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The difficulty of the problem of three bodies led Jacobi(1) to introduce a

simplifying assumption, designed to make the problem more amenable to

mathematical attack, but such that the problem retains its astronomical sig-

nificance. In the restricted problem of three bodies Jacobi postulated that

two masses known as finite masses revolve perpetually in concentric circles

about their common center of mass in accordance with the laws of the two

body problem and required the motion of a third mass termed the infinitesi-

mal mass under the assumption that it is attracted by the two finite masses

according to the Newtonian law of gravitation.

In this paper the scope of the problem is enlarged by permitting the two

finite masses to move in accordance with an arbitrarily chosen solution of the

two body problem. One is immediately led to three types of restricted prob-

lems according as one finite mass moves in an ellipse(2), parabola or hyperbola

about the other as focus. As might be expected, considerable simplification

occurs when the conic section degenerates into a line segment.

A restricted problem of three bodies may always be reduced to a quasi-

Lagrangian system^)

d  dL     dL dL
—-+ k-= 0,      L = L{qr, q8, t),      k = k{t),
dt dqr     dqr dqr

by the introduction of suitable variables. Such systems reduce to Lagrangian

systems upon introduction of a Lagrangian function L = e'L, where / = fkdt.

Parts I, II, III of the paper are devoted to a study of these systems, partly

with a view of their applications to the restricted problem of three bodies

Presented to the Society in two parts, the first under the title Restricted problems in three

bodies on December 29, 1938 and the second under the title Quasi-Lagrangian systems on April

26, 1940; received by the editors June 27, 1941, and, in revised form, March 27, 1942.

(1) R. Marcolongo, II problema dei ire corpi, Milan, 1919, p. 97, ascribes the problem to

Jacobi. Recently the following papers, among others, have appeared on the problem: G. D.

Birkhoff, Sur le Probleme restreint des trots corps, Annali della R. Scuola Normale Superiore di

Pisa, (2), vol. 4 (1935), pp. 1^0 (first memoir) and (2), vol. 5 (1936), pp. 1-42 (second memoir);

A. Wintner, Beweis des E. Strömgrenschen dynamischen Abschlussprincips der periodischen Bahn-

gruppen im restringierten Dreikörperproblem, Mathematische Zeitschrift, vol. 34 (1931), pp. 321-

349, where further references are given. See also A. Wintner, The Analytical Foundations of

Celestial Mechanics, Princeton, 1941.

(2) The restricted problem of elliptic type has been investigated by F. R. Moulton, Periodic

Orbits, Carnegie Institute of Washington Publication, 1920, pp. 217-284.

(3) Special cases of these systems have been considered by Elliott. See P. Appell Traite de

Mecanique Rationelle, Paris, 1902, vol. 1, pp. 582-583, where further references are given.
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and partly because of their intrinsic interest as examples of non-conservative

systems. Among other things, their "limiting motions" are studied; in par-

ticular, conditions sufficient to insure that a motion tends toward equilibrium

are obtained. For quasi-conservative (Lt = 0, k = const.) systems it is possible

to obtain a generalization of the energy integral and of the principle of least

action, the latter involving a Mayer calculus of variations problem. Parts

IV, V, VI deal with the restricted problem of three bodies. In the main they

are concerned with the behavior of the infinitesimal mass as the two finite

masses recede to infinity or approach (or leave) a collision along a degenerate

conic section.

I. QUASI-LAGRANGIAN SYSTEMS

1. General principles. A dynamical system with n degrees of freedom and

equations of motion(4)

d   ÖL     ÖL dL
(1)-V k —7- = 0,      L = (areq\q./2) + b^r + c,      k = k(t),

dt dqr      dqr dqr

is termed a quasi-Lagrangian system. If & is a positive constant, the quasi-

Lagrangian system becomes a dissipative system for which Rayleigh's dis-

sipation function(6) is proportional to the Lagrangian function. It is readily

verified that the equations of motion may be given the variational form

(2) 5 J* 1 elLdt = 0,       I = f kdt,

there being no variation in the time t, nor in the end points of the varied

curves. Subjected to Legendre's transformation they take the canonical

form(6)

(3) qr = HPr,      pr= - Hqr - kpr,     H = (a"2/)(pr - br)(ps - b.) - c,

the integration of which is equivalent to the determination of a complete

solution of the partial differential equation

(4) St + kS + Hit, qT, SJ = 0.

This partial differential equation accordingly plays the role of the Hamilton-

Jacobi partial differential equation.

In place of Liouville's theorem which likens the flow in the phase space

(') All functions are assumed analytic in their arguments. The dot denotes differentiation

with respect to the time t. The matrix ||ar,|| is assumed to be positive definite and the repeated

indices denote summation from 1 to n.

(6) For the theory of Rayleigh's dissipation functions see E. T. Whittacker, A Treatise on

the Analytical Dynamics of Particles and Rigid Bodies, Cambridge, 1927, pp. 230-231.

(•) The reciprocal matrix of ||or8|| is denoted by ||ar*|[.
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of a Lagrangian system to that of an incompressible fluid, the flow in the

phase space of a quasi-Lagrangian system obeys the law Venl = const., where

V is the 2»-dimensional volume of a portion of the phase space at time t. To

prove this, one notes that the condition (7) for jMdV to be an integral invari-

ant of (3) yields Me~nl = const.

The rate at which the energy H is changing along a motion of (3) is ex-

pressed by

dH/dt = - kprHPr + H„

and the system is termed acquisitive or dissipative in a certain time interval

according as dH/dt ^0 holds in this time interval for every motion of the

system. The two forms of H important for the restricted problem of three

bodies turn out to be

H = {a"/2)(pr - e-'br)(pB - e~%) - c,

H = (a"/2)(pT - e-%){ps - e~%) - e~lc,

where a™, bT, c are functions of qr only. One finds

dH/dt = - ka">{pr - e-'br)(ps - e-lbt),

d{elH)/dt = - {k/2)ela"{pr - e-%){p, - f%>,

holding, respectively, so that in both cases the system is acquisitive or dis-

sipative according as k ^ 0.

2. Limiting motions. A motion M defined(8) for a<t<b is an u-limiting

motion of a motion M defined for t>t0 if, given any subinterval ao^t^bo of

a <t <b, an arbitrarily fixed, small positive number 5, and an arbitrarily fixed,

large positive number T, there exists a. t>T such that the point P(t) on M

is at a distance less than 5 from the point P{t—r) on M for o0^/— r^b0. An

u-limiting point of M is a point of accumulation of a sequence of points P(ti)

on M for which i,—*+ «>. a-limiting motions and a-limiting points are defined

similarly for t—>— ». Assuming that the second members in (3) are regular

analytic in qr, pe, t throughout the phase space with the exception of the

points of a set 5 at which singularities occur for t>t0, a motion defined for

t>t0 is positively stable if it remains in a bounded portion of the phase space

and does not come arbitrarily close to S, otherwise M is positively instable.

Negatively stable (instable) motions are defined similarly and a motion both

positively and negatively stable is termed stable.

If H, Hqr, HPt tend towards limiting functions H, Hqr, HPt uniformly in

any bounded, closed subregion of the phase space not containing points of 5

while k tends toward a finite limit k as /—>+ <», the w-limiting motions of a

(7) See E. T. Whittacker, op. cit., pp. 283-284.

(8) The possibilities a = — oo,&=-|-oo are not to be excluded.
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motion M of (3) are(9) motions of the limiting system

(6) q\ = HPr,      p\=- Hqr - kpr.

In case M is positively stable its co-limiting motions comprise a set of stable

motions approached uniformly by M as t—* + °°.

Theorem 1. If the Hamiltonian function H has either form in (5) and if k

tends toward a finite positive limit k as /—>+ °° the w-limiting motions of a posi-

tively stable motion M of (3) are equilibrium motions^) of the system (6) with

H = (a"prps/2)-c, or H = ar'prp,/2.

Along M the energy H is eventually a monotone decreasing function of t

and will accordingly approach a finite limit h, since M is positively stable.

Along an co-limiting motion M of M we have H = h. To see this let P be any

point of M and P be the point on M at time t. Clearly

I H(P) - h I■    I H(P) - H(P) I + I H(P) - H(P) I + I H(P) - h |.

Let € be an arbitrarily small positive number. In view of the uniform conver-

gence of H towards H we may select h such that | H(P) —H(P) \ < e for all

t>h. Since H{P) tends to h as a limit, there exists a h for which | H(P) — h\ < e

for all t >h. Finally H(P) is a continuous function of P and P is an co-limiting

point of M. Hence there exists a value of t greater than either t\ or h for which

I H(P) — H(P) I < e. It follows that | H(P) —h\ is arbitrarily small and there-

fore equals zero.

Along M we have d~H/dt= — karspTps = 0 and therefore, since ||a''s|| is posi-

tive definite, the pr are zero on M. Hence M is an equilibrium motion.

It is obvious that these systems possess no periodic motions.

II. Quasi-conservative systems

1. General principles. A quasi-Lagrangian system is termed quasi-con-

servative if L( = 0 and k is a constant other than zero. For such systems there

exists a generalization of the energy integral

Theorem 2. If S be defined along a motion M by

(7) = ehtSa + f ek'(prHPr - H)dt,

the quantity (H-\-kS)ekt retains a constant value along M.

Placing z = 5, p = St, pr = Sqr in (4), the differential equations of the char-

(') For the treatment of steady flows, see G. D. Birkhoff, Quelques thtoremes sur le mouve-

ment des systemes dynamiques, Bulletin de la Societe Mathematique de France, vol. 40 (1912),

pp. 305-323. For a treatment of dissipative systems not involving the time explicitly, see his

book Dynamical Systems, American Mathematical Society Colloquium Publications, vol. 9,

1927, pp. 31-32.



526 M. H. MARTIN [November

acteristic strips of (4) are

(8) r - 1,   q' = HPr,   p' = - if,   pr = - Hqr - kpr,   z' = p + prHPr,

{' = d/du).
They possess the integral

(9) p + kz + H(qT, ps) = const.

By adjoining

t = u,      p = p0e-k('-'"\      z = z0 + f  (prHPr + p)dt,

to the equations of a motion of (3), one obtains a solution of (8). Taking p0

arbitrarily, Zo is determined so that the constant in (9) equals zero, and the

relation obtained is used to eliminate p from the last equation in (8) to obtain

dz/dt + kz = prHPr — H,

which, when integrated, yields (7). The theorem then follows from (9).

Corollary. If H is homogeneous of degree two in qr, ps, a quasi-conservative

system has a first integral (H-\-(k/2)prqr)ek' = const.

To establish the corollary, set 2H = qrHqr-\-prHPr in (7) and substitute for

Hqr, HPr from (3) to obtain 2ehlS = eklprqr-\-const.

The generalization of the principle of least action to quasi-conservative

systems rests on the following lemma(").

Lemma. The projections of the characteristic curves of the partial differential

equation

f(xr, z, ps) = 0, ps = zx„ fr\ + ■ ■ ■ +fPn ^ 0, det ||/PrJ,J| ^ 0,

upon the space of the independent variables xr are the extremals of the Mayer

calculus of variations problem 5zi = 0, given that

dz/dt — F(xr, z, xs),      8xr = Sz =0,      Sxr = 0,

where f — z=F(xr, z, xe — £s) is the equation of the Monge cone for the partial

differential equation at the point xr, z.

The principle of least action. The projections of the characteristic curves

of the partial differential equation kz+H(qr, ps) = 0, ps = z9j upon the space of the

coordinates qr are the extremals of the Mayer calculus of variations problem

bz\ = 0, given that

z = (2(c — kz)arsqj}s)l/2 + brqr,      8q°r = &z =0,      bqr = 0.

(l0) For the proof of this lemma for the partial differential equation f(x, y, p, q)=0, see

A. Kneser, Lehrbuch der Variationsrechnung, Braunschweig, 1925, pp. 157-160.
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To arrive at the principle, we set S = he~kt-\-Wt where h = const, and

W=W(qi, ■ ■ ■ , qn) in (4) to obtain the partial differential equation

kW-\-H(qr, Wq,)=0. Placing z=W, ps = Wq, and calculating the equation

of the Monge cone for this partial differential equation, the truth of the

principle follows from the lemma.

To see why the principle is to be regarded as a generalization of the prin-

ciple of least action for conservative systems, it will be recalled that placing

5 = —ht-\-W'm the Hamilton-Jacobi partial differential equation of a conserv-

ative system leads to the partial differential equation — h-\-H(qr, Wqt)=0.

The projections upon the space of the coordinates qr of the characteristics of

this partial differential equation are the extremals of the Mayer calculus of

variations problem dz1 = 0, given that

1/2
i; = (2(c + h)arsqrqs)    + irq

0 0

8qr = 8z = 0, 5qr = 0.

When this is formulated as >an ordinary calculus of variations problem with

fixed end points

5 f \{2(g + h)ar44*)m + h4r}dt = 0,

one obtains the classic expression for the principle of least action.

2. Characteristic exponents(u). Assuming that the origin of the phase

space is an equilibrium motion of (3), the equations of variation written in

matrix form are

(10) dx/dt = Ax, GH - kK.

Here x denotes a matrix with 2n rows and one column, the first and last n

rows being occupied by the variations of qr, ps, respectively, while(12)

G
co e

-E CO
H =

Hq

Hv.„.

K =
co co

co e
M =

co e

e to

where co, t denote the nXn zero and unit matrices, respectively, and the par-

tial derivatives are evaluated at the origin. Denoting the transposed matrix

by affixing a prime, one verifies that

(11)
G' = — G, GG' = G'G = — G2 = E;

H' = H,      K' = K,      GKG = K - E,

where E is the unit matrix of In rows and columns.

(u) For the theorems on characteristic exponents of conservative systems, see G. D. Birk-

hoff, Dynamical Systems, loc. cit., pp. 74-78, and A. Wintner, Three notes on characteristic expo-

nents and equations of variation in celestial mechanics, American Journal of Mathematics, vol. 53

(1931), p. 609.
(I2) The matrix M defined here will not be needed until Theorem 4.
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Theorem 3. The characteristic exponents may be divided into pairs in which

the two members are of equal multiplicity and have — k for their sum.

The characteristic exponents are the roots of the equation /(X)

= det (A —\E)=Q. Replacing A by its transposed, multiplying before and

behind by G, it follows from (11) that /(X) =/( — X — k), and the theorem is

proved.

It may be noted in passing that at least half of the characteristic expo-

nents have negative (positive) real parts if k>0 (k<0).

Theorem 4. // the matrix H+(k/2)M is definite, the characteristic expo-

nents lie on the line 3i(X) = —k/2 with X= — k/2 excluded.

Corresponding to a characteristic exponent X, there is a solution of (10)

given by x =aex', where a is a constant matrix satisfying (A—\E)a = 0. Multi-

plying on the left by a'G and observing that 2GK=M-\-G, it is found that

inasmuch as G is skew-symmetric. If X is real, a may be taken real and the

assumption that H+ (k/2)M is definite is contradicted by (12). Thus no char-

acteristic exponent is real.

We may regard (10) as the canonical equations of a quasi-conservative

system whose Hamiltonian function H is homogeneous of degree 2 in its argu-

ments and write the first integral, previously obtained in the corollary to

Theorem 1, in the matrix form x'(flr+(^/2)M)xe*' = const. For complex X,

the real solution x + x is formed and inserted in the energy integral. Keeping

(12) in mind, one finds that a'(H+(k/2)M)ä exp (k+'X+^t = const., which

requires 9?(X) = -/fe/2.

A quasi-Lagrangian system (3) is a natural system if br = 0. Taking br = 0

in (5), it follows from Theorem 1 that the w-limiting motions of a positively

stable motion of a natural quasi-conservative system (3) are equilibrium mo-

tions of (3). Such systems accordingly possess no periodic motions.

Theorem 5. To each characteristic constant 8r of the matrix \\ — c9,<,,||, evalu-

ated at an equilibrium motion of (3), there correspond two characteristic expo-

nents given by the roots of the equation

(12) a'(H + (k/2)M)a = 0,

III. Natural quasi-conservative systems

X2 + k\ + 5r = 0.

Referring to §2 of II, it is apparent that

H = a = ikil. 8 — c,

and it may be verified that the transformation x=Ty, where
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CO

.,'-1
T'HT

carries (10) into dy/dt=By, with B = GT'HT—kK. Choosing y so that

y'arly = t, y'(?Y = & where 5 is a diagonal matrix with the characteristic

constants of (5 along the principal diagonal, the theorem follows inasmuch as

the characteristic exponents satisfy the equation det (B—XE) =0.

It is clear that there are no purely imaginary characteristic exponents.

If the characteristic exponents Ai, • ■ • , \m have negative real parts and the

remaining 2n — m have positive real parts, the equilibrium motion is of nega-

tive or positive general type, according as none of the linear commensurability

relations

(Mi
'\pi-\

+ • • •  + pmXm = X,-, j =  1, • • •  , m

.#!+■■•+ Pm ̂   2, Pi - 0, 1, • • •
V***/

(pm+iXm+i + • • ■ + pimXtm = Xfc,                 k = m + 1, ■ • ■ , In

l^m+l + • • •  + pirn is 2, pk = 0, 1, • •

in I or II is satisfied.

Theorem 6. // an equilibrium motion M0 is of negative [positive] general

type, a suitably restricted neighborhood of Ma contains an analytic m-dimensional

[(2n — m)-dimensional] surface, the points of which tend towards M0 as a limit

as i—►+ 00 [— 00 ]• No other points of this neighborhood tend towards M0 as a

limit as t—>+ =° [ — =° ]. The number m is the number of characteristic exponents

of M0 with negative real parts(13).

IV. The restricted problem of three bodies

Two finite masses p and 1 — ix move in a fixed plane under their mutual

gravitational attraction. The restricted problem of three bodies is the problem

of determining the motion in the fixed plane of a third mass (the infinitesimal

mass) subject to the gravitational attraction of the two finite masses, the

motion of which is assumed to proceed independently of its presence. The

problem is said to be of elliptic, parabolic or hyperbolic type according as the

orbit of ix about 1 —p is an ellipse, parabola or hyperbola. When the conic

section degenerates into a line segment the problem is termed rectilinear,

otherwise we term the problem general.

If we take the center of mass of the two finite masses as origin of a rec-

tangular coordinate system (£, v) having a fixed orientation in the plane of

motion of the two finite masses, it is known that

(14)   p" — pd'2 = — k2p-2, p20' = a = const.,   (k2 = gravitational constant),

(u) A proof of this theorem has been given by the writer in Bulletin of the American

Mathematical Society, vol. 46 (1940), pp. 475-481. See also C. L. Siegel, Der Dreierstoss, Annals

of Mathematics, (2), vol. 42 (1941), pp. 156-165.
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where p, 9, respectively, denote the length and angle of inclination with the

positive {-axis of the line joining the two finite masses, differentiation with

respect to the time r being indicated by a prime. Denoting the distances of

the infinitesimal mass from 1 —p, p by pi, P2, respectively, the Lagrangian

function A for its motion is

a = a'2 + v2)/2 + k2((i - p)/Pi + p/Pt).

Theorem 7. The introduction of new variables x, y, t by

(15) £ + i-n = peis(x + iy),      Kdr = p^dt, p3'2 > 0,

reduces the restricted problem of three bodies to a quasi-Lagrangian system in

which

L = (x2 + f)/2 + be-'(xy - yx) + ü, b = a/K,

H = [(p + be-'y)2 + (q - be-lxY]/2 - fi,     / = (log p)/2,

Ü = (x-2 + y2)/2 + (1 - p)/n + p/r2,

2 2 2 2 2 2
ri = (x + p) + y ,      r2 = (x — 1 + p) + y ,

and differentiation with respect to t is indicated by a dot. The system is acquisitive

or dissipative according as the two finite masses approach or leave each other

and reduces to a natural system for rectilinear problems.

It may be verified that

£'2 + V2 = p2(*'2 + y'2) + 2p26'(xy' - yx')

+ (p'2 + p20'2)(x2 + y2) + 2pp'(xx' + yy%

[pp'(x2 + y2)]' = (p'2 + pp")(*2 + y2) + 2pp'(*x' + yy').

When these equations are subtracted with (14) in mind, the result substituted

in A, and the term [pp'(^2+y2)]' suppressed(14), it is found that

a = (p2/2)(*'2 + y'2) + a(xy' - yx') + (k2/P)0,

provided one observes that pi = pn, p2 = pr2.

Writing the equations of motion for the infinitesimal mass in the varia-

tional form bJTT\KdT = Q and introducing the new independent variable t de-

fined in (15), this variational equation takes the form (2) with /, L defined as

in (16).

It will be observed that the Hamiltonian function H has the first form in

(5). The system is therefore acquisitive or dissipative as stated.

(14) This may be done since the variation of its integral vanishes.

(16)

where

(17)
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Remark. If the new independent variable is defined by Kdr = pdt the restricted

problem of three bodies reduces to a quasi-Lagrangian system with

L = (x2 + y2)/2 + be-\xy - yx) + e~lq, b = cx/k,

H = [(p + be~ly)2 + (q - be~lx)2}/2 - e~ln, I = log p,

where the dot denotes differentiation with respect to t. The Hamiltonian function

has the second form in (5), the system being acquisitive or dissipative according

as the finite masses approach or leave each other, and is a natural system for

rectilinear problems.

V. The restricted problem of parabolic type

1. The differential equations of motion. If p moves in a parabolic orbit

about 1 — p, it is known(16) that

(19) p = (p/2) sec2 (0/2),   2kt = p*'2((l/3) tan3 (0/2) + tan (0/2)), p > 0,

where p is the semi-latus rectum of the parabolic orbit. In case p = 0, the

parabolic orbit degenerates into a line segment, and we have

(20) p = (3KT/21'2)2'3.

When the variable / of Theorem 7 is introduced in place of r, these equations

are replaced by

(21) p = (p/2) cosh2 (//21'2),      sin (0/2) = tanh (t/21*2),

(22) p = e±2"2'.

Thus, as / ranges from — =° to + 00, the mass p describes the complete para-

bolic orbit (p > 0) or describes the line segment (p = 0), approaching a collision

with 1 — p as t—» ± oo according as the negative or positive sign is taken in (22).

Corresponding to (21), (22) the function / in (16) is given by

I = (1/2) log (p/2) + log cosh (//21'2),      I = + t/21'2,

from which the differential equations (1) are found, on setting c = b(2/p)112

x + (1/21'2) tanh (*/2I/2)-x - 2c sech (t/21'2)-y = fix,

y + (1/21'2) tanh (t/V'2)-y + 2c sech (*/21/2)-* = Qs,

(24) x ± x/21'2 = Qx,      y + y/2"2 = 0„,

the latter equations holding for the rectilinear problem, with the positive or

negative sign taken according as the finite masses leave or approach each

other. The canonical form (3) of (23) is

(25) x = Hp,      y = Hx,      p = - Hx - kp,      q = - Hy - kq,

(l6) See, for example, F. R. Moulton, An Introduction to Celestial Mechanics, New York,

1935, pp. 155-159.
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where & = (1/21/2) tanh (*/21/2) and His defined in (16), while that of (24) is

x = Hp,      y = Hq,      p = - Hx - kp,      q = -Hy - kq,

H = (p* + q*)/2 - Q,      k = ± 1/21'2.

Corresponding to the positive and negative values for k we have two kinds

of rectilinear problems; the former is termed the dissipative rectilinear problem

and the latter the acquisitive rectilinear problem.

2. The flow in the phase space. A comparison of (25) and (26) shows that

the a and co-limiting motions in the general problem are, respectively, motions

of the acquisitive and dissipative rectilinear problems.

The set S of singularities of the system (25) comprises the points of the

two-dimensional surfaces x = — jx, y = 0; x = 1 — n, y = 0 corresponding to colli-

sions of the infinitesimal mass with one or the other of the finite masses.

Theorem 8. If the energy H of a motion tends to — ̂  as /—>+ °° the motion

is positively instable and the point P in the (x, y)-plane corresponding to the

infinitesimal mass either tends uniformly towards one of the points corresponding

to the finite masses or else tends uniformly towards the point at infinity as

t-*+'co.

Suppose that P tends uniformly to neither of the points corresponding to

the finite masses nor to the point at infinity as t—►+ °o. There would exist a

positive € and an infinite sequence {tn} of ^-values for which P would lie in

the region

(x + aO2 + y2 > «,     (x - 1 + m)2 + y2 > «,     x2 + y2 > 1/«,

and from the definitions of H, H in (16), (26) there would exist a constant K

such that H(tn)>K, thus contradicting the hypothesis.

The equilibrium motions of the rectilinear problems are characterized by

p = 0,      ? = 0,      ttx = 0,      üy = 0,

the latter two equations being satisfied at exactly five points Li in the (x, y)-

plane known as libration points. Li, Li, Li lie on the x-axis with L\ between,

Li to the right of, and Lz to the left of the points corresponding to the finite

masses which in turn form equilateral triangles with Li, L5. Corresponding to

Li there are five equilibrium motions Ei in the phase space.

Theorem 9. If the point P representing the infinitesimal mass remains in a

bounded closed region of the (x, y)-plane containing Li and not containing the

points corresponding to the finite masses, it tends uniformly towards a definite Li

as t—* + 00.

In view of the restriction upon P it is clear that — U has a finite lower

bound. Since H decreases monotonely for sufficiently large /, it follows that
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p2-\-q2 remains bounded for t>to. The corresponding motion M in the phase

space is accordingly stable and it follows from Theorem 1 that the co-limiting

motions of M are the equilibrium motions Ei of (26). Now M approaches its

set of co-limiting motions uniformly and therefore it approaches a definite

uniformly as t—>+ ».

The proof of the theorem has been given only for the general problem. It

is evident that it remains in force for the rectilinear problem and when

t->- oo.

Since a stable motion has one E, as a unique a-limiting point and one as a

unique co-limiting point, the stable motions may be divided into twenty-five

classes, inasmuch as the a- and co-limiting points conceivably may be chosen

at random from the five

3. The rectilinear problem. The differential equations (24) for the acquisi-

tive and dissipative rectilinear problems interchange when t is replaced by — t.

It will be sufficient, therefore, to consider one of these problems. We shall

select the dissipative problem for further investigation.

Theorem 10. If stable motions other than equilibrium motions exist in the

dissipative rectilinear problem, they fall into the following nine classes:

(i) a-limiting point Ei or ZE6. w-limiting point Ei, E2, E3;

(ii) a-limiting point E3, a-limiting point Ei, E2;

(iii) a-limiting point E2, u-limiting point E\;

provided 0<p<l/2. When p = l/2 there is no motion in (ii) with E2 as u-limit

point and when 1/2 </x < 1, the roles of E2, E3 are interchanged.

Along a motion M of (26) not an equilibrium motion H decreases mono-

tonely with increasing / for all t. Therefore an Ei cannot serve simultaneously

as a- and co-limiting point for M, since this would require H constant along M

and dH/dt = — (p2+q2)/21,2 = 0 would imply that M is an equilibrium motion,

contrary to hypothesis.

If tii is the value of ß at Li, it is known(16) that £l2 is greater than, equal

to, or less than % according as p is less than, equal to, or greater than 1/2

and that ßi exceeds while Qi = ^5 is less than either of Q®, &z. Therefore, if Hi

indicates the value of H at Ei it follows that H2 is less than, equal to, or

greater than H3 according as p is less than, equal to, or greater than 1/2 and

that Hi is less than while Hi = H6 is greater than either H2 or Hz.

It is therefore impossible for a stable motion to have one Eit E6 as a-limit-

ing point and the other for co-limiting point and the theorem is an immediate

consequence of the above inequalities and the monotone character of H.

A study of the nature of the flow in the phase space in the neighborhoods

of Ei leads to a sharper classification of stable motions. Prior to such study a

lemma dealing with the characteristic exponents of the Ei is needed.

(16) See A. Wintrier, The Analytical Foundations of Celestial Mechanics, Princeton, 1941,

pp. 364-366.
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Lemma. There is one positive and one negative characteristic exponent for £1;

the two remaining are conjugate complex numbers with negative real parts. There

is one positive characteristic exponent for £2; the remaining three have negative

real parts and there exists a constant /x* such that of these three: one is real and

the other two are conjugate complex numbers for 0<ix<ix*; all are real with two

equal to — 2~3/2 and differing from the third if fx=ix*, all are real and different

for fx* </x < 1. At £3 the situation is analogous to that at E2 and at Ei, £5 there

are two distinct positive and two distinct negative characteristic exponents.

Consider the three libration points Li (a,-, 0) on the x-axis. One finds that

(27) Qxx(ai, 0) = 1 + 2Ai,      üxv(ai, 0) = 0,      QK„ = 1 - Ait

where

I a{ + ix 13     I a, + ix — 1 13

If we use (27) to compute the characteristic constants of the matrix || — c9r9J|

in Theorem 5, and take & = 1/21/2 in this theorem, the characteristic expo-

nents X of Ei turn out to be

X = 2"3'2(- 1 ± (9 + X = 2-3'2(- 1 + (9 - SAO"2),

from which the statements of the theorem relative to the characteristic ex-

ponents at Ei, £2, £3 follow, inasmuch as it may be proved that Ai>4 and

A 2 (-4s) decreases (increases) monotonely and continuously from 4 (1) to 1 (4)

as ix varies from 0 to 1.

After computing the partial derivatives of second order for S2 at Li, L$

and obtaining the characteristic constants of || — c9r9j|, it is found that the

characteristic exponents X of Ei, £5 are given by

X = 2"3'2(- I ± (13 ± 12(1 - 3M(1 - m))1/2)1/2),

from which follow the properties for the characteristic exponents of Ei, E&.

In view of this lemma, Theorem 6 (n = 2, m = 3) applies to Ei for all values

of fx, to £2 if Ixt^ix*, to £3 provided /x^l— /x* and (m = 2) to Ei, £6 for all

values of ix. Ei, E2, £3 are of positive general type, since none of the linear

commensurability relations II of (13) is fulfilled.

Theorem 11. In a suitably restricted neighborhood of an Ei (*=1, 2, 3) of

negative general type the locus of points which lie on positively [negatively ] stable

motions having E( as a unique u- [a-] limiting point is an analytic hypersurface

[curve]. In a suitably restricted neighborhood of an Ei (i = 4, 5) of negative [posi-

tive] general type the locus of points which lie on positively [negatively] stable

motions having Ei for a unique co- [a-] limiting point is an analytic two-dimen-

sional manifold.

The number of classes of stable motions may now be reduced from nine

to six.
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Theorem 12. Excluding the values fx*, 1 — fx* of /x, if stable motions other than

equilibrium motions exist, the ct-limiting point is Et or £5 and the a-limiting

point is one of £j, £2, £3.

To prove the theorem we show that there are no stable motions in the

classes (ii), (iii) of Theorem 10.

The motions in the phase space for which the infinitesimal mass remains

on the line joining the finite masses lie in the (x, p)-plane and are solutions

of the differential system

(28) x = p,      v = ß» - P/2112.

The flow in the (x, £)-plane has three equilibrium motions (a,-, 0)

(i = l, 2, 3) separated by the points (— fx, 0), (1— /x, 0) corresponding to the

finite masses. One characteristic constant is positive and the other negative

at each equilibrium motion. It follows from Theorem 6 that the locus of

points in a sufficiently small neighborhood of (a,-, 0) lying upon motions of

(28) having (a,, 0) as a unique a-limiting point is an analytic curve(17) through

(a,-, 0). These equilibrium motions appear in the phase space of (26) as £,■

(* = 1, 2, 3), and since the motions of (26) having £,• as a unique a-limiting

point are confined to an analytic curve(17) through £,-, they must lie entirely

in the (x, £)-pIane.

A stable motion of (26) with one £1, £2, £3 as a-limiting point and another

as co-limiting point is therefore impossible, for such a stable motion would re-

quire the infinitesimal mass to collide with one of the finite masses.

4. The existence of stable motions. For Theorem 12 to have content a

demonstration of the existence of stable motions other than equilibrium mo-

tions is essential. We shall show that two stable motions exist when ß = 1/2.

Whether other stable motions exist for fx=l/2, or whether any stable motions

exist when fx?± 1/2, are unsolved problems.

Setting ju = 1/2, x =p = 0 in (26) we obtain a differential system of the sec-

ond order

j = q,      4 = *O0 - q/21'*,      </>(y) = y[l - ((1/4) +

for the motions in the phase space when the infinitesimal mass is restricted to

lie on the perpendicular bisector of the line segment connecting the two finite

masses.

Since <p is an odd function of y, the motions in the (y, c7)-plane are paired,

the members of a pair being symmetric to each other with respect to the

origin. The graph G of q = 2ll2<p is indicated by ABCOC'B'A' in Figure 1. It

rises monotonely along ABC, C'B'A' and falls monotonely along COC. The

flow proceeds to the right [left] in the upper [lower] half-plane, being vertical

on the y-axis, and is directed downwards [upwards] in the region above [un-

(17) The curve has no multiple point at the equilibrium motion.
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derneath] G, being horizontal on G, except for the equilibrium motions

B, 0, B' corresponding to E6, Ei, £4. , .

The characteristic exponents of 0 are congugate complex numbers with

negative real parts. It follows that, sufficiently near to 0, the motions have a

spiral character(18) about 0, that is, as t—>+ 03 the point P on the motions

tends towards 0 with the angle between OP and the y-axis increasing in-

definitely.

c

Fig. 1.

At B' one characteristic exponent is positive and the other is negative.

Through B' there accordingly pass two analytic arcs K'BL', M'BN', the loci

of points lying on motions having B' for unique a-, co-limiting point, respec-

tively. Upon calculation it is found that these arcs are disposed with respect

to G as shown in Figure 1.

Consider the arc B'L' which in the immediate neighborhood of B' lies

in the open region B'OC'B'. In this region the flow is directed to the left and

downwards, and since the region contains no equilibrium motion upon which

the arc could end, it leaves the region by way of a point R{ on the arc OC'

to enter the open region in the lower half-plane under G. Here the flow is up-

wards and to the left and, since the region contains no equilibrium points,

the arc B'L'R{ must leave it by: (a) the open arc R{0, (b) 0, (c) the open

segment OB of the y-axis, (d) B, (e) the open arc BA. Clearly (a) is impossible,

since on RIO the flow is horizontal and directed from right to left. We may

(ls) See, for example, L. Bierberbach, Differentialgleichungen, Berlin, 1930, pp. 104-105.
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exclude (b) in view of the spiral character of the flow about O. The possibility

(c) is illustrated in Figure 1 by B'L'R{ R{. Paired with such a motion, there

is a motion on the arc BLR\Ri symmetric to it with respect to O. The two arcs

BLRiR2, B'L'R{Ri and the segments BR2', B'R2 of the y-axis enclose a region

containing 0 into which the motion on B'L'R{R{ enters and never leaves.

It cannot leave by way of the open segments BRJ , B'R2, for on the former the

flow is vertically upwards and on the latter vertically downwards. Departure

by way of B or B' is ruled out by Theorem 10 and it cannot meet either

BLR1R2 or B'L'RxRi for such a point of meeting can occur only at an equi-

librium motion. The motion accordingly remains in this region and is there-

fore stable. Paired with it, there exists a second stable motion, (d) is

impossible by Theorem 10.

c

Fig. 2.

The theorem is accordingly proved, provided we can rule out the possibil-

ity (e) pictured in Figure 2 by B'L'R{Rl. Paired with a motion on this arc,

there is a motion symmetric to it with respect to 0 on the arc BLR\R2. These

two arcs taken with B'R2, BR£ bound a region containing 0 and the motion

M'B' in its entirety. The motion M'B' would possess 0 or B as a-limiting

point and B' as co-limiting point, thus contradicting Theorem 10. Hence (e)

is impossible.

VI. The restricted problems of elliptic

and hyperbolic type

1. The differential equations of motion. If the mass n moves in an elliptic
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[hyperbolic] orbit about the mass 1—ju, it is known(19) that

P = a(l — e cos <f>), a3/2(c6 — e sin <j>) = kt,

[p =a(e cosh \f/ — 1), a3/2(e sinh 4/ — \p) = kt].

The independent variable Z in IV turns out to be proportional to 0 [\[/] and we

find

p = a(l - e cos J/a1'2),       [p = a(e cosh (i/o1'2) - 1)],

so that

/ = log a{\ - e cos //a1'2), [Z = log a(e cosh (Z/a1/2) - 1)],

e sin Z/a1/2
k =

a"2(l - e cos Z/a1'2)

e sinh Z/a1'2
ä =

a1/2(e cosh (Z'/a1'2) - 1)

tl/2 "I

1/2) - 1)J'

are to be taken in the canonical equations (25) with H defined as in (18) and

the dot denoting differentiation with respect to Z.

For rectilinear problems the independent variable Z in IV is employed to

yield

p = 2a sech2 Z/21'2, [p = 2a csch2 Z/21'2],
(29) ,

k = — (1/21'2) tanh Z/21'2,       [k = - (1/21'2) coth Z/21'2].

The differential equations (1) take the simple form

x + kx = Six,      y + ky = Qy.

It is readily verified that the differential equations for the two types inter-

change when Z is replaced by t-\-(ir/2ll2)i. One obtains the canonical form

(25) for these equations by taking the above values of k and placing b = 0 in

the definition of iJin (16).

2. Limiting motions. In the general problem of hyperbolic type e>l and

the co-limiting motions are the motions

^      x = x0 + a'>(l - <rr"1/2),       y = y0 + c?0a"2(l - e"''"1'2),

p = p0e-'laV\ q = q0e-'"all\

The co-limiting motions of a positively stable motion are equilibrium motions

in (30). However since these equilibrium motions do not form a discrete set,

it cannot be assumed that the motion tends uniformly towards a definite

equilibrium motion, for it is conceivable that the motion tends toward a set

of equilibrium motions.

For rectilinear problems of elliptic or hyperbolic type, it follows from (29)

that the a- and co-limiting motions are, respectively, motions of the dissipative

and acquisitive rectilinear problems of parabolic type. A positively [nega-

tively] stable motion approaches one of the equilibrium motions E, of the

rectilinear problem of parabolic type uniformly as Z—>+ °° [— °°]. It will be

observed that as Z—> + °o the finite masses tend towards collision.

(19) See F. R. Moulton, op. cit., pp. 158-159 and pp. 177-178.
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