ?j
(x,»)

for any |>0. Then

I       I    A r * r * . .
(7.03) „      <- \ f(x, y)\ dxdy.

I c"« \i) \ s " —xJ -x

In the case of f*(x, y) the proof was given by Marcinkiewicz and Zygmund

[6]. For the case oif**{x, y) the proof can be carried through in the same way.
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Lemma 7. Let a be any fixed positive number. For (x, y) belonging to the

square Q [ — it, it; — tt, tt], we write

(7.04) f*\x, y) = sup (/*»(*, y)-2'a^),       for s = 0, ± 1, ± 2, • • • ,
t

(7.05) f**\x, y) = sup (f**(x, y)-2_°'"), for s = 0, + 1, + 2, • • • .

We write

e*»(Ö =  E [/*•(*, y) > el,     £**«($) = £ [/**•(*, y) >
(x,i/) (*.»)

/or any £ > 0. PAew

I £*"(£) I    .4(a) /•» r * , ,

where A (a) depends only on a.

The proof is similar to that given by Marcinkiewicz and Zygmund for

their Lemma 3 [6].

Lemma 8. Suppose Pn — 0, Pn non-decreasing, a 2:0. Then the condition

•   Pk ( n\a

(7.07) E —( T)=0(Pn)

is equivalent to the condition

Ti-l

(7.08) XiV-2-<»~*> =0(iV).
fc=0

Proof. Suppose (7.08) is satisfied. Let j be an integer such that 2'5S« <2'+1.

Then

+ . . .

" Pk/n\"

El  *A*/     fel 2*\2*/     2*+l \2*+ 1/

P^  /     n-   VI + £ £l/l)

i—i / 2'+i\<>
^ E -) 4-Pn-2-'-2'-2«

m        \ 2" )

i-l

= 22" E P2*-'2«('-*) 4- 22°P2> + 0(P„)

= O(P20 + 0(P») = 0(P„)

showing (7.07) to be satisfied. The proof of the converse is similar.
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8. Lemma for restricted Nörlund summability. Before proving our first

result on almost everywhere summability we need a lemma.

Lemma 9. Let Np be a double Nörlund method of summability. Suppose there

exists a constant a > 0 such that

(8.01)

and

p?
(8.02) £ -^-A-i(-) =0(\plk)\), k - 1, 2.

:=l J

Let X — 1 be any fixed number. Let

(8.03)   hx(x, yj) = sup  f    f   | f{x + t, y + u)N™{f)N»\<tt) \ dtdu
m.rt       — 7t     —it

wherem, n = l, m/n=\, n/m^\. Then for any £>0

A(a)\<*
(8.04) £ {[(*.y)GQ][*x(*,y;y) >«]]

(*,*)
J   J    I/O- y)|d*dy

where A(a) depends only on a.

Proof. If (8.01) and (8.02) hold for anya = ao>0, then they also hold for

all a such that 0 = a ^ a0. Hence we may suppose that 0 <a < 1.

Let/ k be integers such that 2> = m<2'+1, 2k = n<2k+1. Also let m/n = X,

n/m=\. Then 2l'-*l^2X. Let

*        c' rT tu   (2) I
«».(1;, y) = I     I    \ f(x + t, y + u)Nm (t)Nn (u) I dtdu

Jo Jo

a* T2   '      /* 17 n T f* 7r2   k f* 77 p Tt

/x2        /» ir2    \ •

J      J I /(* + /, y + u)Nm (t)N« («) I <Z«<ft

= P/»(x, y) + (?/»(*, 3O + Rjh(x, y) + S,*(*, y).

On account of Lemma 1, the estimates of §3 may be applied. Then from

(3.03) and (3.12) we haye

Am k^ r f        I /(* + <, y + u) I

Rn '   r=oJo J i2-'-l U

By (7.01) and (7.04) the rth term of the sum on the right does not exceed
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r { „(2) / 2r+1\ r f"  (2) (2)
2 Ir   I ——J + 2 I r; + F™. - V

/t2-' i-2~r
dt \       \f(x + t,y + u)\ du

(8.06)
'w2-'jAmi-' ( (2)

S -< jftV -2
i?<2>

+ 2r+o,-i[,r + Fr-F(2)(^)]}Ax> y).

In order to sum these terms we shall need the following:

(8.07) £^'',-2o(^) ZAR$\ i - 1,2,
r=0

*—1

(8.08) Tj 2r+aU_r> ^ ^2*.

r-0

(8.09) £ 2r+a(fc-r) [F„2> - F(2> (^)] ^ AM?'.

To prove (8.07) we apply (3.06) to (8.02) and make use of Lemma 8. (8.08)

is immediate. For (8.09) we first note that

r-0,1,
„Ii)        T,(2)/2r\        Tr<2)        A,     (2) (2) ,
F„  -V   (— ) = F„  = 2J I p,   -      I,

F„   — F   I —) ^ F„   - F   (2   ) =    X)   \p.   - p,_, I,

r = 2, 3, 4, 1.

Substituting in the left side of (8.09), reversing the order of the summations

and denoting the greatest integer less than or equal to 2 + log2 (s — 1) by g(s),

we have

|V+at4-r)[Fr-F(2)(-)]

*±\p?-&\'Er(2) (2) I ^r+a(fc-r)   ,    ^ ,„afc   ,    /,l+o(ft-l)N ,     (2) (2)

s    - Ps-l I 2^
«—2 r-2 «=1

/f|     (2) (2)     2<l-<"<»U)+n - 1 „* (2) (2)
= 2   yj I p.   - p..!-+ 2  (1 + 2    )\p1   - p0

«=2 21-"1 - 1

l-a I     (2) (2).    .   a r-i   i— a I     1.2) (.2) I

S An 2^S    I #>.   - fV-i|

Then (8.09) follows from (8.01).
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Summing (8.06) from r = 0 to k — \, considering separately the cases j = k

and j<&, and using (8.07)-(8.09) we get

(8.10) Pik(x, y) = A\"f*"(x, y).

In the same way we obtain

(8.11) Qik(x,y)=A\"f*"(x,y).

Next from (3.12) we have

Rik{x, y)    A Z»
r,s=0

where

Zrs = f     dt f       I /(* + t,y + u)\ {if^(0 + Mmi(t) + Milkt)}
J jr2-r-1      J tt2-s-1

• {M% («) + Afg («) + M(f3) («)}<*«.

Each term of this sum consists of 9 parts each of which may be summed by

making use of (8.07)-(8.09) and the analogue of (8.09). For example, let us

consider that part arising from M^Ki)(u). The general term in this sum

does not exceed

A «+<.|r-.|    (1) f    (2)        „(2)/2\~| ,*<>, v

Considering the case j ä; k we have

s=0      L \ 7T / J 1. r_o r=s J

s=0       L \ 7T / J r_o

+ 2U~k) g 2s+o(t-sTF„2) - F<2)(-)1 g^2

s-0 L \ X / J r=o

a   (1) (2)

^      Rm Rn .

The case k>j can be treated similarly. Thus it follows that

(8.12) Rjk(x, y) ^ A]\"f*'(x, y).

Finally by (3.03)
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(8.13)
Sjk(x, y) ^ Amn rv -2-*

f(x + t, y + u) \ du

g y4ww-2-'-4+al)'-il/*''(x, y) g ^X0/*^*, y).

Combining (8.10)-(8.13) we see that t*n{x, y) ^A\"f*a(x, y). But the integral

on the right in (8.03) is the sum of four integrals, all analogous to tmn{x, y).

Thus h\(x, y;f) ^A\af*a(x, y). (8.04) now follows directly from Lemma 7.

9. Restricted Nörlund summability almost everywhere. We are now ready

to prove our first theorem on almost everywhere summability.

Theorem 5. Let Np be a double Nörlund method of summability. Suppose

there exists a constant a>0 such that (8.01) and (8.02) are satisfied. Then a(J)

is restrictly summable Np almost everywhere to f.

Proof. This theorem follows immediately from Lemma 9. It suffices to

make a decomposition/=/i+/2 where /i is a trigonometrical polynomial and

/2 is such that

E { \Mx,y)\ >5}

and
(.x.y)

< s,

E {lim sup I tmn(x, y; /2)| > S]
(*■»)

< 5

(m/w^X, n/m^\, X^l any fixed number), where 5 is a fixed positive

number as small as we please. Since tmn(x, y; fi)—>fi(x, y) it follows that

lim sup I tmn(x, y;/) —fix, y) \ where m, n—>» in such a manner that w/« — X,

n/m^ \ does not exceed 25 except on a set of measure less than 25. This com-

pletes the proof of the theorem.

The result of Marcinkiewicz and Zygmund [ö], namely that <r(/) is re-

strictedly summable (C, a, ß), a, ß>0, almost everywhere to/, follows im-

mediately from Theorem 5.

10. Lemma for square partial sums. Turning now to the almost every-

where summability of the square partial sums we require the following lemma.

Lemma 10. Let Np be a regular Nörlund method of summability. Suppose

there exists a constant a > 0 such that

(10.01)

and

(10.02)

" / n\a

Y,j\p,-Pi-i\(j) =o(| p.|)

PA (n

>-i   ;   \ 3(t)'=
0(1 Pn I).
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Let

I f(x + t, y + u)Kn(t, u) I dtdu.

Then for any £ > 0

(10.04)   1  "  ,r' -*r'~       " - 1£ {[(*,y) eel [**(*. y;/) >{]} < ■/'JT|/(*,y)|i*iy

a/Aere ^ (a) depends only on a.

Proof. As in Lemma 9 we may suppose 0 <a < 1. Let k be an integer such

that 2h^n<2k+1. Let L> be the part of Q (-ir, tt; —*, tt) in which *, m^O.

Let D(0> be the part of Q in which t, u>ir/2. Divide L>-D(0) into 9 domains

-D^' (t = l, 2, 3, ■ • • , 9) as in the proof of (3.16), the only difference being that

in all the inequalities defining the regions 1/n is replaced by 7r2~*-1. We shall

evaluate separately the integrals

(10.05)

A™ = f f    I /(* + '. * + M) I » = 1, 2, 3, • ■ ■ , 9,
j J D(«

p

^<0) = I I     I /(x + /, y + u)KM, u) I (ftaw.
J   J £)<0)

This may be done by methods similar to those used in the evaluation of

Pjk(x, y) and so on in Lemma 9. First of all from (3.01), (7.01) and (7.04)

we get

(10.06) A? Ik Af*\x, y).

In we note that u^t/2, t-u^t/2^w2-k~1>l/n, l/n^t + u^2t. Apply-

ing (3.11) and using the relations (8.07)-(8.09) we easily get

(10.07) AT g Af*\x, y).

In Dki}, t^u^t/2, t + u^2t^.4u. Applying (3.02) and making the transforma-

tion t = 2-u2(t'-u'), u = 2-1'2(t' + u') we have

Ak   ^AY,! du / H-, y-\-)\t-2dt

r0         c'21rt I /     t - u       t + u\ I
+ A du / H-» yH-)U

By (7.02) and (7.05) and taking account of (8.08) we have

(10.08) A? * Af**\x, y).

Ht.
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In Df\ u^t/2, t-u^t/2^7r2-k-l>l/n, l/»g*4-« = 2<. In Df, t-u^l/n,
t^u^t/2, l/n^t+u^2t^4:U. Then by (3.10) we have

where

RnJJDm+Dw tu {   \t/    t \_ \2t/A)

.a rr Jyw^rhOl < /2 m|
RnJ J D«) tu {    \ t /      t L V / / JJ

^ rr I /(»+«.,+.) 11 /jx       +y>_ /^n>
RnJJD(<s) (t+u)2 {    \t-u/    t-u L V-M/J)

Now it is clear that

I ( • • •        ^ E E I       du I       ( ■ • ■ )«,
./ J JjW+D«) 8=1 twO J lr2_,_1        J t2~'~1

/» /• A:   «—X   /» ir2_* /» 7r2—>■

II    ( • • ■ )dtdu ^ E E I       <*« I       ( • • •
J D<?> s=l r=0 J i2 ' 1        J j-2-^1

Using these facts and (8.07)-(8.09) we find that Ji + Ji£Af*"(x, y). Trans-

forming J3 by the substitution t = 2~w{t'-u'), u = 2~ll2{t' + u'), noting that

/» p k+l a—1    /» — it2-*-l /» T2-'-

I   (• • • )dt'du' ̂  E E I      ov      (• • •
J J DM 8=1 r=0 J-7r2~* ^ x2~r_1

/— 7T/4 /• 1-21/2

aV I       ( • • • )aV,
-T/2 T

and using (8.07)-(8.09) we find that Js^Af**°(x, y). Thus

(10.09) A? +AT S A{/"(*, y) + /**°(x, y)}.

Considering now the symmetric domains we have also

(10.10) A? + A? + AT + AT ^ A [f\x, y) + r\x, y) ).

In Z><°>, t, u>w/2. Applying (3.02), (7.01) and (7.04) we get

(10.11) A«» g Af*°(x, y).

Combining (10.06)-(10.11) and noting that Q is the sum of four domains like

D we have

(10.12) h*(x, y;f) fS A {/*•(*, y) +/"•(*, y)}.
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(10.04) now follows immediately from Lemma 7.

11. Summability of the square partial sums almost everywhere.

Theorem 6. Let N p be a regular Nörlund method of summability. Suppose

there exists a constant a >0 such that (10.01) and (10.02) are satisfied. Then the

sequence {snn(x, y;f) \ is summable Np almost everywhere tof(x, y).

Proof. This theorem follows immediately from Lemma 10 just as Theorem

5 follows from Lemma 9.

We easily obtain the following corollary of Theorem 6.

Corollary 6.1. The sequence {snn(x, y;f)} is summable (C, a), a>0, al-

most everywhere tof(x, y).

In conclusion let us note that conditions (5.02) and (6.02) do not in gen-

eral hold almost everywhere. Hence it was not possible to deduce any results

concerning almost everywhere summability from Theorems 1 and 3. However

(C, a) applied to the square partial sums of the double Fourier series is effec-

tive almost everywhere if a > 0 but possesses the localization property if and

only if a—1. Also restricted (C, a, ß) summability of the double Fourier series

is effective almost everywhere if a, ß>0, but possesses the localization prop-

erty if and only if aS: 1, j3_ 1.
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