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Introduction. The examination of the foundations of geometry which in-

terested many prominent mathematicians about the turn of the century

brought to light the importance of the fundamental notion of betweenness

(see, for example^), [10, ll]). This notion has suffered the treatment which

modern mathematics metes out to all its concepts, namely, first an examina-

tion of the concept in a particular instance followed by wider and wider gen-

eralizations. The first part of this program for the concept of betweenness was

carried through by Pasch, Huntington and Kline [8, 10]. The simplicity of

the concept permitted them to give an elegant and complete theory for the

case of linear order. In the direction of generalizations^), K. Menger and his

students have been one of the most important influences in the study of be-

tweenness in metric spaces [9, 3].

We purpose here to add to both phases of this program. The first part of

our paper continues the analysis of Huntington and Kline into an examina-

tion of postulates involving five points; the second part deals mainly with a

definition of betweenness in lattices which generalizes metric betweenness in

metric lattices (see [5, 6]). It is hoped that the five point transitivities may

prove interesting and their analysis valuable. If we restrict our attention to

the relation of betweenness in linear order such cannot be the case since four

point properties are then sufficient to describe completely the betweenness

relation. We feel that the results of the second part exhibit the properties of

the betweenness relation as reflections of properties of the underlying space(3).

We shall use the notations of set theory which have become standard. In

the second part we shall assume a knowledge of the fundamentals of both

lattice theory and metric geometry. We refer the reader to the recent books

Distance Geometry by L. M. Blumen thai [3] and Lattice Theory by Garrett

Birkhoff [l]. We shall use the terminology and notation of these books in

the second part.

Presented to the Society, May 2, 1941; received by the editors June 11, 1941.

0) The numbers enclosed in brackets refer to the list of references at the end of the paper.

(2) The ckordal systems recently introduced by W. Kaplan (Duke Mathematical Journal,

vol. 7 (1940), pp. 165-167) are a generalization of linear order involving two triadic relations.

(3) The oft-quoted remark of K. Menger that Postulate B of Huntington and Kline should

not be regarded as a property of betweenness but as a property of the underlying space [9, p. 79;

3, p. 36] indicates that it is easy to lose sight of this fact.
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Part I

We shall extend the discussion of an abstract relation of "betweenness"

initiated by Pasch [10] and developed by Huntington and Kline [8] by re-

laxing some of the fundamental postulates of Huntington and Kline and by

considering other possible postulates, particularly transitivities on five points.

1. Fundamental assumptions. WeconsiderasetiTofpointsa,6,c',<f,x, • • •,

and a triadic relation called betweenness, which holds (is positive) or fails (is

negative) for each ordered triple of points, not necessarily distinct, in K. If

the relation holds for the triple a, b, c, we write abc, read as written or as

ub is between a and c." We make the following assumptions throughout

Part I.

a. abc if and only if cba (symmetry in the end points).

ß. abc and acb if and only if b = c (closure).

Postulate a is Postulate A of Huntington and Kline [8]. Postulate ß is

similar to their Postulate C. Postulates a and ß together imply the statements

(1) and (2) below.

(1) aba if and only if a =b.
(2) Every two positive relations on three points {not necessarily distinct) are

equivalent or inconsistent.

We do not assume that of an unordered triple of points one is between

the other two (Postulate B of Huntington and Kline). In this respect our de-

velopment will differ materially from theirs. This difference is essential be-

cause our interest lies in applications to lattices and metric spaces where B

fails for very simple examples. We have replaced their Postulate D which re-

quires that the three points of a linear triple be pairwise distinct by ß because

we wish our five point transitivities to specialize under identification of two

points to four point transitivities. This change, though logically necessary, is

essentially only a change in terminology.
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2. Four point transitivities. The statements about four points in which

two positive relations of betweenness imply a third, which are theorems about

linear order, and from which no hypothesis can be deleted leaving an equiva-

lent statement, will be termed strong transitivities on four points. They are as

follows.

h- abc ■ adb^dbc.

h. abc adb—^adc.

t3. abc bed b^c—^abd.

These are postulates (3), (2), and (1), respectively, of Huntington and Kline

and are completely discussed by them. We shall need the fact that the only

implication among the three is: "h •h—^h" [8, p. 321 ].

3. Weak transitivities on four points. The statements concerning four

points in which three distinct positive relations of betweenness imply a fourth,

which are theorems about linear order, and from which no hypothesis may be

deleted leaving an equivalent statement, will be termed weak transitivities on

four points. They are as follows.

ti. abc ■ adb ■ adc-^dbc.

t2. abc adb dbc-^adc.

Theorem 3.1. The statements Ti and ri are the only weak transitivities on

four points. The implications h—>n,     >tj hold.

Proof. The second assertion is trivial. In order to prove the first assertion,

we first observe that no two relations in hypothesis or conclusion of such a

statement involve the same three letters by virtue of condition (2) of §1.

Next, there are four ways of selecting unordered triples from four letters.

Let abc be the first hypothesis and a, b, d be the letters in the second. Since

a, b, d or b, c, d must occur in one hypothesis, it is always possible to achieve

this situation by renaming the points. The second hypothesis is then one of

the three, (1) dab, (2) adb, or (3) abd. The third hypothesis is on the points

(i) b, c, d or (ii) a, c, d. We examine the possible relations on the three letters

in one of the sets (i), (ii) with (1), (2), or (3) for consistency with linear order;

we then examine the other one of the sets (i), (ii) for a conclusion of a theorem

about linear order. In the eight cases we have:

Third hypothesis Conclusion

(1)
(1)
(2)

(2)
(3)
(3)
(3)

(3)

(i)
(ii)
(i)

(ii)
(i)
(i)

(ii)
(ii)

bed

acd

dbc

adc

bed

bde

acd

adc

acd

bed

adc

dbc

acd

adc

bed

bde
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It is readily seen that these eight theorems reduce to two on suitable per-

mutations of the letters of the letters of the hypotheses and conclusions. These

two are ti and t2. This completes the proof.

From this discussion of weak transitivities on four points it is apparent

that an attempt at a weaker statement about four points with four or more

hypotheses and one conclusion must contain two hypotheses or a hypothesis

and a conclusion identical under a or a hypothesis or conclusion true under ß.

4. Five point transitivities. The statements concerning five points in which

three positive relations of betweenness imply a fourth, which are theorems

about linear order, and from which no hypothesis can be deleted leaving an

equivalent statement, will be termed strong transitivities on five points. They

are as follows.

■ xdb b 5* d ■tv
Tt.
Tt.
Tt.
Tt.
tv
Tt.
tv
7v
tv.

• bcx ■ b

■xcd • c

■xcd

abc ■adb

abc ■adb

abc -adb

abc -dab

abc ■adc ■bxd

abc •adb ■acx

abc ■abd ■ cxd

abc ■ dab ■ xcd ■ a

abc dab xcd - a

abc ■ abd ■ xbc ■ a

9* C

* d

*b-
*b-
j*bb

* xdc.

■ dcx.

* acx.

> abx.

* axe

*dcx.

► abx.

- acx.

■ bcx.

^ c- xbd.

r12.

r13.

tv.
tv.
tv.
tv.
tv.
tv.
tv.
tv.
tv.
tv.
Tu-

tv.
tv.
tv.
tv.
tv.

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

abc

■adc

■adc

■adb

■adb

■adb

■adb
■adb
■adb

■adb

■adb

■adb
■adb
■adb
■adb

■adb

■adb

■adb

■adb

■adb

*b
*b
*b

■xab ■

•xab

■xab

■xac

•xac

■xac

■acx

■acx

■xad

■xad

■xad

■bxc

■bxc

■ bcx b     c ■

■ bcx b ^ c ■

■ bdx b d
■ xcd c 5* d ■

• xcd c 9^ d -

■xcd

■a d

■a d
■a 9+ d

> xad.

► xdc.

* xdc.

'rxad.

*xdb.

* xdc.

> adx.

>dbx.

>xac.

► xbc.

>xdc.

>adx.

>dbx.
■ adx.

■ dbx.
> xbc.

■ abx.

■ adx.

► dbx.
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r30. abc ■ adb ■ xcd —»bcx.

T3i. abc-adb-cxd —>axc.

T32. abcadbcxd -^adx.

Tzz- abcadb-cdx -^xbc.

Tu- abcadbcdx —*xdb.

r35- abc ■ dab ■ adx a ?± b - a ?± d —* xac.

r36. abc dab - adx a t6 b a 9* d —>xbc.

T37. abc dab - xcd - a p6 b —> dax.

Tzz. abc ■ dab ■ xcd - a    b —> dbx.

Theorem 4.1. The statements Tx~Tu are a complete list of strong transitivities

on five points.

Proof. In order to effect this enumeration we reason as follows. One letter

in the three hypotheses must occur only once since there are nine places to

be filled with five letters. We shall denote this letter (or one such if there are

more) by x and agree that it occurs in the third hypothesis. Then the first

two hypotheses are on four letters with two letters in common. Letting abc

be the first hypothesis and d the remaining letter, we see that the second

hypothesis must be on the letters (i) a, c, d or (ii) a, b, d; the case b, c, d

reduces to a, b, d on interchange of a and c, which by virtue of a does not

change abc. Calling a and c in abc terminal and b medial, we see that the lat-

ters common to the first and second hypotheses must fall under one of the

following cases:

L each letter terminal in both hypotheses;

II. one letter terminal in both; one letter medial once (say in the first)

and terminal once;

III. one letter terminal in both; one medial in both;

IV. each letter terminal once and medial once.

Possible pairs of hypotheses to fill the first two places are then

A. abc and adc, C. abc and abd,

B. abc and adb, D. abc and dab.

On examination one will find that we have used the pairs I (i), II (ii), III (ii),

and IV (ii). The pairs I (ii), II (i), III (i), and IV (i) are incompatible with

linear order. With any of the pairs A, B, C, D we can use a third hypothesis on

Every letter which occurs only once in the hypotheses must occur in the con-

clusion. For, if we had a theorem about linear order for which this were false,

(4.1)
(1) a, b, x,

(4)   b, c, x,

(2) a, c, x,

(5)   b, d, x,

(3) a, d, x,

(6)   c, d, x.
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we would obtain an equivalent one by dropping the hypothesis containing the

letter; and we have agreed not to consider statements with this property.

In the six subcases (l)-(6) under A we can use a conclusion on

In the six subcases (l)-(6) under B, C, or D we can use a conclusion on

We proceed then to an examination of cases according to the following plan.

With each pair A, B, C, D we inspect the three arrangements of the letters

in the six cases of (4.1) to see whether they are consistent with linear order.

With each consistent arrangement we inspect each of the three arrangements

of letters in the corresponding set of (4.2) and (4.3) to determine whether a

theorem in linear order is obtained. The work is shortened by examining each

set of three hypotheses as we proceed to see whether it has already occurred

under some permutation of the letters; this examination is facilitated by ap-

plying the classification scheme I-IV to the three pairs of hypotheses.

This procedure yields the transitivities T\-T3i though not in that order,

and the proof is complete.

The reader will observe that the program initiated in the determination

of the transitivities T\, t2, and T\-T3i could be extended to include transitivi-

ties with more hypotheses and more letters. We shall not do this.

5. Selection of fundamental five point transitivities. Each of the transi-

tivities Tn-Tzs is equivalent to a combination of the transitivities ti, t2, h. We

shall state and prove these facts in the following form

Tu. ~. tftt [o=c; c=d. abc, xab (t3) xac, adc (h) xad.]

We mean that Tn is equivalent to h and t3; that h is proved by identifying b

and c; that h is proved by identifying c and d; that Tn is proved from h and t3

by applying t3 to abc and xab to obtain xac, and by applying t\ to xac and adc

to obtain xad. We use a and ß freely without explicit reference. Whenever

we use h the letters common to the two hypotheses are distinct as required.

(4.2)

(1) or (4) a, d, x; b, d, x; c, d, x.

(2) b, d, x.

(3) a, b, x; b, c, x; b, d, x.

(5) a, b, x; a, c, x; a, d, x; b, c, x; c, d, x.

(6) a, b, x; b, c, x; b, d, x.

(4.3)

(1) c, d, x.

(2) or (4) a, d, x; b, d, x; c, d, x.

(3) or (5) a, c, x; b, c, x; c, d, x.

(6) a, b, x; a, c, x; a, d, x; b, c, x; b, d, x.
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T».
Tu.

Tu.

Tu.

Tu.

Tis.

T19.

Tw.

Tn.
T22.

T23.

r24.

r26.

T2e.

T21.

T2%.

T2g.

T30.

Tn.
T32.

T33.

r34.

T35.

T3S.

T3t.

Tag.

h-h [b = c\ a—d. abc, xab (t3) xac, ade (h) xdc. ]

hh [b = c; a=d. abc, adb (h) ade; abc, xab (h) xac, ade (h) xdc]

t\ [b=c. abc, xac (ti) xab, adb (ti) xad.]

hh [a—d;b = c. abc, xac (ti) xab, adb (t2) xdb.]

ti [a=x. abc, adb (h) ade, xac (t2) xdc]

h [c=x. abc, adb (h) ade, aex (t2) adx.]

h-h [b=c; a=d. abc, aex (t2) abx, adb (ti) dbx.]

h [b = c. adb, xad (h) xab, abc (t3) xac]

h [b=d. adb, xad (h) xab, abc (t3) xbc]

h-h [a=x; b=c. abc, adb (t2) ade, xad (t3) xdc]

hh [b=d; c=x. abc, bxc (ti) abx, adb (t2) adx.]

h [a=d. abc, adb (h) dbc, bxc (ti) dbx.]

h-h [c=x; b=d. abc, bex (t3) abx, adb (t2) adx.]

t\-t3 [c=x; a=d. abc, bex (t3) abx, adb (ti) dbx.]

hh [d=x; a=d. abc, adb (ti) dbc, bdx (t3) xbc]

hh [a=d; b = c. abc, adb (t2) ade, dex (h) aex, abc (t2) abx.]

h-h [c=x; b=c. abc, adb (h) ade, xcd (h) adx.]

hh [c = x; a=d. abc, adb (ti) dbc, xcd (h) dbx.]

h [a=d. abc, adb (ti) dbc, xcd (h) bex.]

t2 [b = c. abc, adb (t2) ade, cxd (t2) axe]

h-t2 [b=c; c=x. abc, adb (t2) ade, cxd (ti) adx.]

h-h [d=x; a = d. abc, adb (ti) dbc, cdx (h) xbc]

h [a=d. abc, adb (ti) dbc, cdx (h) xdb.]

h [b = c. abc, dab (h) cad, adx (h) xac]

h [d =x. dab, adx (h) xab, abc (h) xbc]

h-h [b = c; c = x. abc, dab (h) dac, xcd (h) dax.]

h-h [a=d; c=x. abc, dab (h) dbc, xcd (h) dbx.]

We summarize the results of this section in the following theorem.

Theorem 5. Each of the transitivities Tu-T3s is equivalent to a combination

of the transitivities h, h, and t3.

6. The logical relations among the fundamental strong transitivities.

None of the transitivities T\-Tw is equivalent to a combination of the transi-

tivities h, h, h. We shall devote this section and the following one to a proof

of this fact. In addition we shall construct the essentials of a complete existen-

tial theory of t\-h, Ti-Ti0. The basic implications are given in this section.

We use the notation explained in §5.

h h~~* Ti-^t2-h [abc, adb (ti) dbc, xdb (h) xdc. a=x; a=d.]

h-tt—* T2—>t3 [abc, adb (t2) adc; abc, bcx (t3) acx, adc (ti) dcx. a=d.]

h-h~+ T3—^ t3 [abc, adb (t2) adc, xcd (t3) acx. b = c]
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tvh~* Tt-^fa-fa [abc, dab (fa) dbc, xcd (fa) dbx, dab (ti) abx. b = c; a=d.]
Te-+ti [a = b.]

h-tt—* T6—>fa [abc, adb (fa) adc, acx (fa) dcx. b=c]
T7-+h [b=d.]

ti'h—* Ts^>h [abc, dab (t3) dac, xcd (fa) acx. b=c]

h-t»—* Tg —*fa [abc, dab (t3) dbc, xcd (ti) bcx. a=d.\

It is apparent that when two letters of a statement TVTio are identified,

the resulting statement is either a tautology or is equivalent to one of the

statements tu fa, fa, t\ or t2. We may see that we cannot thus obtain either t\

or t2 as follows. Notice that the hypotheses of both Ti and t2 contain one letter

three times and three letters twice and that the conclusion of each is on these

latter three letters. Suppose that an identification of two letters leads to ti

or t%. Then x must be identified with some letter because it occurs only once

in the hypotheses of each of T"i-T"io. Since x always appears in the conclusions

of 7i-Z"io, the letter to be identified with x can occur only once in the hy-

potheses. It must then also occur in the conclusion along with x. By virtue

of ß the conclusion is then either vacuous or implies still further identification.

This contradicts our assumption that one of the statements ti or t2 appears

on identifying two letters.

The above list of implications includes all nontautological results obtained by

identifying two letters. This fact will be useful in simplifying the examination

of the table of examples to be given in §7.

In the proofs of the following implications, the results of the preceding

implications are used.

Ti—* T6 [abc, adb (fa) dbc, adb, acx, dj^b (T3) dcx.

If d = b then abc, acx (fa) dcx.}

T"8—> 7\ [abc, dab, xcd, ar^b (Ts) acx, abc (fa) bcx.]

7V 7^9 —* T3 [abc, dab, xcd (Ti) abx; abc, dab, xcd, a^b (T$) bcx; abx, bcx

(ti) acx.]

TV 7\ —> Ts [abc, dab, xcd, a^b (T9) bcx, dab, xcd (Ti) xca.]

fa-Ts-^ Ti [abc, dab, xcd, aj^b (Ts) acx, abc (fa) abx. If a = b, 7"4 is true.]

h-Tj—* r6 [abc, adb (ti) dbc; abc, acx (fa) bcx, acx, adb (Ti) dcx.}

fa■ fa■ Tio —> Ti [abc, adb (fa) adc, adb, xdb, a^d, by^d (Tm>) xdc.
If a=d, abc, xab (t3) xdc]

We shall devote the next section to the proof of the following theorem.

Theorem 6. The implications listed in this section are the only ones holding

among the statements fa-t3, Ti-Tm-

Remark. It seems to be worth mentioning that fa ■ fa -fa —> T\, Ti, T3, T4, Tn,

Ts, T9; but that h-h-t3 does not imply Ti, Tt, or 7'io (for proof see §7). We are

of the opinion that the interest of a five point transitivity varies inversely
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as its logical intimacy with h, t2, and t3. Viewed in this light, Ti0 is surely the

most interesting—but we still lack a "concrete" interpretation for it.

7. The examples in the existential theory. We shall complete the existen-

tial theory begun in §6. We have attempted to make our list of examples as

simple as possible through the use of composite examples. No attempt has

been made to make the number of points in each example the least possible

[14, p. 250].
The following elementary examples will be used in the table which con-

cludes this section. In each of the examples the positive relations are those

listed together with the ones which follow from a and ß. In the first four ex-

amples the class K consists of four distinct points, while in the remaining

examples K consists of five distinct points. Certain of these examples are

merely the statement of the hypotheses of one of the transitivities. We indi-

cate this by giving the example the same number as the transitivity, replacing

tby k, t by k and T by K.

k\.   abc adb.

k3.   abc dab.

«1.   abc adb adc.

k2.   abc adb dbc.

K3.   abc adb xcd.

KA.   abc dab xcd.

K5.   abc adc bxd.

K7.   abc abd cxd.

K10. abc abd xbc.

El.   abc dab xcd abx.

E2.    abc dab xcd bcx.

E3.   abc dab xcd acx bcx.

£4.    abc adb acx dbc bcx.

E5.    abc adb bcx adc acx abx adx.

E6.   abc adb xdb adc.

El.    abc adb bcx abx acx.

The following table of examples completes our existential theory. In entry

4 we take as the space K the points a, b, c, d, x, a', 6', c', d', x' with the posi-

tive relations of example K5 on the points a, b, c, d, x, the positive relations of

example K7 on the points a', b', c', d', x', and the other positive relations re-

quired by ß. Each case in which the example column contains more than one

entry is to be treated similarly. We have made no column for Ti0. It will be

found to hold in each of our examples except 32-35, where it must fail because

of the implication h fa - Tio—»TV Tosecure the example corresponding to those

listed in which J"i0 fails we simply adjoin K10 to the example listed.
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Ti T,

+     +     +     +     +     +     +     +     +     +     + +
+

+
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+
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+
+

+
+

+
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-     - + + +
+ -
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+

+

+

+

+

+ + + +
+ - -
- + +

+ - -
- - +

+
+
+
+
+

+
+

+ +

+ +
- +

- +

Example

Linear order

K7
K5
K5, K7

k3
El
k3,K7
El, K7
K4
E2
Kl, K7
as in 5-11

with K5
E3
K1, k2

E3, K7
E2, k2

-ST4, K7, k2

£4
£4, K4

(1
kI, KS

E5
E5, K5
E6
E6, KS
E5, E6
ES, E6, K5

«1, ki
kI, k3, KS

kl

K3
E7
E7, K3

kl, k3

* In these places arrange + and — signs as in the entries 5-11.

Part II

We shall devote the remainder of this paper to the study of a generaliza-

tion of metric betweenness in metric lattices, and to the application of the

transitivities of Part I both to this relation and to the relation of betweenness

in semi metric, metric, and metric ptolemaic spaces.
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8. Lattice betweenness. Glivenko [5, 6] proved that in a metric lattice

an element 6 is (metrically) between the elements a and c if and only if

(8.1) (a n b) \J (b r\ c) = 6 = (aWft)n (bVJc).

This condition does not involve the metric and we take it as our definition (4)

of betweenness in an arbitrary lattice L. When b is between a and c we shall

frequently write simply abc. We shall need the simple and fundamental prop-

erties of this relation given in the following two lemmas(5).

Lemma 8.1. If L is a lattice and a, b, c^L, then

(1) the inequalities a^b^c imply that the relation abc holds;

(2) the relation abc implies that aC\c^b f^aVJc;

(3) both aC\c and aWc are between a and c.

Proof. (1) If a^b^c, then (afU)VJ(önc) = aVJb = b = br\c = (a\Jb)

P\(oWc). By our definition, abc; and (1) is proved.

(2) If abc, then br\(aC\c) = (a\Jb)f~\(bVJc)n(ar\c) =af~\c. It follows that

aC\cikb. Dually, b^a^Jc. This proves (2).

(3) Note that (an(aVJc))\J((a\Jc)nc) =aWc, and also that (oU(oUc))

r\((oUc)Uc) =a\Jc By definition, sUc is between a and c. Dually, af\c is

between a and c. This proves (3).

Lemma 8.2. If L is a lattice then its betweenness relation satisfies a and ß.

Proof, (a) This is an immediate consequence of the commutativity of the

operations a(~\b and aKJb in lattices.

iß) Let L be a lattice containing elements a, b, c for which the relations abc

and acb hold. We then have b = (a\Jb)r\(byJc) and c = {a\Jc)C\(c\Jb), and

hence br\c = (a\Jb)r\(bVJc)r\(c^Ja). Consequently,

br\ c ^ (a\j b) r\ (bu c) r\ b = b ^ br\ c,

jnc^cn(iUc)n(cW(i)=c^iric.

It follows that b(~\c=b =c. To prove the converse we must show that aac is

valid in lattices for every pair of elements a, c. It is easily seen that

(aC\a)\J iaC\c) =aU(sAc) =a. Using duality we see by the definition that'the

relation aac holds. The proof is complete.

In addition to these fundamental properties, we now show that lattice be-

tweenness possesses the five point transitivity T$.

Theorem 8.1. If Lis a lattice then its betweenness relation satisfies the transi-

tivity T6.

(4) G. Birkhoff [l, p. 9] also gives a definition of betweenness which applies to partially

ordered sets and which has all the transitivities of Part I.

(6) We may also note that abc holds if and only if aC~\c^b^aKJc and (a, b, c)D (see J. von

Neuman, Continuous Geometries, Princeton Lecture Notes, 1936-1937; and Lemma 10.1 below).
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Proof. Let I be a lattice and consider elements a, b, c, d, x£L for which

the relations abc, adb, and acx hold. We wish to show that dcx is true. We

prove first that (dr\c)\J(cC\x) =c. Notice that c = (ar\c)\J (c(~\x); and, by

Lemma 8.1 (2), thatöHcgo, and aC\b^d. It follows that a(~\c^ar\b Sd. We

obtain
(d n c) \j (c n x) = (d n ((a n c) u (c n *))) u (c n x)

^ {dr\af\c)VJ {dC\cC\ x)^J {cC\ x)

^ {a.r\c)VJ {df\cr\ x)\J {cC\ x)

^ (a r\ c) KJ (c n x)

^ c ^ (dr\c)VJ (cC\ x).

Consequently, {dC\c)\J(c(~\x) =c. Dually, (^Uc)n(cU^) =c. By definition,

we have dcx. The proof is complete.

Corollary. The transitivities fa and t\ are valid for the betweenness relation

in every lattice.

Proof. This is a trivial result of the implications Te—*fa—>ti.

9. Interpretations of certain of the five point transitivities for lattice be-

tweenness. Glivenko [5] showed that a metric lattice is distributive if and

only if its (metric) betweenness relation has the transitivity which we have

labeled TV We shall extend this result to lattice betweenness in this section.

We shall also prove that both P4 and T7 ■ fa are equivalent to the distributive

law; that each of the transitivities fa and r2 is equivalent to the modular law;

and that each one of the postulates fa, T\, T2, and T3 holds if and only if the

lattice is linearly ordered. The remaining transitivities do not seem to have

important lattice-theoretic interpretations. We shall verify that each of them

fails in the Boolean algebra of eight elements.

Our first theorem gives the interpretation of the transitivity fa.

Theorem 9.1. a lattice l is modular if and only if its betweenness relation

satisfies the transitivity t2.

Proof. Consider first a modular lattice l containing elements a, b, c, d for

which the relations abc and adb hold. We wish to establish the relation adc.

Note that (anö)U(or*;) =0, (afV)U(dC\b) =d, and, by Lemma 8.1 (2), that

aC\c^b, and aCMf-^d. We then obtain d = (aPid)U\dC\b) = (aP\d)U
(dr\((ar\b)\J(br\c))). Using the modular law, since aC\b^d, we find that

d = (a n d) U (a Pi 6) W (d f\ b H c)

= (a n d) kj (d n 6 r\ c)

^ {aC\d)\J {dC\c) ^ d.

Hence d = {af~\d)\J {dr\c). Dually, d = (ayJd)C\(d\Jc). Consequently, the rela-

tion adc is valid. Thus the modular law implies the transitivity fa. Conversely,
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the transitivity fa implies the modular law. To see this, let I be a lattice

whose betweenness satisfies fa. If L is non-modular it must contain the sim-

plest non-modular lattice of five elements shown in Figure 9.1 as a sublattice.

Fig. 9.1

Note that, by Lemma 8.1 (3), the relation abc holds in L since b=a\Jc; and

that the relation adb holds in L by Lemma 8.1 (1). But if the relation adc

is true, then (aH\d)yJ(dr\c) =d. However, we see from Figure 9.1 that

(a,r\d)\J\dr\c) =a,9+d. Thus the transitivity fa fails in L. This is contrary to

our hypothesis. It follows that the lattice L is modular. The proof is complete.

A similar result holds for the transitivity t2.

Theorem 9.2. If L is a lattice, then its betweenness relation satisfies the

transitivity t2 if and only if L is modular.

Proof. If L is a modular lattice, it is clear from the implication fa—»r2 and

Theorem 9.1 that t2 is valid for the betweenness of L. On the other hand, if t2

holds then the lattice must be modular. Otherwise a sublattice such as we

have pictured in Figure 9.1 exists. In it we have shown, in the proof of Theo-

rem 9.1, that the relations abc and adb are true and that the relation adc is

false. But the relation dbc also holds in the lattice of Figure 9.1, since b =d\Jc.

Hence the hypotheses of the transivity t2 hold in this sublattice (and therefore

also in the lattice itself), but its conclusion fails. This is contrary to the as-

sumption that the transivity r2 holds. Thus the transitivity t2 implies that

the modular law is valid. The proof is complete.

We pass now to a discussion of the transitivity Ts. Our next lemma, on

the road to establishing the equivalence of T& and the distributive law, gives

a relation between Duthie's segments^) and our betweenness.

Lemma 9.1. If L is a lattice then it is distributive if and only if for every

triple a, b, c€ElL the inequalities af~\c gb ga^Jc imply that the relation abc holds.

Proof. Consider a lattice L in which the implication of our lemma holds.

We establish the modular law for L first. Consider three elements a, b, cQ_L

with age. Since aC\b gcP(aWö) gaWö, our hypothesis yields that cP\(aWö)

is between a and b. Whence we have

(6) Duthie defines a segment of a lattice L between two elements a, b (Ei as the set of all

x(z\L satisfying af~\b^x^a\Jb. Our lemma has also been proved by him [4].
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c n (aKJ b) = (a r\ c r\ (aU b))     (c n (aVJ b) C\ b)

= {a n c) U (c r\ b) = aKJ (br\c),

which is the modular law. Now consider elements u, v, w^L. Note that

(mPiii;) ̂  («r\i»)U(iin(MUw)) ^ («Uw). By hypothesis we obtain that

z = {ur\w)yJ{vf~\{u\Jw)) is between u and w. An easy application of the

modular law reduces the conditions that this relation hold to the equations

(urw) yj (vr\ w) vj (wr\ u) = z = o u») r\ (t u w) r\ (wu «).

But this last identity characterizes distributive lattices [l, p. 74]. Conversely,

if L is distributive and a, b, c are three elements of L for which aC\c^b gaWc,

then (aPiJ)U(ir\c) =ir\(aUc) = i, and dually. Thus the relation abc holds.

This completes the proof.

We continue with the proof that Ts is equivalent to the distributive law.

Theorem 9.3. If L is a lattice, then its betweenness relation has the transi-

tivity Ts if and only if L is distributive.

Proof. Consider a lattice L whose betweenness relation satisfies 7V By

Lemma 9.1, L will be distributive provided the relation abc holds for every

triple a, b, c(ElL such that aPic ;£ ö rgaUc. Hence consider elements a, b, c^L

for which af^c^b^a^Jc. By Lemma 8.1 (2), b is between oAc and a\Jc. By

Lemma 8.1 (3), we know that both a!~\c and a\Jc are between a and c. Appli-

cation of the transitivity T6 then yields the fact that b is between a and c.

Thus the validity of the transitivity PP implies the distributive law by Lemma

9.1. Conversely, if L is distributive and the relations abc, adc, and bxd hold

for elements a, b, c, d, x£L, then, using Lemma 8.1 (2), we obtain

ar\cSbr\d-^x^b\JdSa\Jc.

Since L is distributive, it then follows from Lemma 9.1 that 6 is between a

and c. Hence the distributive law implies that the transitivity Ts holds in L.

This completes the proof.

Still another form of the distributive law is provided by the postulate P4,

while 7\ is equivalent to the distributive law in modular lattices. The next

three theorems will show this.

Theorem 9:4. If L is a distributive lattice, then its betweenness relation has

the transitivities T4 and 7Y

Proof. Let L be a distributive lattice. We prove first that P4 holds for the

betweenness of L. Consider five elements a, b, c, d, x£L for which the rela-

tions abc, dab, and xcd hold. We wish to prove that the relation abx is valid.

By Lemma 9.1 it is sufficient to show that aPxgogaWx. Lemma 8.1 (2)

yields that aSb^Jd, and that xC\d^c. Hence we find that
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a r\ x g xr\ (b u d) = (x r\ b) yj (x r\ d) g (ini)Uc.

Combining with a we have

a n x ^ a r\ ((x r\ b) yj c) = {a r\ x r\ b) yj (a r\ c) ^ (a n b) \j (b r\ c).

But (ar\b)yj(bC\c) =b, since the relation abc holds. It follows that aP.rgo.

Dually, a\Jx^b. By Lemma 9.1 and the fact that L is distributive we then

know that the relation abx is valid. Thus the transitivity 7"4 is valid in dis-

tributive lattices.

To prove that 7\ holds for the betweenness relation of a distributive lat-

tice L, consider five elements a, b, c, d, jc£Z for which the relations abc, abd,

and cxd hold. We wish to show that we have the relation abx. By Lemma 8.1

(2), we know that a(~\c go, af~\d^b, and that xgcUd. Combining the last in-

equality with a, we find that af~\x SaC\{c\Jd) = (ar\c)yj(a(~\d) go. Dually,

a^Jx^b. It follows from Lemma 9.1 that the relation abx is true. Thus 7\

is valid in distributive lattices. The proof is complete.

Theorem 9.5. If L is a lattice whose betweenness relation has the transitiv-

ity Ti, then L is distributive.

Proof. The implication Ti~^t2, proved in §6, together with the result of

Theorem 9.1 shows that if P4 holds for lattice betweenness in a lattice L

then L is modular. It is well known [l, p. 75] that every modular non-dis-

Fig. 9.2

tributive lattice contains a copy of the simplest modular non-distributive

lattice shown in Figure 9.2 as a sublattice. Thus if P4 were to hold for lattice

betweenness in a non-distributive lattice L it would hold in the lattice of

Figure 9.2. In this lattice we have the relations abc, dab, and xcd since a<b<c,

a = bC\d, and c = dVJx. But abx would require that (aP\ö)U(oAx) = b, while

actually (ar\b)yj(br\x) -a\Ja=a^b. Thus P4 fails in this lattice. It follows

that the transitivity P4 for lattice betweenness implies that the lattice is dis-

tributive. The proof is complete.

Theorem 9.6. If L is a modular lattice whose betweenness relation satisfies

the transitivity P7 then L is distributive.

Proof. Since L is modular it can fail to be distributive only if it has a sub-

lattice of the type shown in Figure 9.2. If we reletter the elements of this
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lattice, putting a' =b, b' — a, c' =x, a" =d, and x' = c, we may verify easily that

the relations a'b'c', a'b'd', and c'x'd' hold since b' =a'T\c'', b'=aT\d', and

x'=c'\Jd'. If T7 held we should have (o'\Jb')r\(b'KJx')=b', while in fact

ry u v) n {V w *') = a' r\x' = a' ^ v.

Thus TV fails for L. It follows that a modular lattice L cannot fail to be dis-

tributive when TV holds. The proof is complete.

Remark. An examination of the lattice of Figure 9.1 will show that the

result of Theorem 9.6 cannot be extended to non-modular lattices.

Our next theorem discusses the transitivities T\, T2, T3, and t3.

Theorem 9.7. If L is a lattice then its betweenness relation has one of the

transitivities 7\, T2, T3, t3 if and only if L is linearly ordered.

Proof. Since the transitivities cited obviously hold in a linear order and

since each of them implies t3, it will suffice to show that the betweenness rela-

tion of a lattice satisfies t3 only if the lattice is a linear order. Hence let L be

a lattice whose betweenness relation satisfies t3. Consider two elements a, b G.L.

Suppose that none of the relations a<b, a>b, a = b holds. Then clearly

aSJb^a and aCSb^a. Note that a(~\b<a<aSJb. By Lemma 8.1 (1), we find

that a is between aSJb and a(~\b. By Lemma 8.1 (3), aV)b is between a and b.

The transitivity t3 then yields the fact that a is between aC\b and b. It fol-

lows that

a = (b C\ a) U (a C\ (a H 6)) = (a H b) W (a H b) = a H b,

contrary to the fact that af^br^a. Thus, if t3 holds for the betweenness of L

no pair of elements of L can be incomparable. This means that L is linearly

ordered. The proof is complete.

Fig. 9.3 Fig. 9.4

We now show that each of the remaining transitivities, namely, Tg, P9,

and Pio, fail to hold in the Boolean algebra of eight elements. To see that

Pio fails note that in Figure 9.3 we have abc, abd, xbc, and bxd since a<b<c,

aC\d<b<a^Jd, c<b<x, and x = b^Jd; but if xbd also held then ß would re-

quire that x = b. Figure 9.4 provides a counterexample for Ts and TV Using

Lemma 8.1, we see that we have abc, dab, and xcd since a<b<c, a=d(~\b,
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and c=dKJx. But hex is false since b\Jx = x, which does not contain c; and acx

is false since a\Jx = x.

Let us summarize the results of this section and the preceding one in a

theorem.

Theorem 9.8. If Lis a lattice then its betweenness relation has the transitivi-

ties T6, h, and t\; it has each of the transitivities t2 and t2 if and only if L is modu-

lar ; it has each of the transitivities T4 and Tr, if and only if L is distributive; it

has the transitivity T7 if and only if L is distributive provided that L is modular;

and it has each of the transitivities t3, Ti, T2, and T3 if and only if L is linearly

ordered.

10. Critique of lattice betweenness. A. Wald found a set of properties of

metric betweenness which characterize this relation in metric spaces [13]. We

shall devote this section to a proof of an analogous result for lattice between-

ness. The algebraic structure of lattices permits a slight economy in that we

may characterize our relation of lattice betweenness in the particular lattice

considered, while Wald found it necessary to consider a relation R defined in

every metric space.

The present form of this section is due in large measure to suggestions of

W. R. Transue. He, together with one of us, applies the result in a study of

transitivities of betweenness in metric lattices and their generalizations.

Our result takes the following form.

Theorem 10.1. If L is a lattice and R is a triadic relation defined for all

ordered(7) triples of elements of L, then R is lattice betweenness provided that the

following conditions hold.

(i) R satisfies the postulates (a) and (ß).

(ii) R satisfies the transitivity ti.

(iii) If a go gc, then (a, b, c)R.

(iv) The relations (a, a^Jc, c)R, (a, aC\c, c)R hold for every a, c(zzL.

(v) If the relation abc holds, then in the sublattice generated by a, b, c the

transitivity t2 holds for R.

The properties (i)-(iv) have already been established for lattice between-

ness in Lemmas 8.1 and 8.2 and in the corollary to Theorem 8.1. The follow-

ing lemma justifies the assumption (v).

Lemma 10.1. If L is a lattice and the relation abc holds for three elements

a, b, c(E.L, then the sublattice generated by a, b, c is distributive.

Proof. We shall prove, in fact, that the free lattice [l, p. 22] generated

by three elements a, b, c for which the relation abc is assumed is given in

(') This word "ordered" refers, of course, to the fundamental metamathematical notion of

"ordered" set. This should not be confused with the order relation in the lattice L.
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Figure 10.1. To prove this, let a, b, c be three elements which generate a lat-

Fig. 10.1

tice in which the relation abc holds. We note first that we must then have

b = (aWo)P(oWc). Hence we must also have

((a Wf)n()Ui) = ((a Ui)nc)U ((a W 6) O (* U 6»

= (flUi)A(JUc) = i.

It follows that b^(aKJb)r\c. Consequently, b(~\c ̂  (aW^Plc ^ bC\c, and

hence oP\c = (aWo)P\c. Using this result we see that (b(~\c)\J(aC\c) =

{cr\{aVJb))\J{ar\c) =cC\{aSJb) =b(~\c. Interchange of a and c in these re-

sults and their duals justifies Figure 10.1. It is obvious that the lattice of

Figure 10.1 is distributive since it is the product [l, p. 13 and p. 76] of two

chains of three elements. The proof is complete.

Proof of Theorem 10.1. Consider a lattice L and a triadic relation R de-

fined for all ordered triples of elements of L which satisfies the conditions

(i)-(v) of Theorem 10.1. We prove first that the relation (a, 6, c)R implies

the relation abc. For this implication we need only the conditions (i)-(iv).

Consider three elements a, b, c^L for which the relation (a, b, c)R holds. By

(iv) we have (a, aWo, b)R and (ii) then gives (aWo, b, c)R. Again (iv) gives

(b, b\Jc, c)R and (ii) yields (aWo, b, b\Jc)R. Note that 6 g (aW6)P>(6Wc)
gaWo, and apply (iii) to obtain (o, (aWö)P(öWc), aWö)2?. Combining

this last relation with (aWo, 6, oWc)i? and using (ii) we find that

(oWc, b, (aWo)P(oWc))P. But since b g (aUi)Pi(iUc) 5T oWc, (iii) gives

(b, (oWo)n(öWc), öWc)i?. Using (i) we then obtain b = (aWo)P(6Wc). By

duality, b = (oPo)W(oPc), and we conclude that the relation abc holds Thus

the relation (a, b, c)R implies the relation abc.

We prove next that the relation abc implies the relation (a, b, c)R. For

this implication we do not use the condition (ii). In the proof we shall omit ex-

plicit reference to our use of the condition (i). Let a, b, c be three elements of L

for which the relation abc holds. By Lemma 8.1 (2) we have a gaW6 gaW6Wc

= aWc, and the relations (a, aWoWc, c)R and (a, oWo, aW6Wc)i? then fol-

low from (iv) and (iii) Condition (v) then gives (a, aW6, c)R. Note that

cgoWcgoW6Wc. The relations (c, 6Wc, aW6Wc)P and (c, aWöWc, aWo)i?

then follow from (iii) and (iv). Applying (v) we obtain (c, oWc, aWo)P. Since

abc holds we have 6 = (aWö)P(öWc), and (iv) then gives (öWc, b, aVJb)R.
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Condition (v) then yields (c, b, aWo)i?. Combining this last relation with

(c, aVJo, a)R and using (v) again we find (a, b, c)R, Thus the relation abc im-

plies the relation {a, b, c)R.

Combining the results of the preceding two paragraphs we find that the

relation R holds if and only if lattice betweenness holds, that is, R is the lat-

tice betweenness of L. The proof of Theorem 10.1 is complete.

Remark. It seems unfortunate that our theorem requires the condition

(v). That it is necessary to make some such assumption may be seen by con-

sidering the lattice of Figure 10.1. In this lattice let R be the same as lattice

betweenness except that the relation (a, Ö, c)R does not hold. If we could

prove (a, b, c)R from the assumptions (i)-(iv) of Theorem 10.1, then we

should have to obtain this result from condition (ii) since the conclusions of

(i), (ii), and (iii) cannot apply to a triple (d, e,f) with both d and e and/ and e

not comparable. To obtain (a, b, c)R from (ii) would require hypotheses of

the form (d, b, c)R, (d, a, b)R or of the form (d, b, a)R, (d, c, b)R. But these

sets cannot hold in our example, since if we have id, a, b)R and (d, b, c)R,

then d^a, and dr\bSa^d\Jb. It follows that dVJb=w or u and hence that

df\b = b, contrary to dC\b^a. The other set of hypotheses may be treated

likewise by interchanging a and c. It is possible to give alternatives for the

condition (v) but we shall not consider them here.

11. Betweenness in metric, semi metric, and metric ptolemaic spaces. In

a metric space with distance function 5 one says [3, p. 38] that q is between

the points p and r in case o(p, q)-\-5(q, r) = 8(p, r) and p^q^r. It is evident

that this relation fails to satisfy our condition ß. We suggest that it should be

modified so as to satisfy ß by deleting the condition p^qj^r which requires

that the points p, q, r be pairwise distinct. We shall do this and shall write

pqr for the modified relation, reserving the locution "q is between p and

r" for the usual relation. K. Menger [9] established the transitivities t\

and h for metric betweenness. His famous example of a "railroad" space [9, p.

80] was constructed to prove that the transitivity T& may fail in metric spaces.

For the case of a semi metric space [3, p. 38] O. Taussky found that the weak

transitivity t\ holds for the analogue of metric betweenness. Examples of

semi metric spaces are easily given in which t% fails.

There has recently been some interest in spaces which are metric and

ptolemaic [12, 2], that is, metric spaces in which the three products of the

lengths of opposite sides of every quadrilateral are the sides of some triangle

in the euclidean plane. For such spaces L. M. Blumenthal [2] established the

transitivity ^3. Thus in metric ptolemaic spaces we have immediately the

properties T\-T4, T%, and T$. It is interesting that T5 also holds in such spaces.

We may see this as follows(8). Let a, b, c, d, x be five points of a metric

ptolemaic spac'e which satisfy the relations abc, adc, and bxd. Using the ptole-

(8) Professor Blumenthal has also noted this fact in a letter to one of us. We are indebted

to him for a stimulating correspondence during the preparation of this paper.
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maic inequality(9) we obtain ax ■ bd gao • xd -\-ad ■ xb and cx-bd^bc-xd-\-dc-xb.

Adding these inequalities we find

(11.1)    bd (ax 4- cx) g xd {ab4-be) -\-xb (ad-\-dc) = xdac-\-xb-ac = bd-ac.

If b =d, then by (1) of §1,0 = d=x, and the relation axe is implied by the rela-

tion abc. If by^d, then ax-\-cx=ac from (11.1) and the triangle inequality,

and the relation axe is true. As an example of the use of the relation abc in-

stead of ub is between a and c," let us give the proof of Ts for the second rela-

tion. It will suffice to prove that a^x^c. Suppose that a =x. By hypothesis,

a is then between b and d. The transitivity t3 then gives (a?±b !) that a is be-

tween d and c, which contradicts d between a and c. If x — c, then by hypothe-

sis c is between a and d. The transitivity t3 then gives (b^c!) that c is between

a and d, which contradicts d between a and c.

None of the remaining five points transitivities, namely, 7«, T?, and 7\o.

holds in every metric ptolemaic space. This may be shown by examples of

spaces consisting of five points.
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