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1. Introduction. Various results are known concerning the order of growth

of the first and higher derivatives of Univalent and of bounded functions

analytic in the unit circle, in the plane of the complex variable z. Among

these may be mentioned Koebe's distortion theorem (Verzerrungssatz) in the

Univalent case, and Schwarz's lemma and the results of O. Szasz(') in the

bounded case. A consequence of these results for a function f(z) analytic in

|z[<l is \f'(z) I = 0((1 — I z\)~3) in the case that /(z) is Univalent and

|/(n)(z)| =0((1 — I z|)-*) in the case that/(z) is bounded. Various distortion

theorems for bounded Univalent functions were found by G. Pick and

R. Nevanlinna(2). H. Frazer and more recently M. L. Cartwright have ob-

tained results on the order of growth of p-valent functions(3) in a complete

form.

All these investigations, however, fail to give an adequate description of

the behavior of |/'(z) | (1 — | z|) as | js| —> 1 from the interior of the unit circle

I z\ <1. In the Univalent case an answer to this question is contained in the

following result due to J. E. Littlewood without the precise constant involved

and to A. J. Macintyre(4) in the precise form stated here.

Theorem 1. Letf(z) be analytic and Univalent in | z| < 1 and let it omit there

the value co. Then, in \ z\ <1 the following inequality is satisfied:

(1.1) I/Oöl (1 -|z|2) g 4|«-/0)|.

Theorem 1 is in fact essentially one form of Koebe's distortion theorem,

as we indicate below.

The object of the present paper is to study in some detail the behavior

of expressions of the form |/(p,(z)| (1— |z| )p for various classes of functions

f(z) analytic in the unit circle | z| < 1, especially the behavior as | z \ —>1. We

thus obtain results which can be interpreted as new distortion theorems. In

(») O. Szäsz, Mathematische Zeitschrift, vol. 8 (1920), pp. 303-309.

(2) G. Pick, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienna,

Abteilung IIa, vol. 126 (1917), pp. 247-263; R. Nevanlinna, Översigt af Finska Vetenskaps So-

cietetens Fcrhandlingar, vol. 62 (1919).

(3) M. L. Cartwright, Mathematische Annalen, vol. 111 (1935), pp. 98-118.

(4) J. E. Littlewood, Proceedings of the London Mathematical Society, vol. 23 (1924)

p. 507; A. J. Macintyre, Journal of the London Mathematical Society, vol. 11 (1936), pp. 7-11.
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particular, the expression \f'(z) | (1 — | z \2) is found to be closely connected

with the radius of univalence, which is now to be defined.

Definition 1. Let w=f(z) be analytic in \z\ <1 and let R denote the Rie-

mann configuration^) over the w-plane onto which this function maps the region

\z\ < 1. Let Wo be an arbitrary point, not a branch point, of R. Then the radius

of the largest smooth circle (boundary not included) with center at w0 and wholly

contained in R is called the radius of univalence of R at wo and will be denoted by

Di(wo). At a branch point w0 of R we define Dx(w0) as zero.

In this definition w0 refers to an actual point of R and not merely to any

point of R whose affix is the complex number w0; the notation Di(w0) is thus

not fully explicit. The reader will easily verify that the largest smooth circle

whose existence is asserted in the definition does exist and is unique.

This terminology differs from that of Montel(6), who uses the term modu-

lus of univalence for our radius of univalence. A similar comment applies to

the terminology radius of p-valence which we define in §14.

Explicit inequalities connecting \f'(z) | (1 — | z\2) and Dx(w) are obtained

for the class of functions/(s) Univalent in \z\ <1 in Theorem 3, Chapter I,

for functions/(z) bounded in | z\ < 1 in Theorem 3, Chapter II, and for func-

tions/(z) omitting two values in |z| <1 in Theorems 2 and 4 of Chapter IV.

Analogous to the inequalities connecting |/'(z) | (1 — | z\2) and D\(w) we de-

termine inequalities connecting |/(4)(z)| (1— |z|2)4 for k = l, 2, ■ ■ ■ , p and

Dp(w), where Dp(w) is the radius of the largest ^-sheeted circle with center in

the point w contained in R. For the precise definitions the reader may be

referred to Chapter II, §§13, 14. We obtain such inequalities on higher deriva-

tives for the class of Univalent functions in Theorem 5, Chapter I, for bounded

functions in Theorems 1 and 2 of Chapter III, and for the functions omitting

two values in Theorem 5, Chapter IV. For the detailed analysis of the paper

the reader is referred to the Table of Contents.

Applications of the results just mentioned occur throughout the paper,

particularly in Chapter V.

Chapter I. Univalent functions

2. Preliminary identities. In the sequel we shall make extensive use of a

lemma due to O. Szasz(7).

Lemma 1. Letf(z) be a function analytic in the circle \ z\ <1. Let

(5) We use the term Riemann configuration on which the function w=f(z) regular in

|z| <1 maps the circle |z| <1 to denote that subregion of the Riemann surface of the inverse

function of w=f(z) which corresponds to the circle |z| <1.

(6) LeQons sur les Fonctions Univalentes ou Multivalents, Paris, 1933, pp. 22 and 110.

(7) O. Szäsz, Mathematische Zeitschrift, vol. 8 (1920), pp. 306-307.
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Then g(f) is a function regular in | f | < 1 for every value of z in \z\ < 1 and

(i-|«h-   ...   gU)(Q) , n   _g(-1)(Q) , „ .2g(-2,(0)
/(»>(Z) = -;-|-Cn_i,iZ--— + C„_i,2S2-

(2.2) »! n! '   (n-1)! ' (n-2)

+ • • • +z»-lg'(0).

We omit the proof of Lemma 1 and proceed to the proof of

Lemma 2. Let f(z) be a function analytic in the circle \ z\ <1. Let

git) -/(—)■
\1 + zf/

Then, for every fixed value of zin \ z\ < 1, g(D is a function of f regular in \ f | < 1,

and

g(»)(0)     (l - I 2 |*)»/(->(a) (1 - I z\i)n-lfn-^(z)
- =-Cn-l.lZ-

«! «! (w — 1)!

(2.3) 2(1 -|z|2)-Y<"-2>(z)
+ C„_i,2z2-

(n - 2)1

+ (- l)->f*-Kl - |z|2)/'(z).

Let us write equation (2.2) for « = & and allow k to assume the values

1, 2, • • • , ra:

(1-|z|2)V(t)(z) gw(0) ^»-»(O) , „ ,g(t-2)(0)
~-h C«:_i,iZ-(- G-1.2Z -

(2.4) £! fc! (£ - 1)! (* - 2)!

+ • • ■ + z*-V(0).

Let us proceed similarly with (2.3):

g<*>(0)    (l - I s|2)y«=>(2)        _ (1 - I z\2)k-lfk-»(z)
-= -■ — Ck-i,\z-

k\ k\ (fc-1)!

(2.5) (1 -|z|2)*-2/^-2'(z)+ cw-(J^Wi-

+ (- - I z|2)/'(z).

The lemma will be proved if it can be shown that (2.5) is obtained from (2.4)

by solving the latter system for glk)(0)/kl {k = \, 2, ■ ■ ■ , n). To do that it

suffices to prove that the matrix of the coefficients of (2.4),
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A =

0

1

2z

0

0

1

0

0

0

C„_i,„_2z"-2 C„_i,„_3z"-3

and the matrix of the coefficients of (2.5),

1 0

- z 1

a' = z2 - 2z

0

0

1

(- (- i)-'C._i,^»-4  (- D-'C»-!.^-»

are inverse matrices, or that AA' = I, 7 being the unit matrix. Now, it is im-

mediately evident that the elements in the principal diagonal of the product

matrix are 1, while the element in the kth row and Ith column, where k >/, is

Zh~l [Ck-l,k-l — Ck-\,k-l-lCl,\ + Ck-l,k-l-iCl+l,2 —  • ■ •   + Ck-l,2Ck-i,k-l-2

(2-6) _
+ C k-\,\C k-2,k-l-l + Ck-\,k-l\-

The sum (2.6) may be written as follows:

z'-'Ck-Lk-iil - C*_w + C*-m - Ck-i.z + ■ ■ ■ ± 1] = C*_ilfc.4(l - |)*-Wr»

which is zero. The case ^ <l may be treated similarly. This proves that A A'

is the unit matrix. Thus, Lemma 2 is established.

3. Littlewood-Macintyre theorem. We proceed to prove Theorem 1; this

method is different from those of Littlewood and Macintyre. Indeed, form the

function t

(3.1) *(r) =
/((r + z)/(i + ir)) - fit)

(i 2)/'(2)

for a fixed value of z in |z| <1(8). This function is evidently regular and Uni-

valent in |f| <1 and omits there the value (co— /(z))/(l — | z| 2)f'(z). Since,

furthermore, c4(0)=0 and <f>'(0) = l, we may apply a well known result(9) of

Koebe in the theory of Univalent functions, according to which

co - /(z)

(1 - 2)/'(z)

>
1

(8) The function 0(f) plays an important role in the theory of Univalent functions, cf.

P. Montel, LeQons Sur Les Fonctions Univalentes ou Multivalentes, Paris, 1933, p. 51.

(9) See, for example, P. Montel, loc. cit., p. 50.
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This proves the theorem. Direct computation shows that the limit is attained

for the Univalent function z/(l— z)2 and co = —1/4. Of course Koebe's theo-

rem is the special case z = 0 of Theorem I.

4. Inequalities concerning D\. For the sequel it is desirable to restate

Theorem 1 in a more geometric form. If we set w=f(z), the right side of in-

equality (1.1) attains its least value when w is one of those boundary points

of the region R onto which/(z) maps the circle |z| <1 which are nearest the

point w. In that case |co—/(z)| = Di(w), as defined in the introduction, and

Theorem 1 becomes

Theorem 1'. Letf(z) be analytic and Univalent in \z\ < 1. Then the inequal-

ity

(4.1) (i-hhl/'W l £«M«0
is satisfied for all values of zin \z\ < 1, where Di(w) is the radius of univalence

at the point w =/(z) of the region R onto which f{z) maps the circle \ z\ < 1.

It may be of some interest to point out a geometric interpretation of the

left side of inequality (4.1). Denote by p(w) the "inner radius" of R with re-

spect to a fixed interior point w(10). Then p(w) can be expressed in terms of

/(z) as follows

(4.2) p(w) = \f'(z)\ (1 -|Z|2),

where z is the point corresponding to w. Inequality (4.1) may, therefore, be

written in the geometric form (n)

(4.3) p(w) g 4£>i(tt>).

Theorem 1' gives an upper bound for |/'(z) | (1 — | z|2). It is desirable also

to obtain a lower bound for this expression.

Theorem 2. Let f(z) be analytic in \ z\ < 1, let z0 be any point of \z\ <1,

and w0=/(zo). Then

(4.4) D1(w0) g |/'(z0)| (1 - I so |2).

We notice that unlike (4.1), the relation (4.4) holds without any restric-

tion other than analyticity on the function/(z). Denote by R the Riemann

surface over the w-plane onto which w=f(z) maps the circle |zj <1. If w0 is

(I0) The "inner radius" of a simply connected region R with respect to an interior point Wr,

is the radius of the circle on which the region R can be mapped conformally by a function f{w)

so that f(w0)=0 and f'(w0) = \. Cf. G. Polya and G. Szeg ', Aufgaben und Lehrsätze, vol. II,

Berlin, 1925, pp. 16-21.

(u) Inequalities (4.1) and (4.3) together with Corollary 2 below were first proved by J. L.

Walsh, Bulletin of the American Mathematical Society, vol. 44 (1938\ pp. 520-523. In the

same paper the author suggests the use of the present method in the study of higher derivatives

of Univalent functions, which is one of the principal topics taken up in the present chapter.
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a branch point of R, (4.4) is trivial, for in that case both sides of the inequality

reduce to zero. Otherwise, let

l(0

This function is also analytic in | f [ < 1 and maps the circle onto R. Further-

more, g(0) = w0. If we denote by £ = h(w) the inverse function of w = g(f), the

function h{w) is defined, regular, and single-valued on R. In particular, a

suitable branch of h(w) will be regular and single-valued on the single-sheeted

circle C with center at Wo and radius Di(w0). The values which this branch

assumes in C all lie in the circle |f| <1. Hence, in C: \h(w) \ <1, h(w0)=0.

Consequently, applying Schwarz's lemma

i . 1
I *'(wo) I ̂

D1(w0)

Hence, |g'(0)| ^Di(w0) and the evaluation of g'(0) in terms of /(z) yields

(4.4) .
The inequality in (4.4) is sharp, reducing to an equality when

'(*) = Z~ 81 i |zi|< l.
1 — Z\Z

Combining Theorems 1' and 2, we obtain

Theorem 3. Letf(z) be regular and Univalent in \ z\ < 1, let z0 be any point

of \z\ <1, and w0=f(zo)- Then,

(4.5) D1(w0) g I /'(zo) I (1 - I so |2) ^ 4Bi(wo).

We remark that Theorems 1 and 1' can be somewhat improved if we as-

sume /(z) not merely analytic and Univalent in |z| <1, but also bounded

there: |/(z)| gM. Under those conditions the function </>(z) defined by (3.1)

is also analytic and Univalent there, with c/>(0) =0, c6'(0) = 1,

0(f) <
2M

l/'(*)l (i -M2)

Since c/>(f) in |f | <1 omits the value

«■> ~ /(»)

/"(z)(l-|z|2)

provided the function/(z) omits the value co, the inequality of Pick(12) yields

(u) That is to say, under a smooth map of the region |z| <1 by a function w=f(z) with

/(0)=0,/'(0) = l, |/(«)| <M, every boundary point of the image in the tw-plane satisfies the

inequality [w| ä [M — (Af2 — M)112]2. See Pick, and R. Nevanlinna, loc. cit.
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r         2M /       4M2 yn«
rJi(wo) 1  i-i-i—;-(-i-;-;—i-2M )

L|/'(*») |]/2(i - hd2)1'2   \|/r>o)| (i - U|2)       / J

£ |/'(so)|1/2(l - |zo|2)1/2.

Dxiwo) + 2M

It may be noted that as M becomes infinite this last inequality approaches

the form (4.1).

5. Applications. From Theorem 3 various corollaries may be immediately

deduced.

Corollary 1. Letf(z) be regular and Univalent in \z\ <1, {zn\ any sequence

of points in \z\ <1, and wn=f(z„). Then, a necessary and sufficient condition

that

lim I f'(zn) |        M) = 0
n—*»

is that

lim D^Wn) = 0,

and a necessary and sufficient condition that |/'(z„) | (1 — | zn \) remain bounded

is that D\{wn) remain bounded.

Corollary 2. Letf(z) be regular, Univalent, and bounded in \z\ <1, \zn\

any sequence of points in \z\ < 1 for which lim«..,» | z„ | = 1. Then

lim |/'(zn)|(l-|Zn|)=0.
n—>oo

The proof of Corollary 1 follows directly from the inequalities (4.5), while

Corollary 2 follows from Corollary 1 if one remarks that under the hypotheses

of Corollary 2 we have Z>i(w„)—>0(13). Another consequence of (4.5) is the

following:

Corollary 3. Letf(z) be regular and Univalent in \ z\ <l,letz0be any point

of I z I = 1. Then there exists a sequence of points {zn} (| z„ | < 1) converging to z0

such that

lim \f'(zn) \ (1 - I s, I) = 0.
n—*oo

In accordance with Corollary 1 it suffices to find a sequence {z„ } converg-

ing to z0 for which the points wn=f(zn) satisfy the relation Di(wn)—>0. Such a

(13) As was pointed out by Walsh (loc. cit.), Corollary 2 may also be proved by Caratheo-

dory's method of the conformal mapping of variable regions, cf. C. Carathebdory, Conformed

Representation, Cambridge, 1932, p. 75.
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sequence may be found as follows. It is well known(14) that a Univalent func-

tion has finite limit values on almost all radii. These limit values are bound-

ary points of the region onto which /(z) maps the circle |z| <1. Choose a

sequence of such radii r„ which converges to the radius joining z0 with the

origin. On the radius r„ choose a point z„ (| zn\ < 1) so near to the circumfer-

ence I z| = 1 that

Di(wn) < l/n.

This sequence {zn) fulfills the necessary requirements.

6. Inequalities for higher derivatives. We now turn to the corresponding

study of the higher derivatives of Univalent functions. In particular, we shall

determine upper bounds for expressions of the form

(6-1) |/(n,(zo) I (1 - I Zo[2)".

It is clear immediately that lower bounds for these expressions in terms of

.Di(w) cannot be obtained even in the case n = 2. For the expression (6.1) is

identically zero for n ä; 2 when/(z) = z. Even for the upper bounds of (6.1) the

sharp inequalities will now be obtained only in the case n = 2, 3. For higher

values of n the corresponding inequalities depend on the assumption of the

truth of Bieberbach's conjecture, which up to the present has not been es-

tablished.

We begin by proving the following inequalities

Theorem 4. Letf(z) be regular and Univalent in \ z\ < 1, let Zo be any point

of \z\ <1, and let w0=f(z0). Then,

(6.2) |/"(z0) I (1 - I zo |2)2     8(| so I + 2)D1(w0)

and

(6.3) I /'"(so) I (1 - I zo |2)3 ̂  24( I zo |2 + 4 I z„ I + 3)D1(w9).

These inequalities are sharp, reducing to equalities for /(z) =s/(l+s)2 for

real negative values of z.

To prove (6.2) and (6.3) compute the second and third Taylor coefficients,

£>2 and bs, of the function (3.1) where we set z = z0. By direct computation (or

by §2, Lemma 2) we find that

Zo |2) — Zo,

ill        /"(Zo)   _ .       ,2 .2
Zo I )-—— z0(l — I Zo I ) + z0.

/ (zo)

(") See, for example, W. Seidel, Mathematische Annalen, vol. 104 (1931), p. 191.

b2 = —

(6.4)

/"(zo)

bi =

/'(zo)

1_ /"(zo)

6 /'fz„)

(1 -

(1
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Now, according to Bieberbach's theorem and Löwner's theorem(16) [ ö21 ̂ 2

and I bz | ^3. Hence

J_ /"(so)

2 /(«o)
(1 — I s0 12) — 20 ^ 2

and

(6.2') /"(so)(l - I so |2)2 - 2So(l - I so |2)/'(s0) I ^ 4(1 - I s„ |2) | /'(*,)

Applying (4.1) we obtain at once inequality (6.2). To obtain (6.3) we use the

evaluation of b3 in (6.4) and write

1  /'"(so) , |V
-(1 —   s0 )
6   /'(so) ' °"

/"(so)

/'(so)
o(l

,2 2

So I ) + 20 < 3

and

|/"'(so)(l
,2 3

SO I ) 6So/"(*o)(l - ZolV + 6so/'(so)(l so )

g 18|/'(s„)| (1 - |s„|2).

It follows that

!/"'(*«) Id so ] ) g I 6s0/"(so)(l - I

+ 18 I/'(so) I (1

^ 6 I z„/"(so)(l - I

+ 6|s0|2|/'(2„)|(l

s„ I ) - 6z„/'(s0)(l - I s0 I ) I

— I So I )

so)? - 2so/'(so)(l - I sol') I

I ) + 18 I/'(s0) I (1 sol3).

Applying now inequalities (6.2') and (4.1) we obtain inequality (6.3).

If now Bieberbach's conjecture concerning the coefficients of Univalent

were known to be true(16), one could write

<4<n>(0)

£= n.

With the aid of a little algebraic manipulation (see below) this would lead to

the sharp inequality

(6.5) I /<»>(*o) I (1 - I so I2)" ̂ 4*!(» + I so I )(1 + I z01 )"-2ZMw0),

which becomes an equality for /(z) =z/(l +z)2 for real negative values of z.

Unfortunately, however, the inequality \bn\       has been proved only for

(15) L. Bieberbach, Sitzungsberichte der Königlichen Preussischen Akademie der Wissen-

schaften zu Berlin, vol. 38 (1916), pp. 940-955; K. Löwner, Mathematische Annalen, vol. 89

(1923), pp. 103-121.
(16) See, for example, L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d edition,

1931, p. 80, Footnote 4.
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« = 2 and 3, so that the validity of inequality (6.5) has been established for

n = 2 and 3 only. Weaker inequalities have actually been proved by various

authors, in particular, J. E. Littlewood(17) who showed

I c>(n)(0) I
(6.6) -< en

n\

and E. Landau(18) who showed

I 0<n)(O) I
s(i + i)«».

n\

Making use of (6.6) and Lemma 1 of §2 we find

n! v=0 (« — v)!

and using (4.1)

(1 -|s|«)»|/oQ(z)|

»!

Since, however,

ECn_l,,|z|'= (l+|z|)"-1

and

E »C_i, I z I' = (» - 1) I z I (1 + I z I )"-2,
>—0

we obtain

(1 - I z|2)"|/cb)(z) I ^ 4e-«!D1(w)[w(l + | z | )»~l + (» - 1) | z | (1 + | z| )—2]

and finally

(1 - I z |2)" I /<»>(*) I ̂  4e-f»!(» + I zo I )(1 + I zo I ).—*I>i(w»).

This clearly is not a sharp inequality. We thus obtain

Theorem 5. Let f(z) be regular and Univalent in \ z\ < 1, Ze/ Zo £>e any point

in \ z\ <1, and let w0=f(z0). Then

(6.7) |/<">(zo)|(l-|zo|2)" ^ 4e-»!(| z01 + »)(1 + |»0 |)-*öi(w0).

From this inequality we obtain again two corollaries analogous to those

of Theorem 3.

(") J. E. Littlewood, loc. cit., p. 498.
(1S) E. Landau, Mathematische Zeitschrift, vol. 30 (1929), p. 635.
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Corollary 4. Letf(z) be regular and Univalent in \z\ < 1, {zn} any sequence

of points in \z\ <1 and w„=f(z„). Then, if

lim Dtiwn) = 0,
n—*w

all the derivatives of f{z) will satisfy the relation

lim [/<«(*.) I (1 - I zn| )* = 0, k = 1, 2, 3, • • • .
n—>w

Clearly the converse of the theorem is false since taking /(z) = z, z„ = 0

(n = l, 2, • • • ), we have/(i)(3rc)=0 for all k^2 and all n while Z>i(w„) = l.

Corollary 5. Letf(z) be regular, Univalent, and bounded in \z\ <1, {z„}

any sequence of points in \z\ < 1 for which limn,,, | z„| =1. Then

lim I /<*>(z„) I (1 - I zn I )* = 0, k = 1, 2, 3, • ■ • .
n—>oo

7. Applications. A few remarks concerning Theorem 3 will now be made.

Koebe's "Verzerrungssatz" can be written in the form(19)

1 - Iz\ .        1 + I z|
-rr- ^ /(*) ^-rL-h ■
(l + |s|)3 (l-|s|)«

If we combine this inequality with (4.5) we obtain

1 /l — I ao I V       ,   s     /I + I z0|\2

We may state this result as follows:

Corollary 6. Let f(z) be regular and Univalent in \z\ <1 with /(0) = 0,

/'(0) = 1, /e/ Zo awy poi«/ o/ | z\ < 1, awrf Ze/ w0=f(z0). Then the radius of uni-

valence Di(w0) at the point w0 satisfies the inequality

l/l-|zo|V /H-|0o!V

The lower bound of Di(w0) was obtained in less precise form by W. E.

Sewell(20). The first inequality is sharp, becoming an equality for /(z)

= z/(l+z)2 along the positive real axis. The second inequality is probably

not sharp.

Another application of Theorem 3 concerns infinite regions. Suppose that

R is a simply connected region of the w-plane for which w = °° is an accessible

boundary point, let

(19) See, for instance, Paul Montel, loc. cit., p. 52.

(2°) W. E. Sewell, these Transactions, vol. 41 (1937), p. 90.
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lim sup öi (w) = D,

[July

where w is an interior point of R, and let w =/(z) map R on the interior of

the circle \z\ <1; suppose that z = a, (\a\ =1), corresponds tow=». From

Theorem 3 it follows that

lim sup |/'(z)| (1 - I z|2) ^ 4P.
Z—»Of

For an arbitrary infinite region the relations w„ =/(z„)—*oo , lim sup„J00Z>i(wn)

= 7J>, lim infn^.ZJiCw«) =d clearly imply that lim supn,M|/'(z„) | (1 — | z„|2) ^4Z>,

lim inf2,a|/'(z„)| (l-|z|2)^cL

The final remark concerns an inequality derived by G. Szegö(21) on the

difference quotient of a Univalent function. His inequality is as follows: Let

/(z) be regular and Univalent in | z| < 1, let Zi and z2 be any two points of the

circle |z| <1. Then,

|/'(22)| (1 -|z2|2)

1 — Z2Zl

(7.1)
/(zi) - /(z2)

Zl — z2

( I Zl - Z2 I + I 1 — Z2Z! I )2

|/'(22)|(l-|z2|2)

1 — Z2Zi

( «1 z2 1 Z2Zl ] )2

Let us introduce the non-euclidean distance p(zi, z2) between the points

Zi and z2 by means of the following relations

p(zi, z2) = log
1 + r

1 - r

32

1 — Z2Zi

By virtue of (7.1) and (4.5) we obtain the inequalities

£>,(w2)
1 Z2Zi

( I Zi — z21 + I 1 — Z2Zi I )2

/(zi) - /(**)

Zl — z2

^ 4£>,(w2)-
1 — Z2Zi

1 - Z2Zi )2( I Zi — z21

where w2=/(z2). In terms of p(zi, z2) the inequalities become

(7.2)   (l/4)£>i(w2)(l - e-2><^) ^ |/(z,) - /(z2) | ^ (**öM*> - l)£>i(w2).

From the inequalities (7.2) we obtain the corollary:

Corollary 7. Letf(z) be regular and Univalent in \z\ <l,let \zn) and \zn' }

be two sequences of points in |z| <1, 'such that p(zn, zn') is bounded and let

wn' =/(zn')- Then \\mn^ \f(z„)-f(zn') | =0 if, and only if,

lim («V<W> - l)Di(wn') = 0.

(21) G. Szegö, Mathematische Annalen, vol. 100 (1928), pp. 190-191.
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8. Behavior of the first derivative almost everywhere. Corollary 2 may be

stated as asserting that for a regular, Univalent, and bounded function in the

circle | z| < 1 the first derivative is of order o((l — r)-1) on all radii of the circle.

The next theorem shows, however, that this order of growth can be attained

only on a small number of radii and that on most radii the order of growth is

considerably smaller. Indeed, we prove the following

Theorem 6. Let f(z) be regular and Univalent in the circle |z| <1. Then

(8.1) lim  |/'(z) I (1 - I z \ )1/2 = 0
2—,eia

for all points eof the circumference | z | = 1 with the exception of at most a set

of measure zero, where z in the above limit is taken in any angle less than tt with

vertex in ela and bisected by the radius joining z = 0 with z = eia. Furthermore, in

any such angle the above limit is uniform.

The proof depends on a number of lemmas.

Lemma 3. If f{z) is Univalent in the circle \z\ < 1, then on almost all radii

(8.2) |/'(Z)| =0((l-|z|)-"2),

where the symbol O does not necessarily indicate uniformity for the different radii.

The relation (8.2) holds also in any angle of the type described in Theorem 6

which corresponds to a radius for which (8.2) holds.

If we set w =/(z), then the function maps |z| <1 on a simply connected

region R of the w-plane. Now, this region possesses at least two distinct

boundary points w = a and w = b, (a^b). Indeed, if R were the entire plane

then the inverse function z = g(w) of w=f(z) would map the plane on the in-

terior of |z| <1. It would, therefore, be bounded in the whole plane and by

Liouville's theorem be identically a constant, which is contrary to our as-

sumption. If R were the whole plane with the exception of one point, w = a,

then g(w) would be regular and bounded in the whole plane with the exception

of the one point, w = a. This point, by Riemann's theorem, would be a remov-

able singularity, and again z = g(w) would be identically constant. Now, by a

familiar argument the function

1
t =-= \(w),

((w - a)/(w - b)y>2-c

where the constant c is suitably chosen, maps the region R conformally on a

bounded region of the ^-plane.

The function

h(z) = X(/(z))

is regular, Univalent and bounded in |z| <1. Let us suppose that Lemma 3
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has already been proved for h(z). Then, it will also hold for/(z). Indeed,

A'OO

X'(/(z))

Since we have assumed that lim supz_6t« | h'(z) | (1 — | z| )I/2 < <*> for almost all

points z = eia on |z| =1, where z lies in corresponding angles as described

in Theorem 6, the asserted lemma will follow for /'(z) provided that

lim inf,_eia |X'(/(z))| >0 for almost all eia in the corresponding angles. But

now

a-b [\{w)Y
\(w) =-,

2     (w - b)m(w - a)112

which shows that lim inf^ia |X'(/(z))| =0 only if there exists a sequence of

points z„—>eio! for which /(zn)—>& or f(zn)~>a. This, however, can only

happen for a set of eia of measure zero(22).

It suffices, therefore, to prove Lemma 3 for a bounded Univalent func-

tion /(z). Now, w=f(z) maps the circle |z| <1 on a bounded region of

the w-plane. Denote the area of this region by A. We have, setting z = reie,

(8.3) f     f" \f'(reie) |2r dr dd < A
J a Ja

for every 0^p<l. The function

(8.4) $(s) = f z[j'(z)]2dz
J o

is regular in |z| <1 and we shall perform the integration along the radius

joining z = 0 and z = re'9 so that

$(pei9) = f '' rene[f'(reie)]2dr.
J o

Hence,

I $(pei9) I g \ ' r\f'(reie) \2dr.
J o

Integration of the last inequality with respect to 9 together with (8.3) yields

I $(peie) I dd < A
o

for every 0 5= p < 1.

Now it is a familiar fact that if a function 3>(z) is regular in |z| <1 and

(M) F. and M. Riesz, Compte Rendu du Quatrieme Congres des Mathematiciens Scandi-

naves, 1920, pp. 28-30.
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satisfies the condition (8.5) it may be represented in the following form(23):

1 r2*eu + z
(8.6) $(z) = —-du(t) + iß,

2ttJ0   e" — z

where the integral is a Stieltjes integral, ix{t) is a function of bounded varia-

tion in the interval 0:£/^27r and ß is a constant. Equations (8.4) and (8.6)

permit us to express [/'(z) ]2 in the form

m^ = - 77,—r>(°-tzJq (e%t — z)2

Hence,

(8.7) (1 - r2)|/'(z)|2 ^ - f - 1 ~'* dM(t),
irr J o 1 — 2r cos (ß — t) + r2

where M{i) denotes the total variation of the function n{t) in the interval

(0, t). The right-hand side of this inequality approaches a definite finite limit

as z = rei6^eia in an angle of the type described in Theorem 6 for almost

all e*°(24). Hence, the right-hand side remains bounded in such angles. Thus,

(8.8) f£ Ca (l ~ Mr"1'2

in the angular neighborhood of almost all points eia, where Ca is a constant

independent of z, but in general depending on a. This proves the lemma.

Corollary 8. Let w=f(z) be regular and Univalent in \ z\ < 1. Then, for al-

most all points eia on | z | = 1 every line segment joining an interior point of

I z| < 1 with eia is mapped on a rectifiable arc by the function w=f(z).

This follows readily by integrating (8.8) along such a line segment(26).

If we restrict ourselves to radial approach in Corollary 8, it is possible to

state a sharper result which will be used in the proof of Theorem 6:

Lemma 4. Let w=f{z) be regular and Univalent in \z\ < 1. If

(8.9) = f  \f'(reiS) \dr, z = reie,

then for almost all values of 6 in 0^6^2w and for all values of p in 0^p< 1,

Ifi.e is finite and

(8.10) lim /„,,(1 - p)-1'2 = 0.
0—1

(23) See, for example, R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936, p.

185.
(24) After integration by parts the integral in (8.7) becomes one of the type considered in

Caratheodory's proof of Fatou's theorem. Cf. L. Bieberbach, Lehrbuch der Funktionentheorie,

vol. 2, 2d edition, (1931), pp. 148-151.
(26) The corollary includes a result stated by M. Lavrentieff, Physico-Mathematical Insti-

tute of Stekloff, vol. 5 (1934), p. 207.
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The formula in (8.9) represents the length of the image of the radial seg-

ment joining the points peie and ei6.

One may assume without loss of generality, for the same reasons as in the

proof of Lemma 3, that f(z) is bounded in \ z\ < 1. Then, inequality (8.3) holds

for some A. The total area A of the image of \z\ < 1 is given by

0       •> 0

(reie) \2rdr,

Hence, by Fubini's theorem, for almost all 8 in 0^6^2tt

l

r \f'(reie) \2dr
o

has a finite value. Hence, for almost all 6

lim   f r\f'(reie) \2dr = 0.
p-*i j p

Thus to any e>0 one may assign a number 5= 8(t, 6) so that 1 — p < 5 implies

f r\f'(reie) \2dr < c-

for almost all 6. Hence, by Schwarz's inequality

I /V") I «V ̂ [(1 - P) Jj /'(reie)\2drJ2<        ~ p)

for almost all 6 and 1 >p > 1 - 5(e, 6). This proves (8.10).

Using this lemma, one can now prove

Lemma 5. Let w =f(z) be regular and Univalent in \z\ < 1. Then on almost all

radii

\f'(z) \ =       - r)-i'2),       |*| -r,

where the symbol o is not intended to indicate uniformity for the different radii.

We know that on almost all radii (8.2) and (8.10) hold and limr,i/(reie) =co

exists and is finite(26). Choose any one of these radii 6 = Bo and on it an arbi-

trary point Zo- Let/(z0) = w0. The segment of the radius between the points z0

(M) For the proof of the last statement one need merely apply the fact that the integral in

(8.9) remains finite for almost all 8. Indeed, take any such 80. Then,

l/(ne'*o) -}(r**°) I S (" \f>(rei6°) | dr, n O2,

and the last integral may be made smaller than any preassigned c>0 provided that ri and r%

are both chosen sufficiently near unity.
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and eie" is carried into a rectifiable arc joining the points Wo and w. Its length

h„ is given by

(8.H) iH = <zo(i -\Zo\y<\

where by (8.10)

(8.12) lim tH = 0,

the approach being taken radially. Now draw a circle Kl0 about the point za

as center with radius equal to 1 — | Zo|. The interior of the circle Kl0 is carried

by w=f(z) into a region RZo of the w-plane.

According to Koebe's "Verzerrungssatz" the region i?r„ contains the circle

|w-w„| <((l-|*0|)/4) |/'(*o)|.

Now if we set

f'(zo) I - C.0(l - I z„ I

according to (8.2) C2o is bounded along the radius d = 60- Thus R2„ contains

the circle | w — w0\ < (1/4)C,0 (1 — | z0| )1/2. In view of (8.11) this may also be

written \ w — w0\ <Ct0/l0/4el0. Denoting by pH the radius of this circle, we have

on the one hand

4e*0

and on the other pZo^fa0. Hence,

C20 ^ 4«Z0.

Together with (8.12) this implies that

lim C, = 0

with radial approach. This proves the lemma.

We are now ready for the proof of Theorem 6. Let 0 = 0O be a radius for

which (8.2) holds in any angle as asserted in Lemma 3 and also

(8.13) lim I f'(reie') | (1 - r)1'2 = 0.
r->l

By Lemmas 3 and 5 the set of such do is of measure 27T.

Consider the function

g(z) = f'(z)(e^ - zyn

where we choose that branch of the square root which is positive for real posi-

tive values of the radicand. This function is regular and single-valued in

|z| <1. Now, take a fixed angle of opening less than w with vertex in eie°.

In this angle
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1        eie" — z

— < J-r-r1 < M
M      1 - I z|

for a suitable positive constant M. Hence, by (8.13)

lim g(reie<>) = 0,
r-»l

while by (8.2) the function g(z) is bounded in the fixed angle. By Lindelöf's

theorem (") limz_ei9o g{z) = 0 uniformly in every angle contained in the fixed

angle. This proves the theorem.

9. Example on the slowness of approach of |/(t)(z)| (1 — l2|)fc- We have

shown in Corollary 2, §5, that if the function /(z) is bounded and Univalent

for |z| <1, and also under various alternative conditions, then we have

(9.1) hm/'(zn)(l - I zn\ ) = 0, |zn|<l.

Even for the class of bounded Univalent functions, continuous in |z| :£1,

equation (9.1) cannot be improved by establishing results on rate of approach

in equation (9.1) or by replacing the second factor by that factor raised to a

suitable power. Indeed we shall prove that the limit in (9.1) can be ap-

proached arbitrarily slowly, in the sense of

Theorem 7. Let the function Q(r) be defined and positive for 0<r<l, with

limr.i <2(r) = 0. Then there exists a function F(z) analytic and Univalent interior

to y: I z I = 1, continuous for \z\ ;£ 1, and there exists a sequence of points

Zi, z2, • • • interior to y with \ zn\ =rn—>1, such that we have

(9.2) hm-1-j-= co.
<2( I z„ I )

In fact, we shall choose F(z) real for real z, and z„ real.

As a matter of convenience, we establish first Theorem 7 and then an

extension of Theorem 7 to higher derivatives. The ensuing proof is given in

preparation for the more general theorem, and is somewhat more complicated

than is necessary for the proof of Theorem 7 alone.

We shall find useful a function analytic and Univalent for |z| <1 whose

Taylor expansion about the origin has all of its coefficients positive. Such a

function is

Wi = /i(z) =-= z + 2z2 + 3z3 + ■ • •
(1 - z)2

which maps the region | z| < 1 smoothly onto the Wi-plane slit along the axis

of reals from —1/4 to — =o. The function

(27) E. Lindelöf, Acta Societatis Scientiarum Fennicae, vol. 46 (1915).
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W2 = /2(z) = i-= z + 2pz2 + 3p2z3 H-,      0 < p < 1,
P

then maps \ z\ <1 smoothly onto a Jordan region(2S) symmetric in the axis of

reals. For definiteness we choose p = 1/2, and denote by Jo the Jordan region

of the w-plane which is the image of \z\ < 1 under the map(29)

2 3 4
(9.3) w =F0(z) = z + — z2 + — z3 + — zH-.

2        22 23

Construct in the w-plane new Jordan regions J\, with the same

shape and orientation as 70, mutually exterior and exterior to Jo, with the

analogue Bk for Jk of the point w = 0 for JQ lying on the axis of reals, so that

the sequence B0 = 0, B\, B2, ■ ■ ■ forms a monotonically increasing sequence.

Choose moreover the region Jk just (l/2*)th the size of J0 in linear dimen-

sions, and locate (as is possible) the sequence of regions Jk in such a way that

their totality lies in some circle \w\ ^D.

The region Jo is symmetric in the axis of reals, so its boundary (an analytic

Jordan curve) cuts that axis in precisely two points A0 (to the left of the

origin) and C0 (to the right of the origin). Denote the analogous points for Jk

by Ak and Ck. The boundary of Jk has a vertical tangent at both Ak and Ck.

A Jordan region R is to be constructed in the w-plane from the regions

Jo, Ji, Ji, • • • by connecting each region to the preceding region by a canal;

each of the two banks of such a canal shall be a segment of one of the lines

y = +dk, dk>0. Each point interior to Jk shall lie interior to R. The first

canal, whose boundaries are segments of y= +di, joins Jo in the neighbor-

hood of Co with J\ in the neighborhood of A\ \ the second canal, whose bound-

aries are segments of y= + di, joins Ji in the neighborhood of Ci with Ji in

the neighborhood of A2, and so on. The choice of the numbers dk is now to

be made more precise.

Denote by w = F(z) the function which maps | z | < 1 onto R with F(0) = 0,

F'(0)>0; of course F(z) depends on the numbers d\, dt, • • • . Choose di in-

dependently of di, d%, • • • so small that the subset R\ composed of all points

of R not in Jo corresponds under the transformation w = F(z) to a set of

points z interior to 7: |z| =1 at which we have

(9.4) 0(14) "< 1/3.

(28) A Jordan region is any region bounded by a Jordan curve.

(29) It is sufficient for the purpose of both Theorem 7 and Theorem 8 to choose here a func-

tion Fc,{z) which maps | z| < 1 smoothly onto a Jordan region with F0(0) = 0, F0(0) = 1, and has all

of the coefficients of its Taylor expansion about the origin positive. For instance we may also

choose
2z 1 1

w = F0(z) =-= z + — z2 + — z3 -I-
2 — z 2 22

which maps [z| <1 onto the interior of the circle \w—2/i\ =4/3.
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Such choice of di is possible. For under the map w = F(z) it follows from

a theorem due to Lindelöf(30) that the subset Ri is mapped into a set

bounded in part by an arc of 7 and whose remaining boundary (a Jordan arc)

can be made as near to 7 as desired. For the boundary points of Ri not

boundary points of R are the points of the boundary of Jo in the neighbor-

hood of the point Co between the lines y= +di\ by choosing d\ sufficiently

small all such points can be made uniformly as near as desired to the boundary

of i?; so by Lindelöf's theorem all points of the boundary of the transform of

R\ (and hence all points of the transform of Ri itself) can be made as near to 7

as desired, and (9.4) is justified.

Similarly the number d2 is to be chosen so small that all points of R not

in Jo or Ji or in the canal joining Jo and J\ correspond under the map w = F(z)

to points interior to 7 at which we have Q( \ z |) < 1/9; more generally the num-

ber dk is to be chosen so that all points of R not in Jo- Ji, • ■ ■ , Jk-i or in the

canals joining successive regions J0, Ji, • - • , Jk-i, correspond under the map

w = F(z) to points interior to 7 at which we have

such successive choice of the numbers dk is possible, again by Lindelöf 's theo-

rem. There are no further restrictions on the numbers dk so far as the require-

ments of Theorem 7 itself are concerned. We now introduce the inner radius

p(w0) of the region R with respect to the arbitrary point Wo of R(3i). It is well

known that p(wo) has a monotonic character with respect to R: if R is in-

creased so also is p(w0); if R is stretched uniformly in the linear ratio 1: m with

Wo fixed, then p(w0) is multiplied by m; if R is the interior of a circle with

center at w0, the inner radius is the usual radius of this circle.

The inner radius of R with respect to the point Bk is greater than 1/2*,

for it follows from (9.3) that the inner radius of Jo with respect to B0 is unity,

so the inner radius of Jk with respect to B* is 1/2*. On the other hand,

if Zk denotes the point of |z| <1 which corresponds to the point BK under

the transformation w = F(z), the inner radius of R with respect to Bk is

\F'(zk)\(l-\zk\2), so we may write | F'(zk) | (1 - | zk)2) > 1/2*. From in-

equality (9.5) we have Q(\ zk\) < 1/3*, whence

(9.6)

from which (9.2) folIows(32).

(30) Acta Societatis Scientiarum Fennicae, vol. 46 (1915). Or see Walsh, Interpolation and

Approximation, §2.1. In applying Lindelöf's result it is essential to notice that the region R is

bounded independently of the numbers dk.

(3>) Cf. §4, Footnote 10.

("*) In the proof of Theorem 7 we might equally well have used an example due to Szegö,

Mathematische Zeitschrift, vol. 23 (1925), pp. 45-61; pp. 57-59. Szegö does not mention the

(9.5) 6(1 «IX 1/3*;
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Under the present circumstances the region R is symmetric in the axis

of reals, the numbers zk are real, and F'{zk) is positive, so the absolute value

signs may be removed from (9.6). Of course F{z) is continuous in |z| _ll

(when suitably defined on | z| = 1), as the mapping function for a Jordan re-

gion. The points Bk are real and positive and approach the boundary of R,

so the points zk are real and positive and approach the point z=l.

Theorem 7 shows that the limit in (9.1) can be approached arbitrarily

slowly; by virtue of §4, Theorem 3, we may also say that lim|z„|,i Di[f(zn)]

considered as a function of 1 — | z„| can also be approached arbitrarily slowly.

We now consider the generalization of Theorem 7 to higher derivatives:

Theorem 8. Let the function Q{r) be defined and positive for 0<r<l, with

limr,i Q(r) = 0. Let the positive integer m be given. Then there exists a function

F(z) analytic and Univalent interior to y: \z\ = 1, continuous for \z\ ^ 1, and a

sequence of points Zi, z2, • ■ • interior to y with |z„| = r„—>1, such that we have

,. F<-K*.)(i-I».l>-
(9.7) Ilm-

öd 2» I )

Indeed, we shall choose F(z) real for real z, and zn real.

In the proof of Theorem 8 we use precisely the region R introduced in the

proof of Theorem 7, with further restrictions on the numbers dk; the function

F(z) is, as before, the mapping function.

It follows from equation (9.3) that the function

1 T      2 3         4 1
(9.8) w = Fk(z) = bk + — z H-z2 + — z3 + — z4+ ■ • •

2*|_       2 22        23 J

maps I z| < 1 onto the region Jk in such a way that the point z = 0 corresponds

to the point Bk: w = bk with the axis of reals in one plane corresponding to

the axis of reals in the other plane. The function

(9.9) w(r) =F[—-) = bk + ai f + a2 r + a3 f + • • • ,
\1 + Zjfcf/

where F(zk) = bk, maps | f | < 1 onto R so that f = 0 corresponds to the point Bk

with the axis of reals in the one plane corresponding to the axis of reals in

the other. When dk and dk+i approach zero, the kernel in the sense of Cara-

property (9.2), nor does Sewell, but the latter (these Transactions, vol. 41 (1937), pp. 84-123)

mentions for Szegö's region the relation (notation of §1) limt.„ Di(wk)/Q(\zk\) = °° , wk = F(zk),

which by virtue of the inequality | F'(z„) | (1 — | z„|2) = D,{wn) implies (9.2). Szegö's example

does not seem to apply at once to higher derivatives.

The method of proof of Theorem 7 has also been employed by Walsh, Bulletin of the Ameri-

can Mathematical Society, vol. 46 (1940), pp. 101-108, for a somewhat different purpose.
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theodory(33) of the variable region R, considered with Bk as central point

(that is, Aufpunkt) is precisely the region Jk. It follows from the results of

Caratheodory (loc. cit.) that the corresponding mapping function w(f) defined

by (9.9) approaches the function Fk(X) defined by (9.8), throughout the in-

terior of I f I < 1, uniformly on any closed point set interior to | f | < 1. Indeed,

such uniform approach of w(f) defined by (9.9) to Fk(X) is a consequence

of the approach to zero of dk and dk+i, independently of the behavior of

d\, d2, • • • , dk-i, dk+2, dk+3, ■ • • . Otherwise there would exist a sequence

of sequences of numbers d\, d2, ■ ■ ■ with dk and dk+i approaching zero and

the corresponding function w(f) in (9.9) not approaching Fk(£) as defined by

(9.8); this is impossible. Thus the coefficient af\ considered as a function of

dk and dk+\ alone, approaches the corresponding coefficient j/2i+k~1.

The inner radius p(bk) of R with respect to the point Bk is greater than

1/2*, so in (9.9) we have

(9.10) of}>l/2*.

We have already made restrictions on the numbers dk in connection with

Theorem 7. We now impose the further restriction that d\, d2, ■ ■ ■ are to be

chosen in pairs (di, d2), (d2, ds), (d3, dt), ■ ■ • successively so small that we al-

ways have the inequalities (k = 1, 2, 3, • • • )

(*) (*) (*)
(9.11) a2   > 0, a3   > 0, • • • , am > 0;

this choice of the dk is possible. We have no other restrictions to be placed

on the numbers dk.

By Lemma 1 of §2 we now have

(1 - I zk\*)™ , »C—»(0)
-F<«>(2t) = -— >

ml „=o (m — v)l

where w(f) is defined by (9.9). Inequalities (9.11) and (9.10) now yield

(zk = zk > 0)

(I — I Zk \ )       ,m) m_!  Ik) Zk
-F    {zk) > zk   «i   >-> k > 1,

ml 2*

so, as in (9.6), we write from (9.5)

(1 - I Zk\2)mF^(zk) m_j 3* j ,
-—j-r--          > m\-zk   ■—,               zk = \zk\.

When k becomes infinite, the point zk approaches the point 2=1, so equation

(9.7) and Theorem 8 follow.

As will be seen, this function F(z) is significant as a "Gegenbeispiel" also

in some of our later theorems.

(33) Cf. Footnote 13.
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Chapter II. Bounded functions: configurations Cv and Dp

The problem which will occupy us in this chapter and the next is to what

extent the results of the first chapter can be extended to the class of bounded

functions.

It should be remarked at the start that in §5, Corollary 2, it is not possible

to drop the condition of univalence. Indeed we have

Theorem 1. There exists a function f(z) regular and bounded in \z\ < 1 and

a sequence of points zn (|z„| <1), |z»|—»1, for which

lim inf | f'(zn) \ (1 - | zn \ ) > 0.
n—>«j

That |/'(z„)| (1 — \zn\) is always bounded when /(z) is regular and

bounded in | z\ < 1, follows from an easy application of Schwarz's lemma(34).

To prove Theorem 1 we consider the function (35)

f(z) = exp

It is clear that since 3^[(z+l)/(z —1)] <0 in \ z\ <1, we have |/(z)| < 1 in

|z| <1. Now,

i , 1 - r2 T     - 1 + r2 "1
f'(reie)   (1 - r2) = 2-exp -■.- .

1 - 2r cos d + r2 |_1 - 2r cos 6 + r2J

Along the curve r = cos 0 which passes through the point z = 1 and is tangent

there to the unit circle

I f'{reie) I (1 - r2) = 2/e

so that as 0—»0, the corresponding limit is 2/e >0.

10. A lower bound on Di{w). In order to obtain the conclusion

limn<00 |/'(z„) I (1 — I z„|) = 0, it is necessary to limit oneself to particular se-

quences {z„} in the circle |z| <1. By Theorem 1 our result is as follows:

Theorem 2. Let f{z) be regular and bounded in \ z\ <1:

I /(*) I = M,
let {zn} be any sequence of points in \ z\ < 1, and let wn=f(zn). Then, a necessary

and sufficient condition for

lim I f'{zn) I (1 - I zn I ) = 0
n—

is that lim„,M D1(wn) = 0.

(31) Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d edition, 1931, p. 112.

(36) For this particularly simple example the authors are indebted to Professor G. Szegö.
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This condition will follow directly from the more precise

Theorem 3. Let/(z) be regular and bounded in |z| <1:

I /(z) I ̂  it,

let Zo be any point in \z\ < 1, and let Wo=f(z0). Then, the following inequality

(10.1) D^wo) = |/'(z0) I (1 - I z0|2) ^ [8MD1(wo)}112

is always satisfied.

The first inequality in (10.1) is simply a particular case of §4, Theorem 2.

It, therefore, remains to prove the second inequality alone.

It was proved by Landau and Dieudonne(36) that if

w = g(z) ■»*+•'•

is a regular function in |z| <1 satisfying the inequality

I g(z) I = M    for    I z j < 1,

then g(z) is Univalent in the circle |z| <l/2Af and covers simply the circle

I w\ gl/4M.
Consider now the function

/s     /((z + s0)/(l+s0s)) -f(zB)
<p(z)  - -j-;-= z + ■ • ■ .

/'(s„)(l - I 2„|2)

In |z| <1 the function 0(z) is regular and satisfies the inequality

2M
0(s) I =

f'(zo) I (1 - I so |2)

Hence, in accordance with the theorem of Landau and Dieudonne w = <j>(z)

covers simply the circle

,     I/'(*„) I (1 -I z„l2)
\ w   s-•

8M

The function w=f(z), therefore, covers simply the circle

|/'(so)[2(l -lso|2)2
I w — Wo I _ -, Wo = /(s0).

8Af

From this it follows that

(36) E. Landau, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Berlin,

Physikalisch-Mathematische Klasse, (1926), pp. 467-474; J. Dieudonn6, Annales de l'ßcole

Normale Superieure, (3), vol. 48 (1931), pp. 247-358.
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D1(w0) =
/'(Zo)Kl - [ Zo|2)

SM

which is merely another form of the second inequality (10.1)(37).

While the constant 8 in (10.1) is not the best possible, the order [Di(w0)]U2

as Di(w)—>0 cannot be improved, as may be seen from a study in | z | < 1 of

the function

Mz(l - Mz)
/(*) = —b—M>\,

M — z

previously considered by J. Dieudonne(38) in the neighborhood of the point

z= M— [Af2 — 1 ]1/2. Indeed, let z be any point of the unit circle, lying on the real

axis, such that 0<z<M — [M2 — l]1'2. It is seen by direct computation that

, (1 - 2Mz + z2)(l - z2)
f(z)   (1 - z2) = M2--

11 (M — z)2

(10.2) M2(l - z2) r
=- [z — (M — (M2 — l)1'2)] [z — (M + (M2 — l)l/2)].

(M — z)2

We set wo =f(M-(Af2 — 1)1/2) = M(M— (Af2 — 1)l/2)2. Hence, since £>i(w) = w0

-w,

M2 ,
(10.3) Dx{w) =- [z — (M — (M2 - l)"2)]2.

M — z

Comparison of the equations (10.2) and (10.3) shows that as w—>w0

|/'(z)| (l-s*) = O((ZM«0)l/2),but |/'(z)[ (l-z2)^«/^«/))1'2).

11. Irregular sequences. The question now arises whether one may gen-

eralize Theorem 3 to higher derivatives in the same manner as Theorems 4

and 5 generalize Theorem 3 in Chapter I. In the present case, however, the

situation is more complicated than in the case of Univalent functions, as ex-

amples (§12) will show. Before giving the examples it will be desirable to give

some definitions and prove two theorems. Being given two points Z\ and z2

of the unit circle | z| < 1, we define as in §7 the non-euclidean distance p(zi, z2)

between them(39).

Definition 1. A sequence of points \zn\, (Jzn| <1), z„—>1, will be called

a regular sequence for a function f (z) analytic in \z\ <1 if there exists a number

(") It will be observed from the above that it might be of advantage sometimes to replace

the right-hand side of (10.1) by [iM'D^Wo) ]l/t where M' is the least upper bound of

|/((z4-Zo)/(l + Zoz)) —/(zo) I for jz| < 1 and z0 fixed.

(38) J. Dieudonne, ibid.

(39) For the notions of non-euclidean geometry particularly in their relation to the theory

of functions, cf. G. Julia, Principes Geometriques d'Analyse, Premiere Partie, 1930, especially

Chapters II and IV.
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X > 0 such that for any sequence of points {z^ } whose non-euclidean distance

p(z„, Zr!) is less than X for all n we have

lim [f(zn) -f(zn')] = 0.
71—»00

A sequence of points {z„} which is not regular will be called irregular.

Definition 2. A sequence of points {zn), (|z„| <1), z„—»1, will be called a

quasi-regular sequence of order mfor a function f(z) analytic in \z\ < 1 if

lim I /(i)(z«) I (1 - I zn I )* = 0,   for k = I, 2, ■ ■ ■ , m,
n—>°o

while

lim sup I /<•+«(*») I (1 - I z„ I )*•+* > 0.
n—*«

The case m= is allowed and means that limn,*, |/w(zn)| (1 — |z„| )* = 0 for

k = \, 2, ■ ■ • .

Denote by Tn the non-euclidean circle of non-euclidean radius X and non-

euclidean center z„. We prove now the following

Theorem 4. An irregular sequence {z„} for a function f(z) regular and

bounded in \z\ < 1 is quasi-regular of order m if to every sufficiently small posi-

tive X there corresponds an integer N(\) > 0 such that for all n > N(K) the function

f{z) assumes the value f{zn) exactly w+1 times in the circle Tn {counting multi-

plicities).

Consider the function

\1 + z„f/

By hypothesis, for n>N(K) the function which is regular and

bounded in |f| <1, assumes the value 0 exactly w + 1 times in the circle

|f| <(ex — l)/(ex + l). Now, the sequence {zn} is assumed to be irregular.

In accordance with Definition 1 this means that for any X>0 we can find

a subsequence of the {z„}, which we shall denote by {zni}, and a sequence

{z'nh} such that p(z„4, z'nk) <X and for some 5 >0 we have \ f{znk) — f(z'nk) \ —5.

This implies, however, that the sequence (11.1) cannot tend uniformly to zero

in every closed subregion of |f| <1. Indeed, suppose that lining gn(f)=0

uniformly in every closed subregion of | f | < 1. To any preassigned e > 0 there

would correspond a positive integer n(e) so that for n>n(e) we would have

|g«(f)|<e in |r| <(ex-l)/(ex + l). Setting fB4= (z'„k-znk)/(l-B»X*) we

would infer that | gnk(£nk) \ <e for n>n(e). Replacing this inequality in (11.1),

we find \f(z'„k) — f(znk) \ <e for n>n(e). If we choose e<5, we arrive at a con-

tradiction.
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Hence, there exists(40) a subsequence of the sequence {£„(£")}, which we

shall denote by {gn4(f)), which converges uniformly in every closed subregion

of I f I < 1 to a function G(f) which is not identically zero, and (since G(0) = 0)

is not identically a constant. The function G(f) is regular in | f | < 1.

Since G(f) is not identically zero, there must exist a 0<Xi<X so that

G(f) 9*0 on the circle | f | = (eXl — 1)/(eXl+l). Since, furthermore, the sequence

gnt(D converges uniformly to G(f) on that circle, for sufficiently large values

of nk we have gn*(f) 9*0 on | f | = (eXl — 1)/(eXl+1). Now, by hypothesis g„t(f)

vanishes precisely w + 1 times in the circle |f| < (eXl —l)/(eXl+l) provided

nk>iV(Xi). Hence, by Hurwitz's theorem G(f) vanishes precisely m-\-l times

in the circle |f| <(eXl —l)/(eXl-f-l). But since X may be taken arbitrarily

small, G(f) must have a zero of order m-\-\ at the origin. Hence, G'(0) = 0,

G"(0) = 0, • • • , G<m)(0) = 0, G(m+1)(0)^0. In view of (11.1) and (2.2), we see

from the relations gBi(0)^0, g„'t(0)^0, • • • , g%\0)-+0, g(™+1'(0)^G<-+»(0)

that
lim sup I /<m+1>(z„) I (1 - I z„ I )m+1 > 0.

On the other hand, suppose that for some integer 0<&<?w-fT and for

some subsequence {z„<} of the {z„}

(11,2) |/<*>(*.')|(l-|vj)*>n>0

for a suitable positive rj, independent of n'. Consider the corresponding sub-

sequence jg„'(f)} of the sequence (11.1). By selecting a further subsequence,

if necessary, we may assume that the sequence {gn'(£)} is a uniformly con-

vergent one in every closed subregion of |f | <1. Two cases are possible ac-

cording as {gn'(f)} converges to zero or to some function not identically

a constant. In the first case, the derivatives of all orders of gn'(r) also

converge to zero and application of formula (2.2) for the case n = k shows

that |/w(z„<)| (1 — |z„-| )*—>0, which is a contradiction of (11.2). In the sec-

ond case, the nonconstant limit function G(f) of the sequence gn'({) by the

argument already given must have a zero of order w + 1 at the origin, so that

all its derivatives up to the (m-f-l)st must vanish at the origin. Application

of formula (2.2) again contradicts (11.2). Thus, in both cases (11.2) yields

a contradiction. Hence,

lim I /<*>(zn) I (1- |z»| )* = 0, k = 1, 2, ■'■ • , m,
n—*oo

and the sequence {z„} is quasi-regular of order m.

We proceed to prove some related results.

(40) This follows from the fact that the functions gn(f), being uniformly bounded in their

totality in |f| <1, form a normal family, cf. P. Montel, Lemons Sur les Families Normales de

Fonctions Analytiques, 1927, p. 21.
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, Theorem 5. A necessary and sufficient condition that {z„} be a regular se-

quence for a function f(z) regular in\z\ < 1 and bounded there: \ f{z) | = M, is that

it be quasi-regular of infinite order.

The condition is necessary. Indeed, form the functions

(n.3) &(?) =/(/^)-7W-
\1   + ZrX)

This sequence of functions is uniformly bounded in | f | < 1. From every sub-

sequence can be extracted a new subsequence whose uniform limit is zero

in every circle p(f,0)<X, where X is the number of Definition 1. It fol-

lows that the sequence g„(f) converges uniformly to zero in the circle

|r| ^(ep-l)/(e"+l),p<X. Lemma 1 of §2 shows that |/(*>(z„)| (1 — |zn| )*—»0

for £=1, 2, • • • .

The condition is sufficient. Again form the functions (11.3). Since

|g„(f) I _|2M in |f I <1, the functions form a normal family. A suitable sub-

sequence converges uniformly in every circle |f| ^d<l to some function

G(f) which is regular and bounded in |f| <1 and G(0)=0. Expanding G(f)

in a Taylor series about f = 0:

(11.4) G(f) - c,f + c^+ ■ ■ ■ ,

applying Lemma 2 of §2 and the hypothesis that \zn\ is quasi-regular of

infinite order, we see that all the coefficients in the expansion (11.4) are zero

and that therefore G(f)==0.

Since we may repeat this argument starting with any subsequence of the

family {gn(f)|, it follows that gn(r)—>0 uniformly in any circle |f| = e£<l.

From this follows at once the fact that [zn\ is a regular sequence for/(z).

A type of converse of Theorem 4 may be stated in the following form:

Theorem 6. Let f(z) be regular and bounded in the unit circle \z\ <1:

|/(z)| =Af. Let the sequence {z„} be quasi-regular of order m. Then for every

subsequence of the {zn\ there exists a new subsequence \znk\ with the property

that to every p > 0 which is sufficiently small there corresponds an integer N(p) > 0

such that for all nk>N(p) the function f(z) assumes the value f(z„k) precisely

m + 1 times in the circle Tn (counting multiplicities).

Again we form the functions (11.3). In view of Lemma 2 of §2 we have

gn (o) ,     , a - KD / W
- =   Zu \ ~ 1) Cp-l.'Zn-

V- >=o (P — ")l

The hypothesis that {z„| is a quasi-regular sequence of order m for/(z) im-

plies that
(p)

(11.5) limgn(0) = 0, for p = 1, 2, • • • , tn,
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while

(11.6) lim sup I gnmrl\0) I > 0.
n—»oo

Let us select a subsequence of the family {gre(D} for which the actual limit

in (11.6) exists and is positive and denote this subsequence for simplicity

by {gn(f)} again. Since for all n we have |gn(f)| ^2Min |f| < 1, the sequence

} ls a normal family. We may therefore extract a further subsequence

{gnjXD} which in every closed subregion of the circle |f| <1 converges uni-

formly to a function G(f). According to (11.5) and (11.6) we obtain G(p)(0) =0

for p=l,2, - • , wand G(m+l)(0)^0. Since G(0) = 0, it follows that for every

p>0 which is sufficiently small the function G(f) has precisely w + l zeros in

the circle | f| <p and is different from zero on the circumference | f [ =p. Let

us fix a definite value of p. By Hurwitz's theorem it follows that there exists

an integer A(p) >0 so that each function gnk(£) for which nk>N(p) has pre-

cisely w + 1 zeros in the circle | f | <p. The theorem then follows immediately

from the definition (11.3) of gn(t)-

12. Counterexamples (Gegenbeispiele). Theorem 4 may be used to ob-

tain an example in which Di(wn) = 0, while \f"(zn) | (1 — | z„ \ )2 does not tend

to zero. Indeed, consider the Blaschke product(41)

"      1 - z/zn »! - 1
(12.1) *W = Il!.--'     Z» = -T7~7'

n.i      1 - znz n! + 1

As is well known(42), since JJ"_i(w! — l)/(w! + l) converges, the product (12.1)

represents in the circle |z| <1 an analytic function whose absolute value is

less than unity. As was shown by one of the authors(43), the sequence {z„} is

an irregular sequence for <p(z). Now, form

f(z) = [0(2)]2.

Again, the sequence \zn \ is an irregular sequence for/(z). Furthermore, since

the z„ are zeros of order 2 and the only zeros of/(z), we have -Di(O) =0 when

the point w = 0 is considered in any sheet of the Riemann configuration for

w=f(z). On the other hand, the non-euclidean distance p(z„, z„+i) =log (ra-f-1)

—► oo. Hence, for any A>0 and for sufficiently large values of n the function

/(z) vanishes precisely twice in Tj. Applying Theorem 4, therefore, we find

lim sup I f"(zn) I (1 - I zn I )2 > 0.
n—»oo

(41) Such products were first introduced by W. Blaschke, Berichte über die Verhandlungen

der Sächsischen Akademie der Wissenschaften, Mathematisch-Physische Klasse, Leipzig, vol.

67 (1915), pp. 194-200.
(42) Cf. G. Julia, ibid., pp. 65-66.

(43) W. Seidel, these Transactions, vol. 34 (1932), pp. 14-15. Equation (7.2) there should

read

/ n       TT       1 — Z/'»*(Z) = LI tn -—— •
n-1 1 — (nZ
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Let us state this example as a theorem:

Theorem 7. There exists a bounded regular function f(z) in \z\ <1 and a

sequence of points {zn\ {\zn\ <1, | zn| —>1) 2» | z| <1 suchthat, setting wn=f(zn),

lim„,„ Dx(wn) = 0, while lim sup„,M |/"(z„)| (1 — |zn|)2>0.

Indeed, for the specific example already given we may assert/'(z„) = 0,

L>i(w„) = 0.

The converse situation may also arise:

Theorem 8. There exists a bounded regular function f(z) in |z| <1 and a

sequence of points {z„} (\zn\ <1, |zn|—>l)i« |z| <1 such that, setting wn=f(zn),

we have lim inf,,..«, Dy(wn) >0, while lim„^w |/"(zn)| (1 — | zn| )2 = 0.

Let
1 + z

c/>(z) = (1 - e~w+1)2,      W =-
1 — z

The function W= (1 +z)/(l — z) maps the circle |z| <1 on the half-plane

<2W>0. Now, {or<RW>0

I e-w+i j = exp (_ <pjy + 1) < e.

Hence, for |z| <1, \<p(z)\ <(l+e)2.

Direct computation shows that

1
<p>(z) = - 4<rw+\l - e-w+1)-,

(1 - z)2

8 8
0"(z) =-e-w+1(e-w+1 - 1) -I--e-w+l(l - 2e~w+y).

(1 - z)3 (1 - zY

We now choose the points zn = mri/\niri-\-\). It is clear that |z„| <1 and

lim„^„ z„ = 1. Setting Wn = (l+z„)/(l — z„), we find Wn = 14-2w«. Hence

(12.2) I I (1 - I zn\) = 0,   <£"(z„)(l - I sn|2)2^8   as *,

This incidentally gives another example for the proof of Theorem 7, since

the relation L>i(wn)—>0 follows from (12.2) and (10.1).

Next, we introduce the function

1 + z
^(z) = g-JF+i,      w =-

1 — z

Again, we observe that in | z| < 1 the function \p(z) is bounded:

I -AO) I < e.

Choosing again zn = niri/{niri-r-\), we find

(12.3) I V{zn) [(1 - I zn |2) = 2, for all n,
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and

(12.4) ■(! - I zn|2)2^4   as »->>.

Finally, we introduce the function

/(z) = <b(z) + 2*(*).

It is clear that/(z) is bounded in the circle |z| <1, satisfying there the in-

equality
I /(z) I < (1 + e)2 + 2e.

For the sequence of points zn = mri/(mri-\-l) by virtue of (12.2), (12.3), (12.4)

we have the relations

|/'(zn) I (1 - I zn|2) = 4 9* 0, for all«,

and

/"(z„)(l - I z„|2)2-^0   as w-^co.

It follows from Theorem 3 that Di{wn) has a positive lower bound. The func-

tion/(z) is therefore an example of a function with the properties asserted in

Theorem 8, and Theorem 8 is established.

By forming the function /(z) = acp{z) + b\p(z) with arbitrary constants a

and b, one can now obtain arbitrary limits for |/'(z„)| (1 —|zn|2) and

|/"(zn)|(l-|z„|2)2as »-*oo.

It may be observed that if the condition |z„|—>1 in Theorems 7 and 8

were dropped, one might take as examples to prove the theorems the simple

functions/(z) =s2 and/(z)=z, zn = 0, respectively.

Finally, it may be noted that in the Theorems 4-6, the boundedness of

/(s) was assumed merely in order to ensure the normality of the family g„(f).

Thus, it would have sufficed to assume that/(z) has 2 exceptional values and

f(zn) is bounded.

13. Definition and some properties of Cp.

Definition 3. Let Cp be a simply connected Riemann configuration contain-

ing the point Wo, lying over the circle \w — Wo\ <p and covering it precisely p

times. Such a region Cp will be called a p-sheeted circle of center Wo and radius p.

We shall exclude the case p = °o (called an improper ^-sheeted circle) for a

reason that will be given a little later. It should be observed that the center

of a ^-sheeted circle is not uniquely defined.

The necessity of assuming explicitly (rather than proving) in Definition 3

that Cp shall be simply connected may be seen from the following example.

Consider in the w-plane the (simply connected) Riemann surface of the func-

tion ((w — a)/{w — /3))1/2 where a and ß are two complex numbers, with the

branch line the rectilinear segment aß. Let us now cut this surface by a circu-

lar biscuit-cutter which includes the two points a and ß. The resulting circular



160 W. SEIDEL AND J. L. WALSH [July

region cut out of the surface satisfies all the requirements in Definition 3 ex-

cept the condition of simple connectivity. In fact, every region lying over a

circle \w — w0| <p and covering it precisely twice ceases to be simply con-

nected as soon as it has two branch points or more. Indeed, in such a case it is

clearly possible to find a cut joining two boundary points and crossing a

branch line which will not sever the surface. In general, by applying the theo-

rem of Bocher and Walsh (as in the proof of Theorem 13 below) one may

easily show that every region lying over a circle | w — w0| <p and covering it

precisely p times ceases to be simply connected as soon as the sum of the mul-

tiplicities of its branch points exceeds p — \. The multiplicity of a branch

point is to be understood as one less than the number of sheets which come

together at that point. An algebraic branch point (but not a transcendental

one) is to be considered as belonging to the Riemann configuration.

One may prove some immediate consequences of Definition 3.

Theorem 9. Any p-sheeted circle over the w-plane can be mapped in a one-to-

one conformal manner on the unit circle \z\ < 1.

According to the fundamental theorem of uniformization the £>-sheeted

circle Cp, being simply connected, may be mapped in a one-to-one conformal

manner either on a circle, or on the full plane, or on the full plane from which

the point at infinity is excluded. Denote the mapping function by w=/(z).

Since Cp is a bounded region, the function /(z) must be bounded. This is cer-

tainly not possible in the two latter cases. Thus, Cp can be mapped only on a

circle.

Theorem 10. A p-sheeted circle Cp with center wB and radius p can be mapped

in a one-to-one conformal manner on the unit circle \z\ < 1 by means of a func-

tion of the form

(i3.i)   •      f{z) = wo + p*"s*n
,=1   1 — ZjZ

where 9 is an arbitrary real number, k an integer satisfying the inequality

0<k^p, and where Si, z2, ■ • ■ , zp_k are points of the unit circle \z\ <1. Con-

versely, every function of the form (13.1) realizes a one-to-one conformal map of

the unit circle | z| < 1 on some p-sheeted circle with center at Wo and radius p.

In speaking of conformality, it must be remembered that it will break

down at a branch point. To prove the first part of the theorem introduce a

similarity transformation in the w-plane with center in w0 which transforms

the circle Cp into a ^-sheeted circle Cp of radius 1. By means of a trans-

lation we can always bring the point w0 into the origin. The resulting one-

to-one map of |z| <1 on Cp can be interpreted as a (1, p) conformal corre-

(44) T. Rado, Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-

Josephinae, Szeged, vol. 1 (1922), p. 55. Preliminary related work is due also to Fatou and Julia.
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spondence of a unit circle on itself. By applying Rado's theorem(44) on the

representation of such correspondences we obtain the expression (13.1). The

converse may also be derived from Rado's theorem together with a trans-

lation and similarity transformation in the w-plane.

A remark will now be made to justify the exclusion of the case p= " in

the definition of cp. An improper ^-sheeted circle could be interpreted as the

w-plane covered precisely p times. If such a circle belonged to a simply con-

nected Riemann surface, the surface could not be of hyperbolic type and

consequently Theorems 9 and 10 would no longer apply. Suppose first that

a simply connected Riemann surface which contains an improper ^-sheeted

circle could be mapped conformally on the unit circle. Thereby the />-sheeted

circle would be transformed into a simply connected subregion of the unit

circle. Now if the improper /j-sheeted circle has no boundary points such a

transformation is clearly impossible. Suppose then that the ^-sheeted circle

has the point w = °° as a boundary point. Then, the mapping function in the

unit circle approaches infinity whenever the point z approaches the boundary

of the subregion. This is again impossible.

Theorem 11. Let cp be a p-sheeted circle with center at w0 and radius R. Let

cp be a subregion of cp which lies over a circle \ w — Wq\ <r, where r<R, and

covers it precisely p times. Then, cp is also simply connected.

We can map cp on the unit circle \z\ < 1 in accordance with Theorem 9.

The mapping function w=f(z) is regular in \z\ <1 and maps cp on a certain

subregion B of \ z\ < 1. On the boundary F of 5 we have |/(z) — w0| =r, while

in the interior of B we have \f(z)— w0\ <r. From the maximum modulus prin-

ciple it follows that B is simply connected. Since the map defined by w=f{z)

is topological, the image of cp of B must likewise be simply connected.

In order to establish the uniqueness in Definition 3, we shall prove

Theorem 12. Let R be a simply connected Riemann surface of hyperbolic

type. Let w0 be a point of R. Let cp and cp be two p-sheeted circles with center

at w0 and radius p. Then, cp and cp are identical.

If we map R on the unit circle |z| <1 by means of the function w=/(z)

so that/(0) = Wo, the two circles cp and cp will be mapped on two regions B

and B' belonging to the circle |z| <1. In the interiors of B and B' we have

|/(z)—w0| <p and on the boundaries |/(z) — w0| =p. Furthermore, both re-

gions B and B' contain the origin. Thus, unless B and B' are identical at

least one boundary point of one region, say B, will be interior to the other

region B'. This, however, constitutes a contradiction.

14. Definition of Dp.

Definition. Let w=f(z) regular in the unit circle \z\ <1 map the circle

on a Riemann configuration R. That is to say, R is an arbitrary simply connected

Riemann .configuration of hyperbolic type over the finite w-plane. Let w0 be an
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arbitrary point belonging to R. A non-negative number Dp(wo), called the radius

of p-valence of R at the point i»o, shall be associated with the point w0 in the fol-

lowing manner:

(a) For p=\,wedefine Dp(wo) = Di(wrl) (see §1).

(b) If there exists a p-sheeted circle with center wo contained in R, there exists

a largest such circle, and the radius of this largest circle is defined as Dp(wq).

(c) If p > 1, and if Wo is a branch point of order greater than p — \, then

Z)p(w0) = 0.

(d) If there exists no p-sheeted circle (p>l) with center w0 contained in R,

and if w0 is not a branch point of order greater than p—\, then we define Dp(w0)

as DP_i(w0).

It should be observed that in the definition in part (b) the existence of a

largest ^-sheeted circle with center in w0 contained in R is asserted and still

requires some justification. From Theorem 12 it follows that if such a circle

exists, it must be unique. Furthermore, as one starts with a ^-sheeted circle

with center in Wo contained in R and proceeds to enlarge its radius, it can

never happen that it becomes multiply connected and on enlarging the radius

still more, finally again becomes simply connected. This possibility is ruled

out by Theorem 11. Finally, the existence of a ^-sheeted circle with center

in Wo and contained in R whose radius is the least upper bound of the radii

of all ^-sheeted circles with center in w0 and contained in R can be established

by simple considerations of continuity, which are left to the reader.

The number Dp(w0) is not, as the notation would seem to indicate, a func-

tion merely of w0, a value of w, but is rather a function of a specific point of R

whose affix is w0; thus Dp(wo) is precisely a function of z0, where R is deter-

mined by the transformation w=/(z). However, no confusion is likely to re-

sult from the slight lack of definiteness in the notation Dp(w0). We denote

by Rp(w0) the unique region of R which is a g-sheeted circle Cq (q^p) whose

center is w0 and radius Dp(w0).

For the sake of clearness, we present now a numerical illustration of the

definition of Dp(w0). Let R consist of the doubly-carpeted unit circle | w\ <1

with branch point of the first order at the origin w = 0, except that in the

second sheet there is deleted the subregion of \w\ <1 contained in the region

I w +11 < 1/3; for definiteness choose the branch line as the segment 0 = w < 1;

of course this configuration R can be mapped in a one-to-one manner on

I z| < 1 by a single-valued function w=f(z), as can be seen at once by use of

the auxiliary transformation w — z\, which maps R onto a smooth Jordan re-

gion of the Zi-plane. We obviously have Di(0) = 2/3, for the doubly-carpeted

(that is, two-sheeted) circle \ w\ < 2/3 is contained in R, and that is true of no

larger concentric doubly-carpeted circle. When Wo is positive, and in either

sheet of R, we have

D2(wo) = wo + 2/3, 0 = wo g 1/6,
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D2(w0) = 1 — wo, 1/6 = wo < 1;

for positive Wo, the size of the region R2(w0) is limited by the nearer of the

two points —2/3, +1. When w0 moves from the origin to the left in the first

sheet, the size of R2(w0) continues to be limited by the point w= —2/3:

D2(wo) = wo + 2/3, - 1/3 = w0 < 0.

But when the point w0 continues to the left from the point w0 = —1/3, the

size of R2(w0) is now no longer limited by the point —2/3, but is conditioned

by the necessity of including no point of | w+l1 < 1/3, hence is limited by the

origin; the corresponding region cut out of R is smooth, merely the region

I w — w0\ < I Wo] :
D2{wo) = - wo, - 1/2 ^ wo ^ - 1/3.

As Wo moves further to the left from w= —1/2, still in the first sheet of R,

the region R2(w0) is now limited only by the point w= — 1:

D2(wo) = 1 + wo, - 1 < wo ^ - 1/2.

When w0 moves from the origin to the left in the second sheet of R, the size

of R2(wo) is also limited by the point w= —2/3:

7J»2(wo) = wo + 2/3, - 2/3 < w < 0;

this situation continues as w0 moves from the value zero to the value —2/3,

but the region R2(w0) is a doubly-carpeted circle for — l/3<w<0, and is

singly-carpeted (smooth) for — 2/3 <w = —1/3. This completes the study of

our numerical case.

Let us now discuss the manner in which _Dp(wo) and Rp(wo) vary on the

general Riemann configuration R, the image of |z| <1 under the arbitrary

map w=/(z), where/(z) is analytic in |z| <1. The various possibilities that

arise are illustrated by the example just given. We cut all the sheets of R

through with a circular biscuit-cutter whose center is w0 and whose radius

is the variable r. One of the connected sets thus cut out of R contains w0 and

is denoted by R\. When r is small it follows from the usual implicit function

theorem that if w0 is not a branch point of R the region Ri is smooth, and if w0

is a g-fold point of R, then Ri consists of a g-sheeted circle whose only branch

point is Wo. As r is gradually increased, this situation continues until the

boundary of Ri reaches either a boundary point of R or a branch point of R.

In the former case we have Dp(wo) equal to this particular value r\ of r, and

R\ is Rp(wo). In the latter case if r is further increased, it may be that R\ be-

comes a q'-sheeted circle with q<q' ^p, in which case we have Dp(w0) ^ r >ri.

But it may occur that whenever r is near to but greater than r\ the region R,

is a g"-sheeted circle, q">p, in which case we have Dp(wo) = r\, it may also

occur that whenever r is near to but greater than ri the region Ri has bound-

ary points in common with R, in which case we have also Dp(wo) = fi. If we
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have Dp(w0)>ri, the radius r can be perhaps increased until still further

branch points of R lie interior to Ri, while Ri remains a gi-sheeted circle whose

center is w0, with qi^p. In any case the radius r can be increased from zero to

such a value r2 that: (i) either a boundary point of R lies on the boundary of

Ri, (ii) or there lie on the boundary of Ri branch points of R of such multiplici-

ties that for all values of r slightly greater than r2 the region i?2 containing w0

and cut out of R by the biscuit-cutter with center w0 and radius r is a

g"-sheeted circle with q">p, (iii) or there lie on the boundary of R\ branch

points of R of such nature that for all values of r slightly greater than r2 this

region i?2 has boundary points which satisfy the relation | w — Wo\ <r2. It is to

be noted that if the biscuit-cutter of radius r cuts from R the region R\ con-

taining wo, and if Ri has a boundary point W\ (necessarily a boundary point

of R) for which j W\ — Wo\ O, then we must have Dp(w0) <r. For under these

conditions Ri cannot be a g-sheeted circle; the point W\ of the w-plane may be

covered by Ri precisely q times (not necessarily by q sheets meeting at wi),

but then (by the implicit function theorem) a suitably chosen neighborhood

of Wi is also covered precisely q times by the sheets of Ri that cover Wi, and

suitable points w in this neighborhood are covered more than q times in all, for

they are covered also by Ri in the neighborhood of the boundary point W\.

It is of interest to trace also the situation in the z-plane corresponding to

the preceding discussion. When r is sufficiently small, r>0, the locus

|/(s)—Wo| =r consists (in addition to possible other arcs or curves) of a

Jordan curve J(r) in the neighborhood of the point z0, where w0=/(z0); for

r sufficiently small, interior to J(r) the function/(z) takes on every value that

it assumes (by Theorem 13 below) precisely a number of times equal to the

multiplicity q of z0 as a zero of the function /(z) — w0; the image of the in-

terior of J{r) over the w-plane is a g-sheeted circle of radius r whose only

branch point is w = Wo- As r now increases, this situation continues until J(r)

reaches | z| = 1 or until at least one multiple point of J(r) appears (at a multi-

ple point the tangents to J(r) are equally spaced); in the former case we

simply have Dp(w0) equal to the corresponding value fi of r; in the latter case

for values of r near to but slightly greater than ri, the locus |/(z)— w0\ —r

consists of a Jordan arc Ji near but exterior to J{ri) plus other Jordan arcs

forming with Ji a maximal connected set which we denote by J(r); still other

Jordan arcs may belong to the locus and not be connected with J\, but such

arcs do not concern us at present. If for every r near to but slightly greater

than r\ the set J(r) has a boundary point on | z| =1, then we have Dp(wo) = r\\

in the contrary case J(r) consists of a Jordan curve in | z| < 1 containing J{r\)

in its interior; the function/(z) takes on interior to Jir) all the values that

it takes on there the same number of times, say q'. If q' is greater than p we

have Dp(wo) =n, but if q' is not greater than p we have Dp(w0) >ri, and the

process of enlarging J(r) can continue beyond r — ri. The process continues

as r increases, and J(r) may pass through multiple points, thereby increasing
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not merely r but also the number of times (the same for all values) that/(z)

takes on interior to J(r) values that it takes on there. The process eventually

comes to an end at some value r = r2 = Dp(w0), either because J(r2) reaches

the boundary | z| = 1 and hence is no longer a Jordan curve in | z| < 1, or be-

cause the locus |/(z)— w0\ = r2 has a multiple point, and for every r>r2 but

near to r2 the locus |/(z) — w0\ = r either fails now to separate z0 from | z\ = 1

or divides | z | < 1 into regions of which the one containing z0 is a Jordan region

in which each value assumed is assumed more than p times.

15. Some properties of Dp. We return now to the general theory of

Dp(wq)\ an important tool is(45)

Theorem 13. Letf(z) not identically constant be analytic in the simply con-

nected region B, let |/(z) | be continuous in the corresponding closed region and

have the constant value b on the boundary C of B. Then all values w taken on by

f(z) in B are taken on there the same number of times q, and f'(z) has precisely

q—l zeros interior to B.

The region B cannot be the entire plane or the entire plane with the omis-

sion of a single point, so B can be mapped conformally onto the interior of

the unit circle y. It is sufficient to establish the theorem where B is the in-

terior of 7, which we shall now do. We must have b >0, so by the well known

properties of the maxima and minima of |/(z) |, the zeros of/(z) interior to y

are finite in number, ßi, ß2, • • ■ , ßq with q>0. The function

/(*MI -— >
h-l   z — Pk

when suitably defined in the points ßk, is analytic and different from zero at

every point interior to 7; its modulus is continuous in the corresponding closed

region and takes the constant value b on 7. Hence this function itself is a

constant of modulus b, and we have

/(z) = o>&n——' i«i = i-
1 — ßkz

The first part of Theorem 13 now follows from Rouche's theorem, for if we

have I c| <b we have on 7 the inequality \c\ < |/(z) |. The latter part of Theo-

rem 13 follows from a theorem due to Bocher and Walsh (46).

Theorem 14. Let the function iv=f(z) analytic.for \ z\ <rwithf(0) = 0 map

I z I < r onto a Riemann configuration R such that no point of the boundary of R

(") The part of this theorem which refers to the zeros of/'(z) is not new, if q is defined as

the number of zeros of/(z) in B, and has been considered by de Boer, Macdonald, de la Vallee

Poussin, Whittaker and Watson, Denjoy, Lange-Nielsen, and Älander. See for instance Denjoy,

Comptes Rendus de PAcademie des Sciences, Paris, vol. 166 (1918), pp. 31-33; Älander, Comptes

Rendus de l'Academie des Sciences, Paris, vol. 184 (1927), pp. 1411-1413.

(«) J. L. Walsh, these Transactions, vol. 19 (1918), pp. 291-298, especially p. 297.
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satisfies the inequality \w\ <p >0. Then the connected region Ri of R which con-

tains the transform of z = 0 and which is cut out of R by a biscuit-cutter whose

center is w = 0 and radius p is simply connected; and each point w of the w-plane

with \w\ <p is covered by Ri the same number of times.

The region i?i corresponds to some region i?2 in \z\ <r containing z = 0.

The function |/(z) | is continuous in the closed region consisting of i?2 plus

its boundary, and assumes the constant value p on the boundary; of course

the boundary of J?2 may coincide in whole or in part with | z| =r. It follows

from the principle of maximum modulus applied to/(z) in |z| <r that the

boundary of i?2 cannot fall into two or more continua, one of which would

necessarily lie in a simply connected region interior to | z| —r bounded by an-

other continuum belonging to the boundary of 2?2. Then i?2 is simply con-

nected, and so consequently is R\. The remainder of Theorem 14 follows from

Theorem 13.

Theorem 15. Let w=f{z) be analytic for \z\ <1 and map \z\ <1 onto the

Riemann configuration R with Wo=/(zo), |zo| <1. Let f(z) take on in \z\ <1

every value w in the region \w — w<\ <p>0 precisely p times. Then we have

Dp(w0)^p.

No boundary point Wi of R can satisfy the inequality \wx — Wo| <p; for

if it did the point wx of the w-plane would be covered by R a totality of p

times, and by the implicit function theorem a suitably chosen neighborhood

of Wi would also be covered by R precisely p times by the sheets of R cover-

ing W\. Some values w in every neighborhood of W\ are covered also by the

sheet (or sheets) of R of which W\ is a boundary point; so some points w with

\w — w0\ <p are covered more than p times, contrary to hypothesis.

We have now shown that no boundary point of R satisfies the inequality

I w — w01 <p; so it follows from Theorem 14 that the region containing w0 cut

out of R by a biscuit-cutter of center Wo and radius p covers each point of

|w — Wo j <p the same number of times, a number which by the hypothesis

of Theorem 15 cannot exceed p\ hence Theorem 15 is established.

Still another result related to Theorems 14 and 15 follows easily:

Theorem 16. Let the function w=/(z) be analytic for \z\ <1 and map

\z\ <1 onto the Riemann configuration R with Wo=/(zo), |zo| <1. Suppose

lim inf|,[.»i |/(z)— Wo I ^p, and suppose no value in \w — w0| <p is taken on

by f(z) in | z| < 1 more than p times. Then we have Dp(wo) ^p.

It follows from our hypothesis that no boundary point of R lies in

I w —Wo| <p; so Theorem 16 follows from Theorems 14 and 15.

Corollary. Let w —f{z) be analytic for | z | < 1 and map \ z | < 1 onto the Rie-

mann configuration R with w0 =/(zo), | Zo| < 1 • Let Ri be a subregion of \z\ < 1

containing z0, whose boundary B satisfies the condition limz,b,|2|<i |/(z)— w0\
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= p>0, and suppose no value w is taken on by f{z) in Rx more than p times.

Then we have Dp(w0) Sip.

It follows from the principle of maximum modulus that R\ is simply con-

nected. If R\ is mapped smoothly and conformally onto | f | <1, and if Theo-

rem 16 is applied to the function which maps [f | <1 onto R\, we obtain the

corollary.

Although the following theorem is not needed in the sequel, it is of some

interest in itself.

Theorem 17. Let Rbe a simply connected Riemann configuration of hyper-

bolic type, and let w0 be any point of R. Then Dp(w0) is a continuous function

ofw0.

We need to define what we shall mean by the continuity of Dp(wo) on R.

If Wo is a branch point of order greater than p — 1, (p>l), we shall say that

Dp{wo) is continuous at Wo if to any «>0 we can assign a number 5>0 so

that for any point w0' at a distance not greater than 5 from Wo and lying on one

of the sheets that come together at w0 the relation | Dp(wo) — Dp(w0) | <e

holds; here Dp(wo) = 0. If w0 is a branch point of order q, where 0 = q = p — 1,

we shall say that Dp(wo) is continuous at Wo if to any e>0 we can assign a

number 5>0 so that for any point w0' within the g-sheeted circle Cq with

center at Wo and radius 5 the relation | Dp(w0') — Dp(wo) | <e holds. The proof

of this theorem is left to the reader.

16. The limit property of Dp for continuously convergent sequences.

Theorem 18. Let {/„(z)} be a sequence of functions analytic in the unit

circle \z\ <1, and converging uniformly in every closed subregion of \z\ <1 to

an analytic function /(z). Let Zo be any point in the circle \z\ <1 and set

wn=fn{zo), Wo=f{zo). Denoting by Dp{wn) the radius of p-valence at the point wn

of the Riemann configuration Rn on which fn(z) maps the circle |z| <1 and by

Dp(wo) the radius of p-valence at the point wQ of the Riemann configuration Ro

on which f(z) maps the circle |z| <1, we have

(16.1) lira Dp(wn) = Dp(wo), p = 1, 2, 3, • • • .
n—*w

The proof of the theorem will be based on two lemmas:

Lemma 1. Under the conditions of Theorem 18,

(16.2) lim inf Dp(wn) ^ Dp(w0).
n—»w

The lemma is clearly trivial if Dp(w0) = 0.

Let us assume, therefore, that Dp(w0) >0 and choose any positive num-

ber p so that p <Dp(w0). Hence, the Riemann configuration R0 contains in its

interior some g-sheeted circle Cq(w0), 1 ̂ q^p, of center w0 and radius p, to-
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gether with its boundary. Denote the region in \z\ < 1 on which the function

w=/(z) maps Cq(wo) by R0. The boundary B0 of R0 must consequently lie

wholly in the interior of |z| <1. In R0 we have |/(z) — w0\ <p and on B0

we have |/(z)— w0\ = p. Let e>0 be any number such that p + e<Dp(wo).

Due to the uniform convergence of the sequence /„(z) on B0, there exists a

positive integer n{t) such that for all integers n>n(e) the inequality

|/n(z)— wn\ >p —e holds on Bo. Hence, that region Rn in the circle |z| <1

which contains the point z0 and on which \fn(z) —wn\ <p —e lies wholly in-

terior to R0. On the boundary Bn of Rn we have |/„(z) — wn\ =p —e. In ac-

cordance with Theorem 13 the function/„(z) takes on all its values the same

number of times qn in Rn. By Hurwitz's theorem, since /(z) is at most

p-valent(47) in R0, for sufficiently large values of n we have qn^p. Hence,

by the corollary to Theorem 16 we have Dp(wn)^DQn{wn)^p — e. Hence,

lim inf^so Dp{wn) Sip. But p is an arbitrary positive number less than Dp(wo).

The relation (16.2) follows at once.

Lemma 2. Under the conditions of Theorem 18,

(16.3) lim supDp(w„) = Dp(w0).
n—*«

If this lemma is false there must exist a positive constant a such that for

infinitely many values of n

(16.4) Dp{wn) > a > Dp(wo).

We shall neglect all those functions f„(z) for which the above inequality fails

and assume that (16.4) holds for all n.

Consider that largest region Rn in the circle |z| <1 which contains the

point z0, for which \fn(z)—wn\ <a. Then in Rn the function f„(z) is g-valent

(q^p). According to (16.4) the boundary C„ of the region Rn lies wholly in

the circle |z| <1. Furthermore, by the principle of maximum modulus we

conclude that R„ is simply connected. Clearly, on the curve Cn the relation

\fn(z) —wn\ =a is satisfied. Every value taken on by/„(z) in Rn is taken on

the same number of times.

Denote by z =<£„(/) a function which maps the region Rn on the circle

11 \ < 1 in such a manner that d>„{0) =z0. Since the curve C„ is a Jordan curve,

by a well known theorem of Osgood-Caratheodory the function <pn(t) is con-

tinuous in the closed circle t\ = 1(48). The function/„(</>„(<)) =gn{t) is analytic

in 11 \ < 1, continuous in 11 =j 1 and | gn{t) — wn\ =a on \ t\ =1. By Schwarz's

reflection principle^9), we infer that g„{t) is analytic in the closed circle

(") We shall say that a function /(z) is p-valent in a region R if it assumes no value more

than p times in R and at least one value precisely p times. A function /(z) will be called at most

p-valent in R if it is g-valent in R for some q^p.

(48) W. F. Osgood and E. H. Taylor, these Transactions, vol. 14 (1913), pp. 277-298;

C. Caratheodory, Mathematische Annalen, vol. 73 (1913), pp. 305-320.

(49) Cf. G. Julia, loc. cit., p. 44 ff.
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|/| =1. Finally, gn(t) is precisely g-valent in \t\ <1 since/„(z) possesses the

same property in R„. By the theorem of Rado, referred to earlier, we may

represent gn(t) in the following manner:

(16.5) gn(t) = wn + aeieHk"ll-~ ,   KJtV, | 4"' I = 1.
J=1    1 -

Since the gn(t) are uniformly bounded, they form a normal family and we may

select a subsequence, which for simplicity will again be denoted by {gn(t)},

converging uniformly in every closed subregion of \t \ < 1 to a function G(t)

analytic in \ t\ <1.0n account of (16.5) G(t) has itself a representation of the

form
q—k     i _      £ .

(16.6) G(t) = w0 + aeiHk Ü -^~' k =
•vi    1 — tjt

Just as in (16.5) some of the tj here may have the absolute value 1.

Now consider that largest region R0 in | z| < 1 which contains the point z0

and in which |/(z) — w0| <a. According to the maximum modulus principle

Ro is simply connected and we may map it on the circle \ t\ <1 by means

of a function z=<p0(t) so that <p0(0)=Zo- On that part of the boundary B0

of i?o which lies interior to the circle |z| < 1 if it exists we have |/(z) — Wo| —a.

We shall now show that Ro is the kernel of the sequence of regions \Rn\ (50).

Indeed, consider any region R0' which together with its boundary lies interior

to Ro and contains the point z0. By the definition of R0, in the region R0' and

on its boundary we have |/(z)—w0| <<x. Since the functions /„(z) —w„ con-

verge uniformly to/(z) — Wo in the closure of Rd, for n sufficiently large we

have |/n(z) — w„\ <a in the closure of R0', and therefore R0' belongs to all R„

for sufficiently large values of n. Next, choose any point z' of the circle

|z| <1 exterior to R0 (if such a point exists). Connect the point z' with the

point Zo by any Jordan arc L which lies wholly in the circle | z| < 1. Since s' is

exterior to Ro, there must exist on the arc L at least one point Z at which

|/(Z) — Wo I > a. For sufficiently large values of n we must have |/„(Z)—w„| >a,

and consequently Z is exterior to Rn. Thus, on any Jordan arc joining the

points z0 and z' there exists a point exterior to Rn for all sufficiently large

values of n. Consequently Ro is the kernel of the sequence of regions {i?„}.

Hence, by a well known theorem of Caratheodory(51) the sequence of func-

tions 4>n(t) converges uniformly in every closed subregion of |/| <1 to the

function <p0(t), provided merely we have chosen     (0) >0, <f>o (0) >0.

If we form the function go(t) =f(<j>o(t)), it follows that the sequence of func-

(50) For the notion of kernel of a sequence of domains cf. C. Caratheodory, Conformal

Representation, Cambridge Tract in Mathematics and Mathematical Physics, no. 28, (1932),

pp. 74-77.
(51) C. Caratheodory, loc. cit., particularly p. 76.
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tions {gn(t)} converges uniformly in every closed subregion of |/| <1 to the

function go(t). We have shown earlier, however, that the sequence \gn(t)} con-

verges to the function G(t) whose representation is given in (16.6). We thus

find that goW = G(t) identically in \t\ < 1. From (16.6) it follows therefore that

go(t) is analytic in |/| gl, is g'-valent (q'^p) in \t\ <1, and on the circum-

ference \t\ =1 satisfies the relation \go(t) — wo| = a.

Consider now an arbitrary positive number e such that a — e >Dp(wo). De-

note by Rt the largest region in \t\ < 1 which contains the origin and through-

out which \go(t)— w0\ <a — e. The boundary Ce of this region lies wholly

interior to \t\ < 1 and in Rt the function g0(t) is g"-valent (q"^p). The func-

tion z = <p0(t) maps the region Rc on a region Pe in the 2-plane which is together

with its boundary Te interior to R0. In Pt we have \f(z) —w0\ <a — e and on Te

we have |/(z) —w0| =a — e. Since the region Pe contains the point Zo and since

/(z) is g"-valent in Pe, it follows that a — e <Dp(w0). This contradicts our as-

sumption concerning e.

Since the assumption (16.4) leads to a contradiction, the relation (16.3)

is true.

We are now ready to prove the theorem. Lemmas 1 and 2 together yield

the inequalities

lim sup Dp(wn) _ Dp(w0) = lim inf Dp(wn).
n—* oo n—*«

Since, however, we always have lim inf,,.*, Dp(wn) =lim sup,,.» Dp(w„), it fol-

lows that lim sup,,.«, Dp(wn) = lim inin^ Dp(wn) = lim«.» Dp(wn) =Dp(u>o),

which proves the theorem.

17. lim„_„ Dp{wn) = 0 is a necessary and sufficient condition for

\\mn^\fm(zn)\ (1 — |z„| )* = 0 (k = \, 2, • • • , p). An immediate consequence

of Theorem 18 is the following extension of Theorem 2, Chapter II, to the

higher derivatives of bounded functions.

Theorem 19. Letf(z) be regular and bounded in \ z\ < 1:

I /(*) I = M,
let {z„} be any sequence of points in | z| < 1, and let wn =/(z„). Then, a necessary

and sufficient condition for

lim \fw(zn) \ (1 -|z,|)* = 0, k=l,2,---,p,
n—♦«

is (hat lim„,oo Dp(wn) = 0.

We first prove the sufficiency of the condition. We assume that

lim,,.«, Dp(wn)=0. In accordance with the definition of the radius of p-va-

lence it follows that

(17.1) lim Dk(wn) = 0,
n—*oo

k = 1, 2, • • • , p.
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By virtue of Theorem 2, Chapter II, the condition is sufficient for p = \. Let

us assume that the condition is sufficient for p — 1 and prove it to be suffi-

cient for p. We assume therefore that (17.1) implies

(17.2) lim I/<*>(«») I (1 - [*.()* = 0,   k = 1, 2, •   •,/>- 1.
n—»«

If the condition is not sufficient for p, we could find a positive constant 5 and a

subsequence of {z„}, which for simplicity will again be denoted by jz„} for

which

(17.3) |/("'(z»)|(l-|z»|)p==5>0

and at the same time the relations (17.1) and (17.2) hold.

Now if we introduce the sequence of functions

which are bounded and regular in | f | < 1: |0„(f) | g M, we obtain by virtue of

the expression (2.3)

fVu ,(i-|2ni2)^v(p-"(2„)— « Z (" 1) C^A —--

The relations (17.2) and (17.3) imply

(17.4) liminf | 0nP'(O) | > 8 > 0,
n—>«

while the relation (2.3) written out for n = 1, 2, •••,/> — 1 together with

(17.2) shows that

(17.5) lim I <bn (0) I = 0,      for £ = 1, 2, ■•■,/>- 1.

The sequence of functions {$„(£)} forms a normal family in | f | < 1. We may,

therefore, extract a convergent subsequence which for simplicity will again

be denoted by | </>„(£")}

lim <t>n(t) = 0(f).
n—too

The relations (17.4) and (17.5) imply

(17.6) <b(k)(0) = 0   for   k = 1, 2, •••,/>- 1;      U(j,)(0) | = 6.

The equations in (17.6), however, imply that the radius of p-valence Dp [(p(0) ]

of the Riemann surface on which <p(£) maps the circle |f| <1 is positive at

the point 0(0) of the surface Dp [0(0) ] >0. According to Theorem 18 if we
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denote by Dp [</>„(0) ] the radius of p-valence at the point </>„(0) of the Riemann

surface Rn on which 0„(f) maps the circle | f | < 1 and observe that <pn(0) =i»»,

we obtain

lim Dp{wn) = Dp[<b(0)] > 0.
n—*w

But R„ is precisely the Riemann surface R on which /(z) maps the circle

I z| < 1. Hence, the last relation contradicts (17.1) for k = p. This proves that

the assumption (17.3) is false and the sufficiency of our condition is estab-

lished.
We now turn to the proof of the necessity of the condition in Theorem 19.

Let us assume that

hm |/(*>(z„)| (1 - I 8.| )* = 0,    for k = 1, 2, • • • , p.
n—

Forming again the functions 0„(f), we see that

i      (k) I

lim I <pn (0) I = 0 for * = 1, 2,    • , p.
n—► »

Let us assume that we have already selected a uniformly convergent subse-

quence of the {<pn(f)}, which, because of the normality of the family, is al-

ways possible. The limit function <p(f) of the sequence has the property that

0<*>(O) = 0for£= 1, 2, • • • p. Consequently, L>p[(p(0)]=0 and by Theorem 18

lim Dp(wn) = 0.
«—♦00

The last relation has been proved only for a subsequence of the original se-

quence. But since from every sequence we may select a subsequence with this

property, it must also hold for the whole sequence. Theorem 19 is now es-

tablished.
It will be noticed that Theorem 19 is unsatisfactory in that no indication

is given of the manner in which expressions of the type \fik)(zn) | (1 — | z„| )*

depend on the radii of p-valence Dp(wn). In the case p = 1 we have already

given inequalities which bring out this dependence (Theorem 3, Chapter II).

Our next task will be to extend Theorem 3, Chapter II, to the higher deriva-

tives of bounded functions. The constants that we shall obtain will, however,

not be precise. We shall first study upper bounds for the derivatives of

bounded functions. The inequalities that we shall obtain will, of course, yield

a new proof of Theorem 19 by quantitative methods rather than the purely

qualitative methods that we used in the present proof.

Chapter III. Bounded functions; inequalities on Dp

18. A preliminary lower bound for Dp. For our purpose in the use of

Dp(w0) for the study of such relations as |/<p)(z-t)| (1 — |z*| )p^0, it is desir-
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able to have explicit numerical inequalities connecting Dp{wk) and the deriva-

tives /'(2*), f"(zk), ■ ■ ■ ,f(p)(zk). We first prove regarding this relationship

Theorem 1. Suppose the function f(z) analytic for 121 < 1 with /(0) = 0,

/(p)(0) =pl, and with \f(z) | = Mfor \ z\ < 1. Then we have

(18.1) Dp(0) = Mp > 0,

where Mp — MP(M) is a suitably chosen constant depending on M and p but not

onf{z). »

Our proof of Theorem 1 is a direct generalization of Landau's proof (52) for

the case p = l. For the case p = l, Landau's method yields the inequality

(18.2) ZMO) = 1/(6M),

a special case of inequality (18.9) to be proved below. But other related meth-

ods^3) yield the inequality

(18.3) D,(0) ^ 1/(4M),

which is somewhat sharper than (18.2) and which we shall therefore take as

point of departure.

We remark that if /(z) is analytic for \z\ < 1 with /(0) = 0, /'(0) = nt ^0,

with |/(2) I g M for | 2] < 1, then the function f(z)/m has the derivative unity

at the origin and modulus in \z\ <1 not greater than M/\m\. Conse-

quently under the transformation w=f(z)/m we have from (18.3) the result

Di(0) = I m I /(4Af), and under the transformation w=f(z) we have

I niA
(18.4) Z»i(0) =

4M

Let us now suppose Theorem 1 established with p replaced by j for

j =\, 2, ■ ■ ■ , p — \; we proceed to prove by induction the theorem as stated.

The cases

(18.5') l/'(0)|§

(18.5")

(12M)p-1

/"(0) I ^ 1
2! (12^)^2

/(^'(O)! ^ 1(18.5<p-l>)

(p - 1)! 12Af

are all handled in a manner similar to the proof of (18.4). Thus in case

(62) E. Landau, Sitzungsberichte der Königlichen Preussischen Akademie der Wissen-

schaften, Berlin, 1926, pp. 467-174.
(M) J. Dieudonne, Annales de l'ficole Normale Superieure, vol. 48 (1931), pp. 247-358. Or

see Montel, Fonctions Univalentes, §37.
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(18.5(j)), j = l, 2, •   • ,p — 1, the function

/CO
/<»(o)//!

(18.6)

has thej'th derivative j! at the origin, and modulus in | z| < 1 not greater than

j !M/|/(,)(0) I, so by our assumption that Theorem 1 with p replaced by j is

established,  we have  under the  transformation w=j\f(z)/f(')(0), Z>,(0)

=; MiijlMy|/a)(0) I), and we have under the transformation w=f(z)

(18.7) D,{0) ^
fu)(0)

hence by the relation 2?p(0) =Z),(0) the theorem may be considered to be

proved. It remains to study the case that we have simultaneously

(18.5<">)
l/o)(0)

<
(12M)>

j = 1, 2, • 1,

with, of course, the relation/<p)(0) =p\.

Suppose r can be chosen (0<r<l) so that the expression

(18.8) R = max I f(z) — zp
1*1—r

is positive. Then we have R^rp<r, and for | w\ <R the inequality

I /(z) - z'
< 1

holds on the circle |z| =r. Of course, zp — w cannot vanish on |z| =r. Then

by Rouche's theorem the function f{z)—w has precisely as many zeros in

I zI <r as does the function zp — w, namely p. Then the transformation w =/(z)

maps |z| <r onto a Riemann configuration which contains the region \w\ <R

with each point covered precisely p times. Thus (Theorem 15, Chapter II),

we have Dp(0) =i?, whether DV(Q) refers to the Riemann configuration which

is the image of |z| <r or to the configuration which is the image of \z\ <1

under the transformation w—f{z).

It remains to show that r can be chosen in such a way that R as defined

by (18.8) is positive. If we set /(z) =^n-ianzn, Cauchy's inequality is

I o» I =S M, and in particular ap = 1 = M. Consequently we may write on | z | —r

by the use of (18.5 (p>)

Mrp+l

anZ
1 - r

n=l (12M)' (12M) "~

1 - {UM)p-lrp-1

1 - 12Mr
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and with the choice r = l/(4M),

R = rp — max | f(z) — zp \
\*\-r

Mrp+1 r       1 - (12M)p-V"-1
J>   fV —-

1 - r     (12M)p-1       1 - UMr

(18.9) 4 r       1 - (12M)p-V"-1
> fP — — MVP+1 — - -

3 (12M)"-1       1 - \2Mr

1 + 3P~2

2-3p~l-4p-Mp

We have now proved the desired inequality R>0 and thus completed the

proof of Theorem 1, and we also have material for obtaining an explicit in-

equality for MP(M) in inequality (18.1).

19. Numerical lower bounds for Dp. When p = 2, relation (18.7) [or

(18.4)] becomes in case (18.5')

1
Dt(0) = -,

242M3

whereas in case (18.5") we have from (18.9)

1
Z>,(0) ̂  -

48M2

so in either case we may write

1
(19.1) D2(0) =

242M3

Inequality (19.1) is to be generalized by proving

1
(19.2) D,(0) = MP(M) m-— •p 4-122  2M2 1

We remark that MP(M), as thus defined, decreases monotonically as M in-

creases. It is to be noticed that (19.2) holds for p = l, by inequality (18.3),

and for p = 2, by inequality (19.1); we assume (19.2) to hold with p replaced

by j for 7 = 2, 3, • • ■ , p — l, and shall establish (19.2) as written. In case

(18.5<>>) we find from (18.7) and (19.2) the inequality (p>2)

(19.3) D,(0) = (12M)"-' 4-122l-2[M(12M)p-']2'-1

Direct comparison of the right-hand members of (19.2) and (19.3) now shows,
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by virtue of the inequality 2?_13io, q a positive integer, and by virtue of

Z>„(0)SiZ)X0), that (19.2) holds in each of thecases (18.5(>>),i= 1, 2, . . ■ ,p-\.
Also in case (18.5<p)) inequality (19.2) is valid, as we find from (18.9), so we

have established.

Corollary 1. Under the hypothesis of Theorem 1, we have inequality (19.2).

Needless to say, the numerical results contained in some of the preceding

inequalities can be improved, and it is to be supposed that those contained

in inequality (19.2) can be greatly improved.

Inequality (18.7) is valid under the assumption /o)(0)^0 instead of

/°'(0) =jl, so by using MP(M) as defined by (19.2) we may formulate:

Corollary 2. Suppose the functions /*(z) analytic for \ z\ < 1, withfk(0) =0

and \fk(z) I ^ M for | z\ < 1. If as k becomes infinite the corresponding sequence

Z)p(0) approaches zero, then we have also

lim flP)(0) = 0.
k—*x

Under the conditions of Corollary 2 we have Dp(0) =-Dj,_i(0) 2t • • • =Z)1(0),

from which follows forj = l, 2, ■ ■ ■ , p the relation

(19.4) lim./f(0) = 0.
k—♦

A specific inequality for the direct proof of (19.4) is useful. A consequence

of (19.2) and (18.7) forj = l, 2, ■ • • , p, with the omission of the requirement

/«(0J =j\, is

l/<» (o)| l
dm ^

j 4-122'-2(;!M/|/(')(0) | )«*->

The inequality Dj(0) g M is obvious, so we have

. |/c»(0)
g 42 '.121-21 'if 1-2 '[D,{0)]2 '

DiiOp2"

(19.5')
< 24M

rz>/(o)T
= 24M

L M J

By virtue of the inequalities £>y(0) SiiP^^O) we may now write(64)

(19.5) I /'(0) I + — I /"(0) I + • • • + ^-|/(p'(0)| = 24#(1 + If) [DP(0)]2"P.

(M) For 0<a = l, Af>0, we have AfaSl+Jlf.
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We state explicitly a major result:

Corollary 3. If f{z) is analytic and in modulus not greater than M for

|z| <1, withf(0) = 0, then inequality (19.5) is valid for every positive integer p.

For the purpose of Corollary 3, the factor 1 + Min the right-hand member

of (19.5) may of course be replaced by Af1-2 .

20. A lower bound for the derivative of a circular product. The converse

of Corollary 2 is false, as is illustrated by the sequence /t(z) =z, with p = 2.

The second derivative f't'(0) vanishes for every k, yet D2(0) has the constant

value unity, so the relation D2(0)—>0 is not satisfied. Indeed, in the general

situation that /*(z) is analytic for |z| <1 with/i(0)=0 and |/*(z) | = Af for

|z| <1, it is not to be expected that fip)(0)—>0 should imply Dp(0)—»0, for

the latter relation by virtue of Di(0) 3:.D._i(0) implies also Di(0)—>0,

1 = 1, 2, ■ ■ ■ , p — 1 which by Corollary 2 implies (19.4), a relation which

is not implied by the hypothesis and is indeed completely independent of

the hypothesis. We should expect, then, that a relation in the opposite sense

to Corollary 2 would necessarily involve the lower derivatives. We shall pro-

ceed to prove

Theorem 2. Let the function w=f(z) analytic for | z| < 1 map \ z\ < 1 onto a

Riemann configuration with /(0) = 0. Then there exists a positive constant yp

depending on p but not onf(z) such that we have

(20.1) Dp(0) = -\\/'(0) I +^| /"(0) I +....+— I /<*>(<))
TpL 2! p\

The proof of Theorem 2 is to be carried out in several steps, of which the

first is

Theorem 3. Let w=g{z) analytic for \z\ <1 map \z\ <1 onto \w\ <1

counted precisely p times, or precisely m <p times, with g(0) = 0. Then we have

(20.2) I g'(0) I + -| g"(0) I + • • • + — \g<*\0) \^cp>0,
21 pi

where cp is a suitably chosen number depending on p but not on g{z).

To be explicit, we prove (20.2) with cp = 2~(p+1)l.

The most general function g(z) is of the form(65)

(20.3) .. w = gp{z) = zfl  2 ~ ßJ , \ßt\äl,
j=l   1 — ßjZ

except for a constant factor of modulus unity which does not affect the left-

hand member of (20.2) and which we therefore suppress. In the case p = l, the

(55) T. Rad6, ibid.
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form (20.3) breaks down, but we have gi(z)=z, and (20.2) is fulfilled with cp

replaced by unity, which is greater than Ci=l/4. Henceforth, we suppose

p = 2.
We prove (20.2) by induction, assuming the validity of (20.2) with p re-

placed by p — 1 and proving (20.2) as written(56). Equation (20.3) can be ex-

pressed in the equivalent form

(20.4) gp{z) = g^z) y-I a I = 1,
1 — az

where we have also

gp-i(z) = aiz + a2z2 + • • ■ , I 3 I < 1,

gp{z) = btz + b2z2 + • • ■ , I z I < 1.

The power series expansions of the second factor in the right-hand member of

(20.4) and of its reciprocal yield by direct comparison of coefficients the two

sets of equations

b\ — — a-ia,

b2 — fli(l — ocä) — a2a,

(20.5) b3 = axä{\ — aä) + a2{\ — otä) — a3a,

bk = d\ock 2(1 — oca) + a2ak 3(1 — aä) + • • • + ö&_i(l — eta) — Oka;

ai = — — I a 9* 0,
a

1 — aä b2
a2 = — bi->

a2 a

(20.6)                     1 — aä         1 — aä b3
a3 = — bi-b2-

a' a

1 — aa 1 — aa 1 — aä
ak = — bi-■-b2-—-... —-—

a' a

(58) The succeeding proof can be considerably shortened if no numerical estimate for cp is

desired. The left-hand member of (20.2) is a continuous function of the numbers ßj in the closed

limited point set |/3,| =1, hence takes on a minimum value cp; we must prove cp>0. By the

hypothesis in the induction, the minimum value zero cannot be taken on when one or several

numbers (3, vanish, for then by (20.3) the left-hand member of (20.2) equals the corresponding

sum with p replaced by some m <p(or some function gm(z): gP(z) =zp~mg„,(z). The minimum value

zero cannot be taken on when all of the numbers ßj are different from zero cpä |g'(0)| = \ßißi

■ ■ -ßp-A >0. Thus (20.2) is established.
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The following series of steps is a consequence of equations (20.5):

bi = — axa, b\ = — d\ot,

bi — b\ä = a-i — d2ot, b% — ai — b\ä — d2a,

bz — b2ä = d2 — a3a, b3 — a2 = b2ä — a3a,

bk-iä =        — aka, bk — ak-i = öi-iar — aka,

I b2 — «i I + I bi — a21 + • • • + I bp — ap_i |

g [| h\ +\bt\ + ■ ■ • +| I «I
+ [ I a2 I + I a31 + ■ ■ ■ + I öp-i I ] • I a I + I ap I • I a | ;

[ I <h I + I **[ + •••+ I ap-i|] - [| b2 \ + I b3 \ + ■ ■ ■ + I bp\]

g     +I-M + •'•? +1      \ a\
+ [ I d21 + I a31 -f • • • + I ap_i I ] • I a I + I «p I • I a I •

Cauchy's inequality for the function gp_i(z) informs us that |a^,| gl, so we

may write

M +     +••.•+ *p 1

=   [ I (Zl I  + I «2 I  + ■ ■ '  + [ dp-1 I ]
(20.7) - Ll   "  1 ' ' J 1+|«| i + |a|

1 — I a I I or I
Cp-l

1+1 a I       1 +

Case I. I«I g£p_i/2. For/> = 2 we have Cj,_igl/4, |a| gl/8; so the last
member of (20.7) is not less than

[7      11     5 c^i
Cp-l-— — C„_i > — cp.

L.9      2j     18 2"-"i

Case II. I et I >cp_i/2. Here we replace each term of each of equations

(20.6) by the corresponding absolute value. The resulting inequalities when

added member for member with k = p — l become (for abbreviation we write

y\a\ =a)

(-7 + :-        - l) I 611 + (— + -^7 - 1 , I h I +•••+— I bp-i I

^ I «i I + I a21 + ■ • • +| flp-i I = Cp_i.

The coefficient of | bi\ is here not less than the coefficients of | b2 \, | b3 \, ■ ■ ■ ,

I bp-i \ ; so we obtain at once from a >cp-i/2



180 W. SEIDEL AND J. L. WALSH [July

Theorem 3 is completely established.

It is obvious that the choice cp = 2~(p+1)| can be considerably improved

by the present method alone.

It is quite natural to divide the proof of Theorem 3 into two cases depend-

ing on the size of \a\, comparing b, with ay_i when | a\ is small and comparing

bj with a.j when |a| is large. For it follows from (20.4) that bj = aj-\ when

a = 0 and that | b,\ = | aj\ when | a\ =1.

21. Numerical upper bound for Dp. Theorem 3, of some interest in itself,

is an important step in the proof of Theorem 2. Another preliminary proposi-

tion is

Theorem 4. Let the function w =/(z) analytic in \z\ < 1 withf(0) = 0 map a

smooth region R interior to \ z\ =1 onto the unit circle \ w| < 1 covered precisely p

times or precisely m times, m<p. Then we have

(21.1)        j/'(O) I + 11/"(0) I + • • • + -1^(0)1 St yp > 0,
21 pi

where the number yp depends on p but not on R or f(z). To be explicit, we shall

establish (21.1) wHhyp = 2~<-p+»i-p.

We shall make use of the analyticity of /(z) only in R, not throughout the

entire region |z| <1.

Denote by z = h(Z) a function which maps the region \z\ <1 smoothly

onto the region R of the z-plane, with h(0) =0. Then the function w = g(Z)

=f[h(Z)] maps the region \ Z\ <1 onto the unit circle \ w\ <1 covered pre-

cisely p times or precisely m<p times, with g(0)=0, so g(Z) satisfies the

hypothesis of Theorem 3.

Let us introduce the notation

g(Z) = a,Z + a^Z2 + • • • ,

/(z) = blZ + b2z2 + • • • ,

h{Z) = dxZ + diZ2 + ■ ■ ■ ■

We note that Cauchy's inequality for the function h(Z) yields

(21.2) k = 1, 2,
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The coefficients of/(z) and g(Z) are related by equations that we now need

to consider:

g{Z)=f[h{Z)}

= b,[d,Z + diZ* + d^'+ ■■•]

+ b,[d,Z + dtZ* + dj* + • • • ]2
(21.3)

+ b,[diZ + d2Z2 + dsZ3 + ■ ■ ■ ]»

+.

= aiZ + a^Z1 + a-sZ3 + • • • .

By equating coefficients of corresponding powers of Z we obtain

a\ = b\d\,
2

02 = b\d2 + 62^1,
3

(21.4)    a3 = bid3 + 2b2d,d2 + b3du
2 2 4

04 = b\di + 62(^2 + 2d\d3) + Zb3d\d2 + ^4^1,
2235

as = bids + b2(2didi + 2d2d3) + b3(ßdid2 + 3did3) + bi(4did2) + bsdh

The law of the coefficients of the bk in equations (21.4) is relatively simple,

and is readily formulated in terms of the subscripts of the numbers a,- and bk,

and involves primarily the partitions of the subscripts of the numbers a,-. The

precise law would be a needless refinement for our present relatively rough

purposes. If we replace each bk by unity, it is obvious from (21.2) that the

function g{Z) in (21.3) is dominated by

[Z + Z2 + Z3 + • • • ] + [Z + Z2 + Z3 + • • ■ ]2

+ [Z + Z2 + Z3 + • • ■ ]3 +

Z
=-= Z + 2Z2 4- 4Z3 + 8Z4 + • • • .

1 - 2Z

Then the sum of the absolute values of all the coefficients of all the numbers bj

in the first p of equations (21.4) is not greater than 1 + 24-4+ ■ ■ ■ + 2p-1,

which is less than 2P. Insertion in each of equations (21.4) of absolute value

signs on the numbers a,-, on the numbers bj, and on the coefficients of the num-

bers bj yields a corresponding inequality. When the first p of these inequalities

are added member for member, there results the inequality

I a, I + I a21 + • ■ • + I ap j g 2"[ | bt | + | b21 + • ■ • + | bp \ ],

so (21.1) with yp = 2~<-p+l)!~p is a consequence of Theorem 3.

We are now in a position to prove Theorem 2; the trivial case Dp(0) =0

needs no further discussion and is henceforth excluded. Under the hypothesis
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of Theorem 2 the function

/(z)
(21.5) w1(z)=-^-

DM

is analytic for |z| <1 and maps a smooth region R interior to |z| =1 onto

the region | W\\ <1 covered precisely p times or precisely m<p times, with

wi(0) =0. Theorem 4 applied to the function (21.5) yields at once inequality

(20.1). Theorem 2 is established, and we may state the

Corollary. In Theorem 2 we may take yp = 2-Cp+1)!_p.

The number 2~(p+1)l~~p can obviously be greatly improved, even without

change of method.

Theorem 2 is stated in the form convenient for applications, but we have

used in the proof the analyticity of /(z) not in the entire region | z| < 1, only

in a neighborhood of the origin. However, if /(z) is analytic in a region con-

taining points for which | z| 1, the number Dp(0) is to be defined as referring

to the Riemann configuration which is the image of |z| <1 under the trans-

formation w=f{z). Theorem 2 is false if the points |z| = \ are not excluded,

as is shown by the example p = 1, /(z) =z.

It is clear now that from Theorem 1 (with Corollary 1) and Theorem 2 of

the present chapter, Theorem 19 of Chapter II may be obtained in the explicit

form of inequalities. Indeed, we have

Theorem 5. Let/(z) be regular in |z| <1 and bounded there:

I /(z) I < M.

Let \zn\ (\zn\ <1) be a sequence of points in \z\ <1 and let w„=/(zn). Then,

there exist two constants \p and Ap of which \p depends on p alone, while Ap de-

pends on p and M so that

\P-Dp{wn) = zZ

(21.6)

»=*        .        ,(1 -|zB|s)*-/<*->(z„)

Zu ( — 1) C*_l,»Zn-
(k - V)\

g Kp[Dp(wn)Y~P,

where Dp(wn) is the radius of p-valence at the point wn of the Riemann surface on

which w =/(z) maps the circle \z\ < 1.

The writers are not informed as to whether the exponent 2"~p in (21.6) is

the best possible one. Here, and in improving the constants ]KP and Ap already

obtained, lie a number of interesting open problems.

As a consequence of the second half of inequality (21.6) and the example

of §9, Theorem 8 we may state

Theorem 6. Let the function Q(r) be defined and positive for 0<r <1, with

limr.i Q(r) =0. Let the positive integer m be given. Then there exist a function
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w=f{z) analytic and Univalent in \z\ < 1, continuous in \z\ gl, and a sequence

of points Zi, 22, • ■ • with \ zn\ <1, | z„| —»1, such that we have

Dm(wn)
hm-j-j— = oo ,
»— Q( I z„ I)

where wn =f(zn).

Chapter IV. Functions which omit two values

22. Inequalities for Dp(wn) when is bounded. Practically all the

results of the Chapters II and III may be extended to the class of functions

/(z) regular in the circle |z| <1 which in that circle differ from 0 and 1(67).

To be more specific, suppose that/(3) is regular in the circle | z| < 1 and that

/(z) =^0, 1 in I 21 < 1. Let {z„} (| zn| < 1) be an arbitrary sequence of points in

the circle so that |/(z„) | remains bounded for all n. Under these assumptions

what is a necessary and sufficient condition that (1 — | zn| )kfik)(zn) —->0

(k = 1, 2, • • • , p) ? If we examine the proof of Theorem 19, Chapter II, we

notice that absolutely no modification is necessary in order to extend this

theorem to the case under consideration since we are again dealing with a

normal family {0„(f)} which, due to the condition that |/(z„)| is bounded,

does not contain the infinite constant. The proof of Theorem 19, therefore,

may be repeated verbatim to yield

Theorem 1. Let f{z) be regular in |z| <1 and f{z) ^0, 1 there. Let \zn)

(| z„| < 1) be a sequence of points in \ z\ < 1 such that \ f(z„) \ < Mfor all n. Then,

a necessary and sufficient condition that

lim I /<*>(*») I (1 - ] tn\)* - 0, k = 1 2 • • • , p,
n—*°o

for a fixed positive integer p is that

lim Dp(w„) = 0,

where wn =/(z„).

Again as in the case of Theorem 19 it is desirable to give explicitly the

relation between \f(p)(zn) | (1 — | zn\ 2)p and Dp(w„). In view of §21, Theorem 5

and Schottky's theorem this relation is easily obtained. We use Schottky's

theorem in the following form(68): If f(z) is regular in | z| < 1 and omits there

the values zero and one, if f(z) =<Zo+aiZ+ ■ ■ ■ , then there exists a positive con-

stant A, independent of a<>, 8', a\, ■ ■ ■ so that

(22.1) |/(3)| < [| a0\ + 2]*'«1"»

in the circle \z\ <d < 1.

(") The case /(z) ^a, b may always be reduced to the above case by considering cp(z)

-(/(«)-o)/(6-a).
(6S) Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d. edition, 1931, p. 224.
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Let us assume now that the hypotheses of Theorem 1 are satisfied, and

form the functions

(22.2) '     0„(f) = f(l±h-\;

These functions are all regular in |f| <1 and omit there the two values 0

and 1. Furthermore, 0«(O) =fißn) = wn are bounded in absolute value by the

constant M:

I 0,(0) I < M, n = 1, 2, • • • .

Applying Schottky's theorem in the form (22.1) to the functions 0„(f)i we

find that

I 0„(f) \ <[M + 2]*/<i-«> = Me

in the circle | f | < 9 < 1. If we set now

(22.3) *«({■)= *„(tt),

we obtain a regular function gn(£) in the circle | f | < 1 which satisfies the in-

equality I g„(r) I < Me in the whole circle | f | < 1. Finally we set

(22.4) hn({) = gnÜ) - g„(0),

sothatÄ„(f) is regular in |f| <l,An(0)=0, and

i *n(f) I < 2Me.

Now, according to §21, Theorem 5, we have

Xp-DpfO) g i *„'(0)|+-i *»"(0)| + •••+—! ä!p)(0) |a.A,- [7>p(0)]2"",
2! />!

where -Dj,(0) is the radius of ^-valence (§14) at the point w = 0 of the Riemann

configuration Rn on which w = hn{z) maps the circle \z\ <1. From (22.4) we

obtain

X,-Z?p(0) g u„'(0) i + - i fr"(0) i + • • • + -\ gnP\0) i = Ap- [Z>p(0)]»"* .
2! pi

But g»(D maps | f | < 1 on a Riemann configuration i?„' obtained from R„ by

translating it along the vector g„(0). Therefore, Dp(0) is equal to the radius

of /^-valence of RÜ at the point w=g„(0). This radius we shall denote by

DP[g„(0)]. We thus obtain

KDP[gn(o)} = \g:(0) I + -iI g„"(0) I + • ■ • + -j giP\o) I
2! ^!

= Ap[Dp[gn(0)]]2~P-
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By virtue of (22.3) this becomes

185

(22.5)

i .     62 . i d* , (P)
V0P[gn(0)] = 6 I <br! (0) I + — I 0n" (0) I  + • • •  + — I 0n (0)

2! pi

= Ap[Dp[gn(0)]KP-

Now, the Riemann surface i?„' can simply be considered as the surface on

which the function w=<f>n(£) maps the circle | f | <d. It is, therefore, merely a

part of the surface R on which 4>„(£), and by (22.2) w=f(z), maps the circle

|z| <1. If we denote by Dp(wn) the radius of p-valence of R at the point

w = wn, we clearly must have

Dp[gn(0)] = Dp(wn).

We may, therefore, infer the inequality

■      .   e2.       . ep. (P)   .       .       , .
0 U» (0) I + — I 0n" (0) I + • • • + — I <pn (0) I = Ap- [Dp(w„)]2 .

Now, since O<0<1, we find

I 4>: (0) I + — I 4>,l' (0) I + ...+— I 0„(P)(O) I = — [Dp{wn) }2'P .
21

According to (22.2) and (2.3) we obtain

(22.6) zZ zZ ( — 1) Ck-i,vZn
, (1 -| z„|2)

(k - *)!

Qv

^^[Dp(wn)}2'\

This gives us the desired inequality from above. The corresponding inequality

from below, is contained in §20, Theorem 2 :

(22.7)    \P-Dp(wn) g zZ zZ (— i)Ck-i,A
(1-| zn\2)^ßk^(zn)

(* - v)l

We may, therefore, state the following

Theorem 2. Let /(z) £e regular in \z\ <1 and f{z)?+0, 1 <Aere. Le/ {z„}

(|zn| <\) be a sequence of points in \ z\ <\ such that \ f{zn) \ < M for all n. Then,

for any 0 <0 < 1 ^Aere exisi iwo constants Xp awrf Ap 0/ which Xp depends on p

alone, while Ap depends on p, M, and 6, so that

(22.8)

\P-Dp(wn) = zZ
k~l

,(1-| z»| »)*-'/< *-"(*-,.)
(— 1) t-*-i,t*i> —

{k-v)l

= ^ [Dp(Wn)]2-p,
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where Dp{wn) is the radius of p-valence at the point w„=/(z„) of the Riemann

surface on which w =/(z) maps the circle \z\ < 1.

Since from the form of Ap it is evident that it tends to infinity as 6 tends

to 1, the best value for the right side of (22.8) is obtained for that value of 6

for which AP/6P attains its minimum. That value may be readily computed

from the expression for Ap. It is evident also that Theorem 2 implies Theo-

rem 1.

We remark that under the conditions of Theorem 2 we have Dp(w) = | w \,

so that (22.8) gives an inequality on the approach to zero of (1 — | z \ 2)kf{k){z)

as w tends to zero, for every k.

A further consequence of Theorem 2 is that under the hypothesis of that

theorem, an additional inequality of the form |/(z)| gAf implies inequalities

|/(4)(z) I (1 — I z\i)1 g Mk, where Af* depends only on k and Af. Indeed, we have

Dp(w) = Af; our conclusion(59) follows from (22.8).

23. Counterexamples. In Theorems 1 and 2 an important part of the hy-

pothesis was the fact that \f(zn) \ < Af for all n. Since any sequence {z„} can

be decomposed into sequences on which |/(z„) | is bounded and those on which

|/(z„) I tends to infinity, it is natural to inquire how far Theorem 2 can be ex-

tended to sequences {z„} for which |/(z„)|—><».

That the conclusion of Theorem 2 as a proposition is false for such se-

quences is a theorem which we shall establish:

Theorem 3. There exists a function f(z) with two omitted values and regular

in I z I < 1 and there exists a sequence of points {z„} (| z„ | < 1,

setting wn =/(z„), we have Di(wn)—*0, w„—, and yet lim„.

= 8tt.

zn \ —>1) such that,

/'(Ol (i-kh

In the half-plane cRJV>0, where W = u+iv,

<RfW + e~w+x) = u + e-"+1 cos v = - e~u+l =■ - e.

Consequently, in 1{W>0 the function W+e~w+1 + 3 omits all values in some

neighborhood of the origin, as does the function

(23.1) w = /(a) = (W + e-w+l + 3)2 = F(W),

where we set W=(l+z)/(l— z), so that z is a point of the unit circle | z| < 1.

We choose W„ = \ -\-2mri-\-\/n, whence e-Wn+i = e-iin anj ßn(j

df(z)
(23.2) = 2(W + e~w+1 + 3)(1 - e^"").

dW

Thus,/'(z) vanishes in the points where 1— e~w+1 = 0, namely W = 1 + Iniri,

w = 0, + 1, +2, • ■ • . If we define z„ by the relation Wn = (l+z„)/(l —z„), we

find from (23.2)

(69) More precise inequalities of this type were developed by O. Szäsz, loc. cit.
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2(4 + 2nvi H-h e-1/n)(l - e-1/n),
dW n

so that df(z„)/dW^4iri. We next compute | l-z|2=4/| IF+l|2and | FT/<is j

= | W+l\ 2/2. Hence,

(1 - | Z„ |2)  = — [ |  JF„ + 1 |2 - | Wn ~  1 |2]  =  2 + 2
2 Wdz

Thus, we obtain finally

|/(2,) | (1 - |zn|2)^8x.

It now remains to be shown that Di(wn)—>0. This may be shown as follows. In

the FF-plane consider the two points W =\ + 2niri and W„= l + 2w7ri+l/«.

Join these two points by a rectilinear segment, necessarily horizontal. This

segment is mapped by the function w = F{W) on a certain arc lying on the

corresponding Riemann configuration and joining the points w=(5 + 2w7tj)2

and wn= (4 + e~1/n+l/w + 2«7ri)2, of which the first is a branch point of the

Riemann configuration in question. It is clear, therefore, that this arc ema-

nates from the center of the circle | w — w„\ = Z?i(w„) and terminates in a point

lying exterior to or on the boundary of that circle(60). Hence, the length of

this arc cannot be less than Dx{wn). But the length can be estimated directly.

Indeed, it is equal to

1+1/n

I F'(2nvi + u) I du.
l

From (23.2) we find

/» 1+1/n

Di(wn) = 2 J        I 2niri + u + e-"+1 + 3 | (1 - e~u+')du.

Now, in the interval 1 =w = 1 + 1/«, we have 1 — e~u+1 = 1 — e"1/n and e_u+1= 1,

so that

(23.3) Z?i(w„) g 2(1 - e-1'")(2mr + 5 + \/n)-\/n.

Hence, as w—>co, we have Di(wn)—»0, which completes the proof of the theo-

rem.

In connection with the present example one may make two remarks.

Remark 1. If one replaces the function/(z) in (23.1) by the function

(23.4) /(z) = (W + e~w+l + 3)4,      W = (1 + z)/(l - z),

(60) Study of the variation of arg (dw) on the arc shows that the arc lies wholly in the

circle in question, and hence that Di{wn) = | F(W) — F(Wn) \, where W=l+2nwi. A similar

fact holds under Remarks 1 and 2.
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with Wn+1 = 2mri-\-l/n2, clearly the relation Di(wn)—>-0 still holds, while

|/'(z„) I (1 — I zn\2)—>a>. Thus, Di(wn)—»0 does not even imply the boundedness of

i/'(s.)i (i-|2ni2).

Remark 2. Let a be any real number in the interval 0<a<l. Choose an

integer k so that k >a/(l —a). Then, the choice

f(z) = (W + r*+] + 3)*+1,      W = (1 + z)/(l - z),

with Wn = l + 2nwi-\-l/nk yields .Di(w„)—K). Indeed, a computation analogous

to the one in the preceding example shows that Dx{wn) = 0(1/«*). On the other

hand, \wn\ = 0(nk+l). Hence | wn\a-Dx{wn) = 0(nak+a-k) and this expression

tends to zero. Furthermore, it is easily seen that |/'(zn)| (1 — |z„| 2) >c>0,

where c is a certain positive constant. Thus, for the class of functions with a

region of omitted values no relation \ wn \ a-Di(w„) —>0 with 0<a<l can imply

)/'(*„)I (l-|z„|2)-^0.
In the example of Theorem 3 and the examples in the two remarks it will

be noticed that \wn\ -Dx(w„) does not tend to zero. The case that |w„| -Dx(wn)

tends to zero will not be treated in its full generality in this paper. A special

case is considered in §25. The case \ wn \ "■ Z>i(w„)—>-0 for a>l will be consid-

ered in the next section.

24. Case: limn.M |wn\ <l+<)(2!,-»Z)p(w„) = 0. The following extension of

Theorem 1 for p=l to the case |w„|—»oo will now be proved:

Theorem 4. Let /(z) be analytic in |z| <1 and omit two values there. Let

{zn} (|z„| <1) be a sequence of points in |z| <1 such that, setting wn=f(zn),

we have limn.,, | w„| = °°. Then, the condition

(24.1) lim I wn [l+'Dx(wn) = 0

for any positive e implies

(24.2) lim I/'(*,) I (1 - |z»|2) = 0.
n—♦»

It is clear that the sequence of functions

\ 1 + z„f/

regular in | f | < 1 is normal. Since by hypothesis lim„     | wn\ =»,we have

lim I 0„(O)| = oo,
n—♦»

so that

(24.3) . lim I        I = oo
n—»«

uniformly in every closed subregion of | f | < 1.
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Choose a positive number

'<IT1<1'
whence

1 +P
- < 1 + e.
1 - P

It follows from (24.3) that for n sufficiently large the function l/<p„(f) is regu-

lar in the circle |f | gpi, where pi is any number such that p<pi<l. Further-

more, n may be chosen so large that l/|<pn(f)| <1 in |f| gpi, which implies

that log |<p„(r)| is harmonic and positive in |f| gpi. Then, using Poisson's

integral for the region \j\ <pi, one sees immediately that

(24.4) log I        I = log I <bn(0) I
Pi — P

in the circle |f | gp<pi. Now, by taking pi so near to unity that pi + p/pi —p

< 14- e and then by choosing n sufficiently large, the inequality (24.4) implies

I <t>n(£) I < I 4>n(0) |,+<in the circle |f| gp(61).
Now, according to Theorem 3 of Chapter II,

*»'(0)|V
Di(w„) =

8M„

where Af„ = max|f|gr |<pn(f)|. If we set r = p, Mn= \<pn(0)\1+t, <£„(0)=w„, we

obtain for n sufficiently large

(24.5) Z>i(wn) = -:-:-,
8 I wn\l+t

from which the theorem follows at once.

The treatment of the case for general p is quite analogous:

Theorem 5. Letf(z) be analytic in \z\ < 1 and omit two values there. Let {z„}

(|z„| <1) be a sequence of points in \z\ <1 such that, setting wn=f(z„),

lim„.„o I wH\ = co. Then, the condition

(24.6) lim I wn Ic+Ofs'-iWp(wn) = 0

for any positive e implies

(24.7) lim |/»)(Zb) I (1 - I zn I*)' = 0,        j = 1, 2, • • • , p.

(6I) The reasoning employed in the proof of this inequality is well known. Cf. A. Ostrowski,

Abhandlungen des Mathematischen Seminars der Hamburgischen Universität, vol. 1 (1922),

pp. 327-350; S. Mandelbrojt, Comptes Rendus de l'Academie des Sciences, Paris, vol. 185

(1927), pp. 1098-1100; H. Cartan, Annales de l'Ecole Normale Superieure, (3), vol. 45 (1928),

pp. 255-346; J. L. Walsh, Töhoku Mathematical Journal, vol. 38 (1933), pp. 375-389.
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The proof of Theorem 4 is repeated verbatim, and we find, as before, that

for any positive e there exists a positive number p < 1 such that for all suffi-

ciently large values of n

I 4>nH) I   < [ W„

in the circle [ f | gp.

Now, according to inequality (19.5'), we obtain

(j)
4>n (0) I = 24 I wn

1+t^/g,(0 V

= 24^ (I w„\^(^W,{wn))1^,

whence, applying (2.3), we find for n sufficiently large

XV
t-l

i-l (1 - I zn\2)'-'f'-'Kzn)

{j-v)\

= 24]C (I Wnl^+^^-^DXw,))1'2''.
J-l

Since (24.6) implies the relation

lim I WnY^w-VDjiw,) = 0, j = 1, 2, - P,

we obtain (24.7).

25. Mandelbrojt's theorem. The following theorem is due to S. Mandel-

brojt(62):

Theorem A. Let /„(z) be a sequence of functions analytic in a region R and

tending uniformly in R to infinity. If there exists a positive constant M such that

for all n and for all z in R

(25.1) arg fn(z) I < M

with some determination of the argument, then to every closed region R\ wholly

interior to R there corresponds a finite positive number a (1 <a< + °°) and a

positive integer n0 such that for every pair of points z0 and Z\ in R\ and for every

n>n0, the inequality

(25.2)

holds.

1
— <
a fn(Zo)

< OL

(62) S. Mandelbrojt, loc. cit.
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We indicate a proof of Theorem A(63). Let us first prove the assertion of

the theorem in the special case thati?i is the circle C: \ z — a\ gp lying wholly

in R. It is clear by hypothesis that for sufficiently large values of n the func-

tions /„(z) 9*0 in C, and henceforth we shall consider only such values of n.

Hence, the functions —i log/„(z) will be regular in C, single-valued in C after

a particular determination of the logarithm is selected. We choose that deter-

mination for which — i log/„(z)] =arg/„(z), where the argument is the one

asserted in (25.1). Now, take a circle C: \z—a\ gp' for which p'>p and

which also lies wholly in R; choose n so large that/„(z) 9*0 in C.

In C we have the representation

- log I /„(<* + re") | + log | fn(a)

(25.3) 1

2tt J o
arg fn(a + pV*)

2pV sin (0 - <f>)

p'2 + rt _ 2p'r cos (0 - <p)
d<p.

Let z0 = a+rr,eie" and Zi=a-\-riei$1 be any two points of C. We may, then,

write (25.3) for the points z0 and Z\ and subtract the second equation from the

first. Thus, we obtain the equation

log

(25.4)

fnjzj)

fn(Zo) T J o

arg fn(a + p
p'r0 sin (0O — 4>)

pn + rl- 2pV0 cos (0O - <t>)

pVi sin (0i — <p)

p'2 + f* - 2PVi cos (0

Taking absolute values in (25.4) and observing (25.1), we find

log

i-j
d<p.

/n(Zo)

M r2

T J 0

pV0 sin (0o — 0) pVi sin (0i — <p)

p'2 + r\ - 2p'r0 cos (0O - 4>)     P'2 + r2 - 2p'n cos (0i - <j>)
d<p.

But since Zo and Zi lie in the circle C, an easy calculation shows that

(25.5) log
/«(so)

4pp'M

(p' - P)2

The right-hand side in (25.5) is independent of the pair of points Zo and %%.

From (25.5) follows at once the assertion of Theorem A in the case that i?i

is a circle.

We now pass to the general case. Let R{ be any closed region contained

in R and itself containing i?i in its interior. Consider the class of all open

(63) The proof of this theorem given by Mandelbrojt, loc. cit., is not clear to the writers.

The proof given in the text was suggested to the authors by Professor S. E. Warschawski.
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circles with centers in R{ contained together with their boundaries in R. In

accordance with the Heine-Borel theorem one may select out of this class a

finite number of circles which cover R{. Denote this number by N. By the

first part of the proof with each one of these circles there is associated a num-

ber a? (1 <ar < oo) and a positive integer X„, such that for any pair of points z0

and Zi in that circle and for n >X„

1
— <
a. Mz»)

< a,.

Let ß and na be the largest of the numbers a, and X„, respectively. Then, for

n>n0 and for any pair of points in any one of those circles we have

(25.6)
1

ß
<

/»(»i)

/»(So)

<ß-

Now consider any two points z0 and Zi in Ri. Connect Zo and Zi by a simple

polygonal line P lying wholly in R{ and so chosen as not to be tangent to

any circle of the above class. Denote by C\ any circle of the above class which

contains the point z0. As one travels along P from z0 to Zi, there will be a last

point of intersection ft of P with the circumference of C\. Denote by C2 any

circle of the above class which contains ft. Between z0 and ft on P choose

any point £i common to both C\ and C2. Now, starting with the point £j which

belongs to d, repeat the argument. We obtain in this manner a point £2 of P

which is common to two circles C2 and Cz of the above family. Proceeding in

this manner, after a finite number of steps we come to a first circle Ck which

contains the point Zj. It is clear from (25.6) that for n>n0

1 1
g — <

/.(gi)

/n(Zo)

MW
/n(Zo)

MM
/»«0

/»(gQ < ßk g

Setting ßN =a, we obtain the constant asserted in Theorem A.

As Mandelbrojt himself points out, these results may be readily extended

to the case of a sequence of functions /„(z) regular in R which converges uni-

formly in R to an analytic function/(z) in such a manner that the differences

/»(z) — /(z) do not vanish in R.

Theorem A may be used to obtain a result related to Theorem 4.

Theorem 6. Letf(z) be analytic in \ z\ < 1 and omit two values there, includ-

ing the value w=a. Let {z„} (\z„\ <1) be a sequence of points in \z\ <1 such

that, setting wH =/(z„), we have lim..» \ w„\ = 00 . If arg [/(z) —a] is uniformly

bounded in I z I < 1 (64), then the condition

lim wn •Bl(Wn)  = 0

(64) Geometrically, this condition means that the Riemann surface on which w=f{z) maps

the unit circle |z| <1 does not wind infinitely many times about the point w = a.
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implies the relation

lim |/'(«,) I (1 - I 2n| ) = 0.
n—»°o

The boundedness of arg [f(z)—a] implies the boundedness in |f| <1 of

arg [<t>n(t)-a], where

V 1 + ZrXJ

Just as in the proof of Theorem 4 we infer that

lim I 0„(f) I = co
n—»oo

uniformly in every closed subregion of |f| <1. Hence,

lim I </>n(f) — a I = oo
n—»oo

uniformly in every closed subregion of j f | < 1. We may therefore apply Theo-

rem A of Mandelbrojt to the sequence of functions <p„(f)—a in the circle

I fI <P, where p is any fixed positive number less than unity. It follows that

corresponding to any circle | f | :Sp] <p one may assign a finite positive num-

ber a and a positive integer w0 such that for any pair of points f, f0 in \ %\ SS j»i

*-(f) -1
— <
a

< a
<Pn{$a) — a

for every n>na. In particular, choosing fo=0, we obtain the inequality

I 0>.(f) - a I < a I 0„(O) - a |

and

(25.7)     I 0n(f) I < a I 0,(0) j + (a + 1) I a I = a \ wn \ + (a + 1) | a\

in |f I ^pi provided «>Mo-
Thus, one may apply Theorem 3 of Chapter II where M = Mn =a\w„\

+ (a +1) I a I. The theorem follows at once. Conditions more delicate than

those given in Theorems 4 and 5 may be obtained by different methods. Thus,

it may be shown that the condition (24.1) may be replaced by the less strin-

gent condition

lim I wn j (log I wn \ )'+'Dl(wn) = 0.
n—*oo

This result, and other analogous ones, will be developed in a later joint paper

of A. S. Galbraith, W. Seidel, and J. L. Walsh.
26. Counterexample for unrestricted functions. In obtaining relations be-

tween |/'(z) I (1 — j z \) and Di(w) we have always restricted the class of func-
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tions/(s). We have thus far considered Univalent functions, bounded func-

tions, and functions omitting two values. That these or similar restrictions are

essential is shown by the following example.

Theorem 7. There exists a function /(z) analytic in the unit circle \ z\ <1 and,

a sequence of points \zn\ {\zn\ <1, | zn | —->1) such that, setting wn =f(zn), vue have

Di(wn)—^0, \ wn\ bounded, and

lim |/'(z„) |a-|Ztt|.) = 4*.
n—»oo t

Consider the function

w — f(z) = sin2 W,

where W= (1 +z)/(l-z). It follows that

2 sin 2W
/'(z)(l - z) =-

1 — z
Let us set

1/n + 2mr — 1 2mt — 1 1
Zn = —;->      U = -i      Wn =-h 2«7t.

l/n + 2mr + 1 2mr 4- 1 n

We find

" /'(z„)(l -z„) = (l+ — + 2nir) sin—,
\      n / n

lim /'(z„)(l - z„) = 4tt.
•»—> CO

On the other hand, setting w„ =f(zn), it is clear that D,(wn) cannot exceed

the length of the image of the segment joining the points f„ and z„, since the

point f„ is mapped onto a branch point of the Riemann surface. The length

of this image is given by the integral

/'2",       ,.     ,      r*n\2 sin 2WI/'Wilds I = —-
in J f n     1    ( 1 —(1 -z)

{l/n + 2-rrn + l)2

2
dz I = 7,-7 (z" ~ f n)

(1 - z„)2

n(l/n + 2wn + 1)(2«tt 4- 1)
Hence,

l/n + 27T« + 1
£>i«> ^-— > lim Z»i(w„) = 0.

n(2wn + 1)

Finally w„=sin2 (l/w4-27rn) =sin2 \/n, so that lim„J0O wn = 0. This com-

pletes the proof of the theorem.

The idea of this example, as well as of the examples of §§12 and 23 is the
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following. It is not true, as is well known(65), that/„(z) analytic for |z| <t,

fn (0) = 1, /n(0) =0, implies that w=f„(z) maps |z| <1 onto a Riemann con-

figuration which contains in its interior a fixed smooth circle whose center

is at the origin. The simplest counterexample is perhaps

/„(z) = z — «z2.

The derivative /„'(z) = 1 — 2nz vanishes for z = l/2« and the corresponding

value of w is /n(l/2«) = 1/4«, which approaches zero.

This example indicates that the phenomenon of a branch point's ap-

proaching the origin is not dependent on the transcendentality of fn{z), or

even on the possibility that an ever-increasing number of sheets of the image

of I z| < 1 should come together. It is a matter primarily of having the image

of a point at which /,' (z) vanishes approach the origin. The examples men-

tioned above were constructed with this idea in mind.

Chapter V. Miscellaneous

27. Limit values of analytic functions. The methods developed in the pres-

ent paper have close connections with the general subject of limit values of

functions analytic in the unit circle, including various theorems due to

Lindelöf and to Montel. We proceed now to discuss such connections.

Theorem 1. Let the function f(z) be analytic for | z| <1 and omit two values

there. Suppose for the sequence {z„ j with | z„| < 1 we have lim„,M/(zn) = a, where

a is finite or infinite. Let the non-euclidean distance p(zn, zn') between z„ and z„'

approach zero as n becomes infinite, with | z„' | < 1. Then we have \imn^xf(zr!) =a.

We define as usual the functions g„(f):

\ 1 + Zr£/

whence g„(0) =/(z„). If we set

(27.2) z„' =
U  + Zn

1 + Un

we have gn(fn') =/(z»), and the non-euclidean distance

(27.3) P(0, {-,') = P(z„,z„')

approaches zero as « becomes infinite. The family #„(£") omits two values in

I f I < 1, hence is normal there. Given any infinite sequence of indices «, there

can be extracted a subsequence for which the corresponding functions £„(£")

converge for | f | < 1, uniformly in every closed subregion, to some limit func-

(es) gee, for example, P. Montel, Lemons Sur les Fonclions Univalentes ou Multivalentes,

Paris, 1933, p. 121, where a different example is given.
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tion with g(0) =lim„,00 g„(0) = a. The approach of zero to p(0, ft') implies

the approach to zero of ft' ; so for the subsequence of indices considered the

uniformity of convergence yields lim„„„ g„(ft') =a. Thus from any subse-

quence of the sequence {/(zn')} can be extracted a new subsequence converg-

ing to the limit a, which implies the conclusion of Theorem 1.

Theorem 2. Let f(z) be analytic for \z\ <1 and omit two values there. Let

the sequence \zn\ with \z„\ <1 have the property that limn,xf(zn) = a, whereais

finite. Then a necessary and sufficient condition that the sequence {z„} be regu-

lar(66) is

(27.4) lim gn(t) = a for | f| < 1,
n—

uniformly in every closed subregion, where gn(t) is defined by (27.1).

Let a sequence Jz„' } be given for which p(z„, z„') is bounded.

Again we define by ft' equation (27.2), from which it follows that (27.3) is

valid, and the non-euclidean distance p(0, ft') is bounded. The sufficiency of

(27.4) is obvious, for (27.4) implies that gn(ft') —->«, which is the conclusion

to be established; we note that here the X of §11, Definition 1, can be taken

arbitrarily large. We proceed to show the necessity of (27.4).

If the sequence }z„} is regular but (27.4) is not satisfied, there exists a

sequence of indices nk such that linu^o,, g„t(ft =go(f) for | f | < 1, uniformly in

every closed subregion, where go(t) IS analytic but not identically equal to a

in |f| <1. Suppose for definiteness go(ft)^a, where the non-euclidean dis-

tance p(0, ft) is less than the X of §11, Definition 1. If we define z„' by the

equation

, f 0 + Zn
Z„    = -"- >

1 + Znf0

we have

/(4) = 8»»(f») -» l*(r<0 * <*.    P(Zn, Z,!) = P(0, fo) < x,

contrary to hypothesis.

In Theorem 2 we have for simplicity assumed that/(z) omits two values

in |z| <1. It is obviously sufficient if /(z) omits two values in the non-

euclidean circle with non-euclidean center z„ and non-euclidean radius p„,

where p„ has a positive lower bound as n becomes infinite. A similar remark

applies to the later results of the present section.

A consequence of the foregoing remark is that if /(z) is analytic for \z\ < 1,

if-|zn| < 1, if lim„<00/(z„) =a, where a is finite, and if the sequence \zn\ is ir-

regular, then/(z) has at most one omitted value in each set of non-euclidean

circles with non-euclidean radius pn, where p„ has a positive lower bound. We

(66) por t-ne definition of regularity see Definition 1 of §11, Chapter II.
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consider pathology in more detail in §30. In Theorem 2, we have assumed the

finiteness of a. A result without this restriction appears in

Corollary 1. Let f(z) be analytic for |z| <1 and omit two values there.

Let the sequence {z„} with \ zn\ <1 have the property that \imn^ f(zn) = ». Then

if I z/ I < 1 and if the non-euclidean distance p{zn, z„') is bounded, we have also

\imn^ f(Zn) = 00 •

Since the functions g„(f) form a normal family in |f| <1 and since

£■.(0)—>°°, we have limn,w g„(D = °° in |f| <1, uniformly in every closed

subregion. Our conclusion is an immediate consequence. We turn to another

result.

Corollary 2. Let f(z) be analytic for |z| <1 and omit there two values in-

cluding the value a. Let the sequence {zn} with |z„| <1 have the property that

lim„^00/(z„) =a. Then if |z„' | <1 and if the non-euclidean distance p(z„, zn') is

bounded, we have also lim„<00/(z„') =a(67).

From every infinite subsequence of the set g„(f) defined by (27.1) can be

extracted a new subsequence which converges for | f | < 1, uniformly in every

closed subregion. The limit of this new subsequence is a in the point f =0,

hence by Hurwitz's theorem is identically a in |fI <1. Then we have

lim,,,«, gni.0=ct for |f|.<l, uniformly in every subregion. Our conclusion

follows as in the first part of the proof of Theorem 2. Thus the sequence

\zn\ is regular, and the number X of §11, Definition 1, may be chosen arbi-

trarily. A generalization of Theorem 2 is

Corollary 3. Letf(z) be analytic for \ z\ < 1 and omit two values there, and

let the sequence wn=f(z„) with |z„| <1 be bounded. Then a necessary and suffi-

cient condition that the sequence {z„} be regular is

(27.5) lim [gn(f) - f„(0)] = 0 iof | ff < 1,
n—*w

uniformly in every closed subregion, where gn(t) *s defined by (27.1).

If the sequence {zn} is regular, it follows that from any subsequence of

the gn(f) can be extracted a subsequence such that limn<00 g„(f) exists

for |f|<l, uniformly in every closed subregion; for this subsequence

lim,,.,«, gn(0) =a exists and by Theorem 2 the relation (27.5) holds for that

subsequence. Thus, from any subsequence of the g„(f) can be extracted a new

subsequence such that (27.5) holds for that subsequence; so (27.5) itself is

satisfied.

Conversely, if (27.5) is satisfied, and if p(z„, z„') =p(0, f„') is bounded, it

follows that lim,,^ [gn(fn ) — gn(0)] = 0, so the sequence \zn\ is regular. Of

(") This result for bounded functions was established by a different method by one of the

present authors: W. Seidel, these Transaction, vol. 34 (1932), pp. 1-21; especially Theorem 3,

p. 10.
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course, this latter conclusion is independent of any assumption that/(z) omit

two values.

Two further propositions relate Theorem 2 to the results of §§17 and 22.

Corollary 4. Let the function /(z) be analytic in \ z\ < 1 and omit two values

there, and let the sequence {/(z„)} be bounded, |z„| <1. A necessary and suffi-

cient condition that {z„} be a regular sequence for /(z) is

(27.6) lim |/f*>(2,) I (1 - I z„| )* = 0, *=1, 2, 3,

From the sequence/(z„) can be extracted a subsequence f(znj) which ap-

proaches a limit a. A necessary and sufficient condition for (27.4) for the se-

quence {n,} is

(27.7) lim g.f(0) = 0, k = 1, 2, 3, • • • ,
71 y—> W

since the functions g„(f) form a normal family in | f | < 1. Equations (27.6) are

equivalent to equations (27.7) if the latter are assumed to hold for a suitable

subsequence {«,} of an arbitrary sequence of indices.

Corollary 5. Let the function f{z) be analytic and omit two values in \z\ <1.

A necessary and sufficient condition that {zn} be a regular sequence for f(z),

where we assume wn =/(z„) bounded, is

lim Dp(wH) = 0, p = 1, 2, 3, • ■ • .
n—»oo

Corollary 5 follows from Corollary 4 by virtue of our fundamental Theo-

rem 1 of >§22.

A further consequence of Corollary 5 is

Corollary 6. Let the function /(z) be analytic in | z| < 1 and omit two values

there. If the sequence of points w„=f(zn), with |z„| <1, approaches a finite

boundary point of the Riemann configuration on which w = /(z) maps \z\ < 1,

then the sequence {zn) is regular.

It is worth remarking that Corollary 2 is a consequence of Corollary 5

or Corollary 6, without the use of Hurwitz's theorem.

Theorems 1 and 2 are of particular interest if the function/(z) approaches

a limit along an arc.

Theorem 3. Letf{z) be analytic in \ z\ < 1 and omit two values there. Let the

Jordan arc C lie in | z | < 1 except for the end point z = 1. Suppose

(27.8) lim    /(z) = a,
z—»1, z on C

where a is finite. Then any sequence {zn} on C for which 2„—>1 is regular.
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From any subsequence of the sequence g„(f) defined by (27.1) can be ex-

tracted a new subsequence converging to some function go(f) f°r | f | < L uni-

formly for |f| iZd<l. Let h be arbitrary, 0<h< <x>. Let z* be a point of C

between the points z„ and z = 1 with p(zn, z„') = h; such a point z„' exists with

lim„,M zn' =1. If f„' is defined by (27.2), we have p(0, fB') = &. The equation

(27.8) implies lim,,,«, f(z„ ) =a, whence lim,,,«, g„(fB ) =a. On each circle

|fI =d<l lies a sequence of points fn' for which g„(fn') approaches a, so on

each such circle lies at least one point f at which go(f)=a:- Consequently

go(f) =a in I f I < 1, every limit function of the sequence g„(f) is identically a,

this limit is approached by g„(f) itself throughout |f| <1, uniformly in any

closed subregion; our conclusion follows from Theorem 2.

The method of proof of Theorem 3 establishes also the following: Let /(z)

be analytic in |z| <1 and omit two values. Let z„—>1, with |z„| <1, and let the

non-euclidean distance p(z„, z„+i) approach zero. If lim,,,«, /(z„) exists, then the

sequence {z„} is regular. By way of proof, we need merely modify the proof

of Theorem 3 by considering instead of the arbitrary circle | f | =d < 1 an ar-

bitrary annulus 0<6?i^|f| = a*2<l; each such annulus contains a sequence

of points f„' for which gB(fB) approaches a, so each closed annulus contains

at least one point f in which go(f) = ct.

The method of proof of Theorem 3 can be used to prove still another

proposition: Let /(z) be analytic in |z| <1 and omit there two values. Suppose

for real z we have \\mz^\f{z) =<x. Then we have uniformly for approach within any

triangle in \ z\ < 1

lim /<*>(z)(l - I z|2)* = 0.
8—1

In this proof, we need merely choose r, 0<r<l, and the sequence of real z„

in such a way that under the transformation z = (f+2„)/(l +zBf) each point z

of the given triangle corresponds to some f in | f | <r. Various extensions of

the proposition by the present methods suggest themselves, and are left to

the reader.

We shall introduce the notion of the non-euclidean Frechet distance between

two curves. Let G and C2 be two open Jordan arcs lying in | z| < 1. Consider a

topological map T of G on C2. Denote by Fr(G, G) the least upper bound

(finite or infinite) of the non-euclidean distances between points of G and G

which correspond in the map T. The greatest lower bound (finite or infinite)

of the quantities FT(Ci, G) for all possible maps T will be called the non-

euclidean Frechet distance F{C\, G) between G and G. With this definition we

prove 1

Theorem 4. Let f(z) be analytic in |z| <1 and omit two values there. Let

G and G be Jordan arcs which, except for the common end point z = l, lie in

|z| <l, and let F(Ch G) be finite. If
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lim     /(z) = a,
z—»1; 3 on Ci

where a is finite or infinite, then also

lim    f(z) = a.
z—»1; z on C2

To any sequence z„' on C2 which approaches z = 1 corresponds a sequence

z„ on C\ such that p(zn, zn') is bounded. If a is finite, our conclusion follows

from Theorem 3. If a is infinite, it follows from Corollary 1 to Theorem 2.

If the two Jordan arcs G and C2 of Theorem 4 are tangent and have the

same order of contact with | z| =1 at z = 1, then F(Ci, C2) is finite. For trans-

form by a linear transformation of the complex variable the region |z| <1

onto the upper half of the w (=x-\-iy)-plane, so that z = l corresponds to

w = 0. We shall assume that in the neighborhood of w = 0 we may set up a

one-to-one correspondence between the arcs C\\ y =y\{x) and C2: y = y2{x) by

means of the ordinates x = constant. The non-euclidean distance between cor-

responding points of the two curves reduces to

, y»(*)
log-

y2(»

which by the assumption on order of contact is bounded. In studying the

finiteness of F(Ci, C2), we may confine ourselves to the neighborhood of the

point 2 = 1, so under the present hypothesis F(Ci, C2) is finite.

If the two Jordan arcs C\ and C2 of Theorem 4 are, except for the point

2 = 1, contained in the lens-shaped region between two hypercycles through

2= +1, and possess tangents at the point 2 = 1, we may set up a one-to-one

correspondence between their points by the circles of the coaxial family de-

termined by 2= +1 as null circles. Transformation of an arbitrary circle of

that family into the axis of imaginaries by a transformation which leaves in-

variant z = 1, z =— 1, and |z| =1, as well as the two given hypercycles, shows

that F(d, d) is finite. Thus we have the

Corollary. The condition of Theorem 4 that F(Ci, &) be finite is satisfied

if C\ and C2 are tangent and have contact of the same order with | z| = \ at z = \,

or if C\ and C2 possess tangents at z = 1 but neither is tangent to | z | = 1 at z = 1.

The foregoing discussion has intimate connections with well known results

on the limit values of analytic functions. The proof of Theorem 2 establishes

the uniformity for all z„' of \im„^ f(z„ ) provided merely p(z„, z„') is uniformly

bounded. With this addition, Theorem 4 and its corollary include the theorem

of Lindelöf that if /(z) is analytic in \z\ < 1 and omits two values there, and if

limz,i/(z) exists for approach along a line segment in \ z\ =1, then that limit

exists uniformly for approach within an arbitrary triangle contained in
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|z| SI. Likewise the corollary to Theorem 4 includes the theorem of Montel

that if/(z) is analytic in | z\ < 1 and omits two values there, and if limz,i/(z)

exists for approach along the arc of an oricycle, then that limit exists uni-

formly for approach between any two arcs of oricycles tangent at z = 1 to the

original arc.

We add the general remark that the method of the present section seems

to have further wide use in the study of limit values of analytic functions; for

instance this method easily proves that if f(z) is analytic and bounded in

\z\ < 1, continuous on \z\ =1 or an open arc A of \z\ =1 with z = 1 as an end

point, and if on this arc lim^, , on a f(z) =a, then also the limit of /(z) is a uni-

formly as I z I —>1 between A and the axis of reals.

28. Extension of Bloch's theorem. Another application of the results of

Chapter III deals with an extension of Bloch's theorem. We prove the follow-

ing, which for p = 1 reduces to Bloch's theorem.

Theorem 5. Let w =/(z) be regular in \z\ < 1 and letflp){0) = 1. There exists

an absolute positive constant Bv, independent of the function f(z) so that the

Riemann configuration Rf on which w =/(z) maps the circle \ z \ < 1 contains at

least one point w0for which Dp{w0) — Bp. The constant Bp may be taken equal to

2~p\p, where \p = Mp/p\, Mp = MP(M) being the constant of Theorem 1, Chap-

ter III, taken for M=2p-pl.

We assume first that/(0) =0 and that/(z) is regular in | z| = 1. Let

Mp(r) = max | fip)(z) |.

We have Mp(0) = 1 and the function Mp(r) is continuous and non-decreasing

in the interval 0 iS r = 1. The function

0(r) = (1 - r)pMp{r)

is also continuous in 0 = r=l and 0(0) =1, 0(1) =0. Hence, there exists a

number r0 (0^r0<l) such that 0(ro) = 1 and 0(r) <1 for r0<r = 1. The func-

tion |/(p)(z)| attains the value Mp{r0) at a point z0 of modulus r0:

(28.1) I /<p)(z0) I = Mp(r0) =      1 ■
(1 - r0)p

Consider a circle y of center z0 and radius p = (l—r0)/2 and the function

/(so + g) - /(zo) r»-
gin =-„ w N-= aif + a2r + •••+ — +•• •

Pp/(p,(zo) pi

for suitably chosen constants ai, a2, • ■ ■ . It is regular in | f | ^1 and

/<p>(z0 + pf)
g(p)(n = —- - . •

/lp)(zo)
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Now.in the circle |f| ^1 we have |z0 + pf| =r0 + (l/2)(l-r0) = (1/2)(1 +r0)

and therefore in |f| iS 1

/ 1 + r0\ 1 2"

(1 - (1/2) (1 + r0))"     (1 - ro)'

Hence, in view of (28.1)

I g(p,(f) I < 2"

for |fI ^1. Successive integration shows that

(28.2) U(f)|<2»

for I f I = 1 and we also have

(28.3) g(0) = 0,      |(%) = 1.

Now it was shown in Theorem 1, Chapter 111, that for the class of functions

satisfying the conditions (28.2) and (28.3)

(28.4) Dp(0) = —-— = Xp.
f\

Consequently, by the definition of g(f) it follows that for the function /(z),

setting w0=/(z0),

Dp(w0) = Xp-pH/(p)(zo)| = Xp/2" •

The condition that/(z)~be analytic in the closed circle |z| =1 may now

be lifted. Indeed, let/(z) be assumed to be analytic in |z| <1. Then, if r is a

value in the interval 0<r<l, the function

F(z) = —f(rz)

is analytic for | z| = 1 with Flp)(0) = I. Furthermore, we have

Dp[F{z)]^-Dp\j{rz)\.
r"

Hence, since the theorem applies to F(z), there exists a Zo (|z0| <1) so that

Bp = — Dp[f(rz0)].
r"

Now allowing r to approach one, we obtain the theorem in the general case.

A lower bound for Bp may be obtained from the estimate in (19.2). This

value, however, is certainly not sharp.
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As a matter of record, we formulate without proof the

Corollary. Let the function w =/(z) be analytic in \z\ < 1, with

I /'(°) I + — I /"(0) I + ••■+— I /(p)(0) I = m.
21 pi

There exists a positive constant Bp independent of m and f{z) such that the Rie-

mann configuration Rf onto which w =/(z) maps the region | z | < 1 contains at

least one point for which Dp(wo) st mBp'. In fact, we may choose Bp as the small-

est of the numbers j\-Bj/p, j = 1, 2, • • • , p, in the notation of Theorem 5.

29. Unrestricted functions; properties of A(z). From the example of §26

it is clear at once that one cannot obtain a relation between Di(w0) and

|/'(zo) I (1 — I So 12) without some restriction on the class of functions/(z) to be

considered. It is perhaps not without interest to remark that by introducing a

new quantity A(z0) one may obtain relations of the desired kind without im-

posing any restriction on/(z) other than analyticity in the unit circle \z\ < 1.

In fact, we prove

Theorem 6. Let w=/(z) analytic for |z| <1 map \z\ <1 onto a Riemann

configuration S. Let z0 be any point of the circle \ z \ < 1 which is mapped by

w =f(z) onto a point w0 of S which is not a branch point of S. Denoting by A(z0)

the radius of the largest circle of the {-plane with center f = 0 in which the function

Zof>

is Univalent, the inequality

(29.1) - -Af £ [ (1 - I z„b =
4   A(z0) A(z0)

holds. In particular, for a sequence of points \zn\ (|z„| <1) a necessary and

sufficient condition for

(29.2) lim |/'(z„)| (1 - |zn|2) = 0
n—*oo

is

Di{wn)
(29.3) lim—— = 0,

n—»oo A(z»)

where wn =/(zn).

The function f =\p(w) inverse to w=<p(£) is Univalent on S, in particular

Univalent for \ w — w0\ <Dx{w0). Therefore, by Koebe's distortion theorem it

must map the circle I w — w0\ <Di(w0) onto some region of the f-plane within
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which 0(f) is Univalent and which contains in its interior the circle

If I < (1/4) I <//(w0) I ■D1(w0),

whence

A(z0) = (1/4) I 0'(wo) I -ZMwo).

By the relation l/0'(wo) =0'(O) =/'(z0) (l-|z0|2) we obtain the left-hand

side of inequality (29.1).

Similarly, the function w=0(z) is Univalent for |f | <A(z0), hence again

by Koebe's distortion theorem maps smoothly | f | <A(z0) onto a region con-

taining the circle \w — wo\ <(l/4) |0'(O)| -A(z0). Hence,

D1(w0) = (1/4) I 0'(O) I -A(zo),

and the right-hand side of inequality (29.1) follows directly.

Next, the equivalence of the relations (29.2) and (29.3) follows from (29.1)

provided w„ are not branch points of S. Indeed, if w0 is a branch point of 5,

the expression Z)i(w0)/A(z0) has no meaning since both numerator and de-

nominator are zero. We observe, however, that if a sequence of points z„ for

which the corresponding points wn are not branch points of 5 converge to a

point Zo (with |z0| <1) for which the corresponding point w0 is a branch point

of S, then by the first inequality of (29.1)

,. D,{wn)
hm-= 0.
«-.« A(z„)

Hence, it is reasonable to define £>i(wo)/A(z0) as zero when w0 is a branch point

of S. With this convention the equivalence of (29.2) and (29.3), as well as the

inequality (29.1), remain valid even in the case of branch points.

30. Pathology. There are several fairly obvious extensions of our funda-

mental Theorem 2 of Chapter IV to the effect that if /(z) is analytic and omits

two values in | z| < 1, if {z„} is a sequence of points in | z| <1, and if the num-

bers w„ =/(z„) are bounded, then the two conditions

(30.1) Dt(wn) -+0,

(30.2) /(f.)(l-|«.|*)-*0,

are equivalent in the sense that each implies the other. The mere analyticity

of/(z) insures that (30.2) implies (30.1); so we are concerned at present only

with the condition that (30.1) shall imply (30.2). Thus it is sufficient for (30.1)

to imply (30.2) if we replace the condition that /(z) omits two values in

|z| <1 by the condition that

(30.3) ' = j(l±h-\
\ 1 + z„f/
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shall omit two values in |f| <r<l, where r is independent of n; no essential

change in the original reasoning is necessary; compare §27, Corollaries 4 and 5.

It is obvious too that (30.1) implies (30.2) provided from each subsequence z„k

of the z„ can be extracted a new subsequence z„t for which there exists a posi-

tive number r<l such that the corresponding functions <pmk (f) defined by

(30.3) have two omitted values in |f | <r; for under such circumstances the

fulfillment of condition (30.1) implies that for no subsequence z„k does the

expression

f(znk)(l - |z„J)

approach a limit different from zero, whence (30.2) is satisfied. For instance,

it may occur that the functions <p2„(f) have the exceptional values 0 and 1

in |fI <l/2, and that the functions <p2„+i(D have the exceptional values 2

and 3 in |f| <l/4.

Definition. Let the function f(z) be analytic for \z\ <1, let {zn} be a se-

quence of points in \z\ <1, let wn=f(zn) approach a finite limit, let (30.1) be

satisfied but suppose

(30.4) lim /'(z„)(l - I z„ I ) = a ^ 0;
n—»oo

then we shall say that {z„} is a q-sequence.

The discussion we have already given yields

Theorem 7. Under the hypothesis of the italicized definition, let {z„} be a

q-sequence. Then from no subsequence {zn]c} of the {z„} can there be extracted a

new subsequence {zmk\ such that the functions <pmk({) defined by (30.3) have two

exceptional values in any region | f | <r<l, where r is independent of m*.

In other words, if {z„} is a g-sequence, then for every r, 0<r<l, and for

every infinite sequence of subscripts {«*}, the functions <p„t(f) have at most

one exceptional value in | f | <r.

Some consequences of Theorem 7 are more conveniently described after

transformation of | z| < 1 onto a half-plane 'R.(z') >0.

Theorem 8. Under the hypothesis of the italicized definition, let {zn\ be a

q-sequence having as limit the point z0, with |zo| =1. Let the region \z\ <1 be

transformed by a linear transformation onto 'R.(z') >0 so that z = Zo corresponds

to z' =0. Then there exists a half-line L from z' =0 in the closed region 'R.(z') ^0

possessing the property that if S is a sector (of a circle) containing L in its interior

and with vertex in z' = 0, of arbitrarily small radius, then in S the transform of

the function f(z) has at most one exceptional value.

Let the points z„' (necessarily approaching z' = 0) be the transforms in the
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z'-plane of the points zn. The numbers

0„ = arg z„', — 7T < 6n < tv

have at least one limit value, say 6 = do', the half-line L may be chosen as 6 = do,

as we shall proceed to prove.

A non-euclidean circle in the z'-plane whose non-euclidean center is z' =ct,

%ia) >0, is transformed by shrinking or stretching the plane with z' =0 fixed

into a non-euclidean circle of the same radius, for the transformation leaves

the region 'R.(z') >0 invariant. Let 5 be given, and let S' be a sector interior

to 5 whose sides are also interior to 5, likewise having z' =0 as vertex, and

containing L in its interior. Then an infinity of points z„' lie interior to S'.

Let p denote the smaller of the two non-euclidean radii of the two circles

whose euclidean centers lie on the respective rays bounding S' and which are

tangent to S; the circles are not uniquely determined but their non-euclidean

radii are uniquely determined; there is an exceptional situation here, which

presents no inherent difficulty and whose treatment is left to the reader, if

the half-line 0 = 7r/2 or 6 = —ir/2 lies in or on the boundary of S. The non-

euclidean circles whose common non-euclidean radius is p and whose euclidean

centers are the infinity of points z„' interior to S' all of whose interior points

are interior points of S. Theorem 8 now follows from Theorem 7.

It is obviously true that in S the function/(z) takes on every value with

at most one exception an infinite number of times.

Theorem 8 obviously bears a close analogy to Julia's theorems on entire

functions(68). The analogy can be pursued still more closely as we now indi-

cate.

In the z'-plane used in Theorem 8 let C be an arbitrary curve (not neces-

sarily a Jordan curve) joining the unit circle to the origin.

C:   z' = ff(0, 0 g t $ 1,

«r{0) = 0, I <r(l) I = 1,

where a(t) is a continuous complex-valued function of the real parameter t.

From C is found by rotation about the origin a curve which we denote by

C(w): z' =a)-<r(t), \u\ =1. We shall call a horn the set H{w, e) of points each

of which lies interior to at least one of the circles having its center in a point z'

on C(w) and of radius e- |z'|. It will be noted that the horn H(w, t) is then a

region, and that each of its boundary points except z'=0 is on the circum-

ference of a circle of center z' on C(co) and radius e | z' |. But of course the curve

C and the horn H(o), e) need not lie entirely in the closed region f\(z') =0.

We now prove a generalization of Theorem 8.

Theorem 9. Under the hypothesis of Theorem 8 for arbitrary C there exists

(68) G. Julia, Lemons Sur les Fonctions Uniformes d Point Singulier Essentiel Isoli, Paris,

1924, p. 105 ft".
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a curve C(wo) such that in every horn H(coq, e) the transform of the function f(z)

takes on every value an infinite number of times, with the exception of at most

one value.

Let the numbers e and €1 be given, l>e>ei>0. Consider all circles 7

and 71 of radii re and rti with variable common center (r, 0), where r is

bounded and 0 is arbitrary. Then the non-euclidean distance from a point of 71

in the region %{z') >0 to the nearest point of 7 is bounded from zero, say is

greater than or equal to some positive 8 independent of r and 6. This conclu-

sion follows from the fact that in studying the non-euclidean distance it is

no loss of generality to take r=l.

As an application of this remark, since each boundary point of the horn

H(u>, lies on a circle 71 with center z' on C(co) and radius «i|z'|, and since

all points interior to the circle 7 with center z' and radius e|z'| belong to

H(o), e), it follows that the non-euclidean distance from each boundary point

of H{cc, ei) in ^(z')>0 to the boundary of H(a), e) is greater than or equal

to 5. If all points of a set {z'nt} in 5l(z') > 0 lie in H(<j>, ti), then each point whose

non-euclidean distance from some z„t is less than 8 lies in H(co, «).

Suppose now the points

Zn = rneie",        0 < rn = I; ft = 1, 2, • • • ,

are the transforms in the z'-plane of the given g-sequence. Each z„' lies on

some curve C(w„); in fact, the continuous function |o-(/)| must take on the

value rn for some value of /, say     0<t„=: 1, whence

z„' = I <r(L) I eie«, rn = I «{tn) I,

so zn' lies on the curve

C(o>„):   z' = o)n-<r(0,

Of course /„ and co„ need not be uniquely defined, but we choose a specific de-

termination.

Let the set wi, a>2, • ■ ■ on the unit circle have the limit point too. Then for

every €1 > 0, the horn H(co0, eL) has an infinity of the points z„' in its interior.

For on the arc of | z'| = 1 in the circle | z' — o>o| =€1 He an infinity of points w„,

say to„,, w„2,   • • . Then of the circle r = r„t the entire arc which lies in the circle

I z' — u0-<r(tnk) I = trr„k

lies on H(o}0, d), and this arc of the circle r = r„4 contains the point

by virtue of the inequality for w„t

eie"\c(t„)\

<r(tn)



208 W. SEIDEL AND J. L. WALSH [July

<*(tnk)

— CrjQ

We are now in a position to prove Theorem 9. Let C be given. The num-

ber coo is to be determined as just indicated, and thus C(w0) is denned. Then

€>0 is arbitrary, and we choose ei, 0<«i<e. The points z'„k already defined

are the transforms of a g-sequence 2„t; it follows from Theorem 7 that in the

set of circles having the z'„t as non-euclidean centers and with a common non-

euclidean radius the function/i(z') [transform of/(z)] takes on every value

with at most one exception an infinite number of times. The points z'„k lie in

H(coo, «i), and these non-euclidean circles (chosen with common non-euclidean

radius less than the number 5 previously defined) all lie in H(ua, e). The proof

is complete.

It is also true that in every H(wo, t) in every neighborhood of the origin the

function /i(z') takes on every value with at most one exception an infinite

number of times.

31. Functions with bounded D,. In studying the relation between Di(w)

and |/'(z)| (1 —|z|2) we have restricted the class of functions/(z) in such a

manner that the associated functions <p„(f) should form a normal family. For

this reason we considered the class of Univalent functions, the class of bounded

functions, and the class of functions omitting two values. There is, however,

another criterion of normality, which was discovered by Bloch(69). It is the

class of functions for which the radius of univalence D\(w) is bounded. The

desired relations may be easily obtained for this class. Indeed, we have

Theorem 10. Let w =/(z) be analytic for \ z\ < 1, and let Dx{w) be uniformly

bounded: Di(w) = D. Setting w0=/(zo), where z0 is an arbitrary point of \z\ <1,

the inequality

(31.1) |/'(z0)| (1 -|zo]2) = [K-D1(w0)]li\

holds, where K may be taken equal to 20D/B, B being Block's constant.

We begin by using the method of proof (Montel, ibid.) of Bloch's theorem

on normal families. If we set

*k+(l-|2l|)f]/ z + z0 \

•2) *(*)=/(——-), ««0
\ 1 + Z0Z / (1 - I *i I )*'(«!)

I 30 I < 1,   I Si I  < 1,   0'(Zi) 9* 0,

we note that g(f) is analytic in | f | <1, with g'(0) = l. Then it follows from

Bloch's theorem (§28, Theorem 5 for £ = 1) that for the function g(f) and for

some w we have Di(w) ^B, where B is Bloch's constant; hence if D\{w) refers

now to the function <p [zi+ (1 — | Zi| )f ] we have for some w

(«•) Cf. P. Montel, ibid., p. 115.
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d-|2li)0'(Zl)r

But by our hypothesis we have Di{w) =Z>, whence

I *'(«0 I =       D,   ■ ;
B(l - *i )

this inequality is valid in the case 0'(zi) =0, exceptional for (31.2).

If we introduce the notation

(31.3) *(f) = 0(f) - 0(0) = ff
«/o

where the integral is taken along a line segment, we have for |f| ^p<l

■       .      C    Ddp D
1*<f)|sJ.i^--7Ios<1-',)-

The inequality of Theorem 2, §10, can be written in the present case

rw I »'(0) 1V " „ Lx
- (4D/5) log (1 - p)

It is seen immediately that the maximum of the function

0 < p < 1,
log (1 - p)

occurs when

- log (1 - p) =
2(1 - p)

which is approximately p = .72, so we may take

D^wo) ^-^|/'(z0)|2(l -|z0|T.

This proves the theorem.

As a corollary, it is seen that under the hypothesis of Theorem 10 the con-

dition Di{wn)—>0 is a sufficient condition for |/'(z„) | (1 — | z„|)—»0 even when

w„—As a further remark it may be observed that the class of functions

considered in Theorem 10 includes the case that the area of the image of

|z| <1 under the transformation w=/(z) is finite.

It is clear that analogous inequalities could be obtained for the higher de-

rivatives. We proceed instead to the analogous theorem for Dp(w) in general:
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Theorem 11. Let w =/(z) be analytic for | z| < 1, and let Dp(w) be uniformly

bounded: Dp(w) = DP, where p is given and Dp is independent of w. If we set

w0 =/(z0), where | z01 < 1, we have

A >.<! ~ I *oh)(*o)
Zu  lu (~ 1) Ci_i,,z0-77-~-
k=l    -=0 (k — V)\

tk 24PKp(J^j 2 [Dp{wo)rv,

where Bp is the constant of the corollary of §28, and where Kp is a constant de-

pending only on p; indeed we may set

Kp = min {p-p[- log (1 - p)}-r, 0 < p < 1},

or we may set Kp = 2".

Of course the boundedness of Dp(w), as in Theorem 11, is a stronger con-

dition than the boundedness of -Di(w), as in Theorem 10, for we have

Dp(w)^Dl(w).

As before, we introduce </>(z) by the first of equations (31.2), but set now

C(f) =<p [zi + (l — I Zi\ )f ], where Zi is arbitrary provided | *i| < 1. Thus G(f) is

analytic in |f| <1. Then if Dp(w0) refers to G(f) or to/(z), we have by the

corollary, §28

Dp(w0) *bA\ $'(0) I + — I 3>"(0) I + ■••+ — I <t>Cp)(0) 11.
L 2! pi J

By virtue of the inequality Dp(w0) =DP, we may now write

ry ä (1 - |z1j)U'(z1)|.
Bp

In the notation of (31.3) we have for |f| ±£p<l

(31.4) I S>(f) I = - ^ log (1 - p).
Bp

The function ^Kpf) is analytic in |f| <1 and has there the bound indicated

by (31.4). By §19, Corollary 3, we may write,

.     p2. j p»,

p *'(0)  + —  $"(0)  +•••+— <J><*"(0)
2! pi

< 24/,[--^-log(l-p)J 2 -[öP(0)]^,

and this inequality is valid whether Dp(0) refers to 4>(pf) in | f| <1, to $(f)
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in |f| <p, or to <£>(£") in |f| <1. The first part of Theorem 11 follows at once,

where Dv{w) refers now to/(z), by §2, Lemma 2. The latter part of Theorem

11 follows from the inequality for p = 1/2

p-'[- log (1 - p)Y-*-p < 2".

An obvious consequence of Theorem 11 is that under the conditions of

that theorem Dp(wn)—>0 implies

/<*>(z„)(l - |z„|2)*->0, k = 1, 2, • • ■ , p,

where wn=f(zn), |z»| <1; this conclusion is valid even if wn—»°o.

32. Comments on condition |z„[—»1. In the major part of the present

paper, so far as it deals with Di(w), we are concerned with a function /(z)

analytic for |z| <1 and the two conditions

(32.1) ZMO -»0, wn = /(z„),

(32.2) /'(z„)(l - I z„|2)-*0.

In the present section we propose to study the further condition

(32.3)

in its relation to (32.1) and (32.2). To some extent, our remarks will be a re-

capitulation of material already developed.

The relation (32.2) implies (32.1) with no further restriction on /(z), as

follows from §4, Theorem 2.

For a Univalent function/(z), relation (32.1) implies (32.2) by §4, Theo-

rem 1'. For such a function each of the conditions (32.1) and (32.2) implies

(32.3) , because/'(z) has a positive lower bound in the closed region | z| £ r < 1;

but (32.3) does not imply (32.1) or (32.3), as is illustrated by the function

/(z) =z/(l—z)2, when real z—>1; nevertheless(32.3) combined with the bound-

edness of wn implies (32.1) and (32.3), as follows by the kind of reasoning

about to be given.

However, if /(z) is both Univalent and bounded, each of the conditions

(32.1), (32.2), (32.3) implies all those conditions; it is sufficient now to show

that (32.3) implies (32.1). The plane region R which is the image of |z| <1

under the map w=f(z) can be considered the sum of the plane regions R„

the respective images of |z| <1 — 1/v, v = l, 2, ■ ■ ■ , under the map w=/(z).

The regions i?„ increase monotonically; given an arbitrary 5>0, there exists

an index Ns such that every point of Rns lies within a distance less than 5 of

the boundary of R; the inequality \z\ > 1 — 1/Nt implies D\(w) < S; thus (32.3)

implies (32.1) and hence (32.2).

Let now/(z) be bounded in |z| <1; we have already indicated (§10) that

the conditions (32.1) and (32.2) are equivalent. Nevertheless it is obvious

that (32.1) does not imply (32.3); whenever z„ approaches a point Zo with

|z0| <l,/'(z0) =0, the relation (32.1) is satisfied without (32.3); nevertheless,
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if Di(iv„)—>0, there exists a subsequence of the zn which approaches a point z0,

with either/'(zo) =0, |zo| <1, or |zo| =1. Reciprocally, Szegö's example (in-

troduction to Chapter II) shows that (32.3) may be satisfied without (32.1).

Let us suppose now/(z) bounded in |z| <1, |/(z) | —M, |z„| —>1, w„=/(z„)

—»w0, £>i(w„)^5>0; we shall derive some geometric properties of the Rie-

mann configuration R onto which the transformation w =/(z) maps |z| <1. By

inequality (4.4) we may write also

(32.4) |/'(zn)| (1 - |z„|2) ^ 5.

Let r be arbitrary, 0<r<l. The function

+(0 'f(-)
\ 1 + UZ

is analytic in

|0'(O)| =|/'(z„)

f| <r, has a modulus there not greater than M, with

(1 — I z„|2) = 5. It follows from the Landau-Dieudonne theo-

rem (§10) that the image of | f | <r under the transformation w=f(z) contains

a smooth circle whose center is wn and whose radius is at least r252/8M = 5i.

By virtue of the relation |z„|—»1, it is possible to choose a subsequence z„k

having the property that the circle whose non-euclidean center is z„k and non-

euclidean radius 2 log [(14-r)/(l — r) ] contains on or within it none of the

points Znk+j,j>0; as a consequence it follows from the triangle inequality that

the circles ynic whose non-euclidean centers are the points znk having the com-

mon non-euclidean radius log [(1 +r)/(l — r) ] are mutually exterior; this circle

y„k is the image of |f| =r under the transformation z = (f4-z„,.)/(l

Then the closed interiors of the smooth circles C„k on R whose centers are the re-

spective points wnk having the common radius Si are mutually disjoint. By virtue

of our assumption w„—»w0, it appears that the configuration R has an infinity

of separate sheets over the point w=Wo, each sheet containing a circle of

center Wo and radius 5i — 77, where 77 is arbitrary. We shall prove

Theorem 12. Let the function /(z) analytic and bounded in \ z\ <1 admit a

sequence z„ with |z„| <1, | z„ | —»1,

(32.5) D,(w„) = 5>0, wn = /(z„).

Then there exists a value w=Wo such that the Riemann configuration R onto which

the transformation w =/(z) maps | z | < 1 has an infinity of separate sheets over

the point w =w0, each sheet containing a smooth circle whose center lies over the

point w = wo and whose radius is 62 >0, where 82 is suitably chosen.

In Theorem 12, the condition (32.5) may of course be replaced by the con-

dition that |/'(z„) I (1 — I z„|2) should be bounded from zero, a condition that

implies (32.5).

To prove Theorem 12 it suffices to apply the reasoning already given to a

subsequence of the wn possessing a limit. Of course it is not possible to assert
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here that the original sequence of circles of radii Di(w„) corresponds to sepa-

rate sheets of R; if the circles of radii D\{w2n) al"e given arbitrarily, correspond-

ing to separate sheets of R, the point Z2n+i can be chosen so near z2n that the

corresponding circles overlap, while an inequality of form (32.5) persists.

Conversely, let/(z) now be analytic and bounded for |z| <1, and let

w=f(z) map |z| <1 onto a Riemann configuration which has an infinity of

separate sheets over some point w0, each sheet containing a smooth circle 7„

whose center lies over the point w = w0 and whose radius is 52>0; it is obvious

that the centers of these smooth circles can be chosen as points wn so that the

relation Di(wn) = 52 is fulfilled. The relation |z„| —»1 follows because otherwise

a subsequence z„t has a limit point Zo, with |z0| <1; we have w0=/(z„t), hence

Wo=/(zo); an infinity of points z„4 lie in an arbitrary neighborhood of Zo; an

infinity of the points w„t=f(zni) on R lie on R in each Cp whose center is

w» =/(zo), where p — 1 is the order of z0 as a zero of/(z); this is in contradiction

to our hypothesis that the yn lie in distinct sheets of R ; the converse of Theo-

rem 12 is established.

In Theorem 12 and its converse, we have supposed/(z) to be bounded; it

also sufficient if/(z) has two exceptional values in |z| <1; compare §22.

We add one further remark, in a somewhat different order of ideas. Let

w=/(z) be analytic in |z| <1, and let us suppose

(32.6) limsupZ)i(w) < °o ;

this condition is a consequence of

(32.7) limsup |/'(z) I (1 - I z|2) < oo,
Z-.1

if (32.7) itself is valid. It follows from (32.6) that D\{w) is uniformly bounded

in |z| <1. Hence (32.1) and (32.2) are equivalent. Moreover, the discussion

of Theorem 12 and its converse applies here. But even under these circum-

stances it is not true that (32.3) implies (32.1) or (32.2); this is shown by the

function w=/(z) with /(O) =0, /'(0) >0, which maps |z| <1 onto the strip

\v\ <x, where w = u-\-iv; we have Di(w) = ir. But when z„ is positive, z„—-»1,

we have Di(w„) =ir, so neither (32.1) nor (32.2) is satisfied.

33. £-valent functions. For ^-valent functions we can obtain results analo-

gous to those for bounded functions and for functions which have two excep-

tional values.

Theorem 13. Let the function f(z) be analytic and p-valent in the region

I z I < 1. Then we have

(33.1)       |/(0)| +11/"(0) I + ■ • • + ^-|/^(0)| *Ap-D,(0),
21 pi

where Apis a numerical constant depending only on p.
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We assume /(O) =0, which obviously involves no loss of generality. We

write for reference the inequality

lip — max [ I öi I, | a2|, • • ■ , | ap \ ] £ \ ai \ + | a21 + ■ • • + | ap \,

(33.2) 1
a*-/W(0).

k\

A theorem due to M. L. Cartwright(70) asserts that under the conditions

of Theorem 1, since we have/(0) =0, we have

(33.3) |/(s) I = A; Up-(l - r)-2p, \z\=r<l,

where Ap is a number depending only on p and where up is defined by (33.2).

We shall use (33.3) for the particular value r = l/2:

(33.4) |/f»| £ 22*-A;-Hp, |z| = 1/2.

The function F(z) =/(z/2) is analytic in the region |z| <1 and has there

the bound 2^-Ap up. If Dp(0) refers to F(z) or to/(z) we have by §19,

Corollary 3,

I F'(0) I + — I F"(0) I + ...+— I F^(0) I
(33.5) '        '     2!1 1 pi. 1

= Bp[2**-Ap'-Up}1-*-p-[Dp(0)]*-P

where Bv may be chosen as 2\p. The first member of (33.5) can be written

jl/'(0)l+^il/"(0)| + ... + ^l/-(o)|,

which is not greater than

+ ̂ l/"(o)l + -- - +^l/(p,(o)|].

A consequence of (33.5) and (33.2) is then the inequality

[1/(0)1 + ^l/"(0)| + ■ • • +-\f*\o)
21 pi

= 2» Bp[2*v A;Y-^ [Dp{Q)]^,

which can be put into the form (33.1).

By virtue of §2, Lemma 2 and §20, Theorem 2, we can formulate from

Theorem 1

Theorem 14. Let the function f(z) be analytic and p-valent in the region

I zI < 1. Then with the conditions \z0\ < 1, wo =/(zo), we have

(70) Mathematische Annalen, vol. Ill (1935), pp. 98-118.



1942] FUNCTIONS ANALYTIC IN THE UNIT CIRCLE 215

4-1

2\ k—v(1 2\

yP Dp(w0) ̂ Z | Z (-l/cv^o    ~' -/<*-"(*>)
>-=o (k —

= ep-J3,(wo),

w«ere 7„ is the number of §20, Theorem 2, and &p is a number depending only

on p which may be chosen as Ap in Theorem 1.

Consequently if we have |z„| <1, w„=/(zn), a necessary and sufficient condi-

tion for

lim /W(z»)(i - I z„|2)* = 0, k = 1, 2, • • • ,p,
n—• «

is /Ae condition lim„,M Dp(w„) =0.

The case p = 1 brings us back to §4, Theorem 3.

34. Some extensions to meromorphic functions. Let us consider a class of

functions/(z) meromorphic in |z| <1, omitting there the three distinct values

a, b, c, and such that/(0) =A, \A \ = A0, where A0 is a positive constant inde-

pendent of the particular function of the class. Corresponding to this class

there exists a number 6 (O<0<1) such that we have

(34.1) \f(z) I = q(a0, 6)

for |z| <9, where    is independent of any particular function of the class.

Indeed, suppose no such value of 6 existed. On the circle |z| = \/n some

function /„(z) would attain a value of modulus exceeding n. From the se-

quence of functions /„(z) one can extract a subsequence converging uni-

formly (n) in every closed subregion of |z| <1 either to a meromorphic

function or to the infinite constant. The second alternative cannot take

place since by hypothesis |/„(0)| = Aa for all n. But, on the other hand, if

the sequence/„(z) converges to a meromorphic function, the latter must have

a pole at the origin which is not possible on account of the condition

|/n(0)| £A0. Hence, the asserted existence of 6 has been established.

Let z0 (|zo| <1) be a point such that, setting w0=/(z0), we have | w0| =A0.

Consider the function

\ 1 + Z0f /

which is meromorphic in | f | <1, omits there the values a, b, c, and for which

0(0) =w0. In accordance with (34.1) we have

I 0(f) I ̂  q(a0, 0)

in I f I <B. Hence, in | f | < 1 we have

I 0(öf) I ̂  q(a„, e).

(") Defined, for instance, as by Montel, Lecons sur les Families Normales de Fonclions

Analytiques, Paris, 1927, p. 124.
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Now, applying Theorem 5, Chapter III, we obtain the inequality

(34.2)  e I «'(o) I + ^ I *"(o) I + • • • + —t 10<»>(o) I ̂  a; [dp(w0) ]«-*,
2! ^>!

where A/ depends on 0, and A0. It is clear, furthermore, that 6 depends

on a, b, c, Ao but not on 0(f) and consequently may be omitted by modifying

Ap properly. It is also to be noted that Dp(w0) in (34.2) is the radius of va-

lence at the point Wo of the Riemann surface on which the function 0(0f)

maps |f| <1 which is the same as the radius of ^"-valence at the point w0 of

the Riemann surface on which 0(f) maps | f | <6. This radius of p-valence is

not greater than the radius of p-valence at the point w0 of the Riemann sur-

face on which 0(f) maps | f | < 1. Hence, if in (34.2) we return to the function

/(z) we obtain the inequality

(34.3) £
^ , (1 -I 8o I*)
2w (— !) C*_1,k20-—-—-

o (k — v)l
^ Ap'[Dp(Wo)]2-p,

where Dp(w0) is now the radius of p-valence at the point Wo of the Riemann

surface on which/(z) maps the circle |z| <1.

Now, as is remarked in §21 after the proof of Theorem 2, that theorem

requires analyticity only in the neighborhood of the origin, which /(z) pos-

sesses in |z| <6. Hence, applying Theorem 2 we find that

(34.4)      XpZ)p(Wo) = £
*-*        .        „ (1 - I s. I»)«-'/<*-"(«.)
2w (— i) Ck-i,tZo —

(*-»)!

where Xp depends on p alone. Thus, we may state

Theorem 15. Let /(z) be a function meromorphic in \ z\ <1, omitting there

the three distinct values a, b, c. Let Zo (|zo| <1) be a point such that, setting

Wo=f(zo), \wo\ ^ A o where A o is a positive constant. Then, the inequalities (34.3)

and (34.4) hold, where Ap depends on Ao, a, b, c, but not on Zo orf(z).

It follows that if under the hypotheses of Theorem 15 for a sequence of

points zn (|z„| <1) the sequence w„=/(zn) is bounded, then a necessary and

sufficient condition for \imn^fw(zn) (1 - | z„| 2)k = 0 (& = 1, 2, ■ • • , p) is

lim«,«, Dp(wn) =0.

It will be noted that under the conditions of Theorem 15 we have

Dp(w) £ I w — a I so that inequality (34.3) gives an inequality on the approach

to zero of (1 — | z\2)k\fw{z) \ as w tends to zero, for every k.

We add the remark that much of the discussion of §27 can be carried

over to meromorphic functions which omit three values; this development is

left to the reader.
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