ON THE DERIVATIVES OF FUNCTIONS ANALYTIC IN THE UNIT CIRCLE AND THEIR RADII OF UNIVALENCE AND OF p-VALENCE

BY

W. SEIDEL AND J. L. WALSH

Table of Contents
Section Page

1. Introduction 129
Chapter I. Univalent Functions
2. Preliminary identities 130
3. Littlewood-Macintyre theorem 132
4. Inequalities concerning D_{1} 133
5. Applications 135
6. Inequalities for higher derivatives 136
7. Applications 139
8. Behavior of the first derivative almost everywhere 141
9. Example on the slowness of approach of $\left|f^{(k)}(z)\right|(1-|z|)^{k}$ 146
Chapter II. Bounded functions: configurations C_{p}
10. A lower bound on $D_{1}(w)$ 151
11. Irregular sequences. 153
12. Counterexamples (Gegenbeispiele) 157
13. Definition and some properties of C_{p} 159
14. Definition of D_{p} 161
15. Some properties of D_{p} 165
16. The limit property of D_{p} for continuously convergent sequences. 167
17. $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$ is a necessary and sufficient condition for $\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}$ $=0(k=1,2, \cdots, p)$ 170
Chapter III. Bounded functions: inequalities on D_{p}
18. A preliminary lower bound for D_{p} 172
19. Numerical lower bounds for D_{p} 175
20. A lower bound for the derivative of a circular product 177
21. Numerical upper bound for D_{p} 180
Chapter IV. Functions which omit two values
22. Inequalities for $D_{p}\left(w_{n}\right)$ when $\left|f\left(z_{n}\right)\right|$ is bounded 183
23. Counterexamples 186
24. Case: $\lim _{n \rightarrow \infty}\left|w_{n}\right|^{(1+\epsilon)\left(2^{p}-1\right)} D_{p}\left(w_{n}\right)=0$ 188
25. Mandelbrojt's theorem 190
26. Counterexample for unrestricted functions 193
Presented to the Society, February 26, 1938; received by the editors July 7, 1941. A short abstract of this paper under a slightly different title without details of proofs has already been published, Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 337-340.
Chapter V. Miscellaneous
27. Limit values of analytic functions 195
28. Extension of Bloch's theorem 201
29. Unrestricted functions; properties of $\Delta(z)$ 203
30. Pathology 204
31. Functions with bounded D_{1} 208
32. Comments on condition $\left|z_{n}\right| \rightarrow 1$ 211
33. p-valent functions 213
34. Some extensions to meromorphic functions. 215
35. Introduction. Various results are known concerning the order of growth of the first and higher derivatives of univalent and of bounded functions analytic in the unit circle, in the plane of the complex variable z. Among these may be mentioned Koebe's distortion theorem (Verzerrungssatz) in the univalent case, and Schwarz's lemma and the results of O. Szász(1) in the bounded case. A consequence of these results for a function $f(z)$ analytic in $|z|<1$ is $\left|f^{\prime}(z)\right|=O\left((1-|z|)^{-3}\right)$ in the case that $f(z)$ is univalent and $\left|f^{(n)}(z)\right|=O\left((1-|z|)^{-n}\right)$ in the case that $f(z)$ is bounded. Various distortion theorems for bounded univalent functions were found by G. Pick and R. Nevanlinna (${ }^{2}$). H. Frazer and more recently M. L. Cartwright have obtained results on the order of growth of p-valent functions ${ }^{(3)}$ in a complete form.

All these investigations, however, fail to give an adequate description of the behavior of $\left|f^{\prime}(z)\right|(1-|z|)$ as $|z| \rightarrow 1$ from the interior of the unit circle $|z|<1$. In the univalent case an answer to this question is contained in the following result due to J . E. Littlewood without the precise constant involved and to A. J. Macintyre ${ }^{(4)}$) in the precise form stated here.

Theorem 1. Let $f(z)$ be analytic and univalent in $|z|<1$ and let it omit there the value ω. Then, in $|z|<1$ the following inequality is satisfied:

$$
\begin{equation*}
\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqq 4|\omega-f(z)| \tag{1.1}
\end{equation*}
$$

Theorem 1 is in fact essentially one form of Koebe's distortion theorem, as we indicate below.

The object of the present paper is to study in some detail the behavior of expressions of the form $\left|f^{(p)}(z)\right|(1-|z|)^{p}$ for various classes of functions $f(z)$ analytic in the unit circle $|z|<1$, especially the behavior as $|z| \rightarrow 1$. We thus obtain results which can be interpreted as new distortion theorems. In

[^0]particular, the expression $\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)$ is found to be closely connected with the radius of univalence, which is now to be defined.

Definition 1. Let $w=f(z)$ be analytic in $|z|<1$ and let R denote the Riemann configuration ${ }^{(5}$) over the w-plane onto which this function maps the region $|z|<1$. Let w_{0} be an arbitrary point, not a branch point, of R. Then the radius of the largest smooth circle (boundary not included) with center at w_{0} and wholly contained in R is called the radius of univalence of R at w_{0} and will be denoted by $D_{1}\left(w_{0}\right)$. At a branch point w_{0} of R we define $D_{1}\left(w_{0}\right)$ as zero.

In this definition w_{0} refers to an actual point of R and not merely to any point of R whose affix is the complex number w_{0}; the notation $D_{1}\left(w_{0}\right)$ is thus not fully explicit. The reader will easily verify that the largest smooth circle whose existence is asserted in the definition does exist and is unique.

This terminology differs from that of Montel ${ }^{6}$), who uses the term modulus of univalence for our radius of univalence. A similar comment applies to the terminology radius of p-valence which we define in $\$ 14$.

Explicit inequalities connecting $\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)$ and $D_{1}(w)$ are obtained for the class of functions $f(z)$ univalent in $|z|<1$ in Theorem 3, Chapter I, for functions $f(z)$ bounded in $|z|<1$ in Theorem 3, Chapter II, and for functions $f(z)$ omitting two values in $|z|<1$ in Theorems 2 and 4 of Chapter IV. Analogous to the inequalities connecting $\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)$ and $D_{1}(w)$ we determine inequalities connecting $\left|f^{(k)}(z)\right|\left(1-|z|^{2}\right)^{k}$ for $k=1,2, \cdots, p$ and $D_{p}(w)$, where $D_{p}(w)$ is the radius of the largest p-sheeted circle with center in the point w contained in R. For the precise definitions the reader may be referred to Chapter II, $\S \S 13,14$. We obtain such inequalities on higher derivatives for the class of univalent functions in Theorem 5, Chapter I, for bounded functions in Theorems 1 and 2 of Chapter III, and for the functions omitting two values in Theorem 5, Chapter IV. For the detailed analysis of the paper the reader is referred to the Table of Contents.

Applications of the results just mentioned occur throughout the paper, particularly in Chapter V.

Chapter I. Univalent functions

2. Preliminary identities. In the sequel we shall make extensive use of a lemma due to $\mathrm{O} . \operatorname{Szász}\left({ }^{7}\right)$.

Lemma 1. Let $f(z)$ be a function analytic in the circle $|z|<1$. Let

[^1]\[

$$
\begin{equation*}
g(\zeta)=f\left(\frac{\zeta+z}{1+\bar{z} \zeta}\right) \tag{2.1}
\end{equation*}
$$

\]

Then $g(\zeta)$ is a function regular in $|\zeta|<1$ for every value of z in $|z|<1$ and

$$
\begin{align*}
\frac{\left(1-|z|^{2}\right)^{n}}{n!} f^{(n)}(z)= & \frac{g^{(n)}(0)}{n!}+C_{n-1,1} \bar{z} \frac{g^{(n-1)}(0)}{(n-1)!}+C_{n-1,2} \bar{z}^{2} \frac{g^{(n-2)}(0)}{(n-2)!} \tag{2.2}\\
& +\cdots+\bar{z}^{n-1} g^{\prime}(0)
\end{align*}
$$

We omit the proof of Lemma 1 and proceed to the proof of
Lemma 2. Let $f(z)$ be a function analytic in the circle $|z|<1$. Let

$$
g(\zeta)=f\left(\frac{\zeta+z}{1+\bar{z} \zeta}\right)
$$

Then, for every fixed value of z in $|z|<1, g(\zeta)$ is a function of ζ regular in $|\zeta|<1$, and

$$
\begin{align*}
\frac{g^{(n)}(0)}{n!}= & \frac{\left(1-|z|^{2}\right)^{n} f^{(n)}(z)}{n!}-C_{n-1,1 \bar{z}} \frac{\left(1-|z|^{2}\right)^{n-1} f^{(n-1)}(z)}{(n-1)!} \\
& +C_{n-1,2} \bar{z}^{2} \frac{\left(1-|z|^{2}\right)^{n-2} f^{(n-2)}(z)}{(n-2)!}-\cdots \tag{2.3}\\
& +(-1)^{n-1} \bar{z}^{n-1}\left(1-|z|^{2}\right) f^{\prime}(z)
\end{align*}
$$

Let us write equation (2.2) for $n=k$ and allow k to assume the values $1,2, \cdots, n$:

$$
\begin{align*}
\frac{\left(1-|z|^{2}\right)^{k} f^{(k)}(z)}{k!}= & \frac{g^{(k)}(0)}{k!}+C_{k-1,1} \bar{z} \frac{g^{(k-1)}(0)}{(k-1)!}+C_{k-1,2} \bar{z}^{2} \frac{g^{(k-2)}(0)}{(k-2)!} \tag{2.4}\\
& +\cdots+\bar{z}^{k-1} g^{\prime}(0)
\end{align*}
$$

Let us proceed similarly with (2.3):

$$
\begin{align*}
\frac{g^{(k)}(0)}{k!}= & \frac{\left(1-|z|^{2}\right)^{k} f^{(k)}(z)}{k!}-C_{k-1,1} \bar{z} \frac{\left(1-|z|^{2}\right)^{k-1} f^{(k-1)}(z)}{(k-1)!} \\
& +C_{k-1,2} \bar{z}^{2} \frac{\left(1-|z|^{2}\right)^{k-2} f^{(k-2)}(z)}{(k-2)!}-\cdots \tag{2.5}\\
& +(-1)^{k-1} \bar{z}^{k-1}\left(1-|z|^{2}\right) f^{\prime}(z)
\end{align*}
$$

The lemma will be proved if it can be shown that (2.5) is obtained from (2.4) by solving the latter system for $g^{(k)}(0) / k!(k=1,2, \cdots, n)$. To do that it suffices to prove that the matrix of the coefficients of (2.4),

$$
\Delta=\left\|\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\bar{z} & 1 & 0 & \cdots & 0 \\
\bar{z}^{2} & 2 \bar{z} & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\bar{z}^{n-1} & C_{n-1, n-2} \bar{z}^{n-2} & C_{n-1, n-3} \bar{z}^{n-3} & \cdots & 1
\end{array}\right\|
$$

and the matrix of the coefficients of (2.5),

$$
\Delta^{\prime}=\left\|\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
-\bar{z} & 1 & 0 & \cdots \\
\bar{z}^{2} & -2 \bar{z} & 1 & \cdots \\
\cdot & \cdot & \cdot & \cdots \\
(-1)^{n-1} \bar{z}^{n-1} & (-1)^{n-2} C_{n-1, n-2} \bar{z}^{n-2} & (-1)^{n-3} C_{n-1, n-3 \bar{z}^{\bar{z}^{n-3}}} \cdots & 1
\end{array}\right\|
$$

are inverse matrices, or that $\Delta \cdot \Delta^{\prime}=I, I$ being the unit matrix. Now, it is immediately evident that the elements in the principal diagonal of the product matrix are 1 , while the element in the k th row and l th column, where $k>l$, is

$$
\begin{array}{r}
\bar{z}^{k-l}\left[C_{k-1, k-l}-C_{k-1, k-l-1} C_{l, 1}+C_{k-1, k-l-2} C_{l+1,2}-\cdots \pm C_{k-1,2} C_{k-3, k-l-2}\right. \tag{2.6}\\
\left.\mp C_{k-1,1} C_{k-2, k-l-1} \pm C_{k-1, k-l}\right] .
\end{array}
$$

The sum (2.6) may be written as follows:

$$
\overline{\mathbf{z}}^{k-l} C_{k-1, k-l}\left[1-C_{k-l, 1}+C_{k-l, 2}-C_{k-l, 3}+\cdots \pm 1\right]=C_{k-1, k-l}(1-1)^{k-l_{\bar{z}} k-l}
$$

which is zero. The case $k<l$ may be treated similarly. This proves that $\Delta \cdot \Delta^{\prime}$ is the unit matrix. Thus, Lemma 2 is established.
3. Littlewood-Macintyre theorem. We proceed to prove Theorem 1 ; this method is different from those of Littlewood and Macintyre. Indeed, form the function

$$
\begin{equation*}
\phi(\zeta)=\frac{f((\zeta+z) /(1+\bar{z} \zeta))-f(z)}{\left(1-|z|^{2}\right) f^{\prime}(z)} \tag{3.1}
\end{equation*}
$$

for a fixed value of z in $|z|<1\left({ }^{8}\right)$. This function is evidently regular and univalent in $|\zeta|<1$ and omits there the value $(\omega-f(z)) /\left(1-|z|^{2}\right) f^{\prime}(z)$. Since, furthermore, $\phi(0)=0$ and $\phi^{\prime}(0)=1$, we may apply a well known result $\left({ }^{9}\right)$ of Koebe in the theory of univalent functions, according to which

$$
\left|\frac{\omega-f(z)}{\left(1-|z|^{2}\right) f^{\prime}(z)}\right| \geqq \frac{1}{4} .
$$

[^2]This proves the theorem. Direct computation shows that the limit is attained for the univalent function $z /(1-z)^{2}$ and $\omega=-1 / 4$. Of course Koebe's theorem is the special case $z=0$ of Theorem 1 .
4. Inequalities concerning D_{1}. For the sequel it is desirable to restate Theorem 1 in a more geometric form. If we set $w=f(z)$, the right side of inequality (1.1) attains its least value when ω is one of those boundary points of the region R onto which $f(z)$ maps the circle $|z|<1$ which are nearest the point w. In that case $|\omega-f(z)|=D_{1}(w)$, as defined in the introduction, and Theorem 1 becomes

Theorem 1^{\prime}. Let $f(z)$ be analytic and univalent in $|z|<1$. Then the inequality

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leqq 4 D_{1}(w) \tag{4.1}
\end{equation*}
$$

is satisfied for all values of z in $|z|<1$, where $D_{1}(w)$ is the radius of univalence at the point $w=f(z)$ of the region R onto which $f(z)$ maps the circle $|z|<1$.

It may be of some interest to point out a geometric interpretation of the left side of inequality (4.1). Denote by $\rho(w)$ the "inner radius" of R with respect to a fixed interior point $w\left({ }^{10}\right)$. Then $\rho(w)$ can be expressed in terms of $f(z)$ as follows

$$
\begin{equation*}
\rho(w)=\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right), \tag{4.2}
\end{equation*}
$$

where z is the point corresponding to w. Inequality (4.1) may, therefore, be written in the geometric form (${ }^{11}$)

$$
\begin{equation*}
\rho(w) \leqq 4 D_{1}(w) . \tag{4.3}
\end{equation*}
$$

Theorem 1^{\prime} gives an upper bound for $\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)$. It is desirable also to obtain a lower bound for this expression.

Theorem 2. Let $f(z)$ be analytic in $|\dot{z}|<1$, let z_{0} be any point of $|z|<1$, and $w_{0}=f\left(z_{0}\right)$. Then

$$
\begin{equation*}
D_{1}\left(w_{0}\right) \leqq\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) . \tag{4.4}
\end{equation*}
$$

We notice that unlike (4.1), the relation (4.4) holds without any restriction other than analyticity on the function $f(z)$. Denote by R the Riemann surface over the w-plane onto which $w=f(z)$ maps the circle $|z|<1$. If w_{0} is

[^3]a branch point of R, (4.4) is trivial, for in that case both sides of the inequality reduce to zero. Otherwise, let
$$
g(\zeta)=f\left(\frac{\zeta+z_{0}}{1+\bar{z}_{0} \zeta}\right)
$$

This function is also analytic in $|\zeta|<1$ and maps the circle onto R. Furthermore, $g(0)=w_{0}$. If we denote by $\zeta=h(w)$ the inverse function of $w=g(\zeta)$, the function $h(w)$ is defined, regular, and single-valued on R. In particular, a suitable branch of $h(w)$ will be regular and single-valued on the single-sheeted circle C with center at w_{0} and radius $D_{1}\left(w_{0}\right)$. The values which this branch assumes in C all lie in the circle $|\zeta|<1$. Hence, in $C:|h(w)|<1, h\left(w_{0}\right)=0$. Consequently, applying Schwarz's lemma

$$
\left|h^{\prime}\left(w_{0}\right)\right| \leqq \frac{1}{D_{1}\left(w_{0}\right)}
$$

Hence, $\left|g^{\prime}(0)\right| \geqq D_{1}\left(w_{0}\right)$ and the evaluation of $g^{\prime}(0)$ in terms of $f(z)$ yields (4.4).

The inequality in (4.4) is sharp, reducing to an equality when

$$
f(z)=\frac{z-z_{1}}{1-\bar{z}_{1} z}, \quad\left|z_{1}\right|<1
$$

Combining Theorems 1^{\prime} and 2, we obtain
Theorem 3. Let $f(z)$ be regular and univalent in $|z|<1$, let z_{0} be any point of $|z|<1$, and $w_{0}=f\left(z_{0}\right)$. Then,

$$
\begin{equation*}
D_{1}\left(w_{0}\right) \leqq\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq 4 D_{1}\left(w_{0}\right) . \tag{4.5}
\end{equation*}
$$

We remark that Theorems 1 and 1^{\prime} can be somewhat improved if we assume $f(z)$ not merely analytic and univalent in $|z|<1$, but also bounded there: $|f(z)| \leqq M$. Under those conditions the function $\phi(z)$ defined by (3.1) is also analytic and univalent there, with $\phi(0)=0, \phi^{\prime}(0)=1$,

$$
|\phi(\zeta)| \leqq \frac{2 M}{\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)}
$$

Since $\phi(\zeta)$ in $|\zeta|<1$ omits the value

$$
\frac{\omega-f(z)}{f^{\prime}(z)\left(1-|z|^{2}\right)}
$$

provided the function $f(z)$ omits the value ω, the inequality of Pick $\left({ }^{(12)}\right.$ yields

[^4]\[

$$
\begin{gathered}
D_{1}\left(w_{0}\right) \geqq\left[\frac{2 M}{\left|f^{\prime}\left(z_{0}\right)\right|^{1 / 2}\left(1-\left|z_{0}\right|^{2}\right)^{1 / 2}}-\left(\frac{4 M^{2}}{\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)}-2 M\right)^{1 / 2}\right]^{2} \\
\frac{4 M\left[D_{1}\left(w_{0}\right)\right]^{1 / 2}}{D_{1}\left(w_{0}\right)+2 M} \geqq\left|f^{\prime}\left(z_{0}\right)\right|^{1 / 2}\left(1-\left|z_{0}\right|^{2}\right)^{1 / 2}
\end{gathered}
$$
\]

It may be noted that as M becomes infinite this last inequality approaches the form (4.1).
5. Applications. From Theorem 3 various corollaries may be immediately deduced.

Corollary 1. Let $f(z)$ be regular and univalent in $|z|<1,\left\{z_{n}\right\}$ any sequence of points in $|z|<1$, and $w_{n}=f\left(z_{n}\right)$. Then, a necessary and sufficient condition that

$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0
$$

is that

$$
\lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0,
$$

and a necessary and sufficient condition that $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)$ remain bounded is that $D_{1}\left(w_{n}\right)$ remain bounded.

Corollary 2. Let $f(z)$ be regular, univalent, and bounded in $|z|<1,\left\{z_{n}\right\}$ any sequence of points in $|z|<1$ for which $\lim _{n \rightarrow \infty}\left|z_{n}\right|=1$. Then

$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0
$$

The proof of Corollary 1 follows directly from the inequalities (4.5), while Corollary 2 follows from Corollary 1 if one remarks that under the hypotheses of Corollary 2 we have $D_{1}\left(w_{n}\right) \rightarrow 0\left({ }^{13}\right)$. Another consequence of (4.5) is the following:

Corollary 3. Let $f(z)$ be regular and univalent in $|z|<1$, let z_{0} be any point of $|z|=1$. Then there exists a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ converging to z_{0} such that

$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0
$$

In accordance with Corollary 1 it suffices to find a sequence $\left\{z_{n}\right\}$ converging to z_{0} for which the points $w_{n}=f\left(z_{n}\right)$ satisfy the relation $D_{1}\left(w_{n}\right) \rightarrow 0$. Such a

[^5]sequence may be found as follows. It is well known $\left({ }^{14}\right)$ that a univalent function has finite limit values on almost all radii. These limit values are boundary points of the region onto which $f(z)$ maps the circle $|z|<1$. Choose a sequence of such radii r_{n} which converges to the radius joining z_{0} with the origin. On the radius r_{n} choose a point $z_{n}\left(\left|z_{n}\right|<1\right)$ so near to the circumference $|z|=1$ that
$$
D_{1}\left(w_{n}\right)<1 / n .
$$

This sequence $\left\{z_{n}\right\}$ fulfills the necessary requirements.
6. Inequalities for higher derivatives. We now turn to the corresponding study of the higher derivatives of univalent functions. In particular, we shall determine upper bounds for expressions of the form

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{n} . \tag{6.1}
\end{equation*}
$$

It is clear immediately that lower bounds for these expressions in terms of $D_{1}(w)$ cannot be obtained even in the case $n=2$. For the expression (6.1) is identically zero for $n \geqq 2$ when $f(z) \equiv z$. Even for the upper bounds of (6.1) the sharp inequalities will now be obtained only in the case $n=2,3$. For higher values of n the corresponding inequalities depend on the assumption of the truth of Bieberbach's conjecture, which up to the present has not been established.

We begin by proving the following inequalities
Theorem 4. Let $f(z)$ be regular and univalent in $|z|<1$, let z_{0} be any point of $|z|<1$, and let $w_{0}=f\left(z_{0}\right)$. Then,

$$
\begin{equation*}
\left|f^{\prime \prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{2} \leqq 8\left(\left|z_{0}\right|+2\right) D_{1}\left(w_{0}\right) \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime \prime \prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{3} \leqq 24\left(\left|z_{0}\right|^{2}+4\left|z_{0}\right|+3\right) D_{1}\left(w_{0}\right) . \tag{6.3}
\end{equation*}
$$

These inequalities are sharp, reducing to equalities for $f(z)=z /(1+z)^{2}$ for real negative values of z.

To prove (6.2) and (6.3) compute the second and third Taylor coefficients, b_{2} and b_{3}, of the function (3.1) where we set $z=z_{0}$. By direct computation (or by §2, Lemma 2) we find that

$$
\begin{align*}
& b_{2}=\frac{1}{2} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\left(1-\left|z_{0}\right|^{2}\right)-\bar{z}_{0}, \\
& b_{3}=\frac{1}{6} \frac{f^{\prime \prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\left(1-\left|z_{0}\right|^{2}\right)^{2}-\frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} \bar{z}_{0}\left(1-\left|z_{0}\right|^{2}\right)+\bar{z}_{0}^{2} . \tag{6.4}
\end{align*}
$$

${ }^{(14)}$ See, for example, W. Seidel, Mathematische Annalen, vol. 104 (1931), p. 191.

Now, according to Bieberbach's theorem and Löwner's theorem(${ }^{15}$) $\left|b_{2}\right| \leqq 2$ and $\left|b_{3}\right| \leqq 3$. Hence

$$
\left|\frac{1}{2} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\left(1-\left|z_{0}\right|^{2}\right)-\bar{z}_{0}\right| \leqq 2
$$

and

$$
\left|f^{\prime \prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{2}-2 \bar{z}_{0}\left(1-\left|z_{0}\right|^{2}\right) f^{\prime}\left(z_{0}\right)\right| \leqq 4\left(1-\left|z_{0}\right|^{2}\right)\left|f^{\prime}\left(z_{0}\right)\right| .
$$

Applying (4.1) we obtain at once inequality (6.2). To obtain (6.3) we use the evaluation of b_{3} in (6.4) and write

$$
\left|\frac{1}{6} \frac{f^{\prime \prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\left(1-\left|z_{0}\right|^{2}\right)^{2}-\frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} \bar{z}_{0}\left(1-\left|z_{0}\right|^{2}\right)+\bar{z}_{0}^{2}\right| \leqq 3
$$

and

$$
\begin{aligned}
&\left|f^{\prime \prime \prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{3}-6 \bar{z}_{0} f^{\prime \prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{2}+6 \bar{z}_{0}^{2} f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)\right| \\
& \leqq 18\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|f^{\prime \prime \prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{3} \leqq & \left|6 \bar{z}_{0} f^{\prime \prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{2}-6 \bar{z}_{0}^{2} f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)\right| \\
& +18\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \\
\leqq & 6\left|\bar{z}_{0} f^{\prime \prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{2}-2 \bar{z}_{0} f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)\right| \\
& +6\left|z_{0}\right|^{2}\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)+18\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)
\end{aligned}
$$

Applying now inequalities (6.2') and (4.1) we obtain inequality (6.3).
If now Bieberbach's conjecture concerning the coefficients of univalent were known to be true $\left({ }^{(6)}\right)$, one could write

$$
\frac{\left|\phi^{(n)}(0)\right|}{n!} \leqq n .
$$

With the aid of a little algebraic manipulation (see below) this would lead to the sharp inequality

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{n} \leqq 4 n!\left(n+\left|z_{0}\right|\right)\left(1+\left|z_{0}\right|\right)^{n-2} D_{1}\left(w_{0}\right), \tag{6.5}
\end{equation*}
$$

which becomes an equality for $f(z)=z /(1+z)^{2}$ for real negative values of z. Unfortunately, however, the inequality $\left|b_{n}\right| \leqq n$ has been proved only for

[^6]$n=2$ and 3 , so that the validity of inequality (6.5) has been established for $n=2$ and 3 only. Weaker inequalities have actually been proved by various authors, in particular, J. E. Littlewood ${ }^{(17)}$ who showed
\[

$$
\begin{equation*}
\frac{\left|\phi^{(n)}(0)\right|}{n!}<e n \tag{6.6}
\end{equation*}
$$

\]

and E. Landau $\left({ }^{(18)}\right.$ who showed

$$
\frac{\left|\phi^{(n)}(0)\right|}{n!} \leqq\left(\frac{1}{2}+\frac{1}{\pi}\right) e n .
$$

Making use of (6.6) and Lemma 1 of §2 we find

$$
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!} \leqq\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \sum_{\nu=0}^{n-1} C_{n-1, \nu}|z|^{\nu} \frac{\left|\phi^{(n-\nu)}(0)\right|}{(n-\nu)!}
$$

and using (4.1)

$$
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!} \leqq 4 e D_{1}(w) \sum_{\nu=0}^{n-1}(n-\nu) C_{n-1, \nu}|z|^{\nu}
$$

Since, however,

$$
\sum_{\nu=0}^{n-1} C_{n-1, \nu}|z|^{\nu}=(1+|z|)^{n-1}
$$

and

$$
\sum_{v=0}^{n-1} \nu C_{n-1, \nu}|z|^{\prime}=(n-1)|z|(1+|z|)^{n-2}
$$

we obtain
$\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right| \leqq 4 e \cdot n!D_{1}(w)\left[n(1+|z|)^{n-1}+(n-1)|z|(1+|z|)^{n-2}\right]$ and finally

$$
\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right| \leqq 4 e \cdot n!\left(n+\left|z_{0}\right|\right)\left(1+\left|z_{0}\right|\right)_{0^{n-2} D_{1}\left(w_{0}\right) .}
$$

This clearly is not a sharp inequality. We thus obtain
Theorem 5. Let $f(z)$ be regular and univalent in $|z|<1$, let z_{0} be any point in $|z|<1$, and let $w_{0}=f\left(z_{0}\right)$. Then

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{n} \leqq 4 e \cdot n!\left(\left|z_{0}\right|+n\right)\left(1+\left|z_{0}\right|\right)^{n-2} D_{1}\left(w_{0}\right) . \tag{6.7}
\end{equation*}
$$

From this inequality we obtain again two corollaries analogous to those of Theorem 3.
${ }^{(17)}$ J. E. Littlèwood, loc. cit., p. 498.
${ }^{(18)}$ E. Landau, Mathematische Zeitschrift, vol. 30 (1929), p. 635.

Corollary 4. Let $f(z)$ be regular and univalent in $|z|<1,\left\{z_{n}\right\}$ any sequence of points in $|z|<1$ and $w_{n}=f\left(z_{n}\right)$. Then, if

$$
\lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0,
$$

all the derivatives of $f(z)$ will satisfy the relation

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2,3, \cdots
$$

Clearly the converse of the theorem is false since taking $f(z) \equiv z, z_{n}=0$ ($n=1,2, \cdots$), we have $f^{(k)}\left(z_{n}\right)=0$ for all $k \geqq 2$ and all n while $D_{1}\left(w_{n}\right)=1$.

Corollary 5. Let $f(z)$ be regular, univalent, and bounded in $|z|<1,\left\{z_{n}\right\}$ any sequence of points in $|z|<1$ for which $\lim _{n \rightarrow \infty}\left|z_{n}\right|=1$. Then

$$
\lim _{n \rightarrow \infty}\left|f^{(\dot{k})}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2,3, \cdots
$$

7. Applications. A few remarks concerning Theorem 3 will now be made. Koebe's "Verzerrungssatz" can be written in the form ${ }^{(19)}$

$$
\frac{1-|z|}{(1+|z|)^{3}} \leqq\left|f^{\prime}(z)\right| \leqq \frac{1+|z|}{(1-|z|)^{3}}
$$

If we combine this inequality with (4.5) we obtain

$$
\frac{1}{4}\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{2} \leqq D_{1}\left(w_{0}\right) \leqq\left(\frac{1+\left|z_{0}\right|}{1-\left|z_{0}\right|}\right)^{2}
$$

We may state this result as follows:
Corollary 6. Let $f(z)$ be regular and univalent in $|z|<1$ with $f(0)=0$, $f^{\prime}(0)=1$, let z_{0} be any point of $|z|<1$, and let $w_{0}=f\left(z_{0}\right)$. Then the radius of univalence $D_{1}\left(w_{0}\right)$ at the point w_{0} satisfies the inequality

$$
\frac{1}{4}\left(\frac{1-\left|z_{0}\right|}{1+\left|z_{0}\right|}\right)^{2} \leqq D_{1}\left(w_{0}\right) \leqq\left(\frac{1+\left|z_{0}\right|}{1-\left|z_{0}\right|}\right)^{2}
$$

The lower bound of $D_{1}\left(w_{0}\right)$ was obtained in less precise form by W. E. Sewell $\left({ }^{20}\right)$. The first inequality is sharp, becoming an equality for $f(z)$ $=z /(1+z)^{2}$ along the positive real axis. The second inequality is probably not sharp.

Another application of Theorem 3 concerns infinite regions. Suppose that R is a simply connected region of the w-plane for which $w=\infty$ is an accessible boundary point, let

[^7]$$
\lim \sup D_{1}(w)=D
$$
where w is an interior point of R, and let $w=f(z)$ map R on the interior of the circle $|z|<1$; suppose that $z=\alpha,(|\alpha|=1)$, corresponds to $w=\infty$. From Theorem 3 it follows that
$$
\limsup _{z \rightarrow \alpha}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqq 4 D .
$$

For an arbitrary infinite region the relations $w_{n}=f\left(z_{n}\right) \rightarrow \infty, \lim \sup _{n \rightarrow \infty} D_{1}\left(w_{n}\right)$ $=D, \lim \inf _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=d$ clearly imply that $\lim \sup _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \leqq 4 D$, $\lim \inf _{z \rightarrow \alpha}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-|z|^{2}\right) \geqq d$.

The final remark concerns an inequality derived by G. Szegö(${ }^{21}$) on the difference quotient of a univalent function. His inequality is as follows: Let $f(z)$ be regular and univalent in $|z|<1$, let z_{1} and z_{2} be any two points of the circle $|z|<1$. Then,

$$
\begin{align*}
& \left|f^{\prime}\left(z_{2}\right)\right|\left(1-\left|z_{2}\right|^{2}\right) \frac{\left|1-\bar{z}_{2} z_{1}\right|}{\left(\left|z_{1}-z_{2}\right|+\left|1-\bar{z}_{2} z_{1}\right|\right)^{2}} \\
& \quad \leqq\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}\right| \leqq\left|f^{\prime}\left(z_{2}\right)\right|\left(1-\left|z_{2}\right|^{2}\right) \frac{\left|1-\bar{z}_{2} z_{1}\right|}{\left(\left|z_{1}-z_{2}\right|-\left|1-\bar{z}_{2} z_{1}\right|\right)^{2}} . \tag{7.1}
\end{align*}
$$

Let us introduce the non-euclidean distance $\rho\left(z_{1}, z_{2}\right)$ between the points z_{1} and z_{2} by means of the following relations

$$
\rho\left(z_{1}, z_{2}\right)=\log \frac{1+r}{1-r}, \quad r=\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{2} z_{1}}\right| .
$$

By virtue of (7.1) and (4.5) we obtain the inequalities

$$
\begin{aligned}
D_{1}\left(w_{2}\right) \frac{\left|1-\bar{z}_{2} z_{1}\right|}{\left(\left|z_{1}-z_{2}\right|+\left|1-\bar{z}_{2} z_{1}\right|\right)^{2}} & \leqq\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}\right| \\
& \leqq 4 D_{1}\left(w_{2}\right) \frac{\left|1-\bar{z}_{2} z_{1}\right|}{\left(\left|z_{1}-z_{2}\right|-\left|1-\bar{z}_{2} z_{1}\right|\right)^{2}}
\end{aligned}
$$

where $w_{2}=f\left(z_{2}\right)$. In terms of $\rho\left(z_{1}, z_{2}\right)$ the inequalities become
(7.2) $\quad(1 / 4) D_{1}\left(w_{2}\right)\left(1-e^{-2 \rho\left(z_{1}, z_{2}\right)}\right) \leqq\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq\left(e^{2 \rho\left(z_{1}, z_{2}\right)}-1\right) D_{1}\left(w_{2}\right)$.

From the inequalities (7.2) we obtain the corollary:
Corollary 7. Let $f(z)$ be regular and univalent in $|z|<1$, let $\left\{z_{n}\right\}$ and $\left\{z_{n}^{\prime}\right\}$ be two sequences of points in $|z|<1$, such that $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is bounded and let $w_{n}^{\prime}=f\left(z_{n}^{\prime}\right)$. Then $\lim _{n \rightarrow \infty}\left|f\left(z_{n}\right)-f\left(z_{n}^{\prime}\right)\right|=0$ if, and only if,

$$
\lim _{n \rightarrow \infty}\left(e^{2 \rho\left(2_{n}, 2_{n}^{\prime}\right)}-1\right) D_{1}\left(w_{n}^{\prime}\right)=0 .
$$

${ }^{(21)}$ G. Szegö, Mathematische Annalen, vol. 100 (1928), pp. 190-191.
8. Behavior of the first derivative almost everywhere. Corollary 2 may be stated as asserting that for a regular, univalent, and bounded function in the circle $|z|<1$ the first derivative is of order $o\left((1-r)^{-1}\right)$ on all radii of the circle. The next theorem shows, however, that this order of growth can be attained only on a small number of radii and that on most radii the order of growth is considerably smaller. Indeed, we prove the following

Theorem 6. Let $f(z)$ be regular and univalent in the circle $|z|<1$. Then

$$
\begin{equation*}
\lim _{z \rightarrow e^{i \alpha}}\left|f^{\prime}(z)\right|(1-|z|)^{1 / 2}=0 \tag{8.1}
\end{equation*}
$$

for all points $e^{i \alpha}$ of the circumference $|z|=1$ with the exception of at most a set of measure zero, where z in the above limit is taken in any angle less than π with vertex in $e^{i \alpha}$ and bisected by the radius joining $z=0$ with $z=e^{i \alpha}$. Furthermore, in any such angle the above limit is uniform.

The proof depends on a number of lemmas.
Lemma 3. If $f(z)$ is univalent in the circle $|z|<1$, then on almost all radii

$$
\begin{equation*}
\left|f^{\prime}(z)\right|=O\left((1-|z|)^{-1 / 2}\right) \tag{8.2}
\end{equation*}
$$

where the symbol O does not necessarily indicate uniformity for the different radii. The relation (8.2) holds also in any angle of the type described in Theorem 6 which corresponds to a radius for which (8.2) holds.

If we set $w=f(z)$, then the function maps $|z|<1$ on a simply connected region R of the w-plane. Now, this region R. possesses at least two distinct boundary points $w=a$ and $w=b,(a \neq b)$. Indeed, if R were the entire plane then the inverse function $z=g(w)$ of $w=f(z)$ would map the plane on the interior of $|z|<1$. It would, therefore, be bounded in the whole plane and by Liouville's theorem be identically a constant, which is contrary to our assumption. If R were the whole plane with the exception of one point, $w=a$, then $g(w)$ would be regular and bounded in the whole plane with the exception of the one point, $w=a$. This point, by Riemann's theorem, would be a removable singularity, and again $z=g(w)$ would be identically constant. Now, by a familiar argument the function

$$
t=\frac{1}{((w-a) /(w-b))^{1 / 2}-c}=\lambda(w),
$$

where the constant c is suitably chosen, maps the region R conformally on a bounded region of the t-plane.

The function

$$
h(z)=\lambda(f(z))
$$

is regular, univalent and bounded in $|z|<1$. Let us suppose that Lemma 3
has already been proved for $h(z)$. Then, it will also hold for $f(z)$. Indeed,

$$
f^{\prime}(z)=\frac{h^{\prime}(z)}{\lambda^{\prime}(f(z))}
$$

Since we have assumed that $\lim \sup _{z \rightarrow e^{i \alpha}}\left|h^{\prime}(z)\right|(1-|z|)^{1 / 2}<\infty$ for almost all points $z=e^{i \alpha}$ on $|z|=1$, where z lies in corresponding angles as described in Theorem 6, the asserted lemma will follow for $f^{\prime}(z)$ provided that $\lim \inf _{z \rightarrow e^{i \alpha}}\left|\lambda^{\prime}(f(z))\right|>0$ for almost all $e^{i \alpha}$ in the corresponding angles. But now

$$
\lambda^{\prime}(w)=-\frac{a-b}{2} \frac{[\lambda(w)]^{2}}{(w-b)^{3 / 2}(w-a)^{1 / 2}},
$$

which shows that $\lim \inf _{z \rightarrow e^{i \alpha}}\left|\lambda^{\prime}(f(z))\right|=0$ only if there exists a sequence of points $z_{n} \rightarrow e^{i \alpha}$ for which $f\left(z_{n}\right) \rightarrow b$ or $f\left(z_{n}\right) \rightarrow a$. This, however, can only happen for a set of $e^{i \alpha}$ of measure zero ${ }^{(22)}$.

It suffices, therefore, to prove Lemma 3 for a bounded univalent function $f(z)$. Now, $w=f(z)$ maps the circle $|z|<1$ on a bounded region of the w-plane. Denote the area of this region by A. We have, setting $z=r e^{i \theta}$,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\rho}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d r d \theta<A \tag{8.3}
\end{equation*}
$$

for every $0 \leqq \rho<1$. The function

$$
\begin{equation*}
\Phi(z)=\int_{0}^{z} z\left[f^{\prime}(z)\right]^{2} d z \tag{8.4}
\end{equation*}
$$

is regular in $|z|<1$ and we shall perform the integration along the radius joining $z=0$ and $z=r e^{i \theta}$ so that

$$
\Phi\left(\rho e^{i \theta}\right)=\int_{0}^{\rho} r e^{2 i \theta}\left[f^{\prime}\left(r e^{i \theta}\right)\right]^{2} d r .
$$

Hence,

$$
\left|\Phi\left(\rho e^{i \theta}\right)\right| \leqq \int_{0}^{\rho} r\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r .
$$

Integration of the last inequality with respect to θ together with (8.3) yields

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\Phi\left(\rho e^{i \theta}\right)\right| d \theta<A \tag{8.5}
\end{equation*}
$$

for every $0 \leqq \rho<1$.
Now it is a familiar fact that if a function $\Phi(z)$ is regular in $|z|<1$ and

[^8]satisfies the condition (8.5) it may be represented in the following form ${ }^{(23)}$:
\[

$$
\begin{equation*}
\Phi(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t)+i \beta, \tag{8.6}
\end{equation*}
$$

\]

where the integral is a Stieltjes integral, $\mu(t)$ is a function of bounded variation in the interval $0 \leqq t \leqq 2 \pi$ and β is a constant. Equations (8.4) and (8.6) permit us to express $\left[f^{\prime}(z)\right]^{2}$ in the form

$$
\left[f^{\prime}(z)\right]^{2}=\frac{1}{\pi z} \int_{0}^{2 \pi} \frac{e^{i t}}{\left(e^{i t}-z\right)^{2}} d \mu(t)
$$

Hence,

$$
\begin{equation*}
\left(1-r^{2}\right)\left|f^{\prime}(z)\right|^{2} \leqq \frac{1}{\pi r} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-t)+r^{2}} d M(t), \tag{8.7}
\end{equation*}
$$

where $M(t)$ denotes the total variation of the function $\mu(t)$ in the interval $(0, t)$. The right-hand side of this inequality approaches a definite finite limit as $z=r e^{i \theta} \rightarrow e^{i \alpha}$ in an angle of the type described in Theorem 6 for almost all $\left.e^{i \alpha(}{ }^{24}\right)$. Hence, the right-hand side remains bounded in such angles. Thus,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq C_{\alpha} \cdot(1-|z|)^{-1 / 2} \tag{8.8}
\end{equation*}
$$

in the angular neighborhood of almost all points $e^{i \alpha}$, where C_{α} is a constant independent of z, but in general depending on α. This proves the lemma.

Corollary 8. Let $w=f(z)$ be regular and univalent in $|z|<1$. Then, for almost all points $e^{i \alpha}$ on $|z|=1$ every line segment joining an interior point of $|z|<1$ with $e^{i \alpha}$ is mapped on a rectifiable arc by the function $w=f(z)$.

This follows readily by integrating (8.8) along such a line segment ${ }^{25}$).
If we restrict ourselves to radial approach in Corollary 8 , it is possible to state a sharper result which will be used in the proof of Theorem 6:

Lemma 4. Let $w=f(z)$ be regular and univalent in $|z|<1$. If

$$
\begin{equation*}
l_{\rho, \theta}=\int_{\rho}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r, \quad z=r e^{i \theta} \tag{8.9}
\end{equation*}
$$

then for almost all values of θ in $0 \leqq \theta \leqq 2 \pi$ and for all values of ρ in $0 \leqq \rho<1$, $l_{\rho, \theta}$ is finite and

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} l_{\rho, \theta}(1-\rho)^{-1 / 2}=0 \tag{8.10}
\end{equation*}
$$

[^9]The formula in (8.9) represents the length of the image of the radial segment joining the points $\rho e^{i \theta}$ and $e^{i \theta}$.

One may assume without loss of generality, for the same reasons as in the proof of Lemma 3, that $f(z)$ is bounded in $|z|<1$. Then, inequality (8.3) holds for some A. The total area A of the image of $|z|<1$ is given by

$$
A=\int_{0}^{2 \pi} \int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d r d \theta
$$

Hence, by Fubini's theorem, for almost all θ in $0 \leqq \theta \leqq 2 \pi$

$$
\int_{0}^{1} r\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r
$$

has a finite value. Hence, for almost all θ

$$
\lim _{\rho \rightarrow 1} \int_{\rho}^{1} r\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r=0 .
$$

Thus to any $\epsilon>0$ one may assign a number $\delta=\delta(\epsilon, \theta)$ so that $1-\rho<\delta$ implies

$$
\int_{D}^{1} r\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r<\epsilon
$$

for almost all θ. Hence, by Schwarz's inequality

$$
\int_{\rho}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r \leqq\left[(1-\rho) \int_{\rho}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r\right]^{1 / 2}<\left[\frac{\epsilon(1-\rho)}{\rho}\right]^{1 / 2}
$$

for almost all θ and $1>\rho>1-\delta(\epsilon, \theta)$. This proves (8.10).
Using this lemma, one can now prove
Lemma 5. Let $w=f(z)$ be regular and univalent in $|z|<1$. Then on almost all radii

$$
\left|f^{\prime}(z)\right|=o\left((1-r)^{-1 / 2}\right), \quad|z|=r
$$

where the symbol o is not intended to indicate uniformity for the different radii.
We know that on almost all radii (8.2) and (8.10) hold and $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=\omega$ exists and is finite $\left.{ }^{26}\right)$. Choose any one of these radii $\theta=\theta_{0}$ and on it an arbitrary point z_{0}. Let $f\left(z_{0}\right)=w_{0}$. The segment of the radius between the points z_{0}
${ }^{(28)}$ For the proof of the last statement one need merely apply the fact that the integral in (8.9) remains finite for almost all θ. Indeed, take any such θ_{0}. Then,

$$
\left|f\left(r_{1} e^{i \theta_{0}}\right)-f\left(r_{2} e^{i \theta_{0}}\right)\right| \leqq \int_{r_{1}}^{r_{2}}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right| d r, \quad r_{1}<r_{2}
$$

and the last integral may be made smaller than any preassigned $\epsilon>0$ provided that r_{1} and \boldsymbol{r}_{2} are both chosen sufficiently near unity.
and $e^{i \theta_{0}}$ is carried into a rectifiable arc joining the points w_{0} and ω. Its length $l_{z_{0}}$ is given by

$$
\begin{equation*}
l_{2_{0}}=\epsilon_{z_{0}}\left(1-\left|z_{0}\right|\right)^{1 / 2} \tag{8.11}
\end{equation*}
$$

where by (8.10)

$$
\begin{equation*}
\lim _{z_{0} \rightarrow e^{i \theta_{0}}} \epsilon_{z_{0}}=0 \tag{8.12}
\end{equation*}
$$

the approach being taken radially. Now draw a circle $K_{z_{0}}$ about the point z_{0} as center with radius equal to $1-\left|z_{0}\right|$. The interior of the circle $K_{z_{0}}$ is carried by $w=f(z)$ into a region $R_{z_{0}}$ of the w-plane.

According to Koebe's "Verzerrungssatz" the region $R_{z_{0}}$ contains the curcle $\left|w-w_{0}\right|<\left(\left(1-\left|z_{0}\right|\right) / 4\right)\left|f^{\prime}\left(z_{0}\right)\right|$.

Now if we set

$$
\left|f^{\prime}\left(z_{0}\right)\right|=C_{z_{0}}\left(1-\left|z_{0}\right|\right)^{-1 / 2}
$$

according to (8.2) $C_{z_{0}}$ is bounded along the radius $\theta=\theta_{0}$. Thus $R_{z_{0}}$ contains the circle $\left|w-w_{0}\right|<(1 / 4) C_{z_{0}}\left(1-\left|z_{0}\right|\right)^{1 / 2}$. In view of (8.11) this may also be written $\left|w-w_{0}\right|<C_{z_{0}} l_{z_{0}} / 4 \epsilon_{z_{0}}$. Denoting by $\rho_{z_{0}}$ the radius of this circle, we have on the one hand

$$
\rho_{z_{0}}=\frac{C_{z_{0}}}{4 \epsilon_{z_{0}}} l_{z_{0}}
$$

and on the other $\rho_{z_{0}} \leqq l_{z_{0}}$. Hence,

$$
C_{z_{0}} \leqq 4 \epsilon_{z_{0}} .
$$

Together with (8.12) this implies that

$$
\lim _{z_{0} \rightarrow e^{i \theta_{0}}} C_{z_{0}}=0
$$

with radial approach. This proves the lemma.
We are now ready for the proof of Theorem 6. Let $\theta=\theta_{0}$ be a radius for which (8.2) holds in any angle as asserted in Lemma 3 and also

$$
\begin{equation*}
\lim _{r \rightarrow 1}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|(1-r)^{1 / 2}=0 \tag{8.13}
\end{equation*}
$$

By Lemmas 3 and 5 the set of such θ_{0} is of measure 2π.
Consider the function

$$
g(z)=f^{\prime}(z)\left(e^{i \theta_{0}}-z\right)^{1 / 2}
$$

where we choose that branch of the square root which is positive for real positive values of the radicand. This function is regular and single-valued in $|z|<1$. Now, take a fixed angle of opening less than π with vertex in $e^{i \theta_{0}}$. In this angle

$$
\frac{1}{M}<\frac{\left|e^{i \theta_{0}}-z\right|}{1-|z|}<M
$$

for a suitable positive constant M. Hence, by (8.13)

$$
\lim _{r \rightarrow 1} g\left(r e^{i \theta_{0}}\right)=0,
$$

while by (8.2) the function $g(z)$ is bounded in the fixed angle. By Lindelöf's theorem ${ }^{27}$) $\lim _{z-e^{i \theta} 0} g(z)=0$ uniformly in every angle contained in the fixed angle. This proves the theorem.
9. Example on the slowness of approach of $\left|f^{(k)}(z)\right|(1-|z|)^{k}$. We have shown in Corollary 2 , $\S 5$, that if the function $f(z)$ is bounded and univalent for $|z|<1$, and also under various alternative conditions, then we have

$$
\begin{equation*}
\lim _{\left|z_{n}\right| \rightarrow 1} f^{\prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)=0, \quad\left|z_{n}\right|<1 \tag{9.1}
\end{equation*}
$$

Even for the class of bounded univalent functions, continuous in $|z| \leqq 1$, equation (9.1) cannot be improved by establishing results on rate of approach in equation (9.1) or by replacing the second factor by that factor raised to a suitable power. Indeed we shall prove that the limit in (9.1) can be approached arbitrarily slowly, in the sense of

Theorem 7. Let the function $Q(r)$ be defined and positive for $0<r<1$, with $\lim _{r \rightarrow 1} Q(r)=0$. Then there exists a function $F(z)$ analytic and univalent interior to $\gamma:|z|=1$, continuous for $|z| \leqq 1$, and there exists a sequence of points z_{1}, z_{2}, \cdots interior to γ with $\left|z_{n}\right|=r_{n} \rightarrow 1$, such that we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F^{\prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)}{Q\left(\left|z_{n}\right|\right)}=\infty . \tag{9.2}
\end{equation*}
$$

In fact, we shall choose $F(z)$ real for real z, and z_{n} real.
As a matter of convenience, we establish first Theorem 7 and then an extension of Theorem 7 to higher derivatives. The ensuing proof is given in preparation for the more general theorem, and is somewhat more complicated than is necessary for the proof of Theorem 7 alone.

We shall find useful a function analytic and univalent for $|z|<1$ whose Taylor expansion about the origin has all of its coefficients positive. Such a function is

$$
w_{1}=f_{1}(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\cdots
$$

which maps the region $|z|<1$ smoothly onto the w_{1}-plane slit along the axis of reals from $-1 / 4$ to $-\infty$. The function

[^10]$$
w_{2}=f_{2}(z)=\frac{f_{1}(\rho z)}{\rho}=z+2 \rho z^{2}+3 \rho^{2} z^{3}+\cdots, \quad 0<\rho<1
$$
then maps $|z|<1$ smoothly onto a Jordan region $\left({ }^{28}\right)$ symmetric in the axis of reals. For definiteness we choose $\rho=1 / 2$, and denote by J_{0} the Jordan region of the w-plane which is the image of $|z|<1$ under the map $\left({ }^{(29}\right)$
\[

$$
\begin{equation*}
w=F_{0}(z)=z+\frac{2}{2} z^{2}+\frac{3}{2^{2}} z^{3}+\frac{4}{2^{3}} z^{4}+\cdots \tag{9.3}
\end{equation*}
$$

\]

Construct in the w-plane new Jordan regions J_{1}, J_{2}, \cdots with the same shape and orientation as J_{0}, mutually exterior and exterior to J_{0}, with the analogue B_{k} for J_{k} of the point $w=0$ for J_{0} lying on the axis of reals, so that the sequence $B_{0}=0, B_{1}, B_{2}, \cdots$ forms a monotonically increasing sequence. Choose moreover the region J_{k} just $\left(1 / 2^{k}\right)$ th the size of J_{0} in linear dimensions, and locate (as is possible) the sequence of regions J_{k} in such a way that their totality lies in some circle $|w| \leqq D$.

The region J_{0} is symmetric in the axis of reals, so its boundary (an analytic Jordan curve) cuts that axis in precisely two points A_{0} (to the left of the origin) and C_{0} (to the right of the origin). Denote the analogous points for J_{k} by A_{k} and C_{k}. The boundary of J_{k} has a vertical tangent at both A_{k} and C_{k}.

A Jordan region R is to be constructed in the w-plane from the regions $J_{0}, J_{1}, J_{2}, \cdots$ by connecting each region to the preceding region by a canal; each of the two banks of such a canal shall be a segment of one of the lines $y= \pm d_{k}, d_{k}>0$. Each point interior to J_{k} shall lie interior to R. The first canal, whose boundaries are segments of $y= \pm d_{1}$, joins J_{0} in the neighborhood of C_{0} with J_{1} in the neighborhood of A_{1}; the second canal, whose boundaries are segments of $y= \pm d_{2}$, joins J_{1} in the neighborhood of C_{1} with J_{2} in the neighborhood of A_{2}, and so on. The choice of the numbers d_{k} is now to be made more precise.

Denote by $w=F(z)$ the function which maps $|z|<1$ onto R with $F(0)=0$, $F^{\prime}(0)>0$; of course $F(z)$ depends on the numbers d_{1}, d_{2}, \cdots. Choose d_{1} independently of d_{2}, d_{3}, \cdots so small that the subset R_{1} composed of all points of R not in J_{0} corresponds under the transformation $w=F(z)$ to a set of points z interior to $\gamma:|z|=1$ at which we have

$$
\begin{equation*}
Q(|z|)<1 / 3 \tag{9.4}
\end{equation*}
$$

${ }^{(28)}$ A Jordan region is any region bounded by a Jordan curve.
${ }^{(29)}$ It is sufficient for the purpose of both Theorem 7 and Theorem 8 to choose here a function $F_{0}(z)$ which maps $|z|<1$ smoothly onto a Jordan region with $F_{0}(0)=0, F_{0}^{\prime}(0)=1$, and has all of the coefficients of its Taylor expansion about the origin positive. For instance we may also choose

$$
w=F_{0}(z)=\frac{2 z}{2-z}=z+\frac{1}{2} z^{2}+\frac{1}{2^{2}} z^{3}+\cdots
$$

which maps $|z|<1$ onto the interior of the circle $|w-2 / 3|=4 / 3$.

Such choice of d_{1} is possible. For under the map $w=F(z)$ it follows from a theorem due to Lindelöf $\left({ }^{(30)}\right.$ that the subset R_{1} is mapped into a set bounded in part by an arc of γ and whose remaining boundary (a Jordan arc) can be made as near to γ as desired. For the boundary points of R_{1} not boundary points of R are the points of the boundary of J_{0} in the neighborhood of the point C_{0} between the lines $y= \pm d_{1}$; by choosing d_{1} sufficiently small all such points can be made uniformly as near as desired to the boundary of R; so by Lindelof's theorem all points of the boundary of the transform of R_{1} (and hence all points of the transform of R_{1} itself) can be made as near to γ as desired, and (9.4) is justified.

Similarly the number d_{2} is to be chosen so small that all points of R not in J_{0} or J_{1} or in the canal joining J_{0} and J_{1} correspond under the map $w=F(z)$ to points interior to γ at which we have $Q(|z|)<1 / 9$; more generally the number d_{k} is to be chosen so that all points of R not in $J_{0} \cdot J_{1}, \cdots, J_{k-1}$ or in the canals joining successive regions $J_{0}, J_{1}, \cdots, J_{k-1}$, correspond under the map $w=F(z)$ to points interior to γ at which we have

$$
\begin{equation*}
Q(|z|)<1 / 3^{k} \tag{9.5}
\end{equation*}
$$

such successive choice of the numbers d_{k} is possible, again by Lindelöf's theorem. There are no further restrictions on the numbers d_{k} so far as the requirements of Theorem 7 itself are concerned. We now introduce the inner radius $\rho\left(w_{0}\right)$ of the region R with respect to the arbitrary point w_{0} of $R\left({ }^{31}\right)$. It is well known that $\rho\left(w_{0}\right)$ has a monotonic character with respect to R : if R is increased so also is $\rho\left(w_{0}\right)$; if R is stretched uniformly in the linear ratio $1: m$ with w_{0} fixed, then $\rho\left(w_{0}\right)$ is multiplied by m; if R is the interior of a circle with center at w_{0}, the inner radius is the usual radius of this circle.

The inner radius of R with respect to the point B_{k} is greater than $1 / 2^{k}$, for it follows from (9.3) that the inner radius of J_{0} with respect to B_{0} is unity, so the inner radius of J_{k} with respect to B_{k} is $1 / 2^{k}$. On the other hand, if z_{k} denotes the point of $|z|<1$ which corresponds to the point B_{k} under the transformation $w=F(z)$, the inner radius of R with respect to B_{k} is $\left|F^{\prime}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|^{2}\right)$, so we may write $\left.\left|F^{\prime}\left(z_{k}\right)\right|\left(1-\mid z_{k}\right)^{2}\right)>1 / 2^{k}$. From inequality (9.5) we have $Q\left(\left|z_{k}\right|\right)<1 / 3^{k}$, whence

$$
\begin{equation*}
\frac{\left|F^{\prime}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|^{2}\right)}{Q\left(\left|z_{k}\right|\right)}>\frac{3^{k}}{2^{k}} \tag{9.6}
\end{equation*}
$$

from which (9.2) follows ${ }^{32}$).

[^11]Under the present circumstances the region R is symmetric in the axis of reals, the numbers z_{k} are real, and $F^{\prime}\left(z_{k}\right)$ is positive, so the absolute value signs may be removed from (9.6). Of course $F(z)$ is continuous in $|z| \leqq 1$ (when suitably defined on $|z|=1$), as the mapping function for a Jordan region. The points B_{k} are real and positive and approach the boundary of R, so the points z_{k} are real and positive and approach the point $z=1$.

Theorem 7 shows that the limit in (9.1) can be approached arbitrarily slowly; by virtue of $\S 4$, Theorem 3, we may also say that $\lim _{\left|z_{n}\right| \rightarrow 1} D_{1}\left[f\left(z_{n}\right)\right]$ considered as a function of $1-\left|z_{n}\right|$ can also be approached arbitrarily slowly.

We now consider the generalization of Theorem 7 to higher derivatives:
Theorem 8. Let the function $Q(r)$ be defined and positive for $0<r<1$, with $\lim _{r \rightarrow 1} Q(r)=0$. Let the positive integer m be given. Then there exists a function $F(z)$ analytic and univalent interior to $\gamma:|z|=1$, continuous for $|z| \leqq 1$, and a sequence of points z_{1}, z_{2}, \cdots interior to γ with $\left|z_{n}\right|=r_{n} \rightarrow 1$, such that we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F^{(m)}\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)^{m}}{Q\left(\left|z_{n}\right|\right)}=\infty . \tag{9.7}
\end{equation*}
$$

Indeed, we shall choose $F(z)$ real for real z, and z_{n} real.
In the proof of Theorem 8 we use precisely the region R introduced in the proof of Theorem 7, with further restrictions on the numbers d_{k}; the function $F(z)$ is, as before, the mapping function.

It follows from equation (9.3) that the function

$$
\begin{equation*}
w=F_{k}(z)=b_{k}+\frac{1}{2^{k}}\left[z+\frac{2}{2} z^{2}+\frac{3}{2^{2}} z^{3}+\frac{4}{2^{3}} z^{4}+\cdots\right] \tag{9.8}
\end{equation*}
$$

maps $|z|<1$ onto the region J_{k} in such a way that the point $z=0$ corresponds to the point $B_{k}: w=b_{k}$ with the axis of reals in one plane corresponding to the axis of reals in the other plane. The function

$$
\begin{equation*}
w(\zeta)=F\left(\frac{z_{k}+\zeta}{1+z_{k} \zeta}\right)=b_{k}+a_{1}^{(k)} \zeta+a_{2}^{(k)} \zeta^{2}+a_{3}^{(k)} \zeta^{3}+\cdots \tag{9.9}
\end{equation*}
$$

where $F\left(z_{k}\right)=b_{k}$, maps $|\zeta|<1$ onto R so that $\zeta=0$ corresponds to the point B_{k} with the axis of reals in the one plane corresponding to the axis of reals in the other. When d_{k} and d_{k+1} approach zero, the kernel in the sense of Cara-

[^12]théodory $\left({ }^{33}\right)$ of the variable region R, considered with B_{k} as central point (that is, Aufpunkt) is precisely the region J_{k}. It follows from the results of Carathéodory (loc. cit.) that the corresponding mapping function $w(\zeta)$ defined by (9.9) approaches the function $F_{k}(\zeta)$ defined by (9.8), throughout the interior of $|\zeta|<1$, uniformly on any closed point set interior to $|\zeta|<1$. Indeed, such uniform approach of $w(\zeta)$ defined by (9.9) to $F_{k}(\zeta)$ is a consequence of the approach to zero of d_{k} and d_{k+1}, independently of the behavior of $d_{1}, d_{2}, \cdots, d_{k-1}, d_{k+2}, d_{k+3}, \cdots$. Otherwise there would exist a sequence of sequences of numbers d_{1}, d_{2}, \cdots with d_{k} and d_{k+1} approaching zero and the corresponding function $w(\zeta)$ in (9.9) not approaching $F_{k}(\zeta)$ as defined by (9.8); this is impossible. Thus the coefficient $a_{j}^{(k)}$, considered as a function of d_{k} and d_{k+1} alone, approaches the corresponding coefficient $j / 2^{j+k-1}$.

The inner radius $\rho\left(b_{k}\right)$ of R with respect to the point B_{k} is greater than $1 / 2^{k}$, so in (9.9) we have

$$
\begin{equation*}
a_{1}^{(k)}>1 / 2^{k} \tag{9.10}
\end{equation*}
$$

We have already made restrictions on the numbers d_{k} in connection with Theorem 7. We now impose the further restriction that d_{1}, d_{2}, \cdots are to be chosen in pairs $\left(d_{1}, d_{2}\right),\left(d_{2}, d_{3}\right),\left(d_{3}, d_{4}\right), \cdots$ successively so small that we always have the inequalities $(k=1,2,3, \cdots)$

$$
\begin{equation*}
a_{2}^{(k)}>0, a_{3}^{(k)}>0, \cdots, a_{m}^{(k)}>0 \tag{9.11}
\end{equation*}
$$

this choice of the d_{k} is possible. We have no other restrictions to be placed on the numbers d_{k}.

By Lemma 1 of $\S 2$ we now have

$$
\frac{\left(1-\left|z_{k}\right|^{2}\right)^{m}}{m!} F^{(m)}\left(z_{k}\right)=\sum_{\nu=0}^{m-1} C_{m-1, \nu} \bar{z}_{k}^{v} \frac{w^{(m-\nu)}(0)}{(m-\nu)!},
$$

where $w(\zeta)$ is defined by (9.9). Inequalities (9.11) and (9.10) now yield ($z_{k}=\bar{z}_{k}>0$)

$$
\frac{\left(1-\left|z_{k}\right|^{2}\right)^{m}}{m!} F^{(m)}\left(z_{k}\right)>z_{k}^{m-1} a_{1}^{(k)}>\frac{z_{k}^{m-1}}{2^{k}}, \quad k>1
$$

so, as in (9.6), we write from (9.5)

$$
\frac{\left(1-\left|z_{k}\right|^{2}\right)^{m} F^{(m)}\left(z_{k}\right)}{Q\left(\left|z_{k}\right|\right)}>m!\cdot z_{k}^{m-1} \cdot \frac{3^{k}}{2^{k}}, \quad \quad z_{k}=\left|z_{k}\right|
$$

When k becomes infinite, the point z_{k} approaches the point $z=1$, so equation (9.7) and Theorem 8 follow.

As will be seen, this function $F(z)$ is significant as a "Gegenbeispiel" also in some of our later theorems.
${ }^{(33)}$ Cf. Footnote 13.

Chapter II. Bounded functions: configurations C_{p} and D_{p}

The problem which will occupy us in this chapter and the next is to what extent the results of the first chapter can be extended to the class of bounded functions.

It should be remarked at the start that in §5, Corollary 2, it is not possible to drop the condition of univalence. Indeed we have

Theorem 1. There exists a function $f(z)$ regular and bounded in $|z|<1$ and a sequence of points $z_{n}\left(\left|z_{n}\right|<1\right),\left|z_{n}\right| \rightarrow 1$, for which

$$
\underset{n \rightarrow \infty}{\liminf }\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)>0
$$

That $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)$ is always bounded when $f(z)$ is regular and bounded in $|z|<1$, follows from an easy application of Schwarz's lemma ${ }^{34}$).

To prove Theorem 1 we consider the function $\left({ }^{35}\right)$

$$
f(z)=\exp \left[\frac{z+1}{z-1}\right]
$$

It is clear that since $R[(z+1) /(z-1)]<0$ in $|z|<1$, we have $|f(z)|<1$ in $|z|<1$. Now,

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|\left(1-r^{2}\right)=2 \frac{1-r^{2}}{1-2 r \cos \theta+r^{2}} \cdot \exp \left[\frac{-1+r^{2}}{1-2 r \cos \theta+r^{2}}\right] .
$$

Along the curve $r=\cos \theta$ which passes through the point $z=1$ and is tangent there to the unit circle

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|\left(1-r^{2}\right)=2 / e
$$

so that as $\theta \rightarrow 0$, the corresponding limit is $2 / e>0$.
10. A lower bound on $D_{1}(w)$. In order to obtain the conclusion $\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0$, it is necessary to limit oneself to particular sequences $\left\{z_{n}\right\}$ in the circle $|z|<1$. By Theorem 1 our result is as follows:

Theorem 2. Let $f(z)$ be regular and bounded in $|z|<1$:

$$
|f(z)| \leqq M
$$

let $\left\{z_{n}\right\}$ be any sequence of points in $|z|<1$, and let $w_{n}=f\left(z_{n}\right)$. Then, a necessary and sufficient condition for

$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0
$$

is that $\lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0$.
${ }^{(34)}$ Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d edition, 1931, p. 112.
${ }^{(35)}$ For this particularly simple example the authors are indebted to Professor G. Szegö.

This condition will follow directly from the more precise
Theorem 3. Let $f(z)$ be regular and bounded in $|z|<1$:

$$
|f(z)| \leqq M
$$

let z_{0} be any point in $|z|<1$, and let $w_{0}=f\left(z_{0}\right)$. Then, the following inequality

$$
\begin{equation*}
D_{1}\left(w_{0}\right) \leqq\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq\left[8 M D_{1}\left(w_{0}\right)\right]^{1 / 2} \tag{10.1}
\end{equation*}
$$

is always satisfied.
The first inequality in (10.1) is simply a particular case of $\S 4$, Theorem 2. It, therefore, remains to prove the second inequality alone.

It was proved by Landau and Dieudonné $\left({ }^{38}\right)$ that if

$$
w=g(z)=z+\cdots
$$

is a regular function in $|z|<1$ satisfying the inequality

$$
|g(z)| \leqq M \quad \text { for } \quad|z|<1,
$$

then $g(z)$ is univalent in the circle $|z|<1 / 2 M$ and covers simply the circle $|w| \leqq 1 / 4 M$.

Consider now the function

$$
\phi(z)=\frac{f\left(\left(z+z_{0}\right) /\left(1+\bar{z}_{0} z\right)\right)-f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)}=z+\cdots .
$$

In $|z|<1$ the function $\phi(z)$ is regular and satisfies the inequality

$$
|\phi(z)| \leqq \frac{2 M}{\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)} .
$$

Hence, in accordance with the theorem of Landau and Dieudonné $w=\phi(z)$ covers simply the circle

$$
|w| \leqq \frac{\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)}{8 M} .
$$

The function $w=f(z)$, therefore, covers simply the circle

$$
\left|w-w_{0}\right| \leqq \frac{\left|f^{\prime}\left(z_{0}\right)\right|^{2}\left(1-\left|z_{0}\right|^{2}\right)^{2}}{8 M}, \quad \quad w_{0}=f\left(z_{0}\right)
$$

From this it follows that

[^13]$$
D_{1}\left(w_{0}\right) \geqq \frac{\left|f^{\prime}\left(z_{0}\right)\right|^{2}\left(1-\left|z_{0}\right|^{2}\right)^{2}}{8 M},
$$
which is merely another form of the second inequality (10.1)(${ }^{37}$).
While the constant 8 in (10.1) is not the best possible, the order $\left[D_{1}\left(w_{0}\right)\right]^{1 / 2}$ as $D_{1}(w) \rightarrow 0$ cannot be improved, as may be seen from a study in $|z|<1$ of the function
$$
f(z)=\frac{M z(1-M z)}{M-z},
$$
$$
M>1,
$$
previously considered by J. Dieudonné ${ }^{\left({ }^{38}\right)}$ in the neighborhood of the point $z=M-\left[M^{2}-1\right]^{1 / 2}$. Indeed, let z be any point of the unit circle, lying on the real axis, such that $0<z<M-\left[M^{2}-1\right]^{1 / 2}$. It is seen by direct computation that
\[

$$
\begin{align*}
& \left|f^{\prime}(z)\right|\left(1-z^{2}\right)=M^{2} \frac{\left(1-2 M z+z^{2}\right)\left(1-z^{2}\right)}{(M-z)^{2}} \\
& \quad=\frac{M^{2}\left(1-z^{2}\right)}{(M-z)^{2}}\left[z-\left(M-\left(M^{2}-1\right)^{1 / 2}\right)\right]\left[z-\left(M+\left(M^{2}-1\right)^{1 / 2}\right)\right] . \tag{10.2}
\end{align*}
$$
\]

We set $w_{0}=f\left(M-\left(M^{2}-1\right)^{1 / 2}\right)=M\left(M-\left(M^{2}-1\right)^{1 / 2}\right)^{2}$. Hence, since $D_{1}(w)=w_{0}$ $-w$,

$$
\begin{equation*}
\dot{D_{1}}(w)=\frac{M^{2}}{M-z}\left[z-\left(M-\left(M^{2}-1\right)^{1 / 2}\right)\right]^{2} \tag{10.3}
\end{equation*}
$$

Comparison of the equations (10.2) and (10.3) shows that as $w \rightarrow w_{0}$ $\left|f^{\prime}(z)\right|\left(1-z^{2}\right)=O\left(\left(D_{1}(w)\right)^{1 / 2}\right)$, but $\left|f^{\prime}(z)\right|\left(1-z^{2}\right) \neq 0\left(\left(D_{1}(w)\right)^{1 / 2}\right)$.
11. Irregular sequences. The question now arises whether one may generalize Theorem 3 to higher derivatives in the same manner as Theorems 4 and 5 generalize Theorem 3 in Chapter I. In the present case, however, the situation is more complicated than in the case of univalent functions, as examples ($\S 12$) will show. Before giving the examples it will be desirable to give some definitions and prove two theorems. Being given two points z_{1} and z_{2} of the unit circle $|z|<1$, we define as in $\S 7$ the non-euclidean distance $\rho\left(z_{1}, z_{2}\right)$ between them ${ }^{\left({ }^{39}\right)}$.

Definition 1. A sequence of points $\left\{z_{n}\right\},\left(\left|z_{n}\right|<1\right), z_{n} \rightarrow 1$, will be called a regular sequence for a function $f(z)$ analytic in $|z|<1$ if there exists a number

[^14]$\lambda>0$ such that for any sequence of points $\left\{z_{n}^{\prime}\right\}$ whose non-euclidean distance $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is less than λ for all n we have
$$
\lim _{n \rightarrow \infty}\left[f\left(z_{n}\right)-f\left(z_{n}^{\prime}\right)\right]=0
$$

A sequence of points $\left\{z_{n}\right\}$ which is not regular will be called irregular.
Definition 2. A sequence of points $\left\{z_{n}\right\},\left(\left|z_{n}\right|<1\right), z_{n} \rightarrow 1$, will be called a quasi-regular sequence of order m for a function $f(z)$ analytic in $|z|<1$ if

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad \text { for } k=1,2, \cdots, m,
$$

while

$$
\underset{n \rightarrow \infty}{\lim \sup }\left|f^{(m+1)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{m+1}>0 .
$$

The case $m=\infty$ is allowed and means that $\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0$ for $k=1,2, \cdots$.

Denote by Γ_{n}^{λ} the non-euclidean circle of non-euclidean radius λ and noneuclidean center z_{n}. We prove now the following

Theorem 4. An irregular sequence $\left\{z_{n}\right\}$ for a function $f(z)$ regular and bounded in $|z|<1$ is quasi-regular of order m if to every sufficiently small positive λ there corresponds an integer $N(\lambda)>0$ such that for all $n>N(\lambda)$ the function $f(z)$ assumes the value $f\left(z_{n}\right)$ exactly $m+1$ times in the circle Γ_{n}^{λ} (counting multiplicities).

Consider the function

$$
\begin{equation*}
g_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right)-f\left(z_{n}\right) . \tag{11.1}
\end{equation*}
$$

By hypothesis, for $n>N(\lambda)$ the function $g_{n}(\zeta)$, which is regular and bounded in $|\zeta|<1$, assumes the value 0 exactly $m+1$ times in the circle $|\zeta|<\left(e^{\lambda}-1\right) /\left(e^{\lambda}+1\right)$. Now, the sequence $\left\{z_{n}\right\}$ is assumed to be irregular. In accordance with Definition 1 this means that for any $\lambda>0$ we can find a subsequence of the $\left\{z_{n}\right\}$, which we shall denote by $\left\{z_{n_{k}}\right\}$, and a sequence $\left\{z_{n_{k}}^{\prime}\right\}$ such that $\rho\left(z_{n_{k}}, z_{n_{k}}^{\prime}\right)<\lambda$ and for some $\delta>0$ we have $\left|f\left(z_{n_{k}}\right)-f\left(z_{n_{k}}^{\prime}\right)\right| \geqq \delta$. This implies, however, that the sequence (11.1) cannot tend uniformly to zero in every closed subregion of $|\zeta|<1$. Indeed, suppose that $\lim _{n \rightarrow \infty} g_{n}(\zeta)=0$ uniformly in every closed subregion of $|\zeta|<1$. To any preassigned $\epsilon>0$ there would correspond a positive integer $n(\epsilon)$ so that for $n>n(\epsilon)$ we would have $\left|g_{n}(\zeta)\right|<\epsilon$ in $|\zeta|<\left(e^{\lambda}-1\right) /\left(e^{\lambda}+1\right)$. Setting $\zeta_{n_{k}}=\left(z_{n_{k}}^{\prime}-z_{n_{k}}\right) /\left(1-\bar{z}_{n_{k}} z_{n_{k}}^{\prime}\right)$ we would infer that $\left|g_{n_{k}}\left(\zeta_{n_{k}}\right)\right|<\epsilon$ for $n>n(\epsilon)$. Replacing this inequality in (11.1), we find $\left|f\left(z_{n_{k}}^{\prime}\right)-f\left(z_{n_{k}}\right)\right|<\epsilon$ for $n>n(\epsilon)$. If we choose $\epsilon<\delta$, we arrive at a contradiction.

Hence, there exists $\left({ }^{40}\right)$ a subsequence of the sequence $\left\{g_{n}(\zeta)\right\}$, which we shall denote by $\left\{g_{n_{k}}(\zeta)\right\}$, which converges uniformly in every closed subregion of $|\zeta|<1$ to a function $G(\zeta)$ which is not identically zero, and (since $G(0)=0$) is not identically a constant. The function $G(\zeta)$ is regular in $|\zeta|<1$.

Since $G(\zeta)$ is not identically zero, there must exist a $0<\lambda_{1}<\lambda$ so that $G(\zeta) \neq 0$ on the circle $|\zeta|=\left(e^{\lambda_{1}}-1\right) /\left(e^{\lambda_{1}}+1\right)$. Since, furthermore, the sequence $g_{n_{k}}(\zeta)$ converges uniformly to $G(\zeta)$ on that circle, for sufficiently large values of n_{k} we have $g_{n_{k}}(\zeta) \neq 0$ on $|\zeta|=\left(e^{\lambda_{1}}-1\right) /\left(e^{\lambda_{1}}+1\right)$. Now, by hypothesis $g_{n_{k}}(\zeta)$ vanishes precisely $m+1$ times in the circle $|\zeta|<\left(e^{\lambda_{1}}-1\right) /\left(e^{\lambda_{1}}+1\right)$ provided $n_{k}>N\left(\lambda_{1}\right)$. Hence, by Hurwitz's theorem $G(\zeta)$ vanishes precisely $m+1$ times in the circle $|\zeta|<\left(e^{\lambda_{1}}-1\right) /\left(e^{\lambda_{1}}+1\right)$. But since λ may be taken arbitrarily small, $G(\zeta)$ must have a zero of order $m+1$ at the origin. Hence, $G^{\prime}(0)=0$, $G^{\prime \prime}(0)=0, \cdots, G^{(m)}(0)=0, G^{(m+1)}(0) \neq 0$. In view of (11.1) and (2.2), we see from the relations $g_{n_{k}}^{\prime}(0) \rightarrow 0, g_{n_{k}}^{\prime \prime}(0) \rightarrow 0, \cdots, g_{n_{k}}^{(m)}(0) \rightarrow 0, g_{n_{k}}^{(m+1)}(0) \rightarrow G^{(m+1)}(0)$ that

$$
\underset{n \rightarrow \infty}{\lim \sup }\left|f^{(m+1)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{m+1}>0
$$

On the other hand, suppose that for some integer $0<k<m+1$ and for some subsequence $\left\{z_{n^{\prime}}\right\}$ of the $\left\{z_{n}\right\}$

$$
\begin{equation*}
\left|f^{(k)}\left(z_{n^{\prime}}\right)\right|\left(1-\left|z_{n^{\prime}}\right|\right)^{k}>\eta>0 \tag{11.2}
\end{equation*}
$$

for a suitable positive η, independent of n^{\prime}. Consider the corresponding subsequence $\left\{g_{n^{\prime}}(\zeta)\right\}$ of the sequence (11.1). By selecting a further subsequence, if necessary, we may assume that the sequence $\left\{g_{n^{\prime}}(\zeta)\right\}$ is a uniformly convergent one in every closed subregion of $|\zeta|<1$. Two cases are possible according as $\left\{g_{n^{\prime}}(\zeta)\right\}$ converges to zero or to some function not identically a constant. In the first case, the derivatives of all orders of $g_{n^{\prime}}(\zeta)$ also converge to zero and application of formula (2.2) for the case $n=k$ shows that $\left|f^{(k)}\left(z_{n^{\prime}}\right)\right|\left(1-\left|z_{n^{\prime}}\right|\right)^{k} \rightarrow 0$, which is a contradiction of (11.2). In the second case, the nonconstant limit function $G(\zeta)$ of the sequence $g_{n^{\prime}}(\zeta)$ by the argument already given must have a zero of order $m+1$ at the origin, so that all its derivatives up to the $(m+1)$ st must vanish at the origin. Application of formula (2.2) again contradicts (11.2). Thus, in both cases (11.2) yields a contradiction. Hence,

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2, \cdots, m,
$$

and the sequence $\left\{z_{n}\right\}$ is quasi-regular of order m.
We proceed to prove some related results.

[^15]Theorem 5. A necessary and sufficient condition that $\left\{z_{n}\right\}$ be a regular sequence for a function $f(z)$ regular in $|z|<1$ and bounded there: $|f(z)| \leqq M$, is that it be quasi-regular of infinite order.

The condition is necessary. Indeed, form the functions

$$
\begin{equation*}
g_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right)-f\left(z_{n}\right) \tag{11.3}
\end{equation*}
$$

This sequence of functions is uniformly bounded in $|\zeta|<1$. From every subsequence can be extracted a new subsequence whose uniform limit is zero in every circle $\rho(\zeta, 0)<\lambda$, where λ is the number of Definition 1 . It follows that the sequence $g_{n}(\zeta)$ converges uniformly to zero in the circle $|\zeta| \leqq\left(e^{\rho}-1\right) /\left(e^{\rho}+1\right), \rho<\lambda$. Lemma 1 of $\S 2$ shows that $\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k} \rightarrow 0$ for $k=1,2, \cdots$.

The condition is sufficient. Again form the functions (11.3). Since $\left|g_{n}(\zeta)\right| \leqq 2 M$ in $|\zeta|<1$, the functions form a normal family. A suitable subsequence converges uniformly in every circle $|\zeta| \leqq d<1$ to some function $G(\zeta)$ which is regular and bounded in $|\zeta|<1$ and $G(0)=0$. Expanding $G(\zeta)$ in a Taylor series about $\zeta=0$:

$$
\begin{equation*}
G(\zeta)=c_{1} \zeta+c_{2} \zeta^{2}+\cdots, \tag{11.4}
\end{equation*}
$$

applying Lemma 2 of $\S 2$ and the hypothesis that $\left\{z_{n}\right\}$ is quasi-regular of infinite order, we see that all the coefficients in the expansion (11.4) are zero and that therefore $G(\zeta) \equiv 0$.

Since we may repeat this argument starting with any subsequence of the family $\left\{g_{n}(\zeta)\right\}$, it follows that $g_{n}(\zeta) \rightarrow 0$ uniformly in any circle $|\zeta| \leqq d<1$. From this follows at once the fact that $\left\{z_{n}\right\}$ is a regular sequence for $f(z)$.

A type of converse of Theorem 4 may be stated in the following form:
Theorem 6. Let $f(z)$ be regular and bounded in the unit circle $|z|<1$: $|f(z)| \leqq M$. Let the sequence $\left\{z_{n}\right\}$ be quasi-regular of order m. Then for every subsequence of the $\left\{z_{n}\right\}$ there exists a new subsequence $\left\{z_{n_{k}}\right\}$ with the property that to every $\rho>0$ which is sufficiently small there corresponds an integer $N(\rho)>0$ such that for all $n_{k}>N(\rho)$ the function $f(z)$ assumes the value $f\left(z_{n_{k}}\right)$ precisely $m+1$ times in the circle Γ_{n}^{ρ} (counting multiplicities).

Again we form the functions (11.3). In view of Lemma 2 of $\S 2$ we have

$$
\frac{g_{n}^{(p)}(0)}{p!}=\sum_{\nu=0}^{p-1}(-1)^{\nu} C_{p-1, \nu} \bar{z}_{n}^{\nu} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{p-\nu} f^{(p-\nu)}\left(z_{n}\right)}{(p-\nu)!} .
$$

The hypothesis that $\left\{z_{n}\right\}$ is a quasi-regular sequence of order m for $f(z)$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}^{(p)}(0)=0, \quad \text { for } p=1,2, \cdots, m, \tag{11.5}
\end{equation*}
$$

while

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \sup }\left|g_{n}^{(m+1)}(0)\right|>0 \tag{11.6}
\end{equation*}
$$

Let us select a subsequence of the family $\left\{g_{n}(\zeta)\right\}$ for which the actual limit in (11.6) exists and is positive and denote this subsequence for simplicity by $\left\{g_{n}(\zeta)\right\}$ again. Since for all n we have $\left|g_{n}(\zeta)\right| \leqq 2 M$ in $|\zeta|<1$, the sequence $\left\{g_{n}(\zeta)\right\}$ is a normal family. We may therefore extract a further subsequence $\left\{g_{n_{k}}(\zeta)\right\}$ which in every closed subregion of the circle $|\zeta|<1$ converges uniformly to a function $G(\zeta)$. According to (11.5) and (11.6) we obtain $G^{(p)}(0)=0$ for $p=1,2, \cdots, m$ and $G^{(m+1)}(0) \neq 0$. Since $G(0)=0$, it follows that for every $\rho>0$ which is sufficiently small the function $G(\zeta)$ has precisely $m+1$ zeros in the circle $|\zeta|<\rho$ and is different from zero on the circumference $|\zeta|=\rho$. Let us fix a definite value of ρ. By Hurwitz's theorem it follows that there exists an integer $N(\rho)>0$ so that each function $g_{n_{k}}(\zeta)$ for which $n_{k}>N(\rho)$ has precisely $m+1$ zeros in the circle $|\zeta|<\rho$. The theorem then follows immediately from the definition (11.3) of $g_{n}(\zeta)$.
12. Counterexamples (Gegenbeispiele). Theorem 4 may be used to obtain an example in which $D_{1}\left(w_{n}\right)=0$, while $\left|f^{\prime \prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{2}$ does not tend to zero. Indeed, consider the Blaschke product ${ }^{41}$)

$$
\begin{equation*}
\phi(z)=\prod_{n=1}^{\infty} z_{n} \frac{1-z / z_{n}}{1-z_{n} z}, \quad z_{n}=\frac{n!-1}{n!+1} . \tag{12.1}
\end{equation*}
$$

As is well known ${ }^{(42}$), since $\prod_{n=1}^{\infty}(n!-1) /(n!+1)$ converges, the product (12.1) represents in the circle $|z|<1$ an analytic function whose absolute value is less than unity. As was shown by one of the authors $\left.{ }^{43}\right)$, the sequence $\left\{z_{n}\right\}$ is an irregular sequence for $\phi(z)$. Now, form

$$
f(z)=[\phi(z)]^{2} .
$$

Again, the sequence $\left\{z_{n}\right\}$ is an irregular sequence for $f(z)$. Furthermore, since the z_{n} are zeros of order 2 and the only zeros of $f(z)$, we have $D_{1}(0)=0$ when the point $w=0$ is considered in any sheet of the Riemann configuration for $w=f(z)$. On the other hand, the non-euclidean distance $\rho\left(z_{n}, z_{n+1}\right)=\log (n+1)$ $\rightarrow \infty$. Hence, for any $\lambda>0$ and for sufficiently large values of n the function $f(z)$ vanishes precisely twice in Γ_{n}^{λ}. Applying Theorem 4, therefore, we find

$$
\lim \sup \left|f^{\prime \prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{2}>0
$$

[^16]Let us state this example as a theorem:
Theorem 7. There exists a bounded regular function $f(z)$ in $|z|<1$ and a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1\right)$ in $|z|<1$ such that, setting $w_{n}=f\left(z_{n}\right)$, $\lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0$, while lim sup $n_{n \rightarrow \infty}\left|f^{\prime \prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{2}>0$.

Indeed, for the specific example already given we may assert $f^{\prime}\left(z_{n}\right)=0$, $D_{1}\left(w_{n}\right)=0$.

The converse situation may also arise:
Theorem 8. There exists a bounded regular function $f(z)$ in $|z|<1$ and a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1\right)$ in $|z|<1$ such that, setting $w_{n}=f\left(z_{n}\right)$, we have $\lim \inf _{n \rightarrow \infty} D_{1}\left(w_{n}\right)>0$, while $\lim _{n \rightarrow \infty}\left|f^{\prime \prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{2}=0$.

Let

$$
\phi(z)=\left(1-e^{-W+1}\right)^{2}, \quad W=\frac{1+z}{1-z} .
$$

The function $W=(1+z) /(1-z)$ maps the circle $|z|<1$ on the half-plane $R W>0$. Now, for $R W>0$

$$
\left|e^{-w+1}\right|=\exp (-R W+1)<e
$$

Hence, for $|z|<1,|\phi(z)|<(1+e)^{2}$.
Direct computation shows that

$$
\begin{aligned}
\phi^{\prime}(z) & =-4 e^{-W+1}\left(1-e^{-W+1}\right) \cdot \frac{1}{(1-z)^{2}} \\
\phi^{\prime \prime}(z) & =\frac{8}{(1-z)^{3}} e^{-W+1}\left(e^{-W+1}-1\right)+\frac{8}{(1-z)^{4}} e^{-W+1}\left(1-2 e^{-W+1}\right)
\end{aligned}
$$

We now choose the points $z_{n}=n \pi i /(n \pi i+1)$. It is clear that $\left|z_{n}\right|<1$ and $\lim _{n \rightarrow \infty} z_{n}=1$. Setting $W_{n}=\left(1+z_{n}\right) /\left(1-z_{n}\right)$, we find $W_{n}=1+2 n \pi i$. Hence

$$
\begin{equation*}
\left|\phi^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0, \quad \phi^{\prime \prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right)^{2} \rightarrow 8 \quad \text { as } \quad n \rightarrow \infty . \tag{12.2}
\end{equation*}
$$

This incidentally gives another example for the proof of Theorem 7, since the relation $D_{1}\left(w_{n}\right) \rightarrow 0$ follows from (12.2) and (10.1).

Next, we introduce the function

$$
\psi(z)=e^{-W+1}, \quad W=\frac{1+z}{1-z}
$$

Again, we observe that in $|z|<1$ the function $\psi(z)$ is bounded:

$$
|\psi(z)|<e .
$$

Choosing again $z_{n}=n \pi i /(n \pi i+1)$, we find

$$
\begin{equation*}
\left|\psi^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)=2, \quad \text { for all } n \tag{12.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{\prime \prime}\left(z_{n}\right) \cdot\left(1-\left|z_{n}\right|^{2}\right)^{2} \rightarrow 4 \quad \text { as } \quad n \rightarrow \infty . \tag{12.4}
\end{equation*}
$$

Finally, we introduce the function

$$
f(z)=\phi(z)+2 \psi(z) .
$$

It is clear that $f(z)$ is bounded in the circle $|z|<1$, satisfying there the inequality

$$
|f(z)|<(1+e)^{2}+2 e
$$

For the sequence of points $z_{n}=n \pi i /(n \pi i+1)$ by virtue of (12.2), (12.3), (12.4) we have the relations

$$
\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)=4 \neq 0, \quad \text { for all } n
$$

and

$$
f^{\prime \prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right)^{2} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

It follows from Theorem 3 that $D_{1}\left(w_{n}\right)$ has a positive lower bound. The function $f(z)$ is therefore an example of a function with the properties asserted in Theorem 8, and Theorem 8 is established.

By forming the function $f(z)=a \phi(z)+b \psi(z)$ with arbitrary constants a and b, one can now obtain arbitrary limits for $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)$ and $\left|f^{\prime \prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)^{2}$ as $n \rightarrow \infty$.

It may be observed that if the condition $\left|z_{n}\right| \rightarrow 1$ in Theorems 7 and 8 were dropped, one might take as examples to prove the theorems the simple functions $f(z)=z^{2}$ and $f(z)=z, z_{n}=0$, respectively.

Finally, it may be noted that in the Theorems 4-6, the boundedness of $f(z)$ was assumed merely in order to ensure the normality of the family $g_{n}(\zeta)$. Thus, it would have sufficed to assume that $f(z)$ has 2 exceptional values and $f\left(z_{n}\right)$ is bounded.

13. Definition and some properties of C_{p}.

Definition 3. Let C_{p} be a simply connected Riemann configuration containing the point w_{0}, lying over the circle $\left|w-w_{0}\right|<\rho$ and covering it precisely p times. Such a region C_{p} will be called a p-sheeted circle of center w_{0} and radius ρ.

We shall exclude the case $\rho=\infty$ (called an improper p-sheeted circle) for a reason that will be given a little later. It should be observed that the center of a p-sheeted circle is not uniquely defined.

The necessity of assuming explicitly (rather than proving) in Definition 3 that C_{p} shall be simply connected may be seen from the following example. Consider in the w-plane the (simply connected) Riemann surface of the function $((w-\alpha) /(w-\beta))^{1 / 2}$ where α and β are two complex numbers, with the branch line the rectilinear segment $\alpha \beta$. Let us now cut this surface by a circular biscuit-cutter which includes the two points α and β. The resulting circular
region cut out of the surface satisfies all the requirements in Definition 3 except the condition of simple connectivity. In fact, every region lying over a circle $\left|w-w_{0}\right|<\rho$ and covering it precisely twice ceases to be simply connected as soon as it has two branch points or more. Indeed, in such a case it is clearly possible to find a cut joining two boundary points and crossing a branch line which will not sever the surface. In general, by applying the theorem of Bôcher and Walsh (as in the proof of Theorem 13 below) one may easily show that every region lying over a circle $\left|w-w_{0}\right|<\rho$ and covering it precisely p times ceases to be simply connected as soon as the sum of the multiplicities of its branch points exceeds $p-1$. The multiplicity of a branch point is to be understood as one less than the number of sheets which come together at that point. An algebraic branch point (but not a transcendental one) is to be considered as belonging to the Riemann configuration.

One may prove some immediate consequences of Definition 3.
Theorem 9. Any p-sheeted circle over the w-plane can be mapped in a one-toone conformal manner on the unit circle $|z|<1$.

According to the fundamental theorem of uniformization the p-sheeted circle C_{p}, being simply connected, may be mapped in a one-to-one conformal manner either on a circle, or on the full plane, or on the full plane from which the point at infinity is excluded. Denote the mapping function by $w=f(z)$. Since C_{p} is a bounded region, the function $f(z)$ must be bounded. This is certainly not possible in the two latter cases. Thus, C_{p} can be mapped only on a circle.

Theorem 10. A p-sheeted circle C_{p} with center w_{0} and radius ρ can be mapped in a one-to-one conformal manner on the unit circle $|z|<1$ by means of a function of the form

$$
\begin{equation*}
f(z)=w_{0}+\rho e^{i \theta} z^{k} \prod_{j=1}^{p-k} \frac{z-z_{j}}{1-\bar{z}_{j} z} \tag{13.1}
\end{equation*}
$$

where θ is an arbitrary real number, k an integer satisfying the inequality $0<k \leqq p$, and where $z_{1}, z_{2}, \cdots, z_{p-k}$ are points of the unit circle $|z|<1$. Conversely, every function of the form (13.1) realizes a one-to-one conformal map of the unit circle $|z|<1$ on some p-sheeted circle with center at w_{0} and radius ρ.

In speaking of conformality, it must be remembered that it will break down at a branch point. To prove the first part of the theorem introduce a similarity transformation in the w-plane with center in w_{0} which transforms the circle C_{p} into a p-sheeted circle C_{p}^{\prime} of radius 1 . By means of a translation we can always bring the point w_{0} into the origin. The resulting one-to-one map of $|z|<1$ on $C_{p}{ }^{\prime}$ can be interpreted as a ($1, p$) conformal corre-

[^17]spondence of a unit circle on itself. By applying Rado's theorem $\left.{ }^{(44}\right)$ on the representation of such correspondences we obtain the expression (13.1). The converse may also be derived from Radó's theorem together with a translation and similarity transformation in the w-plane.

A remark will now be made to justify the exclusion of the case $\rho=\infty$ in the definition of C_{p}. An improper p-sheeted circle could be interpreted as the w-plane covered precisely p times. If such a circle belonged to a simply connected Riemann surface, the surface could not be of hyperbolic type and consequently Theorems 9 and 10 would no longer apply. Suppose first that a simply connected Riemann surface which contains an improper p-sheeted circle could be mapped conformally on the unit circle. Thereby the p-sheeted circle would be transformed into a simply connected subregion of the unit circle. Now if the improper p-sheeted circle has no boundary points such a transformation is clearly impossible. Suppose then that the p-sheeted circle has the point $w=\infty$ as a boundary point. Then, the mapping function in the unit circle approaches infinity whenever the point z approaches the boundary of the subregion. This is again impossible.

Theorem 11. Let C_{p} be a p-sheeted circle with center at w_{0} and radius R. Let c_{p} be a subregion of C_{p} which lies over a circle $\left|w-w_{0}\right|<r$, where $r<R$, and covers it precisely p times. Then, c_{p} is also simply connected.

We can map C_{p} on the unit circle $|z|<1$ in accordance with Theorem 9. The mapping function $w=f(z)$ is regular in $|z|<1$ and maps c_{p} on a certain subregion B of $|z|<1$. On the boundary Γ of B we have $\left|f(z)-w_{0}\right|=r$, while in the interior of B we have $\left|f(z)-w_{0}\right|<r$. From the maximum modulus principle it follows that B is simply connected. Since the map defined by $w=f(z)$ is topological, the image of c_{p} of B must likewise be simply connected.

In order to establish the uniqueness in Definition 3, we shall prove
Theorem 12. Let R be a simply connected Riemann surface of hyperbolic type. Let w_{0} be a point of R. Let C_{p} and C_{p}^{\prime} be two p-sheeted circles with center at w_{0} and radius ρ. Then, C_{p} and C_{p}^{\prime} are identical.

If we map R on the unit circle $|z|<1$ by means of the function $w=f(z)$ so that $f(0)=w_{0}$, the two circles C_{p} and C_{p}^{\prime} will be mapped on two regions B and B^{\prime} belonging to the circle $|z|<1$. In the interiors of B and B^{\prime} we have $\left|f(z)-w_{0}\right|<\rho$ and on the boundaries $\left|f(z)-w_{0}\right|=\rho$. Furthermore, both regions B and B^{\prime} contain the origin. Thus, unless B and B^{\prime} are identical at least one boundary point of one region, say B, will be interior to the other region B^{\prime}. This, however, constitutes a contradiction.
14. Definition of D_{p}.

Definition. Let $w=f(z)$ regular in the unit circle $|z|<1$ map the circle on a Riemann configuration R. That is to say, R is an arbitrary simply connected Riemann.configuration of hyperbolic type over the finite w-plane. Let wo be an
arbitrary point belonging to R. A non-negative number $D_{p}\left(w_{0}\right)$, called the radius of p-valence of R at the point w_{0}, shall be associated with the point w_{0} in the following manner:
(a) For $p=1$, we define $D_{p}\left(w_{0}\right)=D_{1}\left(w_{0}\right)$ (see §1).
(b) If there exists a p-sheeted circle with center w_{0} contained in R, there exists a largest such circle, and the radius of this largest circle is defined as $D_{p}\left(w_{0}\right)$.
(c) If $p>1$, and if w_{0} is a branch point of order greater than $p-1$, then $D_{p}\left(w_{0}\right)=0$.
(d) If there exists no p-sheeted circle $(p>1)$ with center w_{0} contained in R, and if w_{0} is not a branch point of order greater than $p-1$, then we define $D_{p}\left(w_{0}\right)$ as $D_{p-1}\left(w_{0}\right)$.

It should be observed that in the definition in part (b) the existence of a largest p-sheeted circle with center in w_{0} contained in R is asserted and still requires some justification. From Theorem 12 it follows that if such a circle exists, it must be unique. Furthermore, as one starts with a p-sheeted circle with center in w_{0} contained in R and proceeds to enlarge its radius, it can never happen that it becomes multiply connected and on enlarging the radius still more, finally again becomes simply connected. This possibility is ruled out by Theorem 11. Finally, the existence of a p-sheeted circle with center in w_{0} and contained in R whose radius is the least upper bound of the radii of all p-sheeted circles with center in w_{0} and contained in R can be established by simple considerations of continuity, which are left to the reader.

The number $D_{p}\left(w_{0}\right)$ is not, as the notation would seem to indicate, a function merely of w_{0}, a value of w, but is rather a function of a specific point of R whose affix is w_{0}; thus $D_{p}\left(w_{0}\right)$ is precisely a function of z_{0}, where R is determined by the transformation $w=f(z)$. However, no confusion is likely to result from the slight lack of definiteness in the notation $D_{p}\left(w_{0}\right)$. We denote by $R_{p}\left(w_{0}\right)$ the unique region of R which is a q-sheeted circle $C_{q}(q \leqq p)$ whose center is w_{0} and radius $D_{p}\left(w_{0}\right)$.

For the sake of clearness, we present now a numerical illustration of the definition of $D_{p}\left(w_{0}\right)$. Let R consist of the doubly-carpeted unit circle $|w|<1$ with branch point of the first order at the origin $w=0$, except that in the second sheet there is deleted the subregion of $|w|<1$ contained in the region $|w+1|<1 / 3$; for definiteness choose the branch line as the segment $0 \leqq w<1$; of course this configuration R can be mapped in a one-to-one manner on $|z|<1$ by a single-valued function $w=f(z)$, as can be seen at once by use of the auxiliary transformation $w=z_{1}^{2}$, which maps R onto a smooth Jordan region of the z_{1}-plane. We obviously have $D_{2}(0)=2 / 3$, for the doubly-carpeted (that is, two-sheeted) circle $|w|<2 / 3$ is contained in R, and that is true of no larger concentric doubly-carpeted circle. When w_{0} is positive, and in either sheet of R, we have

$$
D_{2}\left(w_{0}\right)=w_{0}+2 / 3, \quad 0 \leqq w_{0} \leqq 1 / 6
$$

$$
D_{2}\left(w_{0}\right)=1-w_{0}, \quad 1 / 6 \leqq w_{0}<1 ;
$$

for positive w_{0}, the size of the region $R_{2}\left(w_{0}\right)$ is limited by the nearer of the two points $-2 / 3,+1$. When w_{0} moves from the origin to the left in the first sheet, the size of $R_{2}\left(w_{0}\right)$ continues to be limited by the point $w=-2 / 3$:

$$
D_{2}\left(w_{0}\right)=w_{0}+2 / 3, \quad-1 / 3 \leqq w_{0}<0 .
$$

But when the point w_{0} continues to the left from the point $w_{0}=-1 / 3$, the size of $R_{2}\left(w_{0}\right)$ is now no longer limited by the point $-2 / 3$, but is conditioned by the necessity of including no point of $|w+1|<1 / 3$, hence is limited by the origin; the corresponding region cut out of R is smooth, merely the region $\left|w-w_{0}\right|<\left|w_{0}\right|:$

$$
D_{2}\left(w_{0}\right)=-w_{0}, \quad-1 / 2 \leqq w_{0} \leqq-1 / 3 .
$$

As w_{0} moves further to the left from $w=-1 / 2$, still in the first sheet of R, the region $R_{2}\left(w_{0}\right)$ is now limited only by the point $w=-1$:

$$
D_{2}\left(w_{0}\right)=1+w_{0}, \quad-1<w_{0} \leqq-1 / 2 .
$$

When w_{0} moves from the origin to the left in the second sheet of R, the size of $R_{2}\left(w_{0}\right)$ is also limited by the point $w=-2 / 3$:

$$
D_{2}\left(w_{0}\right)=w_{0}+2 / 3, \quad-2 / 3<w<0 ;
$$

this situation continues as w_{0} moves from the value zero to the value $-2 / 3$, but the region $R_{2}\left(w_{0}\right)$ is a doubly-carpeted circle for $-1 / 3<w<0$, and is singly-carpeted (smooth) for $-2 / 3<w \leqq-1 / 3$. This completes the study of our numerical case.

Let us now discuss the manner in which $D_{p}\left(w_{0}\right)$ and $R_{p}\left(w_{0}\right)$ vary on the general Riemann configuration R, the image of $|z|<1$ under the arbitrary map $w=f(z)$, where $f(z)$ is analytic in $|z|<1$. The various possibilities that arise are illustrated by the example just given. We cut all the sheets of R through with a circular biscuit-cutter whose center is w_{0} and whose radius is the variable r. One of the connected sets thus cut out of R contains w_{0} and is denoted by R_{1}. When r is small it follows from the usual implicit function theorem that if w_{0} is not a branch point of R the region R_{1} is smooth, and if w_{0} is a q-fold point of R, then R_{1} consists of a q-sheeted circle whose only branch point is w_{0}. As r is gradually increased, this situation continues until the boundary of R_{1} reaches either a boundary point of R or a branch point of R. In the former case we have $D_{p}\left(w_{0}\right)$ equal to this particular value r_{1} of r, and R_{1} is $R_{p}\left(w_{0}\right)$. In the latter case if r is further increased, it may be that R_{1} becomes a q^{\prime}-sheeted circle with $q<q^{\prime} \leqq p$, in which case we have $D_{p}\left(w_{0}\right) \geqq r>r_{1}$. But it may occur that whenever r is near to but greater than r_{1} the region R_{1} is a $q^{\prime \prime}$-sheeted circle, $q^{\prime \prime}>p$, in which case we have $D_{p}\left(w_{0}\right)=r_{1}$; it may also occur that whenever r is near to but greater than r_{1} the region R_{1} has boundary points in common with R, in which case we have also $D_{p}\left(w_{0}\right)=r_{1}$. If we
have $D_{p}\left(w_{0}\right)>r_{1}$, the radius r can be perhaps increased until still further branch points of R lie interior to R_{1}, while R_{1} remains a q_{1}-sheeted circle whose center is w_{0}, with $q_{1} \leqq p$. In any case the radius r can be increased from zero to such a value r_{2} that: (i) either a boundary point of R lies on the boundary of R_{1}, (ii) or there lie on the boundary of R_{1} branch points of R of such multiplicities that for all values of r slightly greater than r_{2} the region R_{2} containing w_{0} and cut out of R by the biscuit-cutter with center w_{0} and radius r is a $q^{\prime \prime}$-sheeted circle with $q^{\prime \prime}>p$, (iii) or there lie on the boundary of R_{1} branch points of R of such nature that for all values of r slightly greater than r_{2} this region R_{2} has boundary points which satisfy the relation $\left|w-w_{0}\right|<r_{2}$. It is to be noted that if the biscuit-cutter of radius r cuts from R the region R_{1} containing w_{0}, and if R_{1} has a boundary point w_{1} (necessarily a boundary point of R) for which $\left|w_{1}-w_{0}\right|<r$, then we must have $D_{p}\left(w_{0}\right)<r$. For under these conditions R_{1} cannot be a q-sheeted circle; the point w_{1} of the w-plane may be covered by R_{1} precisely q times (not necessarily by q sheets meeting at w_{1}), but then (by the implicit function theorem) a suitably chosen neighborhood of w_{1} is also covered precisely q times by the sheets of R_{1} that cover w_{1}, and suitable points w in this neighborhood are covered more than q times in all, for they are covered also by R_{1} in the neighborhood of the boundary point w_{1}.

It is of interest to trace also the situation in the z-plane corresponding to the preceding discussion. When r is sufficiently small, $r>0$, the locus $\left|f(z)-w_{0}\right|=r$ consists (in addition to possible other arcs or curves) of a Jordan curve $J(r)$ in the neighborhood of the point z_{0}, where $w_{0}=f\left(z_{0}\right)$; for r sufficiently small, interior to $J(r)$ the function $f(z)$ takes on every value that it assumes (by Theorem 13 below) precisely a number of times equal to the multiplicity q of z_{0} as a zero of the function $f(z)-w_{0}$; the image of the interior of $J(r)$ over the w-plane is a q-sheeted circle of radius r whose only branch point is $w=w_{0}$. As r now increases, this situation continues until $J(r)$ reaches $|z|=1$ or until at least one multiple point of $J(r)$ appears (at a multiple point the tangents to $J(r)$ are equally spaced); in the former case we simply have $D_{p}\left(w_{0}\right)$ equal to the corresponding value r_{1} of r; in the latter case for values of r near to but slightly greater than r_{1}, the locus $\left|f(z)-w_{0}\right|=r$ consists of a Jordan arc J_{1} near but exterior to $J\left(r_{1}\right)$ plus other Jordan arcs forming with J_{1} a maximal connected set which we denote by $J(r)$; still other Jordan arcs may belong to the locus and not be connected with J_{1}, but such arcs do not concern us at present. If for every r near to but slightly greater than r_{1} the set $J(r)$ has a boundary point on $|z|=1$, then we have $D_{p}\left(w_{0}\right)=r_{1}$; in the contrary case $J(r)$ consists of a Jordan curve in $|z|<1$ containing $J\left(r_{1}\right)$ in its interior; the function $f(z)$ takes on interior to $J(r)$ all the values that it takes on there the same number of times, say q^{\prime}. If q^{\prime} is greater than p we have $D_{p}\left(w_{0}\right)=r_{1}$, but if q^{\prime} is not greater than p we have $D_{p}\left(w_{0}\right)>r_{1}$, and the process of enlarging $J(r)$ can continue beyond $r=r_{1}$. The process continues as r increases, and $J(r)$ may pass through multiple points, thereby increasing
not merely r but also the number of times (the same for all values) that $f(z)$ takes on interior to $J(r)$ values that it takes on there. The process eventually comes to an end at some value $r=r_{2}=D_{p}\left(w_{0}\right)$, either because $J\left(r_{2}\right)$ reaches the boundary $|z|=1$ and hence is no longer a Jordan curve in $|z|<1$, or because the locus $\left|f(z)-w_{0}\right|=r_{2}$ has a multiple point, and for every $r>r_{2}$ but near to r_{2} the locus $\left|f(z)-w_{0}\right|=r$ either fails now to separate z_{0} from $|z|=1$ or divides $|z|<1$ into regions of which the one containing z_{0} is a Jordan region in which each value assumed is assumed more than p times.
15. Some properties of D_{p}. We return now to the general theory of $D_{p}\left(w_{0}\right)$; an important tool is $\left({ }^{45}\right)$

Theorem 13. Let $f(z)$ not identically constant be analytic in the simply connected region B, let $|f(z)|$ be continuous in the corresponding closed region and have the constant value b on the boundary C of B. Then all values w taken on by $f(z)$ in B are taken on there the same number of times q, and $f^{\prime}(z)$ has precisely $q-1$ zeros interior to B.

The region B cannot be the entire plane or the entire plane with the omission of a single point, so B can be mapped conformally onto the interior of the unit circle γ. It is sufficient to establish the theorem where B is the interior of γ, which we shall now do. We must have $b>0$, so by the well known properties of the maxima and minima of $|f(z)|$, the zeros of $f(z)$ interior to γ are finite in number, $\beta_{1}, \beta_{2}, \cdots, \beta_{q}$ with $q>0$. The function

$$
f(z) \cdot \prod_{k=1}^{q} \frac{1-\bar{\beta}_{k} z}{z-\beta_{k}}
$$

when suitably defined in the points β_{k}, is analytic and different from zero at every point interior to γ; its modulus is continuous in the corresponding closed region and takes the constant value b on γ. Hence this function itself is a constant of modulus b, and we have

$$
f(z)=\omega b \prod_{k=1}^{q} \frac{z-\beta_{k}}{1-\bar{\beta}_{k} z}, \quad|\omega|=1
$$

The first part of Theorem 13 now follows from Rouché's theorem, for if we have $|c|<b$ we have on γ the inequality $|c|<|f(z)|$. The latter part of Theorem 13 follows from a theorem due to Bôcher and Walsh ${ }^{(46}$).

Theorem 14. Let the function $w=f(z)$ analytic.for $|z|<r$ with $f(0)=0$ map $|z|<r$ onto a Riemann configuration R such that no point of the boundary of R
${ }^{(45)}$ The part of this theorem which refers to the zeros of $f^{\prime}(z)$ is not new, if q is defined as the number of zeros of $f(z)$ in B, and has been considered by de Boer, Macdonald, de la Vallée Poussin, Whittaker and Watson, Denjoy, Lange-Nielsen, and Ålander. See for instance Denjoy, Comptes Rendus de l'Académie des Sciences, Paris, vol. 166 (1918), pp. 31-33; Ålander, Comptes Rendus de l'Académie des Sciences, Paris, vol. 184 (1927), pp. 1411-1413.
${ }^{(46)}$ J. L. Walsh, these Transactions, vol. 19 (1918), pp. 291-298, especially p. 297.
satisfies the inequality $|w|<\rho>0$. Then the connected region R_{1} of R which contains the transform of $z=0$ and which is cut out of R by a biscuit-cutter whose center is $w=0$ and radius ρ is simply connected; and each point w of the w-plane with $|w|<\rho$ is covered by R_{1} the same number of times.

The region R_{1} corresponds to some region R_{2} in $|z|<r$ containing $z=0$. The function $|f(z)|$ is continuous in the closed region consisting of R_{2} plus its boundary, and assumes the constant value ρ on the boundary; of course the boundary of R_{2} may coincide in whole or in part with $|z|=r$. It follows from the principle of maximum modulus applied to $f(z)$ in $|z|<r$ that the boundary of R_{2} cannot fall into two or more continua, one of which would necessarily lie in a simply connected region interior to $|z|=r$ bounded by another continuum belonging to the boundary of R_{2}. Then R_{2} is simply connected, and so consequently is R_{1}. The remainder of Theorem 14 follows from Theorem 13.

Theorem 15. Let $w=f(z)$ be analytic for $|z|<1$ and map $|z|<1$ onto the Riemann configuration R with $w_{0}=f\left(z_{0}\right),\left|z_{0}\right|<1$. Let $f(z)$ take on in $|z|<1$ every value w in the region $\left|w-w_{0}\right|<\rho>0$ precisely p times. Then we have $D_{p}\left(w_{0}\right) \geqq \rho$.

No boundary point w_{1} of R can satisfy the inequality $\left|w_{1}-w_{0}\right|<\rho$; for if it did the point w_{1} of the w-plane would be covered by R a totality of p times, and by the implicit function theorem a suitably chosen neighborhood of w_{1} would also be covered by R precisely p times by the sheets of R covering w_{1}. Some values w in every neighborhood of w_{1} are covered also by the sheet (or sheets) of R of which w_{1} is a boundary point; so some points w with $\left|w-w_{0}\right|<\rho$ are covered more than p times, contrary to hypothesis.

We have now shown that no boundary point of R satisfies the inequality $\left|w-w_{0}\right|<\rho$; so it follows from Theorem 14 that the region containing w_{0} cut out of R by a biscuit-cutter of center w_{0} and radius ρ covers each point of $\left|w-w_{0}\right|<\rho$ the same number of times, a number which by the hypothesis of Theorem 15 cannot exceed p; hence Theorem 15 is established.

Still another result related to Theorems 14 and 15 follows easily:
Theorem 16. Let the function $w=f(z)$ be analytic for $|z|<1$ and map $|z|<1$ onto the Riemann configuration R with $w_{0}=f\left(z_{0}\right),\left|z_{0}\right|<1$. Suppose $\lim \inf _{|z| \rightarrow 1}\left|f(z)-w_{0}\right| \geqq \rho$, and suppose no value in $\left|w-w_{0}\right|<\rho$ is taken on by $f(z)$ in $|z|<1$ more than p times. Then we have $D_{p}\left(w_{0}\right) \geqq \rho$.

It follows from our hypothesis that no boundary point of R lies in $\left|w-w_{0}\right|<\rho$; so Theorem 16 follows from Theorems 14 and 15.

Corollary. Let $w=f(z)$ be analytic for $|z|<1$ and map $|z|<1$ onto the Riemann configuration R with $w_{0}=f\left(z_{0}\right),\left|z_{0}\right|<1$. Let R_{1} be a subregion of $|z|<1$ containing z_{0}, whose boundary B satisfies the condition $\lim _{z \rightarrow B,|z|<1}\left|f(z)-w_{0}\right|$
$=\rho>0$, and suppose no value w is taken on by $f(z)$ in R_{1} more than p times. Then we have $D_{p}\left(w_{0}\right) \geqq \rho$.

It follows from the principle of maximum modulus that R_{1} is simply connected. If R_{1} is mapped smoothly and conformally onto $|\zeta|<1$, and if Theorem 16 is applied to the function which maps $|\zeta|<1$ onto R_{1}, we obtain the corollary.

Although the following theorem is not needed in the sequel, it is of some interest in itself.

Theorem 17. Let R be a simply connected Riemann configuration of hyperbolic type, and let w_{0} be any point of R. Then $D_{p}\left(w_{0}\right)$ is a continuous function of w_{0}.

We need to define what we shall mean by the continuity of $D_{p}\left(w_{0}\right)$ on R. If w_{0} is a branch point of order greater than $p-1,(p>1)$, we shall say that $D_{p}\left(w_{0}\right)$ is continuous at w_{0} if to any $\epsilon>0$ we can assign a number $\delta>0$ so that for any point w_{0}^{\prime} at a distance not greater than δ from w_{0} and lying on one of the sheets that come together at w_{0} the relation $\left|D_{p}\left(w_{0}^{\prime}\right)-D_{p}\left(w_{0}\right)\right|<\epsilon$ holds; here $D_{p}\left(w_{0}\right)=0$. If w_{0} is a branch point of order q, where $0 \leqq q \leqq p-1$, we shall say that $D_{p}\left(w_{0}\right)$ is continuous at w_{0} if to any $\epsilon>0$ we can assign a number $\delta>0$ so that for any point w_{0}^{\prime} within the q-sheeted circle C_{q} with center at w_{0} and radius δ the relation $\left|D_{p}\left(w_{0}^{\prime}\right)-D_{p}\left(w_{0}\right)\right|<\epsilon$ holds. The proof of this theorem is left to the reader.
16. The limit property of D_{p} for continuously convergent sequences.

Theorem 18. Let $\left\{f_{n}(z)\right\}$ be a sequence of functions analytic in the unit circle $|z|<1$, and converging uniformly in every closed subregion of $|z|<1$ to an analytic function $f(z)$. Let z_{0} be any point in the circle $|z|<1$ and set $w_{n}=f_{n}\left(z_{0}\right), w_{0}=f\left(z_{0}\right)$. Denoting by $D_{p}\left(w_{n}\right)$ the radius of p-valence at the point w_{n} of the Riemann configuration R_{n} on which $f_{n}(z)$ maps the circle $|z|<1$ and by $D_{p}\left(w_{0}\right)$ the radius of p-valence at the point w_{0} of the Riemann configuration R_{0} on which $f(z)$ maps the circle $|z|<1$, we have

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=D_{p}\left(w_{0}\right), \quad \quad p=1,2,3, \cdots
$$

The proof of the theorem will be based on two lemmas:
Lemma 1. Under the conditions of Theorem 18,

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \inf } D_{p}\left(w_{n}\right) \geqq D_{p}\left(w_{0}\right) \tag{16.2}
\end{equation*}
$$

The lemma is clearly trivial if $D_{p}\left(w_{0}\right)=0$.
Let us assume, therefore, that $D_{p}\left(w_{0}\right)>0$ and choose any positive number ρ so that $\rho<D_{p}\left(w_{0}\right)$. Hence, the Riemann configuration R_{0} contains in its interior some q-sheeted circle $C_{q}\left(w_{0}\right), 1 \leqq q \leqq p$, of center w_{0} and radius ρ, to-
gether with its boundary. Denote the region in $|z|<1$ on which the function $w=f(z)$ maps $C_{q}\left(w_{0}\right)$ by R_{0}. The boundary B_{0} of R_{0} must consequently lie wholly in the interior of $|z|<1$. In R_{0} we have $\left|f(z)-w_{0}\right|<\rho$ and on B_{0} we have $\left|f(z)-w_{0}\right|=\rho$. Let $\epsilon>0$ be any number such that $\rho+\epsilon<D_{p}\left(w_{0}\right)$. Due to the uniform convergence of the sequence $f_{n}(z)$ on B_{0}, there exists a positive integer $n(\epsilon)$ such that for all integers $n>n(\epsilon)$ the inequality $\left|f_{n}(z)-w_{n}\right|>\rho-\epsilon$ holds on B_{0}. Hence, that region R_{n} in the circle $|z|<1$ which contains the point z_{0} and on which $\left|f_{n}(z)-w_{n}\right|<\rho-\epsilon$ lies wholly interior to R_{0}. On the boundary B_{n} of R_{n} we have $\left|f_{n}(z)-w_{n}\right|=\rho-\epsilon$. In accordance with Theorem 13 the function $f_{n}(z)$ takes on all its values the same number of times q_{n} in R_{n}. By Hurwitz's theorem, since $f(z)$ is at most p-valent ${ }^{(47)}$ in R_{0}, for sufficiently large values of n we have $q_{n} \leqq p$. Hence, by the corollary to Theorem 16 we have $D_{p}\left(w_{n}\right) \geqq D_{q_{n}}\left(w_{n}\right) \geqq \rho-\epsilon$. Hence, $\lim \inf _{n \rightarrow \infty} D_{p}\left(w_{n}\right) \geqq \rho$. But ρ is an arbitrary positive number less than $D_{p}\left(w_{0}\right)$. The relation (16.2) follows at once.

Lemma 2. Under the conditions of Theorem 18,

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \sup } D_{p}\left(w_{n}\right) \leqq D_{p}\left(w_{0}\right) . \tag{16.3}
\end{equation*}
$$

If this lemma is false there must exist a positive constant a such that for infinitely many values of n

$$
\begin{equation*}
D_{p}\left(w_{n}\right)>a>D_{p}\left(w_{0}\right) . \tag{16.4}
\end{equation*}
$$

We shall neglect all those functions $f_{n}(z)$ for which the above inequality fails and assume that (16.4) holds for all n.

Consider that largest region R_{n} in the circle $|z|<1$ which contains the point z_{0}, for which $\left|f_{n}(z)-w_{n}\right|<a$. Then in R_{n} the function $f_{n}(z)$ is q-valent ($q \leqq p$). According to (16.4) the boundary C_{n} of the region R_{n} lies wholly in the circle $|z|<1$. Furthermore, by the principle of maximum modulus we conclude that R_{n} is simply connected. Clearly, on the curve C_{n} the relation $\left|f_{n}(z)-w_{n}\right|=a$ is satisfied. Every value taken on by $f_{n}(z)$ in R_{n} is taken on the same number of times.

Denote by $z=\phi_{n}(t)$ a function which maps the region R_{n} on the circle $|t|<1$ in such a manner that $\phi_{n}(0)=z_{0}$. Since the curve C_{n} is a Jordan curve, by a well known theorem of Osgood-Carathéodory the function $\phi_{n}(t)$ is continuous in the closed circle $|t| \leqq 1\left({ }^{48}\right)$. The function $f_{n}\left(\phi_{n}(t)\right)=g_{n}(t)$ is analytic in $|t|<1$, continuous in $|t| \leqq 1$ and $\left|g_{n}(t)-w_{n}\right|=a$ on $|t|=1$. By Schwarz's reflection principle $\left({ }^{49}\right)$, we infer that $g_{n}(t)$ is analytic in the closed circle

[^18]$|t| \leqq 1$. Finally, $g_{n}(t)$ is precisely q-valent in $|t|<1$ since $f_{n}(z)$ possesses the same property in R_{n}. By the theorem of Radó, referred to earlier, we may represent $g_{n}(t)$ in the following manner:
\[

$$
\begin{equation*}
g_{n}(t)=w_{n}+a e^{i \theta_{n} k_{n}} \prod_{j=1}^{q-k_{n}} \frac{t-t_{i}^{(n)}}{1-\overline{t_{j}^{(n)} t}}, \quad k_{n} \geqq 1 ;\left|t_{j}^{(n)}\right| \leqq 1 . \tag{16.5}
\end{equation*}
$$

\]

Since the $g_{n}(t)$ are uniformly bounded, they form a normal family and we may select a subsequence, which for simplicity will again be denoted by $\left\{g_{n}(t)\right\}$, converging uniformly in every closed subregion of $|t|<1$ to a function $G(t)$ analytic in $|t|<1$. On account of (16.5) $G(t)$ has itself a representation of the form

$$
\begin{equation*}
G(t)=w_{0}+a e^{i \theta_{i} t} \prod_{j=1}^{q-k} \frac{t-t_{j}}{1-\bar{t}_{j} t}, \quad k \geqq 1 \tag{16.6}
\end{equation*}
$$

Just as in (16.5) some of the t_{i} here may have the absolute value 1.
Now consider that largest region R_{0} in $|z|<1$ which contains the point z_{0} and in which $\left|f(z)-w_{0}\right|<a$. According to the maximum modulus principle R_{0} is simply connected and we may map it on the circle $|t|<1$ by means of a function $z=\phi_{0}(t)$ so that $\phi_{0}(0)=z_{0}$. On that part of the boundary B_{0} of R_{0} which lies interior to the circle $|z|<1$ if it exists we have $\left|f(z)-w_{0}\right|=a$. We shall now show that R_{0} is the kernel of the sequence of regions $\left\{R_{n}\right\}\left({ }^{(50}\right)$. Indeed, consider any region R_{0}^{\prime} which together with its boundary lies interior to R_{0} and contains the point z_{0}. By the definition of R_{0}, in the region R_{0}^{\prime} and on its boundary we have $\left|f(z)-w_{0}\right|<a$. Since the functions $f_{n}(z)-w_{n}$ converge uniformly to $f(z)-w_{0}$ in the closure of R_{0}^{\prime}, for n sufficiently large we have $\left|f_{n}(z)-w_{n}\right|<a$ in the closure of R_{0}^{\prime}, and therefore R_{0}^{\prime} belongs to all R_{n} for sufficiently large values of n. Next, choose any point z^{\prime} of the circle $|z|<1$ exterior to R_{0} (if such a point exists). Connect the point z^{\prime} with the point z_{0} by any Jordan arc L which lies wholly in the circle $|z|<1$. Since z^{\prime} is exterior to R_{0}, there must exist on the arc L at least one point Z at which $\left|f(Z)-w_{0}\right|>a$. For sufficiently large values of n we must have $\left|f_{n}(Z)-w_{n}\right|>a$, and consequently Z is exterior to R_{n}. Thus, on any Jordan arc joining the points z_{0} and z^{\prime} there exists a point exterior to R_{n} for all sufficiently large values of n. Consequently R_{0} is the kernel of the sequence of regions $\left\{R_{n}\right\}$. Hence, by a well known theorem of Carathéodory $\left({ }^{51}\right)$ the sequence of functions $\phi_{n}(t)$ converges uniformly in every closed subregion of $|t|<1$ to the function $\phi_{0}(t)$, provided merely we have chosen $\phi_{n}^{\prime}(0)>0, \phi_{0}^{\prime}(0)>0$.

If we form the function $g_{0}(t)=f\left(\phi_{0}(t)\right)$, it follows that the sequence of func-

[^19]${ }^{(51)}$ C. Carathéodory, loc. cit., particularly p. 76.
tions $\left\{g_{n}(t)\right\}$ converges uniformly in every closed subregion of $|t|<1$ to the function $g_{0}(t)$. We have shown earlier, however, that the sequence $\left\{g_{n}(t)\right\}$ converges to the function $G(t)$ whose representation is given in (16.6). We thus find that $g_{0}(t)=G(t)$ identically in $|t|<1$. From (16.6) it follows therefore that $g_{0}(t)$ is analytic in $|t| \leqq 1$, is q^{\prime}-valent ($q^{\prime} \leqq p$) in $|t|<1$, and on the circumference $|t|=1$ satisfies the relation $\left|g_{0}(t)-w_{0}\right|=a$.

Consider now an arbitrary positive number ϵ such that $a-\epsilon>D_{p}\left(w_{0}\right)$. Denote by R_{ϵ} the largest region in $|t|<1$ which contains the origin and throughout which $\left|g_{0}(t)-w_{0}\right|<a-\epsilon$. The boundary C_{ϵ} of this region lies wholly interior to $|t|<1$ and in R_{ϵ} the function $g_{0}(t)$ is $q^{\prime \prime}$-valent ($q^{\prime \prime} \leqq p$). The function $z=\phi_{0}(t)$ maps the region R_{ϵ} on a region P_{ϵ} in the z-plane which is together with its boundary Γ_{ϵ} interior to R_{0}. In P_{ϵ} we have $\left|f(z)-w_{0}\right|<a-\epsilon$ and on Γ_{ϵ} we have $\left|f(z)-w_{0}\right|=a-\epsilon$. Since the region P_{ϵ} contains the point z_{0} and since $f(z)$ is $q^{\prime \prime}$-valent in P_{ϵ}, it follows that $a-\epsilon<D_{p}\left(w_{0}\right)$. This contradicts our assumption concerning ϵ.

Since the assumption (16.4) leads to a contradiction, the relation (16.3) is true.

We are now ready to prove the theorem. Lemmas 1 and 2 together yield the inequalities

$$
\underset{n \rightarrow \infty}{\lim \sup } D_{p}\left(w_{n}\right) \leqq D_{p}\left(w_{0}\right) \leqq \liminf _{n \rightarrow \infty} D_{p}\left(w_{n}\right)
$$

Since, however, we always have $\lim \inf _{n \rightarrow \infty} D_{p}\left(w_{n}\right) \leqq \lim \sup _{n \rightarrow \infty} D_{p}\left(w_{n}\right)$, it follows that $\lim \sup _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=\lim \inf _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=D_{p}\left(w_{0}\right)$, which proves the theorem.
17. $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$ is a necessary and sufficient condition for $\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0(k=1,2, \cdots, p)$. An immediate consequence of Theorem 18 is the following extension of Theorem 2, Chapter II, to the higher derivatives of bounded functions.

Theorem 19. Let $f(z)$ be regular and bounded in $|z|<1$:

$$
|f(z)| \leqq M
$$

let $\left\{z_{n}\right\}$ be any sequence of points in $|z|<1$, and let $w_{n}=f\left(z_{n}\right)$. Then, a necessary and sufficient condition for

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2, \cdots, p
$$

is that $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$.
We first prove the sufficiency of the condition. We assume that $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$. In accordance with the definition of the radius of p-valence it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{k}\left(w_{n}\right)=0, \quad k=1,2, \cdots, p \tag{17.1}
\end{equation*}
$$

By virtue of Theorem 2, Chapter II, the condition is sufficient for $p=1$. Let us assume that the condition is sufficient for $p-1$ and prove it to be sufficient for p. We assume therefore that (17.1) implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2, \cdots, p-1 \tag{17.2}
\end{equation*}
$$

If the condition is not sufficient for p, we could find a positive constant δ and a subsequence of $\left\{z_{n}\right\}$, which for simplicity will again be denoted by $\left\{z_{n}\right\}$ for which

$$
\begin{equation*}
\left|f^{(p)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{p} \geqq \delta>0 \tag{17.3}
\end{equation*}
$$

and at the same time the relations (17.1) and (17.2) hold.
Now if we introduce the sequence of functions

$$
\phi_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right)
$$

which are bounded and regular in $|\zeta|<1:\left|\phi_{n}(\zeta)\right| \leqq M$, we obtain by virtue of the expression (2.3)

$$
\frac{\phi_{n}^{(p)}(0)}{p!}=\sum_{\nu=0}^{p-1}(-1)^{\nu} C_{p-1, \nu} \bar{z}_{n}^{\nu} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{p-\nu} f^{(p-\nu)}\left(z_{n}\right)}{(p-\nu)!}
$$

The relations (17.2) and (17.3) imply

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \inf }\left|\phi_{n}^{(p)}(0)\right| \geqq \delta>0 \tag{17.4}
\end{equation*}
$$

while the relation (2.3) written out for $n=1,2, \cdots, p-1$ together with (17.2) shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\phi_{n}^{(k)}(0)\right|=0, \quad \text { for } k=1,2, \cdots, p-1 \tag{17.5}
\end{equation*}
$$

The sequence of functions $\left\{\phi_{n}(\zeta)\right\}$ forms a normal farnily in $|\zeta|<1$. We may, therefore, extract a convergent subsequence which for simplicity will again be denoted by $\left\{\phi_{n}(\zeta)\right\}$

$$
\lim _{n \rightarrow \infty} \phi_{n}(\zeta)=\phi(\zeta)
$$

The relations (17.4) and (17.5) imply

$$
\begin{equation*}
\phi^{(k)}(0)=0 \quad \text { for } \quad k=1,2, \cdots, p-1 ; \quad\left|\phi^{(p)}(0)\right| \geqq \delta . \tag{17.6}
\end{equation*}
$$

The equations in (17.6), however, imply that the radius of p-valence $D_{p}[\phi(0)]$ of the Riemann surface on which $\phi(\zeta)$ maps the circle $|\zeta|<1$ is positive at the point $\phi(0)$ of the surface $D_{p}[\phi(0)]>0$. According to Theorem 18 if we
denote by $D_{p}\left[\phi_{n}(0)\right]$ the radius of p-valence at the point $\phi_{n}(0)$ of the Riemann surface R_{n} on which $\phi_{n}(\zeta)$ maps the circle $|\zeta|<1$ and observe that $\phi_{n}(0)=w_{n}$, we obtain

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=D_{p}[\phi(0)]>0
$$

But R_{n} is precisely the Riemann surface R on which $f(z)$ maps the circle $|z|<1$. Hence, the last relation contradicts (17.1) for $k=p$. This proves that the assumption (17.3) is false and the sufficiency of our condition is established.

We now turn to the proof of the necessity of the condition in Theorem 19. Let us assume that

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad \text { for } k=1,2, \cdots, p
$$

Forming again the functions $\phi_{\boldsymbol{n}}(\zeta)$, we see that

$$
\lim _{n \rightarrow \infty}\left|\phi_{n}^{(k)}(0)\right|=0 \quad \text { for } k=1,2, \cdots, p
$$

Let us assume that we have already selected a uniformly convergent subsequence of the $\left\{\phi_{n}(\zeta)\right\}$, which, because of the normality of the family, is always possible. The limit function $\phi(\zeta)$ of the sequence has the property that $\phi^{(k)}(0)=0$ for $k=1,2, \cdots p$. Consequently, $D_{p}[\phi(0)]=0$ and by Theorem 18

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0
$$

The last relation has been proved only for a subsequence of the original sequence. But since from every sequence we may select a subsequence with this property, it must also hold for the whole sequence. Theorem 19 is now established.

It will be noticed that Theorem 19 is unsatisfactory in that no indication is given of the manner in which expressions of the type $\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}$ depend on the radii of p-valence $D_{p}\left(w_{n}\right)$. In the case $p=1$ we have already given inequalities which bring out this dependence (Theorem 3, Chapter II). Our next task will be to extend Theorem 3, Chapter II, to the higher derivatives of bounded functions. The constants that we shall obtain will, however, not be precise. We shall first study upper bounds for the derivatives of bounded functions. The inequalities that we shall obtain will, of course, yield a new proof of Theorem 19 by quantitative methods rather than the purely qualitative methods that we used in the present proof.

Chapter III. Bounded functions; inequalities on D_{p}

18. A preliminary lower bound for D_{p}. For our purpose in the use of $D_{p}\left(w_{0}\right)$ for the study of such relations as $\left|f^{(p)}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|\right)^{p} \rightarrow 0$, it is desir-
able to have explicit numerical inequalities connecting $D_{p}\left(w_{k}\right)$ and the derivatives $f^{\prime}\left(z_{k}\right), f^{\prime \prime}\left(z_{k}\right), \cdots, f^{(p)}\left(z_{k}\right)$. We first prove regarding this relationship

Theorem 1. Suppose the function $f(z)$ analytic for $|z|<1$ with $f(0)=0$, $f^{(p)}(0)=p!$, and with $|f(z)| \leqq M$ for $|z|<1$. Then we have

$$
\begin{equation*}
D_{p}(0) \geqq M_{p}>0, \tag{18.1}
\end{equation*}
$$

where $M_{p}=M_{p}(M)$ is a suitably chosen constant depending on M and p but not on $f(z)$.

Our proof of Theorem 1 is a direct generalization of Landau's proof $\left({ }^{(52)}\right.$ for the case $p=1$. For the case $p=1$, Landau's method yields the inequality

$$
\begin{equation*}
D_{1}(0) \geqq 1 /(6 M), \tag{18.2}
\end{equation*}
$$

a special case of inequality (18.9) to be proved below. But other related methods ${ }^{53}$) yield the inequality

$$
\begin{equation*}
D_{1}(0) \geqq 1 /(4 M), \tag{18.3}
\end{equation*}
$$

which is somewhat sharper than (18:2) and which we shall therefore take as point of departure.

We remark that if $f(z)$ is analytic for $|z|<1$ with $f(0)=0, f^{\prime}(0)=m \neq 0$, with $|f(z)| \leqq M$ for $|z|<1$, then the function $f(z) / m$ has the derivative unity at the origin and modulus in $|z|<1$ not greater than $M /|m|$. Consequently under the transformation $w=f(z) / m$ we have from (18.3) the result $D_{1}(0) \geqq|m| /(4 M)$, and under the transformation $w=f(z)$ we have

$$
\begin{equation*}
D_{1}(0) \geqq \frac{\left|m^{2}\right|}{4 M} . \tag{18.4}
\end{equation*}
$$

Let us now suppose Theorem 1 established with p replaced by j for $j=1,2, \cdots, p-1$; we proceed to prove by induction the theorem as stated.

The cases

$$
\begin{align*}
\left|f^{\prime}(0)\right| & \geqq \frac{1}{(12 M)^{p-1}} \\
\frac{\left|f^{\prime \prime}(0)\right|}{2!} & \geqq \frac{1}{(12 M)^{p-2}},
\end{align*}
$$

$$
\begin{equation*}
\frac{\left|f^{(p-1)}(0)\right|}{(p-1)!} \geqq \frac{1}{12 M} \tag{p-1}
\end{equation*}
$$

are all handled in a manner similar to the proof of (18.4). Thus in case

[^20]$\left(18.5^{(j)}\right), j=1,2, \cdots, p-1$, the function
\[

$$
\begin{equation*}
\frac{f(z)}{f^{(j)}(0) / j!} \tag{18.6}
\end{equation*}
$$

\]

has the j th derivative j ! at the origin, and modulus in $|z|<1$ not greater than $j!M /\left|f^{(i)}(0)\right|$, so by our assumption that Theorem 1 with p replaced by j is established, we have under the transformation $w=j!f(z) / f^{(i)}(0), D_{j}(0)$ $\geqq M_{j}\left(j!M /\left|f^{(i)}(0)\right|\right)$, and we have under the transformation $w=f(z)$

$$
\begin{equation*}
D_{j}(0) \geqq \frac{\left|f^{(j)}(0)\right|}{j!} \cdot M_{i}\left[\frac{j!M}{\left|f^{(j)}(0)\right|}\right] \tag{18.7}
\end{equation*}
$$

hence by the relation $D_{p}(0) \geqq D_{j}(0)$ the theorem may be considered to be proved. It remains to study the case that we have simultaneously

$$
\begin{equation*}
\frac{\left|f^{(j)}(0)\right|}{j!}<\frac{1}{(12 M)^{p-j}}, \quad j=1,2, \cdots, p-1, \tag{p}
\end{equation*}
$$

with, of course, the relation $f^{(p)}(0)=p$!.
Suppose r can be chosen $(0<r<1)$ so that the expression

$$
\begin{equation*}
\dot{R}=r^{p}-\max _{|z|=r}\left|f(z)-z^{p}\right| \tag{18.8}
\end{equation*}
$$

is positive. Then we have $R \leqq r^{p}<r$, and for $|w|<R$ the inequality

$$
\left|\frac{f(z)-z^{p}}{z^{p}-w}\right|<1
$$

holds on the circle $|z|=r$. Of course, $z^{p}-w$ cannot vanish on $|z|=r$. Then by Rouché's theorem the function $f(z)-w$ has precisely as many zeros in $|z|<r$ as does the function $z^{p}-w$, namely p. Then the transformation $w=f(z)$ maps $|z|<r$ onto a Riemann configuration which contains the region $|w|<R$ with each point covered precisely p times. Thus (Theorem 15, Chapter II), we have $D_{p}(0) \geqq R$, whether $D_{p}(0)$ refers to the Riemann configuration which is the image of $|z|<r$ or to the configuration which is the image of $|z|<1$ under the transformation $w=f(z)$.

It remains to show that r can be chosen in such a way that R as defined by (18.8) is positive. If we set $f(z) \equiv \sum_{n=1}^{\infty} a_{n} z^{n}$, Cauchy's inequality is $\left|a_{n}\right| \leqq M$, and in particular $a_{p}=1 \leqq M$. Consequently we may write on $|z|=r$ by the use of $\left(18.5^{(p)}\right)$

$$
\begin{aligned}
\left|\sum_{n=p+1}^{\infty} a_{n} z^{n}\right| & \leqq \frac{M r^{p+1}}{1-r}, \\
\left|\sum_{n=1}^{p-1} a_{n} z^{n}\right| & \leqq \sum_{n=1}^{p-1} \frac{r^{n}}{(12 M)^{p-n}}=\frac{r}{(12 M)^{p-1}} \frac{1-(12 M)^{p-1} r^{p-1}}{1-12 M r},
\end{aligned}
$$

and with the choice $r=1 /(4 M)$,

$$
\begin{align*}
R & =r^{p}-\max _{|z|=r}\left|f(z)-z^{p}\right| \\
& \geqq r^{p}-\frac{M r^{p+1}}{1-r}-\frac{r}{(12 M)^{p-1}} \frac{1-(12 M)^{p-1} r^{p-1}}{1-12 M r} \\
& \geqq r^{p}-\frac{4}{3} M r^{p+1}-\frac{r}{(12 M)^{p-1}} \frac{1-(12 M)^{p-1} r^{p-1}}{1-12 M r} \tag{18.9}\\
& =\frac{1+3^{p-2}}{2 \cdot 3^{p-1} \cdot 4^{p} \cdot M^{p}} .
\end{align*}
$$

We have now proved the desired inequality $R>0$ and thus completed the proof of Theorem 1, and we also have material for obtaining an explicit inequality for $M_{p}(M)$ in inequality (18.1).
19. Numerical lower bounds for D_{p}. When $p=2$, relation (18.7) [or (18.4)] becomes in case (18.5')

$$
D_{1}(0) \geqq \frac{1}{24^{2} M^{3}}
$$

whereas in case (18.5') we have from (18.9)

$$
D_{2}(0) \geqq \frac{1}{48 M^{2}},
$$

so in either case we may write

$$
\begin{equation*}
D_{2}(0) \geqq \frac{1}{24^{2} M^{3}} . \tag{19.1}
\end{equation*}
$$

Inequality (19.1) is to be generalized by proving

$$
\begin{equation*}
D_{p}(0) \geqq M_{p}(M) \equiv \frac{1}{4 \cdot 12^{2^{p}-2} M^{2^{p}-1}} . \tag{19.2}
\end{equation*}
$$

We remark that $M_{p}(M)$, as thus defined, decreases monotonically as M increases. It is to be noticed that (19.2) holds for $p=1$, by inequality (18.3), and for $p=2$, by inequality (19.1); we assume (19.2) to hold with p replaced by j for $j=2,3, \cdots, p-1$, and shall establish (19.2) as written. In case $\left(18.5^{(j)}\right)$ we find from (18.7) and (19.2) the inequality ($p>2$)

$$
\begin{equation*}
D_{j}(0) \geqq \frac{1}{(12 M)^{p-j}} \frac{1}{4 \cdot 12^{j^{j}-2}\left[M(12 M)^{p-i}\right]^{2^{j}-1}} . \tag{19.3}
\end{equation*}
$$

Direct comparison of the right-hand members of (19.2) and (19.3) now shows,
by virtue of the inequality $2^{q-1} \geqq q, q$ a positive integer, and by virtue of $D_{p}(0) \geqq D_{j}(0)$, that (19.2) holds in each of the cases ($18.5^{(j)}$), $j=1,2, \cdots, p-1$. Also in case (18.5 ${ }^{(p)}$) inequality (19.2) is valid, as we find from (18.9), so we have established.

Corollary 1. Under the hypothesis of Theorem 1, we have inequality (19.2).
Needless to say, the numerical results contained in some of the preceding inequalities can be improved, and it is to be supposed that those contained in inequality (19.2) can be greatly improved.

Inequality (18.7) is valid under the assumption $f^{(j)}(0) \neq 0$ instead of $f^{(j)}(0)=j$!, so by using $M_{p}(M)$ as defined by (19.2) we may formulate:

Corollary 2. Suppose the functions $f_{k}(z)$ analytic for $|z|<1$, with $f_{k}(0)=0$ and $\left|f_{k}(z)\right| \leqq M$ for $|z|<1$. If as k becomes infinite the corresponding sequence $D_{p}(0)$ approaches zero, then we have also

$$
\lim _{k \rightarrow \infty} f_{k}^{(p)}(0)=0
$$

Under the conditions of Corollary 2 we have $D_{p}(0) \geqq D_{p-1}(0) \geqq \cdots \geqq D_{1}(0)$, from which follows for $j=1,2, \cdots, p$ the relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f_{k}^{(j)}(0)=0 \tag{19.4}
\end{equation*}
$$

A specific inequality for the direct proof of (19.4) is useful. A consequence of (19.2) and (18.7) for $j=1,2, \cdots, \mathrm{p}$, with the omission of the requirement $f^{(j)}(0)=j!$, is

$$
D_{j}(0) \geqq \frac{\left|f^{(j)}(0)\right|}{j!} \frac{1}{4 \cdot 12^{2^{i}-2}\left(j!M /\left|f^{(j)}(0)\right|\right)^{2^{j-1}}} .
$$

The inequality $D_{j}(0) \leqq M$ is obvious, so we have

$$
\begin{align*}
\frac{\left|f^{(j)}(0)\right|}{j!} & \leqq 4^{2^{-j}} \cdot 12^{1-2^{1-j}} M^{1-2^{-j}}\left[D_{j}(0)\right]^{2^{-j}} \\
& \leqq 24 M\left[\frac{D_{i}(0)}{M}\right]^{2^{-s}} \\
& \leqq 24 M\left[\frac{D_{j}(0)}{M}\right]^{2^{-p}} .
\end{align*}
$$

By virtue of the inequalities $D_{j}(0) \geqq D_{j-1}(0)$ we may now write $\left({ }^{54}\right)$

$$
\begin{equation*}
\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right| \leqq 24 p(1+M)\left[D_{p}(0)\right]^{2^{-p}} \tag{19.5}
\end{equation*}
$$

${ }^{(4)}$ For $0<\alpha \leqq 1, M>0$, we have $M^{\alpha} \leqq 1+M$.

We state explicitly a major result:
Corollary 3. If $f(z)$ is analytic and in modulus not greater than M for $|z|<1$, with $f(0)=0$, then inequality (19.5) is valid for every positive integer p.

For the purpose of Corollary 3, the factor $1+M$ in the right-hand member of (19.5) may of course be replaced by $M^{1-2^{-p}}$.
20. A lower bound for the derivative of a circular product. The converse of Corollary 2 is false, as is illustrated by the sequence $f_{k}(z) \equiv z$, with $p=2$. The second derivative $f_{k}^{\prime \prime}(0)$ vanishes for every k, yet $D_{2}(0)$ has the constant value unity, so the relation $D_{2}(0) \rightarrow 0$ is not satisfied. Indeed, in the general situation that $f_{k}(z)$ is analytic for $|z|<1$ with $f_{k}(0)=0$ and $\left|f_{k}(z)\right| \leqq M$ for $|z|<1$, it is not to be expected that $f_{k}^{(p)}(0) \rightarrow 0$ should imply $D_{p}(0) \rightarrow 0$, for the latter relation by virtue of $D_{l}(0) \geqq D_{l-1}(0)$ implies also $D_{l}(0) \rightarrow 0$, $l=1,2, \cdots, p-1$ which by Corollary 2 implies (19.4), a relation which is not implied by the hypothesis and is indeed completely independent of the hypothesis. We should expect, then, that a relation in the opposite sense to Corollary 2 would necessarily involve the lower derivatives. We shall proceed to prove

Theorem 2. Let the function $w=f(z)$ analytic for $|z|<1$ map $|z|<1$ onto a Riemann configuration with $f(0)=0$. Then there exists a positive constant γ_{p} depending on p but not on $f(z)$ such that we have

$$
\begin{equation*}
D_{p}(0) \leqq \frac{1}{\gamma_{p}}\left[\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right|\right] . \tag{20.1}
\end{equation*}
$$

The proof of Theorem 2 is to be carried out in several steps, of which the first is

Theorem 3. Let $w=g(z)$ analytic for $|z|<1$ map $|z|<1$ onto $|w|<1$ counted precisely p times, or precisely $m<p$ times, with $g(0)=0$. Then we have

$$
\begin{equation*}
\left|g^{\prime}(0)\right|+\frac{1}{2!}\left|g^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|g^{(p)}(0)\right| \geqq c_{p}>0 \tag{20.2}
\end{equation*}
$$

where c_{p} is a suitably chosen number depending on p but not on $g(z)$.
To be explicit, we prove (20.2) with $c_{p}=2^{-(p+1)!}$.
The most general function $g(z)$ is of the form $\left.{ }^{(55}\right)$

$$
\begin{equation*}
w=g_{p}(z)=z \prod_{j=1}^{p-1} \frac{z-\beta_{j}}{1-\bar{\beta}_{j} z}, \quad\left|\beta_{j}\right| \leqq 1 \tag{20.3}
\end{equation*}
$$

except for a constant factor of modulus unity which does not affect the lefthand member of (20.2) and which we therefore suppress. In the case $p=1$, the

[^21]form (20.3) breaks down, but we have $g_{1}(z) \equiv z$, and (20.2) is fulfilled with c_{p} replaced by unity, which is greater than $c_{1}=1 / 4$. Henceforth, we suppose $p \geqq 2$.

We prove (20.2) by induction, assuming the validity of (20.2) with p replaced by $p-1$ and proving (20.2) as written(${ }^{56}$). Equation (20.3) can be expressed in the equivalent form

$$
\begin{equation*}
g_{p}(z)=g_{p-1}(z) \frac{z-\alpha}{1-\bar{\alpha} z}, \quad|\alpha| \leqq 1 \tag{20.4}
\end{equation*}
$$

where we have also

$$
\begin{aligned}
g_{p-1}(z) & =a_{1} z+a_{2} z^{2}+\cdots, & & |z|<1, \\
g_{p}(z) & =b_{1} z+b_{2} z^{2}+\cdots, & & |z|<1 .
\end{aligned}
$$

The power series expansions of the second factor in the right-hand member of (20.4) and of its reciprocal yield by direct comparison of coefficients the two sets of equations

$$
\begin{align*}
& b_{1}=-a_{1} \alpha, \\
& b_{2}=a_{1}(1-\alpha \bar{\alpha})-a_{2} \alpha, \\
& b_{3}=a_{1} \bar{\alpha}(1-\alpha \bar{\alpha})+a_{2}(1-\alpha \bar{\alpha})-a_{3} \alpha, \tag{20.5}\\
& b_{k}=a_{1} \bar{\alpha}^{k-2}(1-\alpha \bar{\alpha})+a_{2} \bar{\alpha}^{k-3}(1-\alpha \bar{\alpha})+\cdots+a_{k-1}(1-\alpha \bar{\alpha})-a_{k} \alpha ; \\
& a_{1}=-\frac{b_{1}}{\alpha}, \\
& a_{2}=-b_{1} \frac{1-\alpha \bar{\alpha}}{\alpha^{2}}-\frac{b_{2}}{\alpha}, \\
& a_{3}=-b_{1} \frac{1-\alpha \bar{\alpha}}{\alpha^{3}}-b_{2} \frac{1-\alpha \bar{\alpha}}{\alpha^{2}}-\frac{b_{3}}{\alpha}, \tag{20.6}\\
& a_{k}=-b_{1} \frac{1-\alpha \bar{\alpha}}{\alpha^{k}}-b_{2} \frac{1-\alpha \bar{\alpha}}{\alpha^{k-1}}-\cdots-b_{k-1} \frac{1-\alpha \bar{\alpha}}{\alpha^{2}}-\frac{b_{k}}{\alpha} .
\end{align*}
$$

${ }^{(5 s)}$ The succeeding proof can be considerably shortened if no numerical estimate for c_{p} is desired. The left-hand member of (20.2) is a continuous function of the numbers β_{j} in the closed limited point set $\left|\beta_{j}\right| \leqq 1$, hence takes on a minimum value c_{p}; we must prove $\boldsymbol{c}_{\boldsymbol{p}}>0$. By the hypothesis in the induction, the minimum value zero cannot be taken on when one or several numbers β_{i} vanish, for then by (20.3) the left-hand member of (20.2) equals the corresponding sum with p replaced by some $m<p$ for some function $g_{m}(z): g_{p}(z)=z^{p-m} g_{m}(z)$. The minimum value zero cannot be taken on when all of the numbers β_{i} are different from zero $c_{p} \geqq\left|g^{\prime}(0)\right|=\mid \beta_{1} \beta_{2}$ $\cdots \beta_{p-1} \mid>0$. Thus (20.2) is established.

The following series of steps is a consequence of equations (20.5):

$$
\begin{aligned}
& b_{1}=-a_{1} \alpha, \quad b_{1}=-a_{1} \alpha, \\
& b_{2}-b_{1} \bar{\alpha}=a_{1}-a_{2} \alpha, \\
& b_{3}-b_{2} \bar{\alpha}=a_{2}-a_{3} \alpha, \\
& b_{k}-b_{k-1} \bar{\alpha}=a_{k-1}-a_{k} \alpha, \\
& b_{2}-a_{1}=b_{1} \bar{\alpha}-a_{2} \alpha, \\
& b_{3}-a_{2}=b_{2} \bar{\alpha}-a_{3} \alpha, \\
& b_{k}-a_{k-1}=b_{k-1} \bar{\alpha}-a_{k} \alpha, \\
& \left|b_{2}-a_{1}\right|+\left|b_{3}-a_{2}\right|+\cdots+\left|b_{p}-a_{p-1}\right| \\
& \leqq\left[\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{p-1}\right|\right] \cdot|\alpha| \\
& +\left[\left|a_{2}\right|+\left|a_{3}\right|+\cdots+\left|a_{p-1}\right|\right] \cdot|\alpha|+\left|a_{p}\right| \cdot|\alpha| ; \\
& {\left[\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p-1}\right|\right]-\left[\left|b_{2}\right|+\left|b_{3}\right|+\cdots+\left|b_{p}\right|\right]} \\
& \leqq\left[\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{p-1}\right|\right] \cdot|\alpha| \\
& +\left[\left|a_{2}\right|+\left|a_{3}\right|+\cdots+\left|a_{p-1}\right|\right] \cdot|\alpha|+\left|a_{p}\right| \cdot|\alpha| .
\end{aligned}
$$

Cauchy's inequality for the function $g_{p-1}(z)$ informs us that $\left|a_{p}\right| \leqq 1$, so we may write

$$
\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{p}\right|
$$

$$
\begin{align*}
& \geqq\left[\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p-1}\right|\right] \frac{1-|\alpha|}{1+|\alpha|}-\left|a_{p}\right| \frac{|\alpha|}{1+|\alpha|} \tag{20.7}\\
& \geqq c_{p-1} \frac{1-|\alpha|}{1+|\alpha|}-\frac{|\alpha|}{1+|\alpha|}
\end{align*}
$$

Case I. $|\alpha| \leqq c_{p-1} / 2$. For $p \geqq 2$ we have $c_{p-1} \leqq 1 / 4,|\alpha| \leqq 1 / 8$; so the last member of (20.7) is not less than

$$
c_{p-1}\left[\frac{7}{9}-\frac{1}{2}\right]=\frac{5}{18} c_{p-1}>\frac{c_{p-1}}{2^{p \cdot p 1}}=c_{p}
$$

Case II. $|\alpha|>c_{p-1} / 2$. Here we replace each term of each of equations (20.6) by the corresponding absolute value. The resulting inequalities when added member for member with $k=p-1$ become (for abbreviation we write ' $|\alpha|=a)$

$$
\begin{aligned}
\left(\frac{1}{a^{p-1}}+\frac{1}{a^{p-2}}-1\right)\left|b_{1}\right|+\left(\frac{1}{a^{p-2}}+\right. & \left.\frac{1}{a^{p-3}}-1\right)\left|b_{2}\right|+\cdots+\frac{1}{a}\left|b_{p-1}\right| \\
& \geqq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p-1}\right| \geqq c_{p-1}
\end{aligned}
$$

The coefficient of $\left|b_{1}\right|$ is here not less than the coefficients of $\left|b_{2}\right|,\left|b_{3}\right|, \cdots$, $\left|b_{p-1}\right|$; so we obtain at once from $a>c_{p-1} / 2$

$$
\begin{aligned}
\left|b_{1}\right|+\left|b_{2}\right|+\cdots+ & \left|b_{p}\right| \\
& \geqq \frac{c_{p-1}}{\frac{1}{a^{p-1}}+\frac{1}{a^{p-2}}-1} \geqq \frac{a^{p-1}}{2} c_{p-1} \geqq \frac{1}{2}\left(\frac{c_{p-1}}{2}\right)^{p-1} c_{p-1} \\
& =\left(\frac{c_{p-1}}{2}\right)^{p} \geqq \frac{1}{2^{(p+1)!}}=c_{p}
\end{aligned}
$$

Theorem 3 is completely established.
It is obvious that the choice $c_{p}=2^{-(p+1)!}$ can be considerably improved by the present method alone.

It is quite natural to divide the proof of Theorem 3 into two cases depending on the size of $|\alpha|$, comparing b_{j} with a_{j-1} when $|\alpha|$ is small and comparing b_{j} with a_{j} when $|\alpha|$ is large. For it follows from (20.4) that $b_{j}=a_{j-1}$ when $\alpha=0$ and that $\left|b_{j}\right|=\left|a_{j}\right|$ when $|\alpha|=1$.
21. Numerical upper bound for D_{p}. Theorem 3, of some interest in itself, is an important step in the proof of Theorem 2. Another preliminary proposition is

Theorem 4. Let the function $w=f(z)$ analytic in $|z|<1$ with $f\left(0^{\prime}\right)=0$ mapa smooth region R interior to $|z|=1$ onto the unit circle $|w|<1$ covered precisely p times or precisely m times, $m<p$. Then we have

$$
\begin{equation*}
\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right| \geqq \gamma_{p}>0, \tag{21.1}
\end{equation*}
$$

where the number γ_{p} depends on p but not on R or $f(z)$. To be explicit, we shall establish (21.1) with $\gamma_{p}=2^{-(p+1)!-p}$.

We shall make use of the analyticity of $f(z)$ only in R, not throughout the entire region $|z|<1$.

Denote by $z=h(Z)$ a function which maps the region $|Z|<1$ smoothly onto the region R of the z-plane, with $h(0)=0$. Then the function $w=g(Z)$ $=f[h(Z)]$ maps the region $|Z|<1$ onto the unit circle $|w|<1$ covered precisely p times or precisely $m<p$ times, with $g(0)=0$, so $g(Z)$ satisfies the hypothesis of Theorem 3.

Let us introduce the notation

$$
\begin{aligned}
g(Z) & =a_{1} Z+a_{2} Z^{2}+\cdots, \\
f(z) & =b_{1} z+b_{2} z^{2}+\cdots, \\
h(Z) & =d_{1} Z+d_{2} Z^{2}+\cdots,
\end{aligned}
$$

We note that Cauchy's inequality for the function $h(Z)$ yields

$$
\begin{equation*}
\left|d_{k}\right| \leqq 1, \quad k=1,2, \cdots \tag{21.2}
\end{equation*}
$$

The coefficients of $f(z)$ and $g(Z)$ are related by equations that we now need to consider:

$$
\begin{align*}
g(Z)= & f[h(Z)] \\
= & b_{1}\left[d_{1} Z+d_{2} Z^{2}+d_{3} Z^{3}+\cdots\right] \\
& +b_{2}\left[d_{1} Z+d_{2} Z^{2}+d_{3} Z^{3}+\cdots\right]^{2} \\
& +b_{3}\left[d_{1} Z+d_{2} Z^{2}+d_{3} Z^{3}+\cdots\right]^{3} \tag{21.3}\\
& +\cdots \cdot \cdots \cdot \cdots \\
= & a_{1} Z+a_{2} Z^{2}+a_{3} Z^{3}+\cdots .
\end{align*}
$$

By equating coefficients of corresponding powers of Z we obtain

$$
\begin{align*}
& a_{1}=b_{1} d_{1} \\
& a_{2}=b_{1} d_{2}+b_{2} d_{1}^{2} \\
& a_{3}=b_{1} d_{3}+2 b_{2} d_{1} d_{2}+b_{3} d_{1}^{3}, \tag{21.4}\\
& a_{4}=b_{1} d_{4}+b_{2}\left(d_{2}^{2}+2 d_{1} d_{3}\right)+3 b_{3} d_{1}^{2} d_{2}+b_{4} d_{1}^{4} \\
& a_{5}=b_{1} d_{5}+b_{2}\left(2 d_{1} d_{4}+2 d_{2} d_{3}\right)+b_{3}\left(3 d_{1} d_{2}^{2}+3 d_{1}^{2} d_{3}\right)+b_{4}\left(4 d_{1}^{3} d_{2}\right)+b_{5} d_{1}^{5},
\end{align*}
$$

The law of the coefficients of the b_{k} in equations (21.4) is relatively simple, and is readily formulated in terms of the subscripts of the numbers a_{j} and b_{k}, and involves primarily the partitions of the subscripts of the numbers a_{j}. The precise law would be a needless refinement for our present relatively rough purposes. If we replace each b_{k} by unity, it is obvious from (21.2) that the function $g(Z)$ in (21.3) is dominated by

$$
\begin{aligned}
& {\left[Z+Z^{2}+Z^{3}+\cdots\right]+\left[Z+Z^{2}+Z^{3}+\cdots\right]^{2}} \\
& +\left[Z+Z^{2}+Z^{3}+\cdots\right]^{3}+\cdots \\
& \quad=\frac{Z}{1-2 Z}=Z+2 Z^{2}+4 Z^{3}+8 Z^{4}+\cdots
\end{aligned}
$$

Then the sum of the absolute values of all the coefficients of all the numbers b_{i} in the first p of equations (21.4) is not greater than $1+2+4+\cdots+2^{p-1}$, which is less than 2^{p}. Insertion in each of equations (21.4) of absolute value signs on the numbers a_{j}, on the numbers b_{j}, and on the coefficients of the numbers b_{j} yields a corresponding inequality. When the first p of these inequalities are added member for member, there results the inequality

$$
\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p}\right| \leqq 2^{p}\left[\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{p}\right|\right],
$$

so (21.1) with $\gamma_{p}=2^{-(p+1)!-p}$ is a consequence of Theorem 3.
We are now in a position to prove Theorem 2; the trivial case $D_{p}(0)=0$ needs no further discussion and is henceforth excluded. Under the hypothesis
of Theorem 2 the function

$$
\begin{equation*}
w_{1}(z)=\frac{f(z)}{D_{p}(0)} \tag{21.5}
\end{equation*}
$$

is analytic for $|z|<1$ and maps a smooth region R interior to $|z|=1$ onto the region $\left|w_{1}\right|<1$ covered precisely p times or precisely $m<p$ times, with $w_{1}(0)=0$. Theorem 4 applied to the function (21.5) yields at once inequality (20.1). Theorem 2 is established, and we may state the

Corollary. In Theorem 2 we may take $\gamma_{p}=2^{-(p+1)!-p}$.
The number $2^{-(p+1)!-p}$ can obviously be greatly improved, even without change of method.

Theorem 2 is stated in the form convenient for applications, but we have used in the proof the analyticity of $f(z)$ not in the entire region $|z|<1$, only in a neighborhood of the origin. However, if $f(z)$ is analytic in a region containing points for which $|z| \geqq 1$, the number $D_{p}(0)$ is to be defined as referring to the Riemann configuration which is the image of $|z|<1$ under the transformation $w=f(z)$. Theorem 2 is false if the points $|z| \geqq 1$ are not excluded, as is shown by the example $p=1, f(z) \equiv z$.

It is clear now that from Theorem 1 (with Corollary 1) and Theorem 2 of the present chapter, Theorem 19 of Chapter II may be obtained in the explicit form of inequalities. Indeed, we have

Theorem 5. Let $f(z)$ be regular in $|z|<1$ and bounded there:

$$
|f(z)|<M
$$

Let $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ and let $w_{n}=f\left(z_{n}\right)$. Then, there exist two constants λ_{p} and Λ_{p} of which λ_{p} depends on p alone, while Λ_{p} depends on p and M so that

$$
\begin{align*}
\lambda_{p} \cdot D_{p}\left(w_{n}\right) & \leqq \sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu} \bar{z}_{n}^{\nu} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{n}\right)}{(k-\nu)!}\right| \\
& \leqq \Lambda_{p}\left[D_{p}\left(w_{n}\right)\right]^{2^{-p}} \tag{21.6}
\end{align*}
$$

where $D_{p}\left(w_{n}\right)$ is the radius of p-valence at the point w_{n} of the Riemann surface on which $w=f(z)$ maps the circle $|z|<1$.

The writers are not informed as to whether the exponent 2^{-p} in (21.6) is the best possible one. Here, and in improving the constants λ_{p} and Λ_{p} already obtained, lie a number of interesting open problems.

As a consequence of the second half of inequality (21.6) and the example of $\S 9$, Theorem 8 we may state

Theorem 6. Let the function $Q(r)$ be defined and positive for $0<r<1$, with $\lim _{r \rightarrow 1} Q(r)=0$. Let the positive integer m be given. Then there exist a function
$w=f(z)$ analytic and univalent in $|z|<1$, continuous in $|z| \leqq 1$, and a sequence of points z_{1}, z_{2}, \cdots with $\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1$, such that we have

$$
\lim _{n \rightarrow \infty} \frac{D_{m}\left(w_{n}\right)}{Q\left(\left|z_{n}\right|\right)}=\infty,
$$

where $w_{n}=f\left(z_{n}\right)$.

Chapter IV. Functions which omit two values

22. Inequalities for $D_{p}\left(w_{n}\right)$ when $\left|f\left(z_{n}\right)\right|$ is bounded. Practically all the results of the Chapters II and III may be extended to the class of functions $f(z)$ regular in the circle $|z|<1$ which in that circle differ from 0 and $1\left({ }^{57}\right)$. To be more specific, suppose that $f(z)$ is regular in the circle $|z|<1$ and that $f(z) \neq 0,1$ in $|z|<1$. Let $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ be an arbitrary sequence of points in the circle so that $\left|f\left(z_{n}\right)\right|$ remains bounded for all n. Under these assumptions what is a necessary and sufficient condition that $\left(1-\left|z_{n}\right|\right)^{k} f^{(k)}\left(z_{n}\right) \rightarrow 0$ ($k=1,2, \cdots, p$) ? If we examine the proof of Theorem 19 , Chapter II, we notice that absolutely no modification is necessary in order to extend this theorem to the case under consideration since we are again dealing with a normal family $\left\{\phi_{n}(\zeta)\right\}$ which, due to the condition that $\left|f\left(z_{n}\right)\right|$ is bounded, does not contain the infinite constant. The proof of Theorem 19, therefore, may be repeated verbatim to yield

Theorem 1. Let $f(z)$ be regular in $|z|<1$ and $f(z) \neq 0,1$ there. Let $\left\{z_{n}\right\}$ $\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ such that $\left|f\left(z_{n}\right)\right|<M$ for all n. Then, a necessary and sufficient condition that

$$
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=12 \cdots, p
$$

for a fixed positive integer p is that

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0
$$

where $w_{n}=f\left(z_{n}\right)$.
Again as in the case of Theorem 19 it is desirable to give explicitly the relation between $\left|f^{(p)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)^{p}$ and $D_{p}\left(w_{n}\right)$. In view of $\S 21$, Theorem 5 and Schottky's theorem this relation is easily obtained. We use Schottky's theorem in the following form $\left({ }^{58}\right)$: If $f(z)$ is regular in $|z|<1$ and omits there the values zero and one, if $f(z)=a_{0}+a_{1} z+\cdots$, then there exists a positive constant Δ, independent of $a_{0}, \theta, a_{1}, \cdots$ so that

$$
\begin{equation*}
|f(z)|<\left[\left|a_{0}\right|+2\right]^{\Delta /(1-\theta)} \tag{22.1}
\end{equation*}
$$

in the circle $|z|<\theta<1$.

[^22]Let us assume now that the hypotheses of Theorem 1 are satisfied, and form the functions

$$
\begin{equation*}
\boldsymbol{\phi}_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right) . \tag{22.2}
\end{equation*}
$$

These functions are all regular in $|\zeta|<1$ and omit there the two values 0 and 1. Furthermore, $\phi_{n}(0)=f\left(z_{n}\right)=w_{n}$ are bounded in absolute value by the constant M :

$$
\left|\phi_{n}(0)\right|<M, \quad n=1,2, \cdots .
$$

Applying Schottky's theorem in the form (22.1) to the functions $\phi_{n}(\zeta)$, we find that

$$
\left|\phi_{n}(\zeta)\right|<[M+2]^{\Delta /(1-\theta)}=M_{\theta}
$$

in the circle $|\zeta|<\theta<1$. If we set now

$$
\begin{equation*}
g_{n}(\zeta)=\phi_{n}(\theta \zeta), \tag{22.3}
\end{equation*}
$$

we obtain a regular function $g_{n}(\zeta)$ in the circle $|\zeta|<1$ which satisfies the inequality $\left|g_{n}(\zeta)\right|<M_{\theta}$ in the whole circle $|\zeta|<1$. Finally we set

$$
\begin{equation*}
h_{n}(\zeta)=g_{n}(\zeta)-g_{n}(0) \tag{22.4}
\end{equation*}
$$

so that $h_{n}(\zeta)$ is regular in $|\zeta|<1, h_{n}(0)=0$, and

$$
\left|h_{n}(\zeta)\right|<2 M_{\theta} .
$$

Now, according to §21, Theorem 5, we have

$$
\lambda_{p} \cdot D_{p}(0) \leqq\left|h_{n}^{\prime}(0)\right|+\frac{1}{2!}\left|h_{n}^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|h_{n}^{(p)}(0)\right| \leqq \Lambda_{p} \cdot\left[D_{p}(0)\right]^{2^{-p}}
$$

where $D_{p}(0)$ is the radius of p-valence ($\left.\S 14\right)$ at the point $w=0$ of the Riemann configuration R_{n} on which $w=h_{n}(z)$ maps the circle $|z|<1$. From (22.4) we obtain

$$
\lambda_{p} \cdot D_{p}(0) \leqq\left|g_{n}^{\prime}(0)\right|+\frac{1}{2!}\left|g_{n}^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|g_{n}^{(p)}(0)\right| \leqq \Lambda_{p} \cdot\left[D_{p}(0)\right]^{-p}
$$

But $g_{n}(\zeta)$ maps $|\zeta|<1$ on a Riemann configuration R_{n}^{\prime} obtained from R_{n} by translating it along the vector $g_{n}(0)$. Therefore, $D_{p}(0)$ is equal to the radius of p-valence of R_{n}^{\prime} at the point $w=g_{n}(0)$. This radius we shall denote by $D_{p}\left[g_{n}(0)\right]$. We thus obtain

$$
\begin{aligned}
\lambda_{p} \cdot D_{p}\left[g_{n}(0)\right] & \leqq\left|g_{n}^{\prime}(0)\right|+\frac{1}{2!}\left|g_{n}^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|g_{n}^{(p)}(0)\right| \\
& \leqq \Lambda_{p}\left[D_{p}\left[g_{n}(0)\right]\right]^{2-p} .
\end{aligned}
$$

By virtue of (22.3) this becomes

$$
\begin{align*}
\lambda_{p} \cdot D_{p}\left[g_{n}(0)\right] & \leqq \theta\left|\phi_{n}^{\prime}(0)\right|+\frac{\theta^{2}}{2!}\left|\phi_{n}^{\prime \prime}(0)\right|+\cdots+\frac{\theta^{p}}{p!}\left|\phi_{n}^{(p)}(0)\right| \tag{22.5}\\
& \leqq \Lambda_{p} \cdot\left[D_{p}\left[g_{n}(0)\right]\right]^{2^{-p}} .
\end{align*}
$$

Now, the Riemann surface $R_{n}{ }^{\prime}$ can simply be considered as the surface on which the function $w=\phi_{n}(\zeta)$ maps the circle $|\zeta|<\theta$. It is, therefore, merely a part of the surface R on which $\phi_{n}(\zeta)$, and by (22.2) $w=f(z)$, maps the circle $|z|<1$. If we denote by $D_{p}\left(w_{n}\right)$ the radius of p-valence of R at the point $w=w_{n}$, we clearly must have

$$
D_{p}\left[g_{n}(0)\right] \leqq D_{p}\left(w_{n}\right) .
$$

We may, therefore, infer the inequality

$$
\theta\left|\phi_{n}^{\prime}(0)\right|+\frac{\theta^{2}}{2!}\left|\phi_{n}^{\prime \prime}(0)\right|+\cdots+\frac{\theta^{p}}{p!}\left|\phi_{n}^{(p)}(0)\right| \leqq \Lambda_{p} \cdot\left[D_{p}\left(w_{n}\right)\right]^{2^{-p}} .
$$

Now, since $0<\theta<1$, we find

$$
\left|\phi_{n}^{\prime}(0)\right|+\frac{1}{2!}\left|\phi_{n}^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|\phi_{n}^{(p)}(0)\right| \leqq \frac{\Lambda_{p}}{\theta^{p}}\left[D_{p}\left(w_{n}\right)\right]^{2^{-p}} .
$$

According to (22.2) and (2.3) we obtain

$$
\begin{equation*}
\sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, z_{z}} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{n}\right)}{(k-\nu)!}\right| \leqq \frac{\dot{\Lambda}_{p}}{\theta^{p}}\left[D_{p}\left(w_{n}\right)\right]^{-p} . \tag{22.6}
\end{equation*}
$$

This gives us the desired inequality from above. The corresponding inequality from below, is contained in §20, Theorem 2:

$$
\begin{equation*}
\lambda_{p} \cdot D_{p}\left(w_{n}\right) \leqq \sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \bar{z}^{\prime}} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{n}\right)}{(k-\nu)!}\right| \tag{22.7}
\end{equation*}
$$

We may, therefore, state the following
Theorem 2. Let $f(z)$ be regular in $|z|<1$ and $f(z) \neq 0,1$ there. Let $\left\{z_{n}\right\}$ $\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ such that $\left|f\left(z_{n}\right)\right|<M$ for all n. Then, for any $0<\theta<1$ there exist two constants λ_{p} and Λ_{p} of which λ_{p} depends on p alone, while Λ_{p} depends on p, M, and θ, so that

$$
\begin{align*}
\lambda_{p} \cdot D_{p}\left(w_{n}\right) & \leqq \sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu \bar{\nu} \bar{z}_{n}} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{n}\right)}{(k-\nu)!}\right| \tag{22.8}\\
& \leqq \frac{\Lambda_{p}}{\theta^{p}}\left[D_{p}\left(w_{n}\right)\right]^{-p},
\end{align*}
$$

where $D_{p}\left(w_{n}\right)$ is the radius of p-valence at the point $w_{n}=f\left(z_{n}\right)$ of the Riemann surface on which $w=f(z)$ maps the circle $|z|<1$.

Since from the form of Λ_{p} it is evident that it tends to infinity as θ tends to 1 , the best value for the right side of (22.8) is obtained for that value of θ for which Λ_{p} / θ^{p} attains its minimum. That value may be readily computed from the expression for Λ_{p}. It is evident also that Theorem 2 implies Theorem 1.

We remark that under the conditions of Theorem 2 we have $D_{p}(w) \leqq|w|$, so that (22.8) gives an inequality on the approach to zero of $\left(1-|z|^{2}\right)^{k} f^{(k)}(z)$ as w tends to zero, for every k.

A further consequence of Theorem 2 is that under the hypothesis of that theorem, an additional inequality of the form $|f(z)| \leqq M$ implies inequalities $\left|f^{(k)}(z)\right|\left(1-|z|^{2}\right)^{k} \leqq M_{k}$, where M_{k} depends only on k and M. Indeed, we have $D_{p}(w) \leqq M$; our conclusion ${ }^{59}$) follows from (22.8).
23. Counterexamples. In Theorems 1 and 2 an important part of the hypothesis was the fact that $\left|f\left(z_{n}\right)\right|<M$ for all n. Since any sequence $\left\{z_{n}\right\}$ can be decomposed into sequences on which $\left|f\left(z_{n}\right)\right|$ is bounded and those on which $\left|f\left(z_{n}\right)\right|$ tends to infinity, it is natural to inquire how far Theorem 2 can be extended to sequences $\left\{z_{n}\right\}$ for which $\left|f\left(z_{n}\right)\right| \rightarrow \infty$.

That the conclusion of Theorem 2 as a proposition is false for such sequences is a theorem which we shall establish:

Theorem 3. There exists a function $f(z)$ with two omitted values and regular in $|z|<1$ and there exists a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1\right)$ such that, setting $w_{n}=f\left(z_{n}\right)$, we have $D_{1}\left(w_{n}\right) \rightarrow 0, w_{n} \rightarrow \infty$, and yet $\lim _{n \rightarrow \infty} .\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)$ $=8 \pi$.

In the half-plane $R W>0$, where $W=u+i v$,

$$
R\left(W+e^{-W+1}\right)=u+e^{-u+1} \cos v \geqq-e^{-u+1} \geqq-e .
$$

Consequently, in $R W>0$ the function $W+e^{-W+1}+3$ omits all values in some neighborhood of the origin, as does the function

$$
\begin{equation*}
w=f(z)=\left(W+e^{-W+1}+3\right)^{2}=F(W), \tag{23.1}
\end{equation*}
$$

where we set $W=(1+z) /(1-z)$, so that z is a point of the unit circle $|z|<1$. We choose $W_{n}=1+2 n \pi i+1 / n$, whence $e^{-W_{n}+1}=e^{-1 / n}$ and find

$$
\begin{equation*}
\frac{d f(z)}{d W}=2\left(W+e^{-W+1}+3\right)\left(1-e^{-W+1}\right) \tag{23.2}
\end{equation*}
$$

Thus, $f^{\prime}(z)$ vanishes in the points where $1-e^{-W+1}=0$, namely $W=1+2 n \pi i$, $n=0, \pm 1, \pm 2, \cdots$. If we define z_{n} by the relation $W_{n}=\left(1+z_{n}\right) /\left(1-z_{n}\right)$, we find from (23.2)
${ }^{(59)}$ More precise inequalities of this type were developed by O . Szász, loc. cit.

$$
\frac{d f\left(z_{n}\right)}{d W}=2\left(4+2 n \pi i+\frac{1}{n}+e^{-1 / n}\right)\left(1-e^{-1 / n}\right)
$$

so that $d f\left(z_{n}\right) / d W \rightarrow 4 \pi i$. We next compute $|1-z|^{2}=4 /|W+1|^{2}$ and $|d W / d z|$ $=|W+1|^{2} / 2$. Hence,

$$
\left|\frac{d W}{d z}\right|_{z=z_{n}}\left(1-\left|z_{n}\right|^{2}\right)=\frac{1}{2}\left[\left|W_{n}+1\right|^{2}-\left|W_{n}-1\right|^{2}\right]=2+\frac{2}{n} \rightarrow 2 .
$$

Thus, we obtain finally

$$
\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \rightarrow 8 \pi
$$

It now remains to be shown that $D_{1}\left(w_{n}\right) \rightarrow 0$. This may be shown as follows. In the W-plane consider the two points $W=1+2 n \pi i$ and $W_{n}=1+2 n \pi i+1 / n$. Join these two points by a rectilinear segment, necessarily horizontal. This segment is mapped by the function $w=F(W)$ on a certain arc lying on the corresponding Riemann configuration and joining the points $w=(5+2 n \pi i)^{2}$ and $w_{n}=\left(4+e^{-1 / n}+1 / n+2 n \pi i\right)^{2}$, of which the first is a branch point of the Riemann configuration in question. It is clear, therefore, that this arc emanates from the center of the circle $\left|w-w_{n}\right| \leqq D_{1}\left(w_{n}\right)$ and terminates in a point lying exterior to or on the boundary of that circle $\left({ }^{60}\right)$. Hence, the length of this arc cannot be less than $D_{1}\left(w_{n}\right)$. But the length can be estimated directly. Indeed, it is equal to

$$
\int_{1}^{1+1 / n}\left|F^{\prime}(2 n \pi i+u)\right| d u .
$$

From (23.2) we find

$$
D_{1}\left(w_{n}\right) \leqq 2 \int_{1}^{1+1 / n}\left|2 n \pi i+u+e^{-u+1}+3\right|\left(1-e^{-u+1}\right) d u .
$$

Now, in the interval $1 \leqq u \leqq 1+1 / n$, we have $1-e^{-u+1} \leqq 1-e^{-1 / n}$ and $e^{-u+1} \leqq 1$, so that

$$
\begin{equation*}
D_{1}\left(w_{n}\right) \leqq 2\left(1-e^{-1 / n}\right)(2 n \pi+5+1 / n) \cdot 1 / n . \tag{23.3}
\end{equation*}
$$

Hence, as $n \rightarrow \infty$, we have $D_{1}\left(w_{n}\right) \rightarrow 0$, which completes the proof of the theorem.

In connection with the present example one may make two remarks.
Remark 1. If one replaces the function $f(z)$ in (23.1) by the function

$$
\begin{equation*}
f(z)=\left(W+e^{-W+1}+3\right)^{4}, \quad W=(1+z) /(1-z) \tag{23.4}
\end{equation*}
$$

[^23]with $W_{n}+1=2 n \pi i+1 / n^{2}$, clearly the relation $D_{1}\left(w_{n}\right) \rightarrow 0$ still holds, while $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \rightarrow \infty$. Thus, $D_{1}\left(w_{n}\right) \rightarrow 0$ does not even imply the boundedness of $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)$.

Remark 2. Let α be any real number in the interval $0<\alpha<1$. Choose an integer k so that $k>\alpha /(1-\alpha)$. Then, the choice

$$
f(z)=\left(W+e^{-W+1}+3\right)^{k+1}, \quad W=(1+z) /(1-z)
$$

with $W_{n}=1+2 n \pi i+1 / n^{k}$ yields $D_{1}\left(w_{n}\right) \rightarrow 0$. Indeed, a computation analogous to the one in the preceding example shows that $D_{1}\left(w_{n}\right)=O\left(1 / n^{k}\right)$. On the other hand, $\left|w_{n}\right|=O\left(n^{k+1}\right)$. Hence $\left|w_{n}\right| \alpha \cdot D_{1}\left(w_{n}\right)=O\left(n^{\alpha k+\alpha-k}\right)$ and this expression tends to zero. Furthermore, it is easily seen that $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)>c>0$, where c is a certain positive constant. Thus, for the class of functions with a region of omitted values no relation $\left|w_{n}\right|^{\alpha} \cdot D_{1}\left(w_{n}\right) \rightarrow 0$ with $0<\alpha<1$ can imply $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \rightarrow 0$.

In the example of Theorem 3 and the examples in the two remarks it will be noticed that $\left|w_{n}\right| \cdot D_{1}\left(w_{n}\right)$ does not tend to zero. The case that $\left|w_{n}\right| \cdot D_{1}\left(w_{n}\right)$ tends to zero will not be treated in its full generality in this paper. A special case is considered in $\S 25$. The case $\left|w_{n}\right|^{\alpha} \cdot D_{1}\left(w_{n}\right) \rightarrow 0$ for $\alpha>1$ will be considered in the next section.
24. Case: $\lim _{n \rightarrow \infty}\left|w_{n}\right|^{(1+\epsilon)\left(2^{p}-1\right)} D_{p}\left(w_{n}\right)=0$. The following extension of Theorem 1 for $p=1$ to the case $\left|w_{n}\right| \rightarrow \infty$ will now be proved:

Theorem 4. Let $f(z)$ be analytic in $|z|<1$ and omit two values there. Let $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ such that, setting $w_{n}=f\left(z_{n}\right)$, we have $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$. Then, the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|w_{n}\right|^{1+\epsilon} D_{1}\left(w_{n}\right)=0 \tag{24.1}
\end{equation*}
$$

for any positive ϵ implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)=0 \tag{24.2}
\end{equation*}
$$

It is clear that the sequence of functions

$$
\phi_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right)
$$

regular in $|\zeta|<1$ is normal. Since by hypothesis $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$, we have

$$
\lim _{n \rightarrow \infty}\left|\phi_{n}(0)\right|=\infty,
$$

so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\phi_{n}(\zeta)\right|=\infty \tag{24.3}
\end{equation*}
$$

uniformly in every closed subregion of $|\zeta|<1$.

Choose a positive number

$$
\rho<\frac{\epsilon}{2+\epsilon}<1,
$$

whence

$$
\frac{1+\rho}{1-\rho}<1+\epsilon
$$

It follows from (24.3) that for n sufficiently large the function $1 / \phi_{n}(\zeta)$ is regular in the circle $|\zeta| \leqq \rho_{1}$, where ρ_{1} is any number such that $\rho<\rho_{1}<1$. Furthermore, n may be chosen so large that $1 /\left|\phi_{n}(\zeta)\right|<1$ in $|\zeta| \leqq \rho_{1}$, which implies that $\log \left|\phi_{n}(\zeta)\right|$ is harmonic and positive in $|\zeta| \leqq \rho_{1}$. Then, using Poisson's integral for the region $|\zeta|<\rho_{1}$, one sees immediately that

$$
\begin{equation*}
\log \left|\phi_{n}(\zeta)\right| \leqq \frac{\rho_{1}+\rho}{\rho_{1}-\rho} \log \left|\phi_{n}(0)\right| \tag{24.4}
\end{equation*}
$$

in the circle $|\zeta| \leqq \rho<\rho_{1}$. Now, by taking ρ_{1} so near to unity that $\rho_{1}+\rho / \rho_{1}-\rho$ $<1+\epsilon$ and then by choosing n sufficiently large, the inequality (24.4) implies $\left|\phi_{n}(\zeta)\right|<\left|\phi_{n}(0)\right|^{1+\epsilon}$ in the circle $|\zeta| \leqq \rho\left({ }^{61}\right)$.

Now, according to Theorem 3 of Chapter II,

$$
D_{1}\left(w_{n}\right) \geqq \frac{\left|\phi_{n}^{\prime}(0)\right|^{2} r^{2}}{8 M_{n}}
$$

where $M_{n} \geqq \max _{|\zeta| \leqq r}\left|\phi_{n}(\zeta)\right|$. If we set $r=\rho, M_{n}=\left|\phi_{n}(0)\right|^{1+\epsilon}, \phi_{n}(0)=w_{n}$, we obtain for n sufficiently large

$$
\begin{equation*}
D_{1}\left(w_{n}\right) \geqq \frac{\left|f^{\prime}\left(z_{n}\right)\right|^{2}\left(1-\left|z_{n}\right|^{2}\right)^{2} \rho^{2}}{8\left|w_{n}\right|^{1+\epsilon}}, \tag{24.5}
\end{equation*}
$$

from which the theorem follows at once.
The treatment of the case for general p is quite analogous:
Theorem 5. Let $f(z)$ be analytic in $|z|<1$ and omit two values there. Let $\left\{z_{n}\right\}$ $\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ such that, setting $w_{n}=f\left(z_{n}\right)$, $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$. Then, the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|w_{n}\right|(1+\epsilon)\left(2^{p}-1\right) D_{p}\left(w_{n}\right)=0 \tag{24.6}
\end{equation*}
$$

for any positive ϵ implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{(j)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)^{i}=0, \quad j=1,2, \cdots, p \tag{24.7}
\end{equation*}
$$

[^24]The proof of Theorem 4 is repeated verbatim, and we find, as before, that for any positive ϵ there exists a positive number $\rho<1$ such that for all sufficiently large values of n

$$
\left|\phi_{n}(\zeta)\right|<\left|w_{n}\right|^{1+\epsilon}
$$

in the circle $|\zeta| \leqq \rho$.
Now, according to inequality (19.5'), we obtain

$$
\begin{aligned}
\sum_{j=1}^{p} \frac{\rho^{i}}{j!}\left|\phi_{n}^{(j)}(0)\right| & \leqq 24\left|w_{n}\right|^{1+\epsilon} \sum_{j=1}^{p}\left(\frac{D_{j}\left(w_{n}\right)}{\left|w_{n}\right|^{1+\epsilon}}\right)^{1 / 2^{i}} \\
& =24 \sum_{i=1}^{p}\left(\left|w_{n}\right|^{(1+\epsilon)\left(2^{i-1}\right)} D_{j}\left(w_{n}\right)\right)^{1 / 2^{i}}
\end{aligned}
$$

whence, applying (2.3), we find for n sufficiently large

$$
\begin{aligned}
& \sum_{j=1}^{p} \rho^{i}\left|\sum_{\nu=0}^{i-1}(-1)^{\nu} C_{i-1, \nu} \bar{z}_{n}^{v} \frac{\left(1-\left|z_{n}\right|^{2}\right)^{i-\nu} f^{(j-\nu)}\left(z_{n}\right)}{(j-\nu)!}\right| \\
& \quad \leqq 24 \sum_{j=1}^{p}\left(\left|w_{n}\right|^{(1+\epsilon)\left(2^{i-1}\right)} D_{i}\left(w_{n}\right)\right)^{1 / 2^{i}} .
\end{aligned}
$$

Since (24.6) implies the relation

$$
\lim _{n \rightarrow \infty}\left|w_{n}\right|(1+\epsilon)\left(2^{j-1}\right) D_{i}\left(w_{n}\right)=0, \quad j=1,2, \cdots, p
$$

we obtain (24.7).
25. Mandelbrojt's theorem. The following theorem is due to S. Mandelbrojt(${ }^{62}$):

Theorem A. Let $f_{n}(z)$ be a sequence of functions analytic in a region R and tending uniformly in R to infinity. If there exists a positive constant M such that for all n and for all z in R

$$
\begin{equation*}
\left|\arg f_{n}(z)\right|<M \tag{25.1}
\end{equation*}
$$

with some determination of the argument, then to every closed region R_{1} wholly interior to R there corresponds a finite positive number $\alpha(1<\alpha<+\infty)$ and a positive integer n_{0} such that for every pair of points z_{0} and z_{1} in R_{1} and for every $n>n_{0}$, the inequality

$$
\begin{equation*}
\frac{1}{\alpha}<\left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\right|<\alpha \tag{25.2}
\end{equation*}
$$

holds.

[^25]We indicate a proof of Theorem $A\left({ }^{63}\right)$. Let us first prove the assertion of the theorem in the special case that R_{1} is the circle $C:|z-a| \leqq \rho$ lying wholly in R. It is clear by hypothesis that for sufficiently large values of n the functions $f_{n}(z) \neq 0$ in C, and henceforth we shall consider only such values of n. Hence, the functions $-i \log f_{n}(z)$ will be regular in C, single-valued in C after a particular determination of the logarithm is selected. We choose that determination for which $R\left[-i \log f_{n}(z)\right]=\arg f_{n}(z)$, where the argument is the one asserted in (25.1). Now, take a circle $C^{\prime}:|z-a| \leqq \rho^{\prime}$ for which $\rho^{\prime}>\rho$ and which also lies wholly in R; choose n so large that $f_{n}(z) \neq 0$ in C^{\prime}.

In C^{\prime} we have the representation

$$
\begin{aligned}
-\log \mid f_{n}(a & \left.+r e^{i \theta}\right)|+\log | f_{n}(a) \mid \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \arg f_{n}\left(a+\rho^{\prime} e^{i \phi}\right) \frac{2 \rho^{\prime} r \sin (\theta-\phi)}{\rho^{\prime 2}+r^{2}-2 \rho^{\prime} r \cos (\theta-\phi)} d \phi
\end{aligned}
$$

Let $z_{0}=a+r_{0} e^{i \theta_{0}}$ and $z_{1}=a+r_{1} e^{i \theta_{1}}$ be any two points of C. We may, then, write (25.3) for the points z_{0} and z_{1} and subtract the second equation from the first. Thus, we obtain the equation

$$
\begin{align*}
\log \left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\right|=\frac{1}{\pi} \int_{0}^{2 \pi} \arg f_{n}\left(a+\rho^{\prime} e^{i \phi}\right) & {\left[\frac{\rho^{\prime} r_{0} \sin \left(\theta_{0}-\phi\right)}{\rho^{\prime 2}+r_{0}^{2}-2 \rho^{\prime} r_{0} \cos \left(\theta_{0}-\phi\right)}\right.} \tag{25.4}\\
& \left.-\frac{\rho^{\prime} r_{1} \sin \left(\theta_{1}-\phi\right)}{\rho^{\prime 2}+r_{1}^{2}-2 \rho^{\prime} r_{1} \cos \left(\theta_{1}-\phi\right)}\right] d \phi .
\end{align*}
$$

Taking absolute values in (25.4) and observing (25.1), we find

$$
\begin{aligned}
& |\log | \frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}|\mid \\
& \quad \leqq \frac{M}{\pi} \int_{0}^{2 \pi}\left|\frac{\rho^{\prime} r_{0} \sin \left(\theta_{0}-\phi\right)}{\rho^{\prime 2}+r_{0}^{2}-2 \rho^{\prime} r_{0} \cos \left(\theta_{0}-\phi\right)}-\frac{\rho^{\prime} r_{1} \sin \left(\theta_{1}-\phi\right)}{\rho^{\prime 2}+r_{1}^{2}-2 \rho^{\prime} r_{1} \cos \left(\theta_{1}-\phi\right)}\right| d \phi .
\end{aligned}
$$

But since z_{0} and z_{1} lie in the circle C, an easy calculation shows that

$$
\begin{equation*}
|\log | \frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\left|\left\lvert\, \leqq \frac{4 \rho \rho^{\prime} M}{\left(\rho^{\prime}-\rho\right)^{2}}\right.\right. \tag{25.5}
\end{equation*}
$$

The right-hand side in (25.5) is independent of the pair of points z_{0} and z_{1}. From (25.5) follows at once the assertion of Theorem A in the case that R_{1} is a circle.

We now pass to the general case. Let R_{1}^{\prime} be any closed region contained in R and itself containing R_{1} in its interior. Consider the class of all open

[^26]circles with centers in R_{1}^{\prime} contained together with their boundaries in R. In accordance with the Heine-Borel theorem one may select out of this class a finite number of circles which cover R_{1}^{\prime}. Denote this number by N. By the first part of the proof with each one of these circles there is associated a number $\alpha_{\nu}\left(1<\alpha_{\nu}<\infty\right)$ and a positive integer λ_{ν}, such that for any pair of points z_{0} and z_{1} in that circle and for $n>\lambda_{\nu}$
$$
\frac{1}{\alpha_{\nu}}<\left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\right|<\alpha_{\nu}
$$

Let β and n_{0} be the largest of the numbers α_{ν} and λ_{ν}, respectively. Then, for $n>n_{0}$ and for any pair of points in any one of those circles we have

$$
\begin{equation*}
\frac{1}{\beta}<\left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\right|<\beta . \tag{25.6}
\end{equation*}
$$

Now consider any two points z_{0} and z_{1} in R_{1}. Connect z_{0} and z_{1} by a simple polygonal line P lying wholly in R_{1}^{\prime} and so chosen as not to be tangent to any circle of the above class. Denote by C_{1} any circle of the above class which contains the point z_{0}. As one travels along P from z_{0} to z_{1}, there will be a last point of intersection ζ_{1} of P with the circumference of C_{1}. Denote by C_{2} any circle of the above class which contains ζ_{1}. Between z_{0} and ζ_{1} on P choose any point ξ_{1} common to both C_{1} and C_{2}. Now, starting with the point ξ_{1} which belongs to C_{2}, repeat the argument. We obtain in this manner a point ξ_{2} of P which is common to two circles C_{2} and C_{3} of the above family. Proceeding in this manner, after a finite number of steps we come to a first circle C_{k} which contains the point z_{1}. It is clear from (25.6) that for $n>n_{0}$

$$
\frac{1}{\beta^{N}} \leqq \frac{1}{\beta^{k}}<\left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(z_{0}\right)}\right|=\left|\frac{f_{n}\left(\xi_{1}\right)}{f_{n}\left(z_{0}\right)}\right| \cdot\left|\frac{f_{n}\left(\xi_{2}\right)}{f_{n}\left(\xi_{1}\right)}\right| \cdots\left|\frac{f_{n}\left(z_{1}\right)}{f_{n}\left(\xi_{k-1}\right)}\right|<\beta^{k} \leqq \beta^{N} .
$$

Setting $\beta^{N}=\alpha$, we obtain the constant asserted in Theorem A.
As Mandelbrojt himself points out, these results may be readily extended to the case of a sequence of functions $f_{n}(z)$ regular in R which converges uniformly in R to an analytic function $f(z)$ in such a manner that the differences $f_{n}(z)-f(z)$ do not vanish in R.

Theorem A may be used to obtain a result related to Theorem 4.
Theorem 6. Let $f(z)$ be analytic in $|z|<1$ and omit two values there, including the value $w=a$. Let $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ be a sequence of points in $|z|<1$ such that, setting $w_{n}=f\left(z_{n}\right)$, we have $\lim _{n \rightarrow \infty}\left|w_{n}\right|=\infty$. If arg $[f(z)-a]$ is uniformly bounded in $|z|<1\left({ }^{64}\right)$, then the condition

$$
\lim _{n \rightarrow \infty}\left|w_{n}\right| \cdot D_{1}\left(w_{n}\right)=0
$$

[^27]implies the relation
$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0
$$

The boundedness of $\arg [f(z)-a]$ implies the boundedness in $|\zeta|<1$ of $\arg \left[\phi_{n}(\zeta)-a\right]$, where

$$
\phi_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right) .
$$

Just as in the proof of Theorem 4 we infer that

$$
\lim _{n \rightarrow \infty}\left|\phi_{n}(\zeta)\right|=\infty
$$

uniformly in every closed subregion of $|\zeta|<1$. Hence,

$$
\lim _{n \rightarrow \infty}\left|\phi_{n}(\zeta)-a\right|=\infty
$$

uniformly in every closed subregion of $|\zeta|<1$. We may therefore apply Treorem A of Mandelbrojt to the sequence of functions $\phi_{n}(\zeta)-a$ in the circle $|\zeta|<\rho$, where ρ is any fixed positive number less than unity: It follows that corresponding to any circle $|\zeta| \leqq \rho_{1}<\rho$ one may assign a finite positive number α and a positive integer n_{0} such that for any pair of points ζ, ζ_{0} in $|\zeta| \leqq \rho_{1}$

$$
\frac{1}{\alpha}<\left|\frac{\phi_{n}(\zeta)-a}{\phi_{n}\left(\zeta_{0}\right)-a}\right|<\alpha
$$

for every $n \gtrdot n_{0}$. In particular, choosing $\zeta_{0}=0$, we obtain the inequality

$$
\left|\phi_{n}(\zeta)-a\right|<\alpha\left|\phi_{n}(0)-a\right|
$$

and

$$
\begin{equation*}
\left|\phi_{n}(\zeta)\right|<\alpha\left|\phi_{n}(0)\right|+(\alpha+1)|a|=\alpha\left|w_{n}\right|+(\alpha+1)|a| \tag{25.7}
\end{equation*}
$$

in $|\zeta| \leqq \rho_{1}$ provided $n>n_{0}$.
Thus, one may apply Theorem 3 of Chapter II where $M=M_{n}=\alpha\left|w_{n}\right|$ $+(\alpha+1)|a|$. The theorem follows at once. Conditions more delicate than those given in Theorems 4 and 5 may be obtained by different methods. Thus, it may be shown that the condition (24.1) may be replaced by the less stringent condition

$$
\lim _{n \rightarrow \infty}\left|w_{n}\right|\left(\log \left|w_{n}\right|\right)^{1+\epsilon} D_{1}\left(w_{n}\right)=0 .
$$

This result, and other analogous ones, will be developed in a later joint paper of A. S. Galbraith, W. Seidel, and J. L. Walsh.
26. Counterexample for unrestricted functions. In obtaining relations between $\left|f^{\prime}(z)\right|(1-|z|)$ and $D_{1}(w)$ we have always restricted the class of func-
tions $f(z)$. We have thus far considered univalent functions, bounded functions, and functions omitting two values. That these or similar restrictions are essential is shown by the following example.

Theorem 7. There exists a function $f(z)$ analytic in the unit circle $|z|<1$ and a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1\right)$ such that, setting $w_{n}=f\left(z_{n}\right)$, we have $D_{1}\left(w_{n}\right) \rightarrow 0,\left|w_{n}\right|$ bounded, and

$$
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=4 \pi
$$

Consider the function

$$
w=f(z)=\sin ^{2} W,
$$

where $W=(1+z) /(1-z)$. It follows that

$$
f^{\prime}(z)(1-z)=\frac{2 \sin 2 W}{1-z}
$$

Let us set

$$
z_{n}=\frac{1 / n+2 n \pi-1}{1 / n+2 n \pi+1}, \quad \zeta_{n}=\frac{2 n \pi-1}{2 n \pi+1}, \quad W_{n}=\frac{1}{n}+2 n \pi .
$$

We find

$$
\begin{gathered}
f^{\prime}\left(z_{n}\right)\left(1-z_{n}\right)=\left(1+\frac{1}{n}+2 n \pi\right) \sin \frac{2}{n} \\
\lim _{\rightarrow \rightarrow \infty} f^{\prime}\left(z_{n}\right)\left(1-z_{n}\right)=4 \pi
\end{gathered}
$$

On the other hand, setting $w_{n}=f\left(z_{n}\right)$, it is clear that $D_{1}\left(w_{n}\right)$ cannot exceed the length of the image of the segment joining the points ζ_{n} and z_{n}, since the point ζ_{n} is mapped onto a branch point of the Riemann surface. The length of this image is given by the integral

$$
\begin{aligned}
\int_{\zeta_{n}}^{z_{n}}\left|f^{\prime}(z)\right||d z| & =\int_{\zeta_{n}}^{z_{n}}\left|\frac{2 \sin 2 W}{(1-z)^{2}}\right||d z| \leqq \frac{2}{\left(1-z_{n}\right)^{2}}\left(z_{n}-\zeta_{n}\right) \\
& =\frac{(1 / n+2 \pi n+1)^{2}}{n(1 / n+2 \pi n+1)(2 n \pi+1)}
\end{aligned}
$$

Hence,

$$
D_{1}\left(w_{n}\right) \leqq \frac{1 / n+2 \pi n+1}{n(2 \pi n+1)}, \quad \lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0 .
$$

Finally $w_{n}=\sin ^{2}(1 / n+2 \pi n)=\sin ^{2} 1 / n$, so that $\lim _{n \rightarrow \infty} w_{n}=0$. This completes the proof of the theorem.

The idea of this example, as well as of the examples of $\S \S 12$ and 23 is the
following. It is not true, as is well known $\left({ }^{65}\right)$, that $f_{n}(z)$ analytic for $|z|<1$, $f_{n}^{\prime}(0)=1, f_{n}(0)=0$, implies that $w=f_{n}(z)$ maps $|z|<1$ onto a Riemann configuration which contains in its interior a fixed smooth circle whose center is at the origin. The simplest counterexample is perhaps

$$
f_{n}(z)=z-n z^{2} .
$$

The derivative $f_{n}^{\prime}(z)=1-2 n z$ vanishes for $z=1 / 2 n$ and the corresponding value of w is $f_{n}(1 / 2 n)=1 / 4 n$, which approaches zero.

This example indicates that the phenomenon of a branch point's approaching the origin is not dependent on the transcendentality of $f_{n}(z)$, or even on the possibility that an ever-increasing number of sheets of the image of $|z|<1$ should come together. It is a matter primarily of having the image of a point at which $f_{n}^{\prime}(z)$ vanishes approach the origin. The examples mentioned above were constructed with this idea in mind.

Chapter V. Miscellaneous

27. Limit values of analytic functions. The methods developed in the present paper have close connections with the general subject of limit values of functions analytic in the unit circle, including various theorems due to Lindelöf and to Montel. We proceed now to discuss such connections.

Theorem 1. Let the function $f(z)$ be analytic for $|z|<1$ and omit two vabues there. Suppose for the sequence $\left\{z_{n}\right\}$ with $\left|z_{n}\right|<1$ we have $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$, where α is finite or infinite. Let the non-euclidean distance $\rho\left(z_{n}, z_{n}^{\prime}\right)$ between z_{n} and z_{n}^{\prime} approach zero as n becomes infinite, with $\left|z_{n}^{\prime}\right|<1$. Then we have $\lim _{n \rightarrow \infty} f\left(z_{n}^{\prime}\right)=\alpha$.

We define as usual the functions $g_{n}(\zeta)$:

$$
\begin{equation*}
g_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right) \tag{27.1}
\end{equation*}
$$

whence $g_{n}(0)=f\left(z_{n}\right)$. If we set

$$
\begin{equation*}
z_{n}^{\prime}=\frac{\zeta_{n}^{\prime}+z_{n}}{1+\bar{z}_{n} \zeta_{n}^{\prime}} \tag{27.2}
\end{equation*}
$$

we have $g_{n}\left(\zeta_{n}^{\prime}\right)=f\left(z_{n}^{\prime}\right)$, and the non-euclidean distance

$$
\begin{equation*}
\rho\left(0, \zeta_{n}^{\prime}\right)=\rho\left(z_{n}, z_{n}^{\prime}\right) \tag{27.3}
\end{equation*}
$$

approaches zero as n becomes infinite. The family $g_{n}(\zeta)$ omits two values in $|\zeta|<1$, hence is normal there. Given any infinite sequence of indices n, there can be extracted a subsequence for which the corresponding functions $g_{n}(\dot{\zeta})$ converge for $|\zeta|<1$, uniformly in every closed subregion, to some limit func-

[^28]tion $g(\zeta)$, with $g(0)=\lim _{n \rightarrow \infty} g_{n}(0)=\alpha$. The approach of zero to $\rho\left(0, \zeta_{n}^{\prime}\right)$ implies the approach to zero of ζ_{n}^{\prime}; so for the subsequence of indices considered the uniformity of convergence yields $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}^{\prime}\right)=\alpha$. Thus from any subsequence of the sequence $\left\{f\left(z_{n}^{\prime}\right)\right\}$ can be extracted a new subsequence converging to the limit α, which implies the conclusion of Theorem 1.

Theorem 2. Let $f(z)$ be analytic for $|z|<1$ and omit two values there. Let the sequence $\left\{z_{n}\right\}$ with $\left|z_{n}\right|<1$ have the property that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$, where α is finite. Then a necessary and sufficient condition that the sequence $\left\{z_{n}\right\}$ be regu$\operatorname{lar}\left({ }^{(66)}\right.$ is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}(\zeta)=\alpha \tag{27.4}
\end{equation*}
$$

$$
\text { for }|\zeta|<1
$$

uniformly in every closed subregion, where $g_{n}(\zeta)$ is defined by (27.1).
Let a sequence $\left\{z_{n}^{\prime}\right\}$ be given for which $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is bounded.
Again we define by ζ_{n}^{\prime} equation (27.2), from which it follows that (27.3) is valid, and the non-euclidean distance $\rho\left(0, \zeta_{n}{ }^{\prime}\right)$ is bounded. The sufficiency of (27.4) is obvious, for (27.4) implies that $g_{n}\left(\zeta_{n}^{\prime}\right) \rightarrow \alpha$, which is the conclusion to be established; we note that here the λ of $\S 11$, Definition 1, can be taken arbitrarily large. We proceed to show the necessity of (27.4).

If the sequence $\left\{z_{n}\right\}$ is regular but (27.4) is not satisfied, there exists a sequence of indices n_{k} such that $\lim _{k \rightarrow \infty} g_{n_{k}}(\zeta)=g_{0}(\zeta)$ for $|\zeta|<1$, uniformly in every closed subregion, where $g_{0}(\zeta)$ is analytic but not identically equal to α in $|\zeta|<1$. Suppose for definiteness $g_{0}\left(\zeta_{0}\right) \neq \alpha$, where the non-euclidean distance $\rho\left(0, \zeta_{0}\right)$ is less than the λ of $\S 11$, Definition 1 . If we define $z_{n}{ }^{\prime}$ by the equation

$$
z_{n}^{\prime}=\frac{\zeta_{0}+z_{n}}{1+\bar{z}_{n} \zeta_{0}}
$$

we have

$$
f\left(z_{n_{k}}^{\prime}\right)=g_{n_{k}}\left(\zeta_{0}\right) \rightarrow g_{0}\left(\zeta_{0}\right) \neq \alpha, \quad \rho\left(z_{n}, z_{n}^{\prime}\right)=\rho\left(0, \zeta_{0}\right)<\lambda,
$$

contrary to hypothesis.
In Theorem 2 we have for simplicity assumed that $f(z)$ omits two values in $|z|<1$. It is obviously sufficient if $f(z)$ omits two values in the noneuclidean circle with non-euclidean center z_{n} and non-euclidean radius ρ_{n}, - where ρ_{n} has a positive lower bound as n becomes infinite. A similar remark applies to the later results of the present section.

A consequence of the foregoing remark is that if $f(z)$ is analytic for $|z|<1$, if. $\left|z_{n}\right|<1$, if $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$, where α is finite, and if the sequence $\left\{z_{n}\right\}$ is irregular, then $f(z)$ has at most one omitted value in each set of non-euclidean circles with non-euclidean radius ρ_{n}, where ρ_{n} has a positive lower bound. We

[^29]consider pathology in more detail in §30. In Theorem 2, we have assumed the finiteness of α. A result without this restriction appears in

Corollary 1. Let $f(z)$ be analytic for $|z|<1$ and omit two values there. Let the sequence $\left\{z_{n}\right\}$ with $\left|z_{n}\right|<1$ have the property that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\infty$. Then if $\left|z_{n}^{\prime}\right|<1$ and if the non-euclidean distance $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is bounded, we have also $\lim _{n \rightarrow \infty} f\left(z_{n}^{\prime}\right)=\infty$.

Since the functions $g_{n}(\zeta)$ form a normal family in $|\zeta|<1$ and since $g_{n}(0) \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} g_{n}(\zeta)=\infty$ in $|\zeta|<1$, uniformly in every closed subregion. Our conclusion is an immediate consequence. We turn to another result.

Corollary 2. Let $f(z)$ be analytic for $|z|<1$ and omit there two values including the value α. Let the sequence $\left\{z_{n}\right\}$ with $\left|z_{n}\right|<1$ have the property that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$. Then if $\left|z_{n}^{\prime}\right|<1$ and if the non-euclidean distance $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is bounded, we have also $\lim _{n \rightarrow \infty} f\left(z_{n}^{\prime}\right)=\alpha\left({ }^{67}\right)$.

From every infinite subsequence of the set $g_{n}(\zeta)$ defined by (27.1) can be extracted a new subsequence which converges for $|\zeta|<1$, uniformly in every closed subregion. The limit of this new subsequence is α in the point $\zeta=0$, hence by Hurwitz's theorem is identically α in $|\zeta|<1$. Then we have $\lim _{n \rightarrow \infty} g_{n}(\zeta)=\alpha$ for $|\zeta| .<1$, uniformly in every subregion. Our conclusion follows as in the first part of the proof of Theorem 2. Thus the sequence $\left\{z_{n}\right\}$ is regular, and the number λ of $\S 11$, Definition 1 , may be chosen arbitrarily. A generalization of Theorem 2 is

Corollary 3. Let $f(z)$ be analytic for $|z|<1$ and omit two values there, and let the sequence $w_{n}=f\left(z_{n}\right)$ with $\left|z_{n}\right|<1$ be bounded. Then a necessary and suffcient condition that the sequence $\left\{z_{n}\right\}$ be regular is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[g_{n}(\zeta)-g_{n}(0)\right]=0 \quad \text { for }|\zeta|<1 \tag{27.5}
\end{equation*}
$$

uniformly in every closed subregion, where $g_{n}(\zeta)$ is defined by (27.1).
If the sequence $\left\{z_{n}\right\}$ is regular, it follows that from any subsequence of the $g_{n}(\zeta)$ can be extracted a subsequence such that $\lim _{n \rightarrow \infty} g_{n}(\zeta)$ exists for $|\zeta|<1$, uniformly in every closed subregion; for this subsequence $\lim _{n \rightarrow \infty} g_{n}(0)=\alpha$ exists and by Theorem 2 the relation (27.5) holds for that subsequence. Thus, from any subsequence of the $g_{n}(\zeta)$ can be extracted a new subsequence such that (27.5) holds for that subsequence; so (27.5) itself is satisfied.

Conversely, if (27.5) is satisfied, and if $\rho\left(z_{n}, z_{n}^{\prime}\right)=\rho\left(0, \zeta_{n}^{\prime}\right)$ is bounded, it follows that $\lim _{n \rightarrow \infty}\left[g_{n}\left(\zeta_{n}^{\prime}\right)-g_{n}(0)\right]=0$, so the sequence $\left\{z_{n}\right\}$ is regular. Of

[^30]course, this latter conclusion is independent of any assumption that $f(z)$ omit two values.

Two further propositions relate Theorem 2 to the results of $\S \S 17$ and 22.
Corollary 4. Let the function $f(z)$ be analytic in $|z|<1$ and omit two values there, and let the sequence $\left\{f\left(z_{n}\right)\right\}$ be bounded, $\left|z_{n}\right|<1$. A necessary and sufficient condition that $\left\{z_{n}\right\}$ be a regular sequence for $f(z)$ is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{(k)}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)^{k}=0, \quad k=1,2,3, \cdots \tag{27.6}
\end{equation*}
$$

From the sequence $f\left(z_{n}\right)$ can be extracted a subsequence $f\left(z_{n_{j}}\right)$ which approaches a limit α. A necessary and sufficient condition for (27.4) for the sequence $\left\{n_{j}\right\}$ is

$$
\begin{equation*}
\lim _{n_{i} \rightarrow \infty} g_{n_{j}}^{(k)}(0)=0, \quad k=1,2,3, \cdots \tag{27.7}
\end{equation*}
$$

since the functions $g_{n}(\zeta)$ form a normal family in $|\zeta|<1$. Equations (27.6) are equivalent to equations (27.7) if the latter are assumed to hold for a suitable subsequence $\left\{n_{j}\right\}$ of an arbitrary sequence of indices.

Corollary 5. Let the function $f(z)$ be analytic and omit two values in $|z|<1$. A necessary and sufficient condition that $\left\{z_{n}\right\}$ be a regular sequence for $f(z)$, where we assume $w_{n}=f\left(z_{n}\right)$ bounded, is

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0, \quad p=1,2,3, \cdots
$$

Corollary 5 follows from Corollary 4 by virtue of our fundamental Theorem 1 of $\$ 22$.

A further consequence of Corollary 5 is
Corollary 6. Let the function $f(z)$ be analytic in $|z|<1$ and omit two values there. If the sequence of points $w_{n}=f\left(z_{n}\right)$, with $\left|z_{n}\right|<1$, approaches a finite boundary point of the Riemann configuration on which $w=f(z)$ maps $|z|<1$, then the sequence $\left\{z_{n}\right\}$ is regular.

It is worth remarking that Corollary 2 is a consequence of Corollary 5 or Corollary 6, without the use of Hurwitz's theorem.

Theorems 1 and 2 are of particular interest if the function $f(z)$ approaches a limit along an arc.

Theorem 3. Let $f(z)$ be analytic in $|z|<1$ and omit two values there. Let the Jordan arc Clie in $|z|<1$ except for the end point $z=1$. Suppose

$$
\begin{equation*}
\lim _{z \rightarrow 1, z \text { on } c} f(z)=\alpha, \tag{27.8}
\end{equation*}
$$

where α is finite. Then any sequence $\left\{z_{n}\right\}$ on C for which $z_{n} \rightarrow 1$ is regular.

From any subsequence of the sequence $g_{n}(\zeta)$ defined by (27.1) can be extracted a new subsequence converging to some function $g_{0}(\zeta)$ for $|\zeta|<1$, uniformly for $|\zeta| \leqq d<1$. Let h be arbitrary, $0<h<\infty$. Let z_{n}^{\prime} be a point of C between the points z_{n} and $z=1$ with $\rho\left(z_{n}, z_{n}^{\prime}\right)=h$; such a point z_{n}^{\prime} exists with $\lim _{n \rightarrow \infty} z_{n}^{\prime}=1$. If ζ_{n}^{\prime} is defined by (27.2), we have $\rho\left(0, \zeta_{n}^{\prime}\right)=h$. The equation (27.8) implies $\lim _{n \rightarrow \infty} f\left(z_{n}^{\prime}\right)=\alpha$, whence $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}^{\prime}\right)=\alpha$. On each circle $|\zeta|=d<1$ lies a sequence of points $\zeta_{n}{ }^{\prime}$ for which $g_{n}\left(\zeta_{n}{ }^{\prime}\right)$ approaches α, so on each such circle lies at least one point ζ at which $g_{0}(\zeta)=\alpha$. Consequently $g_{0}(\zeta) \equiv \alpha$ in $|\zeta|<1$, every limit function of the sequence $g_{n}(\zeta)$ is identically α, this limit is approached by $g_{n}(\zeta)$ itself throughout $|\zeta|<1$, uniformly in any closed subregion; our conclusion follows from Theorem 2.

The method of proof of Theorem 3 establishes also the following: Let $f(z)$ be analytic in $|z|<1$ and omit two values. Let $z_{n} \rightarrow 1$, with $\left|z_{n}\right|<1$, and let the non-euclidean distance $\rho\left(z_{n}, z_{n+1}\right)$ approach zero. If $\lim _{n \rightarrow \infty} f\left(z_{n}\right)$ exists, then the sequence $\left\{z_{n}\right\}$ is regular. By way of proof, we need merely modify the proof of Theorem 3 by considering instead of the arbitrary circle $|\zeta|=d<1$ an arbitrary annulus $0<d_{1} \leqq|\zeta| \leqq d_{2}<1$; each such annulus contains a sequence of points $\zeta_{n}{ }^{\prime}$ for which $g_{n}\left(\zeta_{n}^{\prime}\right)$ approaches α, so each closed annulus contains at least one point ζ in which $g_{0}(\zeta)=\alpha$.

The method of proof of Theorem 3 can be used to prove still another proposition: Let $f(z)$ be analytic in $|z|<1$ and omit there two values. Suppose for real z we have $\lim _{z \rightarrow 1} f(z)=\alpha$. Then we have uniformly for approach within any triangle in $|z|<1$

$$
\lim _{z \rightarrow 1} f^{(k)}(z)\left(1-|z|^{2}\right)^{k}=0
$$

In this proof, we need merely choose $r, 0<r<1$, and the sequence of real z_{n} in such a way that under the transformation $z=\left(\zeta+z_{n}\right) /\left(1+\bar{z}_{n} \zeta\right)$ each point z of the given triangle corresponds to some ζ in $|\zeta|<r$. Various extensions of the proposition by the present methods suggest themselves, and are left to the reader.

We shall introduce the notion of the non-euclidean Fréchet distance between two curves. Let C_{1} and C_{2} be two open Jordan arcs lying in $|z|<1$. Consider a topological map T of C_{1} on C_{2}. Denote by $F_{T}\left(C_{1}, C_{2}\right)$ the least upper bound (finite or infinite) of the non-euclidean distances between points of C_{1} and C_{2} which correspond in the map T. The greatest lower bound (finite or infinite) of the quantities $F_{T}\left(C_{1}, C_{2}\right)$ for all possible maps T will be called the noneuclidean Fréchet distance $F\left(C_{1}, C_{2}\right)$ between C_{1} and C_{2}. With this definition we prove

Theorem 4. Let $f(z)$ be analytic in $|z|<1$ and omit two values there. Let C_{1} and C_{2} be Jordan arcs which, except for the common end point $z=1$, lie in $|z|<1$, and let $F\left(C_{1}, C_{2}\right)$ be finite. If

$$
\lim _{z \rightarrow 1 ; z \text { on } C_{1}} f(z)=\alpha,
$$

where α is finite or infinite, then also

$$
\lim _{z \rightarrow 1 ; z \text { on } C_{2}} f(z)=\alpha
$$

To any sequence z_{n}^{\prime} on C_{2} which approaches $z=1$ corresponds a sequence z_{n} on C_{1} such that $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is bounded. If α is finite, our conclusion follows from Theorem 3. If α is infinite, it follows from Corollary 1 to Theorem 2.

If the two Jordan arcs C_{1} and C_{2} of Theorem 4 are tangent and have the same order of contact with $|z|=1$ at $z=1$, then $F\left(C_{1}, C_{2}\right)$ is finite. For transform by a linear transformation of the complex variable the region $|z|<1$ onto the upper half of the $w(=x+i y)$-plane, so that $z=1$ corresponds to $w=0$. We shall assume that in the neighborhood of $w=0$ we may set up a one-to-one correspondence between the arcs $C_{1}: y=y_{1}(x)$ and $C_{2}: y=y_{2}(x)$ by means of the ordinates $x=$ constant. The non-euclidean distance between corresponding points of the two curves reduces to

$$
\left|\log \frac{y_{1}(x)}{y_{2}(x)}\right|
$$

which by the assumption on order of contact is bounded. In studying the finiteness of $F\left(C_{1}, C_{2}\right)$, we may confine ourselves to the neighborhood of the point $z=1$, so under the present hypothesis $F\left(C_{1}, C_{2}\right)$ is finite.

If the two Jordan arcs C_{1} and C_{2} of Theorem 4 are, except for the point $z=1$, contained in the lens-shaped region between two hypercycles through $z= \pm 1$, and possess tangents at the point $z=1$, we may set up a one-to-one correspondence between their points by the circles of the coaxial family determined by $z= \pm 1$ as null circles. Transformation of an arbitrary circle of that family into the axis of imaginaries by a transformation which leaves invariant $z=1, z=-1$, and $|z|=1$, as well as the two given hypercycles, shows that $F\left(C_{1}, C_{2}\right)$ is finite. Thus we have the

Corollary. The condition of Theorem 4 that $F\left(C_{1}, C_{2}\right)$ be finite is satisfied if C_{1} and C_{2} are tangent and have contact of the same order with $|z|=1$ at $z=1$, or if C_{1} and C_{2} possess tangents at $z=1$ but neither is tangent to $|z|=1$ at $z=1$.

The foregoing discussion has intimate connections with well known results on the limit values of analytic functions. The proof of Theorem 2 establishes the uniformity for all z_{n}^{\prime} of $\lim _{n \rightarrow \infty} f\left(z_{n}^{\prime}\right)$ provided merely $\rho\left(z_{n}, z_{n}^{\prime}\right)$ is uniformly bounded. With this addition, Theorem 4 and its corollary include the theorem of Lindelöf that if $f(z)$ is analytic in $|z|<1$ and omits two values there, and if $\lim _{z \rightarrow 1} f(z)$ exists for approach along a line segment in $|z| \leqq 1$, then that limit exists uniformly for approach within an arbitrary triangle contained in
$|z| \leqq 1$. Likewise the corollary to Theorem 4 includes the theorem of Montel that if $f(z)$ is analytic in $|z|<1$ and omits two values there, and if $\lim _{z \rightarrow 1} f(z)$ exists for approach along the arc of an oricycle, then that limit exists uniformly for approach between any two arcs of oricycles tangent at $z=1$ to the original arc.

We add the general remark that the method of the present section seems to have further wide use in the study of limit values of analytic functions; for instance this method easily proves that if $f(z)$ is analytic and bounded in $|z|<1$, continuous on $|z|=1$ or an open arc A of $|z|=1$ with $z=1$ as an end point, and if on this arc $\lim _{z \rightarrow 1, z \text { on } A} f(z)=\alpha$, then also the limit of $f(z)$ is α uniformly as $|z| \rightarrow 1$ between A and the axis of reals.
28. Extension of Bloch's theorem. Another application of the results of Chapter III deals with an extension of Bloch's theorem. We prove the following, which for $p=1$ reduces to Bloch's theorem.

Theorem 5. Let $w=f(z)$ be regular in $|z|<1$ and let $f^{(p)}(0)=1$. There exists an absolute positive constant B_{p}, independent of the function $f(z)$ so that the Riemann configuration R_{f} on which $w=f(z)$ maps the circle $|z|<1$ contains at least one point wor which $D_{p}\left(w_{0}\right) \geqq B_{p}$. The constant B_{p} may be taken equal to $2^{-p} \lambda_{p}$, where $\lambda_{p}=M_{p} / p!, M_{p}=M_{p}(M)$ being the constant of Theorem 1, Chapter III, taken for $M=2^{p} \cdot p$!.

We assume first that $f(0)=0$ and that $f(z)$ is regular in $|z| \leqq 1$. Let

$$
M_{p}(r)=\max _{|z| \leqq r}\left|f^{(p)}(z)\right|
$$

We have $M_{p}(0)=1$ and the function $M_{p}(r)$ is continuous and non-decreasing in the interval $0 \leqq r \leqq 1$. The function

$$
\phi(r)=(1-r)^{p} M_{p}(r)
$$

is also continuous in $0 \leqq r \leqq 1$ and $\phi(0)=1, \phi(1)=0$. Hence, there exists a number $r_{0}\left(0 \leqq r_{0}<1\right)$ such that $\phi\left(r_{0}\right)=1$ and $\phi(r)<1$ for $r_{0}<r \leqq 1$. The function $\left|f^{(p)}(z)\right|$ attains the value $M_{p}\left(r_{0}\right)$ at a point z_{0} of modulus r_{0} :

$$
\begin{equation*}
\left|f^{(p)}\left(z_{0}\right)\right|=M_{p}\left(r_{0}\right)=\frac{1}{\left(1-r_{0}\right)^{p}} \tag{28.1}
\end{equation*}
$$

Consider a circle γ of center z_{0} and radius $\rho=\left(1-r_{0}\right) / 2$ and the function

$$
g(\zeta)=\frac{f\left(z_{0}+\rho \zeta\right)-f\left(z_{0}\right)}{\rho^{p} f^{(p)}\left(z_{0}\right)}=a_{1} \zeta+a_{2} \zeta^{2}+\cdots+\frac{\zeta^{p}}{p!}+\cdots
$$

for suitably chosen constants a_{1}, a_{2}, \cdots. It is regular in $|\zeta| \leqq 1$ and

$$
g^{(p)}(\zeta)=\frac{f^{(p)}\left(z_{0}+\rho \zeta\right)}{f^{(p)}\left(z_{0}\right)}
$$

Now, in the circle $|\zeta| \leqq 1$ we have $\left|z_{0}+\rho \zeta\right| \leqq r_{0}+(1 / 2)\left(1-r_{0}\right)=(1 / 2)\left(1+r_{0}\right)$ and therefore in $|\zeta| \leqq 1$

$$
\left|f^{(p)}\left(z_{0}+\rho \zeta\right)\right| \leqq M_{p}\left(\frac{1+r_{0}}{2}\right)<\frac{1}{\left(1-(1 / 2)\left(1+r_{0}\right)\right)^{p}}=\frac{2^{p}}{\left(1-r_{0}\right)^{p}}
$$

Hence, in view of (28.1)

$$
\left|g^{(p)}(\zeta)\right|<2^{p}
$$

for $|\zeta| \leqq 1$. Successive integration shows that

$$
\begin{equation*}
|g(\zeta)|<2^{p} \tag{28.2}
\end{equation*}
$$

for $|\zeta| \leqq 1$ and we also have

$$
\begin{equation*}
g(0)=0, \quad g^{(p)}(0)=1 \tag{28.3}
\end{equation*}
$$

Now it was shown in Theorem 1, Chapter III, that for the class of functions satisfying the conditions (28.2) and (28.3)

$$
\begin{equation*}
D_{p}(0) \geqq \frac{M_{p}\left(2^{p} \cdot p!\right)}{p!}=\lambda_{p} . \tag{28.4}
\end{equation*}
$$

Consequently, by the definition of $g(\zeta)$ it follows that for the function $f(z)$, setting $w_{0}=f\left(z_{0}\right)$,

$$
D_{p}\left(w_{0}\right) \geqq \lambda_{p} \cdot \rho^{p}\left|f^{(p)}\left(z_{0}\right)\right|=\lambda_{p} / 2^{p} .
$$

The condition that $f(z)$ be analytic in the closed circle $|z| \leqq 1$ may now be lifted. Indeed, let $f(z)$ be assumed to be analytic in $|z|<1$. Then, if r is a value in the interval $0<r<1$, the function

$$
F(z)=\frac{1}{r^{p}} f(r z)
$$

is analytic for $|z| \leqq 1$ with $F^{(p)}(0)=1$. Furthermore, we have

$$
D_{p}[F(z)] \leqq \frac{1}{\gamma^{p}} D_{p}[f(r z)] .
$$

Hence, since the theorem applies to $F(z)$, there exists a $z_{0}\left(\left|z_{0}\right|<1\right)$ so that

$$
B_{p} \leqq \frac{1}{r^{p}} D_{p}\left[f\left(r z_{0}\right)\right] .
$$

Now allowing r to approach one, we obtain the theorem in the general case.
A lower bound for B_{p} may be obtained from the estimate in (19.2). This value, however, is certainly not sharp.

As a matter of record, we formulate without proof the
Corollary. Let the function $w=f(z)$ be analytic in $|z|<1$, with

$$
\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right|=m
$$

There exists a positive constant B_{p}^{\prime} independent of m and $f(z)$ such that the Riemann configuration R_{f} onto which $w=f(z)$ maps the region $|z|<1$ contains at least one point for which $D_{p}\left(w_{0}\right) \geqq m B_{p}^{\prime}$. In fact, we may choose B_{p}^{\prime} as the smallest of the numbers $j!\cdot B_{j} / p, j=1,2, \cdots, p$, in the notation of Theorem 5.
29. Unrestricted functions; properties of $\Delta(z)$. From the example of $\S 26$ it is clear at once that one cannot obtain a relation between $D_{1}\left(w_{0}\right)$ and $\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)$ without some restriction on the class of functions $f(z)$ to be considered. It is perhaps not without interest to remark that by introducing a new quantity $\Delta\left(z_{0}\right)$ one may obtain relations of the desired kind without imposing any restriction on $f(z)$ other than analyticity in the unit circle $|z|<1$. In fact, we prove

Theorem 6. Let $w=f(z)$ analytic for $|z|<1$ map $|z|<1$ onto a Riemann configuration S. Let z_{0} be any point of the circle $|z|<1$ which is mapped by $w=f(z)$ onto a point w_{0} of S which is not a branch point of S. Denoting by $\Delta\left(z_{0}\right)$ the radius of the largest circle of the ζ-plane with center $\zeta=0$ in which the function

$$
\phi(\zeta)=f\left(\frac{\zeta+z_{0}}{1+\bar{z}_{0} \zeta}\right)
$$

is univalent, the inequality

$$
\begin{equation*}
\frac{1}{4} \frac{D_{1}\left(w_{0}\right)}{\Delta\left(z_{0}\right)} \leqq\left|f\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq 4 \frac{D_{1}\left(w_{0}\right)}{\Delta\left(z_{0}\right)} \tag{29.1}
\end{equation*}
$$

holds. In particular, for a sequence of points $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$ a necessary and sufficient condition for

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)=0 \tag{29.2}
\end{equation*}
$$

is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{D_{1}\left(w_{n}\right)}{\Delta\left(z_{n}\right)}=0 \tag{29.3}
\end{equation*}
$$

where $w_{n}=f\left(z_{n}\right)$.
The function $\zeta=\psi(w)$ inverse to $w=\phi(\zeta)$ is univalent on S, in particular univalent for $\left|w-w_{0}\right|<D_{1}\left(w_{0}\right)$. Therefore, by Koebe's distortion theorem it must map the circle $\left|w-w_{0}\right|<D_{1}\left(w_{0}\right)$ onto some region of the ζ-plane within
which $\phi(\zeta)$ is univalent and which contains in its interior the circle

$$
|\zeta|<(1 / 4)\left|\psi^{\prime}\left(w_{0}\right)\right| \cdot D_{1}\left(w_{0}\right)
$$

whence

$$
\Delta\left(z_{0}\right) \geqq(1 / 4)\left|\psi^{\prime}\left(w_{0}\right)\right| \cdot D_{1}\left(w_{0}\right) .
$$

By the relation $1 / \psi^{\prime}\left(w_{0}\right)=\phi^{\prime}(0)=f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)$ we obtain the left-hand side of inequality (29.1).

Similarly, the function $w=\phi(z)$ is univalent for $|\zeta|<\Delta\left(z_{0}\right)$, hence again by Koebe's distortion theorem maps smoothly $|\zeta|<\Delta\left(z_{0}\right)$ onto a region containing the circle $\left|w-w_{0}\right|<(1 / 4)\left|\phi^{\prime}(0)\right| \cdot \Delta\left(z_{0}\right)$. Hence,

$$
D_{1}\left(w_{0}\right) \geqq(1 / 4)\left|\phi^{\prime}(0)\right| \cdot \Delta\left(z_{0}\right),
$$

and the right-hand side of inequality (29.1) follows directly.
Next, the equivalence of the relations (29.2) and (29.3) follows from (29.1) provided w_{n} are not branch points of S. Indeed, if w_{0} is a branch point of S, the expression $D_{1}\left(w_{0}\right) / \Delta\left(z_{0}\right)$ has no meaning since both numerator and denominator are zero. We observe, however, that if a sequence of points z_{n} for which the corresponding points w_{n} are not branch points of S converge to a point z_{0} (with $\left|z_{0}\right|<1$) for which the corresponding point w_{0} is a branch point of S, then by the first inequality of (29.1)

$$
\lim _{n \rightarrow \infty} \frac{D_{1}\left(w_{n}\right)}{\Delta\left(z_{n}\right)}=0 .
$$

Hence, it is reasonable to define $D_{1}\left(w_{0}\right) / \Delta\left(z_{0}\right)$ as zero when w_{0} is a branch point of S. With this convention the equivalence of (29.2) and (29.3), as well as the inequality (29.1), remain valid even in the case of branch points.
30. Pathology. There are several fairly obvious extensions of our fundamental Theorem 2 of Chapter IV to the effect that if $f(z)$ is analytic and omits two values in $|z|<1$, if $\left\{z_{n}\right\}$ is a sequence of points in $|z|<1$, and if the numbers $w_{n}=f\left(z_{n}\right)$ are bounded, then the two conditions

$$
\begin{gather*}
D_{1}\left(w_{n}\right) \rightarrow 0, \tag{30.1}\\
f^{\prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right) \rightarrow 0, \tag{30.2}
\end{gather*}
$$

are equivalent in the sense that each implies the other. The mere analyticity of $f(z)$ insures that (30.2) implies (30.1); so we are concerned at present only with the condition that (30.1) shall imply (30.2). Thus it is sufficient for (30.1) to imply (30.2) if we replace the condition that $f(z)$ omits two values in $|z|<1$ by the condition that

$$
\begin{equation*}
\phi_{n}(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right) \tag{30.3}
\end{equation*}
$$

shall omit two values in $|\zeta|<r<1$, where r is independent of n; no essential change in the original reasoning is necessary; compare $\S 27$, Corollaries 4 and 5. It is obvious too that (30.1) implies (30.2) provided from each subsequence $z_{n k}$ of the z_{n} can be extracted a new subsequence $z_{m_{k}}$ for which there exists a positive number $r<1$ such that the corresponding functions $\phi_{m_{k}}(\zeta)$ defined by (30.3) have two omitted values in $|\zeta|<r$; for under such circumstances the fulfilment of condition (30.1) implies that for no subsequence $z_{n_{k}}$ does the expression

$$
f^{\prime}\left(z_{n_{k}}\right)\left(1-\left|z_{n_{k}}\right|\right)
$$

approach a limit different from zero, whence (30.2) is satisfied. For instance, it may occur that the functions $\phi_{2 \mu}(\zeta)$ have the exceptional values 0 and 1 in $|\zeta|<1 / 2$, and that the functions $\phi_{2 \mu+1}(\zeta)$ have the exceptional values 2 and 3 in $|\zeta|<1 / 4$.

Definition. Let the function $f(z)$ be analytic for $|z|<1$, let $\left\{z_{n}\right\}$ be a sequence of points in $|z|<1$, let $w_{n}=f\left(z_{n}\right)$ approach a finite limit, let (30.1) be satisfied but suppose

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{\prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|\right)=\alpha \neq 0 ; \tag{30.4}
\end{equation*}
$$

then we shall say that $\left\{z_{n}\right\}$ is a q-sequence.
The discussion we have already given yields
Theorem 7. Under the hypothesis of the italicized definition, let $\left\{z_{n}\right\}$ be a q-sequence. Then from no subsequence $\left\{z_{n_{k}}\right\}$ of the $\left\{z_{n}\right\}$ can there be extracted a new subsequence $\left\{z_{m_{k}}\right\}$ such that the functions $\phi_{m_{k}}(\zeta)$ defined by (30.3) have two exceptional values in any region $|\zeta|<r<1$, where r is independent of m_{k}.

In other words, if $\left\{z_{n}\right\}$ is a q-sequence, then for every $r, 0<r<1$, and for every infinite sequence of subscripts $\left\{n_{k}\right\}$, the functions $\phi_{n_{k}}(\zeta)$ have at most one exceptional value in $|\zeta|<r$.

Some consequences of Theorem 7 are more conveniently described after transformation of $|z|<1$ onto a half-plane $R\left(z^{\prime}\right)>0$.

Theorem 8. Under the hypothesis of the italicized definition, let $\left\{z_{n}\right\}$ be a q-sequence having as limit the point z_{0}, with $\left|z_{0}\right|=1$. Let the region $|z|<1$ be transformed by a linear transformation onto $R\left(z^{\prime}\right)>0$ so that $z=z_{0}$ corresponds to $z^{\prime}=0$. Then there exists a half-line L from $z^{\prime}=0$ in the closed region $R\left(z^{\prime}\right) \geqq 0$ possessing the property that if S is a sector (of a circle) containing L in its interior and with vertex in $z^{\prime}=0$, of arbitrarily small radius, then in S the transform' of the function $f(z)$ has at most one exceptional value.

Let the points z_{n}^{\prime} (necessarily approaching $z^{\prime}=0$) be the transforms in the
z^{\prime}-plane of the points z_{n}. The numbers

$$
\theta_{n}=\arg z_{n}^{\prime}, \quad-\pi<\theta n<\pi
$$

have at least one limit value, say $\theta=\theta_{0}$; the half-line L may be chosen as $\theta=\theta_{0}$, as we shall proceed to prove.

A non-euclidean circle in the z^{\prime}-plane whose non-euclidean center is $z^{\prime}=\alpha$, $R(\alpha)>0$, is transformed by shrinking or stretching the plane with $z^{\prime}=0$ fixed into a non-euclidean circle of the same radius, for the transformation leaves the region $\mathcal{R}\left(z^{\prime}\right)>0$ invariant. Let S be given, and let S^{\prime} be a sector interior to S whose sides are also interior to S, likewise having $z^{\prime}=0$ as vertex, and containing L in its interior. Then an infinity of points z_{n}^{\prime} lie interior to S^{\prime}. Let ρ denote the smaller of the two non-euclidean radii of the two circles whose euclidean centers lie on the respective rays bounding S^{\prime} and which are tangent to S; the circles are not uniquely determined but their non-euclidean radii are uniquely determined; there is an exceptional situation here, which presents no inherent difficulty and whose treatment is left to the reader, if the half-line $\theta=\pi / 2$ or $\theta=-\pi / 2$ lies in or on the boundary of S. The noneuclidean circles whose common non-euclidean radius is ρ and whose euclidean centers are the infinity of points z_{n}^{\prime} interior to S^{\prime} all of whose interior points are interior points of S. Theorem 8 now follows from Theorem 7.

It is obviously true that in S the function $f(z)$ takes on every value with at most one exception an infinite number of times.

Theorem 8 obviously bears a close analogy to Julia's theorems on entire functions $\left({ }^{68}\right)$. The analogy can be pursued still more closely as we now indicate.

In the z^{\prime}-plane used in Theorem 8 let C be an arbitrary curve (not necessarily a Jordan curve) joining the unit circle to the origin.

$$
\begin{array}{rlrl}
C: z^{\prime} & =\sigma(t), & 0 \leqq t \leqq 1, \\
\sigma(0) & =0, & |\sigma(1)| & =1,
\end{array}
$$

where $\sigma(t)$ is a continuous complex-valued function of the real parameter t. From C is found by rotation about the origin a curve which we denote by $C(\omega): z^{\prime}=\omega \cdot \sigma(t),|\omega|=1$. We shall call a horn the set $H(\omega, \epsilon)$ of points each of which lies interior to at least one of the circles having its center in a point z^{\prime} on $C(\omega)$ and of radius $\epsilon \cdot\left|z^{\prime}\right|$. It will be noted that the horn $H(\omega, \epsilon)$ is then a region, and that each of its boundary points except $z^{\prime}=0$ is on the circumference of a circle of center z^{\prime} on $C(\omega)$ and radius $\epsilon\left|z^{\prime}\right|$. But of course the curve C and the horn $H(\omega, \epsilon)$ need not lie entirely in the closed region $\mathcal{R}\left(z^{\prime}\right) \geqq 0$.

We now prove a generalization of Theorem 8.
Theorem 9. Under the hypothesis of Theorem 8 for arbitrary C there exists

[^31]a curve $C\left(\omega_{0}\right)$ such that in every horn $H\left(\omega_{0}, \boldsymbol{\epsilon}\right)$ the transform of the function $f(z)$ takes on every value an infinite number of times, with the exception of at most one value.

Let the numbers ϵ and ϵ_{1} be given, $1>\epsilon>\epsilon_{1}>0$. Consider all circles γ and γ_{1} of radii $r \epsilon$ and $r \epsilon_{1}$ with variable common center (r, θ), where r is bounded and θ is arbitrary. Then the non-euclidean distance from a point of γ_{1} in the region $R\left(z^{\prime}\right)>0$ to the nearest point of γ is bounded from zero, say is greater than or equal to some positive δ independent of r and θ. This conclusion follows from the fact that in studying the non-euclidean distance it is no loss of generality to take $r=1$.

As an application of this remark, since each boundary point of the horn $H\left(\omega, \epsilon_{1}\right)$, lies on a circle γ_{1} with center z^{\prime} on $C(\omega)$ and radius $\epsilon_{1}\left|z^{\prime}\right|$, and since all points interior to the circle γ with center z^{\prime} and radius $\epsilon\left|z^{\prime}\right|$ belong to $H(\omega, \epsilon)$, it follows that the non-euclidean distance from each boundary point of $H\left(\omega, \epsilon_{1}\right)$ in $\mathcal{R}\left(z^{\prime}\right)>0$ to the boundary of $H(\omega, \epsilon)$ is greater than or equal to δ. If all points of a set $\left\{z_{n_{k}}^{\prime}\right\}$ in $\mathcal{R}\left(z^{\prime}\right)>0$ lie in $H\left(\omega, \epsilon_{1}\right)$, then each point whose non-euclidean distance from some $z_{n_{k}}$ is less than δ lies in $H(\omega, \epsilon)$.

Suppose now the points

$$
z_{n}^{\prime}=r_{n} e^{i \theta_{n}}, \quad 0<r_{n} \leqq 1 ; n=1,2, \cdots,
$$

are the transforms in the z^{\prime}-plane of the given q-sequence. Each $z_{n}{ }^{\prime}$ lies on some curve $C\left(\omega_{n}\right)$; in fact, the continuous function $|\sigma(t)|$ must take on the value r_{n} for some value of t, say $t_{n}, 0<t_{n} \leqq 1$, whence

$$
z_{n}^{\prime}=\left|\sigma\left(t_{n}\right)\right| e^{i \theta_{n}}, \quad r_{n}=\left|\sigma\left(t_{n}\right)\right|
$$

so z_{n}^{\prime} lies on the curve

$$
C\left(\omega_{n}\right): \quad z^{\prime}=\omega_{n} \cdot \sigma(t), \quad \omega_{n}=\frac{e^{i \theta_{n}}\left|\sigma\left(t_{n}\right)\right|}{\sigma\left(t_{n}\right)}
$$

Of course t_{n} and ω_{n} need not be uniquely defined, but we choose a specific determination.

Let the set $\omega_{1}, \omega_{2}, \cdots$ on the unit circle have the limit point ω_{0}. Then for every $\epsilon_{1}>0$, the horn $H\left(\omega_{0}, \epsilon_{1}\right)$ has an infinity of the points z_{n}^{\prime} in its interior. For on the arc of $\left|z^{\prime}\right|=1$ in the circle $\left|z^{\prime}-\omega_{0}\right|=\epsilon_{1}$ lie an infinity of points ω_{n}, say $\omega_{n_{1}}, \omega_{n_{2}}, \cdots$. Then of the circle $r=r_{n_{k}}$ the entire arc which lies in the circle

$$
\left|z^{\prime}-\omega_{0} \cdot \sigma\left(t_{n_{k}}\right)\right|=\epsilon_{1} \cdot r_{n_{k}}
$$

lies on $H\left(\omega_{0}, \epsilon_{1}\right)$, and this arc of the circle $r=r_{n_{k}}$ contains the point

$$
z_{n_{k}}^{\prime}=\left|\sigma\left(t_{n_{k}}\right)\right| e^{i \theta_{n_{k}}}
$$

by virtue of the inequality for $\omega_{n_{k}}$

$$
\left|\frac{e^{i \theta_{n_{k}}}\left|\sigma\left(t_{n_{k}}\right)\right|}{\sigma\left(t_{n_{k}}\right)}-\omega_{0}\right| \leqq \epsilon_{1}
$$

We are now in a position to prove Theorem 9. Let C be given. The number ω_{0} is to be determined as just indicated, and thus $C\left(\omega_{0}\right)$ is defined. Then $\epsilon>0$ is arbitrary, and we choose $\epsilon_{1}, 0<\epsilon_{1}<\epsilon$. The points $z_{n_{k}}^{\prime}$ already defined are the transforms of a q-sequence $z_{n_{k}}$; it follows from Theorem 7 that in the set of circles having the $z_{n_{k}}^{\prime}$ as non-euclidean centers and with a common noneuclidean radius the function $f_{1}\left(z^{\prime}\right)$ [transform of $f(z)$] takes on every value with at most one exception an infinite number of times. The points $z_{n_{k}}^{\prime}$ lie in $H\left(\omega_{0}, \epsilon_{1}\right)$, and these non-euclidean circles (chosen with common non-euclidean radius less than the number δ previously defined) all lie in $H\left(\omega_{0}, \epsilon\right)$. The proof is complete.

It is also true that in every $H\left(\omega_{0}, \epsilon\right)$ in every neighborhood of the origin the function $f_{1}\left(z^{\prime}\right)$ takes on every value with at most one exception an infinite number of times.
31. Functions with bounded D_{1}. In studying the relation between $D_{1}(w)$ and $\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)$ we have restricted the class of functions $f(z)$ in such a manner that the associated functions $\phi_{n}(\zeta)$ should form a normal family. For this reason we considered the class of univalent functions, the class of bounded functions, and the class of functions omitting two values. There is, however, another criterion of normality, which was discovered by Bloch ${ }^{69}$). It is the class of functions for which the radius of univalence $D_{1}(w)$ is bounded. The desired relations may be easily obtained for this class. Indeed, we have

Theorem 10. Let $w=f(z)$ be analytic for $|z|<1$, and let $D_{1}(w)$ be uniformly bounded: $D_{1}(w) \leqq D$. Setting $w_{0}=f\left(z_{0}\right)$, where z_{0} is an arbitrary point of $|z|<1$, the inequality

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq\left[K \cdot D_{1}\left(w_{0}\right)\right]^{1 / 2} \tag{31.1}
\end{equation*}
$$

holds, where K may be taken equal to $20 D / B, B$ being Bloch's constant.
We begin by using the method of proof (Montel, ibid.) of Bloch's theorem on normal families. If we set

$$
\begin{align*}
\phi(z)=f\left(\frac{z+z_{0}}{1+\bar{z}_{0} z}\right), \quad g(\zeta)= & \frac{\phi\left[z_{1}+\left(1-\left|z_{1}\right|\right) \zeta\right]}{\left(1-\left|z_{1}\right|\right) \phi^{\prime}\left(z_{1}\right)}, \tag{31.2}\\
& \left|z_{0}\right|<1,\left|z_{1}\right|<1, \phi^{\prime}\left(z_{1}\right) \neq 0,
\end{align*}
$$

we note that $g(\zeta)$ is analytic in $|\zeta|<1$, with $g^{\prime}(0)=1$. Then it follows from Bloch's theorem ($\S 28$, Theorem 5 for $p=1$) that for the function $g(\zeta)$ and for some w we have $D_{1}(w) \geqq B$, where B is Bloch's constant; hence if $D_{1}(w)$ refers now to the function $\phi\left[z_{1}+\left(1-\left|z_{1}\right|\right) \zeta\right]$ we have for some w

[^32]$$
\frac{D_{1}(w)}{\left(1-\left|z_{1}\right|\right) \phi^{\prime}\left(z_{1}\right) \mid} \geqq B .
$$

But by our hypothesis we have $D_{1}(w) \leqq D$, whence

$$
\left|\phi^{\prime}\left(z_{1}\right)\right| \leqq \frac{D}{B\left(1-\left|z_{1}\right|\right)} ;
$$

this inequality is valid in the case $\phi^{\prime}\left(z_{1}\right)=0$, exceptional for (31.2).
If we introduce the notation

$$
\begin{equation*}
\Phi(\zeta)=\phi(\zeta)-\phi(0)=\int_{0}^{5} \phi^{\prime}(\zeta) d \zeta \tag{31.3}
\end{equation*}
$$

where the integral is taken along a line segment, we have for $|\zeta| \leqq \rho<1$

$$
|\Phi(\zeta)| \leqq \int_{0}^{\rho} \frac{D d \rho}{B(1-\rho)}=-\frac{D}{B} \log (1-\rho) .
$$

The inequality of Theorem 2, $\S 10$, can be written in the present case

$$
D_{1}\left(w_{0}\right) \geqq \frac{\left|\phi^{\prime}(0)\right|^{2} \rho^{2}}{-(4 D / B) \log (1-\rho)}, \quad w_{0}=f\left(\dot{z}_{0}\right)
$$

It is seen immediately that the maximum of the function

$$
-\frac{\rho^{2}}{\log (1-\rho)}, \quad 0<\rho<1
$$

occurs when

$$
-\log (1-\rho)=\frac{\rho}{2(1-\rho)}
$$

which is approximately $\rho=.72$, so we may take

$$
D_{1}\left(w_{0}\right) \geqq \frac{B}{10 D}\left|f^{\prime}\left(z_{0}\right)\right|^{2}\left(1-\left|z_{0}\right|^{2}\right)^{2}
$$

This proves the theorem.
As a corollary, it is seen that under the hypothesis of Theorem 10 the condition $D_{1}\left(w_{n}\right) \rightarrow 0$ is a sufficient condition for $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right) \rightarrow 0$ even when $w_{n} \rightarrow \infty$. As a further remark it may be observed that the class of functions considered in Theorem 10 includes the case that the area of the image of $|z|<1$ under the transformation $w=f(z)$ is finite.

It is clear that analogous inequalities could be obtained for the higher derivatives. We proceed instead to the analogous theorem for $D_{p}(w)$ in general:

Theorem 11. Let $w=f(z)$ be analytic for $|z|<1$, and let $D_{p}(w)$ be uniformly bounded: $D_{p}(w) \leqq D_{p}$, where p is given and D_{p} is independent of w. If we set $w_{0}=f\left(z_{0}\right)$, where $\left|z_{0}\right|<1$, we have

$$
\begin{gathered}
\sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu_{0}^{\nu}} \frac{\left(1-\left|z_{0}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{0}\right)}{(k-\nu)!}\right| \\
\leqq 24 p K_{p}\left(\frac{D_{p}}{B_{p}^{\prime}}\right)^{1-2^{-p}}\left[D_{p}\left(w_{0}\right)\right]^{2^{-p}},
\end{gathered}
$$

where B_{p}^{\prime} is the constant of the corollary of $\S 28$, and where K_{p} is a constant depending only on p; indeed we may set

$$
K_{p}=\min \left\{\rho^{-p}[-\log (1-\rho)]^{1-2^{-p}}, 0<\rho<1\right\},
$$

or we may set $K_{p}=2^{p}$.
Of course the boundedness of $D_{p}(w)$, as in Theorem 11, is a stronger condition than the boundedness of $D_{1}(w)$, as in Theorem 10, for we have $D_{p}(w) \geqq D_{1}(w)$.

As before, we introduce $\phi(z)$ by the first of equations (31.2), but set now $G(\zeta)=\phi\left[z_{1}+\left(1-\left|z_{1}\right|\right) \zeta\right]$, where z_{1} is arbitrary provided $\left|z_{1}\right|<1$. Thus $G(\zeta)$ is analytic in $|\zeta|<1$. Then if $D_{p}\left(w_{0}\right)$ refers to $G(\zeta)$ or to $f(z)$, we have by the corollary, §28

$$
D_{p}\left(w_{0}\right) \geqq B_{p}^{\prime}\left[\left|\Phi^{\prime}(0)\right|+\frac{1}{2!}\left|\Phi^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|\Phi^{(p)}(0)\right|\right] .
$$

By virtue of the inequality $D_{p}\left(w_{0}\right) \leqq D_{p}$, we may now write

$$
\frac{D_{p}}{B_{p}^{\prime}} \geqq\left(1-\left|z_{1}\right|\right)\left|\phi^{\prime}\left(z_{1}\right)\right| .
$$

In the notation of (31.3) we have for $|\zeta| \leqq \rho<1$

$$
\begin{equation*}
|\Phi(\zeta)| \leqq-\frac{D_{p}}{B_{p}^{\prime}} \log (1-\rho) . \tag{31.4}
\end{equation*}
$$

The function $\Phi(\rho \zeta)$ is analytic in $|\zeta|<1$ and has there the bound indicated by (31.4). By $\S 19$, Corollary 3 , we may write,

$$
\begin{aligned}
& \rho\left|\Phi^{\prime}(0)\right|+\frac{\rho^{2}}{2!}\left|\Phi^{\prime \prime}(0)\right|+\cdots+\frac{\rho^{p}}{p!}\left|\Phi^{(p)}(0)\right| \\
& \leqq 24 p\left[-\frac{D_{p}}{B_{p}^{\prime}} \log (1-\rho)\right]^{1-2^{-p}} \cdot\left[D_{p}(0)\right]^{-p},
\end{aligned}
$$

and this inequality is valid whether $D_{p}(0)$ refers to $\Phi(\rho \zeta)$ in $|\zeta|<1$, to $\Phi(\zeta)$
in $|\zeta|<\rho$, or to $\Phi(\zeta)$ in $|\zeta|<1$. The first part of Theorem 11 follows at once, where $D_{p}(w)$ refers now to $f(z)$, by $\S 2$, Lemma 2. The latter part of Theorem 11 follows from the inequality for $\rho=1 / 2$

$$
\rho^{-p}[-\log (1-\rho)]^{1-2^{-p}}<2^{p} .
$$

An obvious consequence of Theorem 11 is that under the conditions of that theorem $D_{p}\left(w_{n}\right) \rightarrow 0$ implies

$$
f^{(k)}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right)^{k} \rightarrow 0, \quad k=1,2, \cdots, p
$$

where $w_{n}=f\left(z_{n}\right),\left|z_{n}\right|<1$; this conclusion is valid even if $w_{n} \rightarrow \infty$.
32. Comments on condition $\left|z_{n}\right| \rightarrow 1$. In the major part of the present paper, so far as it deals with $D_{1}(w)$, we are concerned with a function $f(z)$ analytic for $|z|<1$ and the two conditions

$$
\begin{array}{rlr}
D_{1}\left(w_{n}\right) & \rightarrow 0, & w_{n}=f\left(z_{n}\right), \\
f^{\prime}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right) & \rightarrow 0 . & \tag{32.2}
\end{array}
$$

In the present section we propose to study the further condition

$$
\begin{equation*}
\left|z_{n}\right| \rightarrow 1 \tag{32.3}
\end{equation*}
$$

in its relation to (32.1) and (32.2). To some extent, our remarks will be a recapitulation of material already developed.

The relation (32.2) implies (32.1) with no further restriction on $f(z)$, as follows from §4, Theorem 2.

For a univalent function $f(z)$, relation (32.1) implies (32.2) by $\S 4$, Theorem 1^{\prime}. For such a function each of the conditions (32.1) and (32.2) implies (32.3), because $f^{\prime}(z)$ has a positive lower bound in the closed region $|z| \leqq r<1$; but (32.3) does not imply (32.1) or (32.3), as is illustrated by the function $f(z)=z /(1-z)^{2}$, when real $z \rightarrow 1$; nevertheless(32.3) combined with the boundedness of w_{n} implies (32.1) and (32.3), as follows by the kind of reasoning about to be given.

However, if $f(z)$ is both univalent and bounded, each of the conditions (32.1), (32.2), (32.3) implies all those conditions; it is sufficient now to show that (32.3) implies (32.1). The plane region R which is the image of $|z|<1$ under the map $w=f(z)$ can be considered the sum of the plane regions R_{v}, the respective images of $|z|<1-1 / \nu, \nu=1,2, \cdots$, under the map $w=f(z)$. The regions R_{ν} increase monotonically; given an arbitrary $\delta>0$, there exists an index N_{δ} such that every point of $R_{N \delta}$ lies within a distance less than δ of the boundary of R; the inequality $|z|>1-1 / N_{\delta}$ implies $D_{1}(w)<\delta$; thus (32.3) implies (32.1) and hence (32.2).

Let now $f(z)$ be bounded in $|z|<1$; we have already indicated ($\S 10$) that the conditions (32.1) and (32.2) are equivalent. Nevertheless it is obvious that (32.1) does not imply (32.3); whenever z_{n} approaches a point z_{0} with $\left|z_{0}\right|<1, f^{\prime}\left(z_{0}\right)=0$, the relation (32.1) is satisfied without (32.3): nevertheless,
if $D_{1}\left(w_{n}\right) \rightarrow 0$, there exists a subsequence of the z_{n} which approaches a point z_{0}, with either $f^{\prime}\left(z_{0}\right)=0,\left|z_{0}\right|<1$, or $\left|z_{0}\right|=1$. Reciprocally, Szegö's example (introduction to Chapter II) shows that (32.3) may be satisfied without (32.1).

Let us suppose now $f(z)$ bounded in $|z|<1,|f(z)| \leqq M,\left|z_{n}\right| \rightarrow 1, w_{n}=f\left(z_{n}\right)$ $\rightarrow w_{0}, D_{1}\left(w_{n}\right) \geqq \delta>0$; we shall derive some geometric properties of the Riemann configuration R onto which the transformation $w=f(z)$ maps $|z|<1$. By inequality (4.4) we may write also

$$
\begin{equation*}
\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \geqq \delta . \tag{32.4}
\end{equation*}
$$

Let r be arbitrary, $0<r<1$. The function

$$
\phi(\zeta)=f\left(\frac{\zeta+z_{n}}{1+\bar{z}_{n} \zeta}\right)
$$

is analytic in $|\zeta|<r$, has a modulus there not greater than M, with $\left|\phi^{\prime}(0)\right|=\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \geqq \delta$. It follows from the Landau-Dieudonné theorem ((10) that the image of $|\zeta|<r$ under the transformation $w=f(z)$ contains a smooth circle whose center is w_{n} and whose radius is at least $r^{2} \delta^{2} / 8 M=\delta_{1}$. By virtue of the relation $\left|z_{n}\right| \rightarrow 1$, it is possible to choose a subsequence $z_{n_{k}}$ having the property that the circle whose non-euclidean center is $z_{n_{k}}$ and noneuclidean radius $2 \log [(1+r) /(1-r)]$ contains on or within it none of the points $z_{n_{k+j}}, j>0$; as a consequence it follows from the triangle inequality that the circles $\gamma_{n_{k}}$ whose non-euclidean centers are the points $z_{n_{k}}$ having the common non-euclidean radius $\log [(1+r) /(1-r)]$ are mutually exterior; this circle $\gamma_{n_{k}}$ is the image of $|\zeta|=r$ under the transformation $z=\left(\zeta+z_{n_{k}}\right) /\left(1+\bar{z}_{n_{k}} \zeta\right)$. Then the closed interiors of the smooth circles $C_{n_{k}}$ on R whose centers are the respective points $w_{n_{k}}$ having the common radius δ_{1} are mutually disjoint. By virtue of our assumption $w_{n} \rightarrow w_{0}$, it appears that the configuration R has an infinity of separate sheets over the point $w=w_{0}$, each sheet containing a circle of center w_{0} and radius $\delta_{1}-\eta$, where η is arbitrary. We shall prove

Theorem 12. Let the function $f(z)$ analytic and bounded in $|z|<1$ admit a sequence z_{n} with $\left|z_{n}\right|<1,\left|z_{n}\right| \rightarrow 1$,

$$
\begin{equation*}
D_{1}\left(w_{n}\right) \geqq \delta>0, \quad w_{n}=f\left(z_{n}\right) \tag{32.5}
\end{equation*}
$$

Then there exists a value $w=w_{0}$ such that the Riemann configuration R onto which the transformation $w=f(z)$ maps $|z|<1$ has an infinity of separate sheets over the point $w=w_{0}$, each sheet containing a smooth circle whose center lies over the point $w=w_{0}$ and whose radius is $\delta_{2}>0$, where δ_{2} is suitably chosen.

In Theorem 12, the condition (32.5) may of course be replaced by the condition that $\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right)$ should be bounded from zero, a condition that implies (32.5).

To prove Theorem 12 it suffices to apply the reasoning already given to a subsequence of the w_{n} possessing a limit. Of course it is not possible to assert
here that the original sequence of circles of radii $D_{1}\left(w_{n}\right)$ corresponds to separate sheets of R; if the circles of radii $D_{1}\left(w_{2 n}\right)$ are given arbitrarily, corresponding to separate sheets of R, the point $z_{2 n+1}$ can be chosen so near $z_{2 n}$ that the corresponding circles overlap, while an inequality of form (32.5) persists.

Conversely, let $f(z)$ now be analytic and bounded for $|z|<1$, and let $w=f(z)$ map $|z|<1$ onto a Riemann configuration which has an infinity of separate sheets over some point w_{0}, each sheet containing a smooth circle γ_{n} whose center lies over the point $w=w_{0}$ and whose radius is $\delta_{2}>0$; it is obvious that the centers of these smooth circles can be chosen as points w_{n} so that the relation $D_{1}\left(w_{n}\right) \geqq \delta_{2}$ is fulfilled. The relation $\left|z_{n}\right| \rightarrow 1$ follows because otherwise a subsequence $z_{n_{k}}$ has a limit point z_{0}, with $\left|z_{0}\right|<1$; we have $w_{0}=f\left(z_{n_{k}}\right)$, hence $w_{0}=f\left(z_{0}\right)$; an infinity of points $z_{n_{k}}$ lie in an arbitrary neighborhood of z_{0}; an infinity of the points $w_{n_{k}}=f\left(z_{n_{k}}\right)$ on R lie on R in each C_{p} whose center is $w_{0}=f\left(z_{0}\right)$, where $p-1$ is the order of z_{0} as a zero of $f(z)$; this is in contradiction to our hypothesis that the γ_{n} lie in distinct sheets of R; the converse of Theorem 12 is established.

In Theorem 12 and its converse, we have supposed $f(z)$ to be bounded; it also sufficient if $f(z)$ has two exceptional values in $|z|<1$; compare §22.

We add one further remark, in a somewhat different order of ideas. Let $w=f(z)$ be analytic in $|z|<1$, and let us suppose

$$
\begin{equation*}
\limsup _{z \rightarrow 1} D_{1}(w)<\infty ; \tag{32.6}
\end{equation*}
$$

this condition is a consequence of

$$
\begin{equation*}
\underset{z \rightarrow 1}{\lim \sup }\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)<\infty, \tag{32.7}
\end{equation*}
$$

if (32.7) itself is valid. It follows from (32.6) that $D_{1}(w)$ is uniformly bounded in $|z|<1$. Hence (32.1) and (32.2) are equivalent. Moreover, the discussion of Theorem 12 and its converse applies here. But even under these circumstances it is not true that (32.3) implies (32.1) or (32.2); this is shown by the function $w=f(z)$ with $f(0)=0, f^{\prime}(0)>0$, which maps $|z|<1$ onto the strip $|v|<\pi$, where $w=u+i v$; we have $D_{1}(w) \leqq \pi$. But when z_{n} is positive, $z_{n} \rightarrow 1$, we have $D_{1}\left(w_{n}\right)=\pi$, so neither (32.1) nor (32.2) is satisfied.
33. p-valent functions. For p-valent functions we can obtain results analogous to those for bounded functions and for functions which have two exceptional values.

Theorem 13. Let the function $f(z)$ be analytic and p-valent in the region $|z|<1$. Then we have

$$
\begin{equation*}
\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right| \leqq A_{p} \cdot D_{p}(0) \tag{33.1}
\end{equation*}
$$

where A_{p} is a numerical constant depending only on p.

We assume $f(0)=0$, which obviously involves no loss of generality. We write for reference the inequality

$$
\begin{align*}
\mu_{p} & =\max \left[\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{p}\right|\right] \leqq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{p}\right|, \\
a_{k} & =\frac{1}{k!} f^{(k)}(0) . \tag{33.2}
\end{align*}
$$

A theorem due to M. L. Cartwright $\left({ }^{70}\right)$ asserts that under the conditions of Theorem 1, since we have $f(0)=0$, we have

$$
\begin{equation*}
|f(z)| \leqq A_{p}^{\prime} \cdot \mu_{p} \cdot(1-r)^{-2 p}, \quad|z| \leqq r<1 \tag{33.3}
\end{equation*}
$$

where A_{p}^{\prime} is a number depending only on p and where μ_{p} is defined by (33.2). We shall use (33.3) for the particular value $r=1 / 2$:

$$
\begin{equation*}
|f(z)| \leqq 2^{2 p} \cdot A_{p}^{\prime} \cdot \mu_{p}, \quad|z| \leqq 1 / 2 \tag{33.4}
\end{equation*}
$$

The function $F(z) \equiv f(z / 2)$ is analytic in the region $|z|<1$ and has there the bound $2^{2 p} \cdot A_{p}^{\prime} \cdot \mu_{p}$. If $D_{p}(0)$ refers to $F(z)$ or to $f(z)$ we have by $\S 19$, Corollary 3,

$$
\begin{align*}
\left.\left|F^{\prime}(0)\right|+\frac{1}{2!}\left|F^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!} \right\rvert\, & F^{(p)}(0) \mid \tag{33.5}\\
& \leqq B_{p}\left[2^{2 p} \cdot A_{p}^{\prime} \cdot \mu_{p}\right]^{1-2^{-p}} \cdot\left[D_{p}(0)\right]^{2^{-p}}
\end{align*}
$$

where B_{p} may be chosen as $24 p$. The first member of (33.5) can be written

$$
\frac{1}{2}\left|f^{\prime}(0)\right|+\frac{1}{2^{2} \cdot 2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{2^{p} \cdot p!}\left|f^{(p)}(0)\right|
$$

which is not greater than

$$
\frac{1}{2^{p}}\left[\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right|\right]
$$

A consequence of (33.5) and (33.2) is then the inequality

$$
\begin{aligned}
{\left[\left|f^{\prime}(0)\right|+\frac{1}{2!}\left|f^{\prime \prime}(0)\right|+\cdots+\frac{1}{p!}\left|f^{(p)}(0)\right|\right]^{2-p} } & \\
& \leqq 2^{p} \cdot B_{p}\left[2^{2 p} \cdot A_{p}^{\prime}\right]^{1-2-p} \cdot\left[D_{p}(0)\right]^{2^{-p}}
\end{aligned}
$$

which can be put into the form (33.1).
By virtue of §2, Lemma 2 and $\S 20$, Theorem 2, we can formulate from Theorem 1

Theorem 14. Let the function $f(z)$ be analytic and p-valent in the region $|z|<1$. Then with the conditions $\left|z_{0}\right|<1, w_{0}=f\left(z_{0}\right)$, we have
${ }^{(70)}$ Mathematische Annalen, vol. 111 (1935), pp. 98-118.

$$
\gamma_{p} \cdot D_{p}\left(w_{0}\right) \leqq \sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu \bar{z}_{0}^{\nu}} \frac{\left(1-\left|z_{0}\right|^{2}\right)^{k-\nu}}{(k-\nu)!} \cdot f^{(k-\nu)}\left(z_{0}\right)\right| \leqq \Theta_{p} \cdot D_{p}\left(w_{0}\right),
$$

where γ_{p} is the number of $\S 20$, Theorem 2 , and Θ_{p} is a number depending only on p which may be chosen as A_{p} in Theorem 1.

Consequently if we have $\left|z_{n}\right|<1, w_{n}=f\left(z_{n}\right)$, a necessary and sufficient condition for

$$
\lim _{n \rightarrow \infty} f^{(k)}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right)^{k}=0, \quad k=1,2, \cdots, p
$$

is the condition $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$.
The case $p=1$ brings us back to $\S 4$, Theorem 3 .
34. Some extensions to meromorphic functions. Let us consider a class of functions $f(z)$ meromorphic in $|z|<1$, omitting there the three distinct values a, b, c, and such that $f(0)=A,|A| \leqq A_{0}$, where A_{0} is a positive constant independent of the particular function of the class. Corresponding to this class there exists a number $\theta(0<\theta<1)$ such that we have

$$
\begin{equation*}
|f(z)| \leqq \Omega\left(A_{0}, \theta\right) \tag{34.1}
\end{equation*}
$$

for $|z|<\theta$, where Ω is independent of any particular function of the class.
Indeed, suppose no such value of θ existed. On the circle $|z|=1 / n$ some function $f_{n}(z)$ would attain a value of modulus exceeding n. From the sequence of functions $f_{n}(z)$ one can extract a subsequence converging uniformly(${ }^{71}$) in every closed subregion of $|z|<1$ either to a meromorphic function or to the infinite constant. The second alternative cannot take place since by hypothesis $\left|f_{n}(0)\right| \leqq A_{0}$ for all n. But, on the other hand, if the sequence $f_{n}(z)$ converges to a meromorphic function, the latter must have a pole at the origin which is not possible on account of the condition $\left|f_{n}(0)\right| \leqq A_{0}$. Hence, the asserted existence of θ has been established.

Let $z_{0}\left(\left|z_{0}\right|<1\right)$ be a point such that, setting $w_{0}=f\left(z_{0}\right)$, we have $\left|w_{0}\right| \leqq A_{0}$. Consider the function

$$
\phi(\zeta)=f\left(\frac{\zeta+z_{0}}{1+\bar{z}_{0} \zeta}\right)
$$

which is meromorphic in $|\zeta|<1$, omits there the values a, b, c, and for which $\phi(0)=w_{0}$. In accordance with (34.1) we have

$$
|\phi(\zeta)| \leqq \Omega\left(A_{0}, \theta\right)
$$

in $|\zeta|<\theta$. Hence, in $|\zeta|<1$ we have

$$
|\phi(\theta \zeta)| \leqq \Omega\left(A_{0}, \theta\right) .
$$

[^33]Now, applying Theorem 5, Chapter III, we obtain the inequality

$$
\begin{equation*}
\theta\left|\phi^{\prime}(0)\right|+\frac{\theta^{2}}{2!}\left|\phi^{\prime \prime}(0)\right|+\cdots+\frac{\theta^{p}}{p!}\left|\phi^{(p)}(0)\right| \leqq \Lambda_{p}^{\prime}\left[D_{p}\left(w_{0}\right)\right]^{2^{-p}}, \tag{34.2}
\end{equation*}
$$

where Λ_{p}^{\prime} depends on p, θ, and A_{0}. It is clear, furthermore, that θ depends on a, b, c, A_{0} but not on $\phi(\zeta)$ and consequently may be omitted by modifying Λ_{p}^{\prime} properly. It is also to be noted that $D_{p}\left(w_{0}\right)$ in (34.2) is the radius of p-valence at the point w_{0} of the Riemann surface on which the function $\phi(\theta \zeta)$ maps $|\zeta|<1$ which is the same as the radius of p-valence at the point w_{0} of the Riemann surface on which $\phi(\zeta)$ maps $|\zeta|<\theta$. This radius of p-valence is not greater than the radius of p-valence at the point w_{0} of the Riemann surface on which $\phi(\zeta)$ maps $|\zeta|<1$. Hence, if in (34.2) we return to the function $f(z)$ we obtain the inequality

$$
\begin{equation*}
\sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu z_{0}^{\nu}} \frac{\left(1-\left|z_{0}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{0}\right)}{(k-\nu)!}\right| \leqq \Lambda_{p}^{\prime}\left[D_{p}\left(w_{0}\right)\right]^{2-p}, \tag{34.3}
\end{equation*}
$$

where $D_{p}\left(w_{0}\right)$ is now the radius of p-valence at the point w_{0} of the Riemann surface on which $f(z)$ maps the circle $|z|<1$.

Now, as is remarked in $\S 21$ after the proof of Theorem 2, that theorem requires analyticity only in the neighborhood of the origin, which $f(z)$ possesses in $|z|<\theta$. Hence, applying Theorem 2 we find that

$$
\begin{equation*}
\lambda_{p} D_{p}\left(w_{0}\right) \leqq \sum_{k=1}^{p}\left|\sum_{\nu=0}^{k-1}(-1)^{\nu} C_{k-1, \nu} \bar{z}_{0}^{\nu} \frac{\left(1-\left|z_{0}\right|^{2}\right)^{k-\nu} f^{(k-\nu)}\left(z_{0}\right)}{(k-\nu)!}\right| \tag{34.4}
\end{equation*}
$$

where λ_{p} depends on p alone. Thus, we may state
Theorem 15. Let $f(z)$ be a function meromorphic in $|z|<1$, omitting there the three distinct values a, b, c. Let $z_{0}\left(\left|z_{0}\right|<1\right)$ be a point such that, setting $w_{0}=f\left(z_{0}\right),\left|w_{0}\right| \leqq A_{0}$ where A_{0} is a positive constant. Then, the inequalities (34.3) and (34.4) hold, where Λ_{p}^{\prime} depends on A_{0}, a, b, c, but not on z_{0} or $f(z)$.

It follows that if under the hypotheses of Theorem 15 for a sequence of points $z_{n}\left(\left|z_{n}\right|<1\right)$ the sequence $w_{n}=f\left(z_{n}\right)$ is bounded, then a necessary and sufficient condition for $\lim _{n \rightarrow \infty} f^{(k)}\left(z_{n}\right)\left(1-\left|z_{n}\right|^{2}\right)^{k}=0(k=1,2, \cdots, p)$ is $\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0$.

It will be noted that under the conditions of Theorem 15 we have $\dot{D}_{p}(w) \leqq|w-a|$ so that inequality (34.3) gives an inequality on the approach to zero of $\left(1-|z|^{2}\right)^{k}\left|f^{(k)}(z)\right|$ as w tends to zero, for every k.

We add the remark that much of the discussion of §27 can be carried over to meromorphic functions which omit three values; this development is left to the reader.

University of Rochester, Rochester, N. Y.
Harvard University, Cambridge, Mass.

[^0]: ${ }^{(1)}$ O. Szász, Mathematische Zeitschrift, vol. 8 (1920), pp. 303-309.
 $\left.{ }^{(2}\right)$ G. Pick, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienna, Abteilung IIa, vol. 126 (1917), pp. 247-263; R. Nevanlinna, Översigt af Finska Vetenskaps Societetens Förhandlingar, vol. 62 (1919).
 $\left.{ }^{(3}\right)$ M. L. Cartwright, Mathematische Annalen, vol. 111 (1935), pp. 98-118.
 ${ }^{(4)}$ J. E. Littlewood, Proceedings of the London Mathematical Society, vol. 23 (1924) p. 507; A. J. Macintyre, Journal of the London Mathematical Society, vol. 11 (1936), pp. 7-11.

[^1]: ${ }^{(5)}$ We use the term Riemann configuration on which the function $w=f(z)$ regular in $|z|<1$ maps the circle $|z|<1$ to denote that subregion of the Riemann surface of the inverse function of $w=f(z)$ which corresponds to the circle $|z|<1$.
 ${ }^{\left({ }^{6}\right)}$ Leģons sur les Fonctions Univalentes ou Multivalents, Paris, 1933, pp. 22 and 110.
 ${ }^{(7)}$ O. Szász, Mathematische Zeitschrift, vol. 8 (1920), pp. 306-307.

[^2]: ${ }^{(8)}$ The function $\phi(\zeta)$ plays an important role in the theory of univalent functions, cf. P. Montel, Leçons Sur Les Fonctions Univalentes ou Multivalentes, Paris, 1933, p. 51.
 ${ }^{(}{ }^{9}$ See, for example, P. Montel, loc. cit., p. 50.

[^3]: ${ }^{(10)}$ The "inner radius" of a simply connected region R with respect to an interior point w_{0} is the radius of the circle on which the region R can be mapped conformally by a function $f(w)$ so that $f\left(w_{0}\right)=0$ and $f^{\prime}\left(w_{0}\right)=1$. Cf. G. Polya and G. Szeg", Aufgaben und Lehrsätze, vol. II, Berlin, 1925, pp. 16-21.
 ${ }^{(11)}$ Inequalities (4.1) and (4.3) together with Corollary 2 below were first proved by J. L. Walsh, Bulletin of the American Mathematical Society, vol. 44 (1938), pp. 520-523. In the same paper the author suggests the use of the present method in the study of higher derivatives of univalent functions, which is one of the principal topics taken up in the present chapter.

[^4]: ${ }^{(12)}$ That is to say, under a smooth map of the region $|z|<1$ by a function $w=f(z)$ with $f(0)=0, f^{\prime}(0)=1,|f(z)|<M$, every boundary point of the image in the w-plane satisfies the inequality $|w| \geqq\left[M-\left(M^{2}-M\right)^{1 / 2}\right]^{2}$. See Pick, and R. Nevanlinna, loc. cit.

[^5]: ${ }^{(13)}$ As was pointed out by Walsh (loc. cit.), Corollary 2 may also be proved by Carathéodory's method of the conformal mapping of variable regions, cf. C. Carathéodory, Conformal Representation, Cambridge, 1932, p. 75.

[^6]: ${ }^{(15)}$ L. Bieberbach, Sitzungsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, vol. 38 (1916), pp. 940-955; K. Löwner, Mathematische Annalen, vol. 89 (1923), pp. 103-121.
 ${ }^{(16)}$ See, for example, L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d edition, 1931, p. 80, Footnote 4.

[^7]: ${ }^{(19)}$ See, for instance, Paul Montel, loc. cit., p. 52.
 $\left.{ }^{(20}\right)$ W. E. Sewell, these Transactions, vol. 41 (1937), p. 90.

[^8]: ${ }^{(22)}$ F. and M. Riesz, Compte Rendu du Quatrième Congrès des Mathématiciens Scandinaves, 1920, pp. 28-30.

[^9]: ${ }^{(23)}$ See, for example, R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936, p. 185.
 ${ }^{(24)}$ After integration by parts the integral in (8.7) becomes one of the type considered in Carathéodory's proof of Fatou's theorem. Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d edition, (1931), pp. 148-151.
 ${ }^{(25)}$ The corollary includes a result stated by M. Lavrentieff, Physico-Mathematical Institute of Stekloff, vol. 5 (1934), p. 207.

[^10]: ${ }^{(27)}$ E. Lindelöf, Acta Societatis Scientiarum Fennicae, vol. 46 (1915).

[^11]: ${ }^{(30)}$ Acta Societatis Scientiarum Fennicae, vol. 46 (1915). Or see Walsh, Interpolation and Approximation, §2.1. In applying Lindelöf's result it is essential to notice that the region R is bounded independently of the numbers d_{k}.
 ${ }^{(31)} \mathrm{Cf} . \S 4$, Footnote 10.
 (${ }^{32}$) In the proof of Theorem 7 we might equally well have used an example due to Szegö, Mathematische Zeitschrift, vol. 23 (1925), pp. 45-61; pp. 57-59. Szegö does not mention the

[^12]: property (9.2), nor does Sewell, but the latter (these Transactions, vol. 41 (1937), pp. 84-123) mentions for Szegö's region the relation (notation of $\S 1) \lim _{k \rightarrow \infty} D_{1}\left(w_{k}\right) / Q\left(\left|z_{k}\right|\right)=\infty, w_{k}=F\left(z_{k}\right)$, which by virtue of the inequality $\left|F^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|^{2}\right) \geqq D_{1}\left(w_{n}\right)$ implies (9.2). Szegö's example does not seem to apply at once to higher derivatives.

 The method of proof of Theorem 7 has also been employed by Walsh, Bulletin of the American Mathematical Society, vol. 46 (1940), pp. 101-108, for a somewhat different purpose.

[^13]: ${ }^{\left({ }^{36}\right)}$ E. Landau, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Berlin, Physikalisch-Mathematische Klasse, (1926), pp. 467-474; J. Dieudonné, Annales de l'École Normale Supérieure, (3), vol. 48 (1931), pp. 247-358.

[^14]: ${ }^{\left({ }^{37}\right)}$ It will be observed from the above that it might be of advantage sometimes to replace the right-hand side of (10.1) by $\left[4 M^{\prime} D_{1}\left(w_{0}\right)\right]^{1 / 2}$ where M^{\prime} is the least upper bound of $\left|f\left(\left(z+z_{0}\right) /\left(1+\bar{z}_{0} z\right)\right)-f\left(z_{0}\right)\right|$ for $|z|<1$ and z_{0} fixed.
 ${ }^{(38)}$ J. Dieudonné, ibid.
 ${ }^{\left({ }^{39}\right)}$ For the notions of non-euclidean geometry particularly in their relation to the theory of functions, cf. G. Julia, Principes Géomêtriques d'Analyse, Première Partie, 1930, especially Chapters II and IV.

[^15]: ${ }^{(40)}$ This follows from the fact that the functions $g_{n}(\zeta)$, being uniformly bounded in their totality in $|\zeta|<1$, form a normal family, cf. P. Montel, Legons Sur les Familles Normales de Fonctions Analytiques, 1927, p. 21.

[^16]: ${ }^{(41)}$ Such products were first introduced by W. Blaschke, Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften, Mathematisch-Physische Klasse, Leipzig, vol. 67 (1915), pp. 194-200.
 $\left.{ }^{(42}\right)$ Cf. G. Julia, ibid., pp. 65-66.
 ${ }^{(43)}$ W. Seidel, these Transactions, vol. 34 (1932), pp. 14-15. Equation (7.2) there should read

 $$
 \phi(z)=\prod_{n=1}^{\infty} t_{n} \frac{1-z / t_{n}}{1-t_{n} z} .
 $$

[^17]: ${ }^{(44)}$ T. Radó, Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae FranciscoJosephinae, Szeged, vol. 1 (1922), p. 55. Preliminary related work is due also to Fatou and Julia.

[^18]: ${ }^{(47)}$ We shall say that a function $f(z)$ is p-valent in a region R if it assumes no value more than p times in R and at least one value precisely p times. A function $f(z)$ will be called at most p-valent in R if it is q-valent in R for some $q \leqq p$.
 ${ }^{(48)}$ W. F. Osgood and E. H. Taylor, these Transactions, vol. 14 (1913), pp. 277-298; C. Carathéodory, Mathematische Annalen, vol. 73 (1913), pp. 305-320.
 $\left({ }^{49}\right)$ Cf. G. Julia, loc. cit., p. 44 ff .

[^19]: ${ }^{(50)}$ For the notion of kernel of a sequence of domains cf. C. Carathéodory, Conformal Representation, Cambridge Tract in Mathematics and Mathematical Physics, no. 28, (1932), pp. 74-77.

[^20]: ${ }^{(52)}$ E. Landau, Sitzungsberichte der Königlichen Preussischen Akademie der Wissenschaften, Berlin, 1926, pp. 467-474.
 ${ }^{(53)}$ J. Dieudonné, Annales de l'École Normale Supérieure, vol. 48 (1931), pp. 247-358. Or see Montel, Fonctions Univalentes, §37.

[^21]: ${ }^{(55)}$ T. Radó, ibid.

[^22]: ${ }^{(57)}$ The case $f(z) \neq a, b$ may always be reduced to the above case by considering $\phi(z)$ $=(f(z)-a) /(b-a)$.
 ${ }^{(58)}$ Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 2d. edition, 1931, p. 224.

[^23]: ${ }^{(60)}$ Study of the variation of arg $(d w)$ on the arc shows that the arc lies wholly in the circle in question, and hence that $D_{1}\left(w_{n}\right)=\left|F(W)-F\left(W_{n}\right)\right|$, where $W=1+2 n \pi i$. A similar fact holds under Remarks 1 and 2.

[^24]: ${ }^{(61)}$ The reasoning employed in the proof of this inequality is well known. Cf. A. Ostrowski, Abhandlungen des Mathematischen Seminars der Hamburgischen Universität, vol. 1 (1922), pp. 327-350; S. Mandelbrojt, Comptes Rendus de l'Académie des Sciences, Paris, vol. 185 (1927), pp. 1098-1100; H. Cartan, Annales de l'École Normale Supérieure, (3), vol. 45 (1928), pp. 255-346; J. L. Walsh, Tôhoku Mathematical Journal, vol. 38 (1933), pp. 375-389.

[^25]: ${ }^{(62)}$ S. Mandelbrojt, loc. cit.

[^26]: ${ }^{\left({ }^{63}\right)}$ The proof of this theorem given by Mandelbrojt, loc. cit., is not clear to the writers. The proof given in the text was suggested to the authors by Professor S. E. Warschawski.

[^27]: ${ }^{(64)}$ Geometrically, this condition means that the Riemann surface on which $w=f(z)$ maps the unit circle $|z|<1$ does not wind infinitely many times about the point $w=a$.

[^28]: ${ }^{(65)}$ See, for example, P. Montel, Leçons sur les Fonctions Univalentes ou Multivalentes, Paris, 1933, p. 121, where a different example is given.

[^29]: ${ }^{(66)}$ For the definition of regularity see Definition 1 of $\S 11$, Chapter II.

[^30]: ${ }^{(67)}$ This result for bounded functions was established by a different method by one of the present authors: W. Seidel, these Transaction, vol. 34 (1932), pp. 1-21; especially Theorem 3, p. 10 .

[^31]: ${ }^{(68)}$ G. Julia, Lȩ̧ons sur les Fonctions Uniformes à Point Singulier Essentiel Isole, Paris, 1924, p. 105 ff.

[^32]: ${ }^{(69)}$ Cf. P. Montel, ibid., p. 115.

[^33]: ${ }^{(7)}$ Defined, for instance, as by Montel, Leģons sur les Familles Normales de Fonctions Analytiques, Paris, 1927, p. 124.

