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Introduction. Two Banach spaces Ei and E2 may be combined in two

different ways; the well known Ei®E2 and Ei®E2. While Ei®E2 refers to a

space of pairs {/, <p} which are added vectorially, Ei®E2 is a linear vector

space determined by "products"/®</>, and the/®<p's are linearly independent

except when we have a relation, which is a consequence of the fact that the <8>

operator is distributive; for instance

(fl + f2) ® (<fl + <Pi) = fl ® <Pl + fl ® <P2 + U ® fi + U ® <P2-

The notion of Ei®E2 for the case of finite dimensions has been already

mentioned by H. Weyl [l6](1). With each vector ft resp. e2 in a space Ei of m,

resp. E2 of n dimensions, there is associated a vector ei®e2 in the space of m-n

dimensions. The totality of vectors ei®e2 do not themselves constitute a

linear manifold, but their linear combinations fill the entire "product space"

Ei®E2.

The operator ® has been used for finite-dimensional lp (termed lp,n) by

F. J. Murray, in order to show that there exist linear manifolds without com-

plements [8]. It has also been used by the same author in treating bilinear

transformations in Hilbert spaces [9J.

The algebraic aspects of the ® operator, for the case of finite-dimensional

spaces, has been discussed by Hitchcock [5, 6], and Oldenburger [13, 14].

The study of the ® operator for infinite-dimensional spaces requires a

more abstract method. A complete discussion for Hilbert spaces has been

given by F. J. Murray and J. von Neumann [10], who did not make use of

the existence of a basis. A few special results for Lp spaces have been obtained

by Bourgin [2].

It should be pointed out, however, that so far the study of the ® operator,

assumed either the existence of an inner product, or a basis, or a projection

with bound 1.

The object of this paper is the study of the <S> operator in a most general

form, for any Banach spaces.

For/GEi, cpG-Ea, we construct "products" f®<f>. With these we form a

linear set Sl(Ei, E2) consisting of all "expressions" (that is, finite sums)

^2fi®(Pi. These expressions must first be considered algebraically, however,

since the distributive property introduces certain linear dependencies (§§1, 2).

The next problem is that of defining a norm, and the space Ei®E2 is obtained
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by "closing up" the set 21 (£1, £2). We are only interested in those norms

which are "crossnorms" that is, \\f®<p\\ =||/|| ||<p|| for f GEltj>EE2. With the

expressionsT"! fj®<p.- it is desirable to consider the set 2t(£i, £2) of expressions

Z Fi ® <t>i, where Fi G £1, <Pi G £2.

For a given norm in 2l(£i, £2) we construct an associate norm in 2l(£i, £2)

(§3). We prove the existence of the greatest crossnorm, the least crossnorm

whose associate is also a crossnorm (§4), as well as that of a "self-associate"

crossnorm, which is a generalization of the crossnorm given for Hilbert spaces

by F. J. Murray and J. von Neumann [10], (§5).

Finally, we mention a few unsolved problems in connection with the work

in preceding sections (§6), and indicate possibilities for the construction of

"general crossnorms" (§7).

These problems were suggested to me by Professor F. J. Murray, who also

pointed out the algebraic discussions given in §§1, 2.

1. Let £1 and £2 denote two linear spaces. We introduce two symbols

® and • 4" • • With these for/i, • • • ,/„ in £1 and <pi, : • • , <pn in £2 we construct

formal expressions fi®<pi- 4- -f2®<p2- -f-.4- -fn®<pn- We may abbreviate

this by writing XXi/i®<P»- Between these we introduce a relation ~ subject

to the following rules:

1. If P is a permutation on 1, 2, • • • , n, and P(i) denotes the integer into

which P takes i, then

n n

2a. (ff +f{')®<pi- + -/2®cp2- 4-.+ •/„<8><pn~/i ®<Pi- + <fi' ®<Pi- + -h
<8)<p2- 4-.4- -/n<8><p„.

2b.h®(<pl+vl') ■ 4- -/2®«P2- +.4--fn®<pn~h®<pl ■ + -fi®<p{' ■ + -U
®<Pf\r4" -fn®<Pn.

3. (aifi) ®<f>i- + ■ (02/2) ®(f2- +.4- • (ajn) ®<pn~f\® {avp-i) ■ + ■f2®(a2<p2)

Definition 1.1. Two expressions ^2"^ifi®(Pi and XXlg?®^ will be termed

equivalent, if one can be transformed into the other by a finite number of successive

applications of Rules 1, 2, 3. We write this^l"^1fi®(pi~jri'jl1gj®ij/j.

Rule 1 shows that ^ is reflexive, that is, every expression is equivalent

to itself. The definition also implies transitivity.

A number of elementary results can be easily obtained. For instance, if

n n' m m'

Yjfi ® <P<^ E/i ® W   and    X) Si ®ti^T, g'i ® Vi
»=i 1-1 j=i j=i

then
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n m n' m'

E/« ® v.- + • Z ^ ®    Z /.' ® *>/•+• T, gl ®
i-l 3=1 t'=l )=1

Because of Rules 2a, 2b, w is not an invariant under equivalence for the

expression X^-i/i®^'- However, we now define a quantity "the rank of

X"-i/»®<P»" which will be shown to be an invariant.

Definition 1.2. ConsiderZi'-i/'®*'»'- Let us suppose that the set ojfi's is

k-dimensional and that the set of (pi's is l-dimensional. Let gi, • • ■ , gk be k

linearly independent elements in the set of linear combinations of the /<, and

fa, ■ • • , ipi be I linearly independent elements in the set of linear combinations

of the <pi. Then

k I

fi~ £ «p* gp>      <Pi = X bq f« far 1 ̂  i ^ n,
p-l 9=1

and

E/j®c,,~x:( z a?gj, \® (x *?W)
«=1 i-l \ p-l /        V 9=1 /

p=l 9=1 \ 1=1 /

k I

— X Z aP.9?P ® IrV
p=l 9=1

IFe define the "rank of the expression y^Li fi®<Pi" as the rank of the matrix

(ap,q) p = l, ■ ■ ■ , k; q = l, ■ ■ ■', I.

To justify this definition we show that the rank does not depend upon

the choice of the gp or fa,. For suppose we had taken g{, • ■ ■ , gk and

4>l, ' '■ • i fa1 instead of gi, ■ • ■ , gk and fa, ■ • • , fa- above. Then we can show
that

n k I

X /.' ® <Pi X X) «P.9?P ® ^8
1=1 p=l 9=1

where (a'p>q) is equal to a product 5(ap,9)C; B resp. C being nonsingular square

matrices with k resp. Z rows. But the matrix B(ap,q)C is of the same rank as

(ap,e). Thus the rank of an expression is independent of the choice of the gp

and fa,.
Let us define/,* by means of the equation /* =Zj>-iap.9£p- Then, inasmuch

as the fa- are linearly independent, the rank of the expression lUt-ifi ®<P*ls tne

number of fq* which are linearly independent.

Lemma 1.1. The rank r of an expression Z"=i/»®^' ^s an invariant under

equivalence (Definition 1.1).
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Proof. It is easily seen that Rule 1 does not affect r. In 2a, let /i=/i +/{',

fc»(l/2)(/i -SI'). Then// -(l/2)/x+Ä,/i" =(l/2)/i-A,

®     + ■ E f* ® «     ((l/2)/i + A) ® <Pi
n

• + ■ ((1/2)/! - h) ® Vl • + • E /< ®
i=2

Now, if A =EjU iöj>Sp> a calculation shows that the /* in the above are the

same for both sides of the relation. On the other hand, if h is linearly inde-

pendent of gi, • • • , gk, we may put h = gk+i. But gk+i will appear in the//

only with zero coefficients and again the/* are the same for both sides. Since r

is the number of linearly independent /*, r must be also the same on both

sides.

A similar discussion will show that r is also unaffected by 2b.

In 3, if any term a, is zero, we may take/,- as zero. If <pi is also zero, we

may disregard the term. If <p,- is not zero, it may be taken as fa. Then it is

easily seen that this term does not contribute to the / *, and hence does not

affect the rank. Thus an expression E"-i(a»/») ®<P» nas the same rank as an

expression in which the terms with a, = 0 are disregarded. A similar statement

holds for E"= ifi ® (anpi).
This implies that we need consider only the case in which each ö<5^0.

But here we may take the same gv and fa, on both sides of the relation. We

then see that a^V,' has the same value for both sides. Hence the matrix

(ap,q) and the rank are the same in both cases.

Thus the rank is unaffected by each of these rules. It follows that it is

unaffected by any sequence of applications of these rules, and hence it is

invariant under equivalence.

Lemma 1.2. Every expression^",ifi®<Pi is equivalent to either 0®0, or to an

expression^J?=lgi®fa- in which both the gi, • • ■ ,gmandfa^, ■ ■ • , pm are linearly

independent. Furthermore, m equals the rank of E"=i/«®

Proof. It is readily seen that if in either of the sets/i, • ■■,/„; <p\, • • • , <p»

the elements are linearly dependent, then Ei-i/»®^5»' is equivalent to an ex-

pression involving only n — 1 terms. For instance, if /i=E"-2ß</»> then

h ® <Pl ■ + ■  E fi ® <Pi—(   E aifi )  ®  <PV + -  E fi ® <Pi
i=2 V 1=2 / i=2

n n

Ö*ä E (ai/;) ® 9f + ■  E/i ® >Pi
i=2 i=2

n n

— E fi ® (a^i) • + • E /«■ ® w
i=2 i=2

n

— E /i ® (<*i¥>l + Vi)-
i=2
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We may therefore continue to reduce the number of terms until we have

either ^2T-igi®fa, in which both the gi, • ■ ■ , gm and fa, • • ■ , ^mare linearly

independent or/®0, or 0®<p. But/®0^/® (0-0)^(0/) ®0~0®0. Similarly

0®c2~Q'®0.
Now the expression Z<-i£' ®^» with both the gi and 4*i linearly independ-

ent has rank m. For the gi and ipi can be used as in Definition 1.2. The result-

ing matrix is (o<y), i,j = \, • ■ • , m. Since, however, the rank of an expression

is invariant under equivalence (Lemma 1.1), m must be also the rank of

Lemma 1.3. Suppose that in the expression y.Li f.® v.- the pi's are linearly

independent. Then the rank of this expression is r, the number of the fi's which

are linearly independent. In particular, if j£%-tfi®&ts*£0®0, each fi is zero.

Proof. If r = 0, the rank is zero also. Suppose r^O. We may assume that

fx, • • ' » /r are linearly independent, since otherwise a permutation of the

terms (Rule 1) will give this. Then /r+P=Zt=iap.*/fc- Hence

n t n—r /    r \

X /* ® <f>k — Z/fc ® <f>k- + ■ _C (  X Op,*/* ) ® Vr+p
fe-1 k=l p-1 \ 4=1 /

r I n-r \ r

2S! 2 /* ® ( Vi +   Z aP.k<Pr+p ) SN Z /* ® ^k
k-1 V p=l / fc=l

where
n—r

^Jfc = <Pk + Jj ap.k<Pr+p, k =  1, • • • , r.
p=l

Since the pi's are linearly independent, that is also true for the ^<'s. But the

rank of S-i//t®^t is r (Lemma 1.2), therefore the rank of Z"-i/i®<P< is alsor

(Lemma 1.1).

Furthermore, from Lemma 1.2, follows that an expression is equivalent

to 0®0 if and only if its rank is 0. From the preceding we see that the rank

is zero, if and only if each /, is zero. This implies the last statement of our

lemma.

Corollary. If > 1 ft ® «p.^>!?-.gi ®<o.- and the <pi are linearly independent,

then fi=gi for i = \,

Lemma 1.4. //X?=i/i®Vi— 0®0, and k of the fi and I of the <pi are linearly
independent, then k-\-l^n.

Proof. Suppose that the <pi, • • • , <f>i are linearly independent and,

<Pi+i=Hl}-iai.j'Pi for .7 = 1, ■ • • , n — l. Then

n I I    / n—l \

0 ® 0 ~ X/i ® <Pi^ E fi ® <Pr + ■ E ( Z aijfi+i) ® <Pi
i=i j-i j=l \ i-i /

X (fi + £ ® <Pi-
,„i \      i=i /
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Thug Lemma 1.3 implies ft+sllZia-t.ifuu = 0 forj' = l, • ■ • , l. The / relations

between the/,- are linearly independent, and hence there can be at most n—l

of the/,- linearly independent. Thus k\<n — l.

Lemma 1.5. If 2ÜW*® y«—2J£ i&f&fri and each °f the sets fx, • • • , /„;
<£i, • • • , c^nl gi, • • • , gm; • • • , ^m, ore linearly independent, then n = m,

and there exists a square matrix (a;,,-), i, j=\, • • • , n, with an inverse (A,-,,-),

i, j=l, • ■ ■ , n, such that
n n

fk = Z     ,-¥>,-;       g* = Y^Ai.kfi-
3=1 3=1

Proof. Lemma 1.3 states that m and n are the ranks of the corresponding

expressions. Thus Lemma 1.1 implies that they are equal.

NowZ"=i/i®«P.—Z"-i2>®'/'; implies

n n

(l) £/•■ ® *>••■ + •£(-*/) 8*/^o® o.
<=1 3=1

Inasmuch as/i, •••,/„ are linearly independent, Lemma 1.4 implies that at

most n of the set <pi, • ■ • , <pn, fa, • • • , $n, are linearly independent. Since

<pi, • • • , <pn are linearly independent, each \f/k must depend upon these. Thus

fa — ?.'L,ah.t0<. But since fa, • • • , \pn are linearly independent, the matrix

(fli.j), i, i = l, • • • , n must have an inverse (A,,,), i, J = l, • • • , «, and

Substituting in (1), we get

Z ( Z^.j/< - gk) ®     o ® o.
*=iV »=i /

Lemma 1.3 now implies that gk =Z"-i-^«.*/>■

Definition 1.3. The set of all expressions of the form , U ® y«, we denote

by 21 (£i, £2) .Letf denote the set of all expressions equivalent to a fixed expression

T^Lif.®<Pt. // on expression is in f it will be termed "an expression for /." Le/

2l*(£i, £2) denote the set of such f's.

If Z"-i/>'®V< is an expression for /, Zj^igy®^' an expression for g, a a

number, we define af as the set of expressions equivalent toZi-i(a/>) ®<P<, and

/4-g as the set of expressions equivalent toZ"-i/»'®<Pi' + "Z^i^i®^.;-

It is a consequence of Definition 1.1 and Rules 1, 2, 3, that of does not

depend on the particular expression used. Similarly f+g is defined uniquely.

It is easy to see that the usual properties of addition and multiplication

by a scalar hold; for instance /4-g = 14-/,

/ + (g + h) = (/ + !) + h,     «(/ 4-1) = af + ag
and

(aß)f = a{ßf).
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The zero element 0 is the class of all expressions equivalent to 000. Thus

2l*(£i, £2) is a linear set, that is, a commutative group with scalar operators.

Sometimes we will find it convenient to permit "an expression for /" to

stand for /.

2. Lemma 2.1.a. If F is an additive and homogenous functional on Et, and

T,F(ft)w = 2>(f,)*f.
»'=-1 3=1

Proof. Consider first Zi"-i/iSuppose thatcp„ is linearly dependent on

<Pn-\\ <Pn =E<-Then^"„Ji®<pi~Zyzttfi+aifn)<8)<pi and

E FVdvi = X>(/.)v< + F(fn) ( £ am)
1=1 i=l \ 1=1 /

= 2 TO) + aJP(fn))Pi
1=1

i-l

A similar statement holds in the case in which /„ is linearly dependent on

ft, • ■ • , /n-i- These results can be applied successively in such a way that one

has finallyE?-i/.®V.^Zf-i/.' ®¥>/ and2XiW<)ft-__XiJW)*/ with both
the fl's and <pl's linearly independent. Suppose one has gone through the

corresponding process with XX ig; ®^y- The conclusion of our lemma is then a

simple consequence of Lemma 1.5.

Let E\ resp. £| denote the set of additive and homogenous functionals on

£1 resp. £2. For Fu ■ • • , Fn in E\, and <ph ■ ■ ■ , <pn in £|, we construct ex-

pressions zJtmiFt&pi.

A similar reasoning to that in Lemma 2.1.a proves

Lemma 2.1.b. If £i-i^®&^ÄÄ®** then for /C£i, we have

y£LiFi(S)<Pi=T,7-iGi(f)%--

Combining these results we easily obtain

Lemma 2.I.e. If
n n'

1=1 1=1

m m'

i-i i-l

then
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( f>, ® <?,)( Z/< ® Vi) = ( X>/ ® Z// ®

where under (Z£iFy®<pj)(Z"-i/«'®Vi) we understand

m n

j=i ,=i

Definition 2.1. A set S of additive and homogenous functionals on Ei, will

be called fundamental if F(J) =0 for all FG-S, implies f = 0.

Lemma 2.2. Let S° denote a fundamental set contained in E\, and S00 a

fundamental set contained in E\. Then if for an expression Z"-i/i®<£»'> we have

TZ-iF(fi)<p(<Pi)=0for all FES", <pGS00 then Z?=i/.®^0®0.

Proof. Suppose Z"=i/i®V«—Z"-i/»' ®Vi' where the //'s and <£>/'s are

linearly independent, then for a certain F^^S0 we have F°(J{ )^0, and since

the (pi's are linearly independent Z?-i^*(/»')<P< 9*0. Therefore for a certain

<p°eS°° we have )<pV/)      Lemma 2.1 gives E?-i^°(/0«po(«p.) ̂ 0-

This completes the proof.

Theorem 2.1. Let S° resp. S00 denote fundamental sets of additive and

homogenous functionals on Ei resp. E2. Then, a necessary and sufficient condi-

tion, for the expressions
n «'

jß fi ® <fi  and   2 /» ® V>?
i-l i=l

fre equivalent is that

Z FC/^fi) - Z F(/; )c6(v.') for a// F G 5°, <p G S00.
i-l i-l

Proof. The necessity follows from Lemma 2.1. For the sufficiency put

// = —fn+i, <pl =<pn+i\ l^i^n', then according to our assumption,

X F(fi)4>(Vi) = 0 for F G S°, c6 G .S00.
«■=1

Lemma 2.2 gives

n+n' n n'

X) /< ® v< =* 0 ® 0   or   Z /< ® Vi    Z /< ® v/ •
i-l

3. For our further considerations we shall assume that Ei and E% are two

Banach spaces, and denote by Ei resp. E2 the space of linear functionals on

Ei resp. £2-

Definition 3.1. Under a norm N in 2l(£i, £2) (Definition 1.3) we shall
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understand a non-negative function of expressions satisfying the following con-

ditions :

I. N(TjLtftQ*i)-Q if and only if Z?-i/<®V.^0®0.
II. iV(Z"«i(a/i) ®<fi) = I a\ N(£,"=Ji®<pi) for any real number a.

in. N(ZtJi®<Pi- + TLif! ®<pi)£N0_lfi®Vi)+N<Z£ji <svl)-
IV. N(Ztifi®<Pi) = N(£ij! ®?/) */Z?-i/;®^Z?li// ®V.'-

Definition 3.2. Consider the set 2l(£i, £2) of expressions of the form

^2T'iFj®cpj, where Fi, • • • , Fm are in £1, and <pi, • • • , <pm are in £2. For a

fixed expression Z^'iF^c/.? ** 21 (Fi, £2) we define FQ^-'iF?®^0) as the
smallest number satisfying the inequality

Zf,® *fJ^E/< ® vij| = ^S^®^j^£/< ® v.jIV,
/or a//Zi-i/i®V.' *» 2I(£i- £2).

Thus A7 is a function of expressions in 2l(£i, £2).

Lemma 3.1. If N is finite for every expression in 2l(£i, £2), then N also

satisfies conditions I—IV.

Proof. I. IfZ?_i£y®<^0®0, then Lemma 2.1.c gives N(Z,?-iFj®<pj) =0.

Suppose Z£.i£y®0/^Z?_i£i ®<(>/ where the F/'s and <pj's are line-

arly independent (Lemma 2.2). If / in £1 is such that F{(J)r*0 then

sf-iFi (fkbi 9*0 since the <p/'s are linearly independent. Let <p££2 be such

thatZr»iF/(f)4>i (<p)t*0. Lemma 2.1.c gives (Z" 1 Fy ®<py) (/ ® ¥>) 5*0. This im-
plies A7(Z7_1£y®<py)>0.

II and III are immediate.

IV is a consequence of Lemma 2.I.e. ■

For any Banach space we may assume EQE.

Lemma 3.2. N£N for all expressions in 2l(£i, £2);C2l(£i, %).

Proof. Let /1, ft, • • • resp. <p\, <p2, • • ■ denote elements in Ex resp. £2,

Fi, F2, • • • resp. <p\, cf>2, • • • , denote_elements in £1 resp. £2; F\, F\, • ■ • resp.

<p\, <p2, • ■ • denote elements in £1 resp. £2. For an element /° in £1,

F(/°) = Ft0(F) is an element of £1, and || Fto|| = ||/°||. Therefore an expression

Z*-i/?®V? will correspond to an expression Zi-iF*°®<Pi°, where the /? and

F?°, as well as the <p? and cpf are connected by the above mentioned relation.

We have

= /  *    0       o\     =/ _L   to to\n{ ZI* ®    = iv^ Zf. ® J

= sup (I( Z^° ®       (ZF, ®^)) ( ZFi ® 4>ty
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where sup (thatjs,_the least upper bound) is taken over all expressions

Xy=iFy®<Ayin 2l(£i, £2), which are not equivalent to 0 00 (of rank 0). There-

fore

^( £/« ® *<)

= sup (I ( £ F, 0        £ ft 0 *><) I / n(^ £ F/ ft 0,))-

Let e>0 be given. There exists an expression £"li.F°0<p° such that

= 3p( £/° ®    - «•
From the definition of n for a given A7, we have

|(£f°®• **)!/*(£/'®«) * y(

The last two inequalities give

A7^ £/! 0 v!) ^ *>,°) - e.

This completes the proof.

Lemma 3.3. If N° and N"° denote two functions in 21 (Ei, E2) satisfying condi-

tions I-IV and N<>^N™, then N^N™.

The proof is a simple consequence of Definition 3.2 and Lemma 3.1.

Consider the set »»(Ei, £2) (Definition 1.3). Put N(f) = N(£Xifi®<P<) for
£"-i/t®V» in /. N(f) is single-valued, as follows from IV for N. Conditions

I—III tell us that N(J) is a norm in 21*(£1, £2).

Similarly, considering sets of equivalent expressions in 2I(£i, £2) as new

elements F, we obtain a set 21*(£1, £2) and a norm N(F) in 21*(£1, £2). N(F)

will be called the norm associate with N.

We complete 2f*(£i, £2) to £i0£2 by adding new elements, namely all

fundamental sequences (satisfying Cauchy's condition) of elements in

2I*(£i, £2) with the following conventions:

(a) An element / of 2l*(£i, £2) will be considered identical with the

sequence /, /,/,••• •
(ß) Two fundamental sequences

jd)     jd)     -=(D ?(2)     *<« 7(2)
H 1 7* »/«»*•*;    71 »/>»/»»•• •
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are considered identical if and only if

Umi^f-jf) = 0.
n—*w

(7) The norm of a fundamental sequence ji, f2, /», •• ■ is by definition

limn TO).
In a similar way we complete 2l*(Ei, £2) to £ift£2.

From Lemma 2.1.c follows that Q£™ \Fi®<Pj)(Zj=Ji®(Pi) depends only

upon F resp. /, for which Jz. iFj®qbj resp. XXi/<ftVi are expressions; F(f) is

therefore a uniquely defined number for/in 2I*(£i, £2), F in Sf*(£i, £2).

Lemma 3.4. If F\, Fn, • ■ ■ resp. /1, /2, • • • denotes a fundamental sequence

of elements in 2l*(£i, £2) resp. 2I*(£i, £2), then the sequence Fi(fi), F2(/2), • • •

is convergent.

The proof is immediate.

Without fear of misunderstanding, we shall also denote the elements of

£i®£2 resp. £i®£2 by/, resp. F.

From Lemma 3.4 follows that F(f) is uniquely defined for / in £i®£2,

F in £i<g>£2 and |F(/)| ^N(F)N(f).
Let Fa be an element of £i®£2. It is a consequence of Lemma 3.4 that

F°(/) is a linear functional on £i®£2. We shall write therefore

IjliC £1 ft £2(2).

We shall assume further that A7 defined on 2l(£i, £2) in addition to I-IV

satisfies also the following condition of continuity:

V. N(y^.?_,fi®<pi) is a continuous function of the fi and <pi, that is, if e>0

is given, we can find a 5 = 5(/i, • • • , /„; <pi, • • • , ^>„)>0, such that for

II/,-— /,'|| <5, \\<Pi — <p{\\ <8, for i = l, we have

n( £/i ft-* £ // ® vt) < «.

Lemma 3.5. 7/ £1, £2 are separable and N satisfies conditions I-V, 2«e«

£ift£2 is separable.

Proof. Let fl, fl, • • • resp. <p?, «p", • • • denote two sequences dense in

£1 resp. £2. Then the set of expressions £?.t/%.ftg£fi ^ = 1, 2, 3, • • • ;

« = 1, 2, 3, - -- .is dense in 3l(£i, £2). Hence the set of elements / for which

these expressions stand is dense in 21* (£1, £2) therefore also in £ift£2.

Definition 3.3. A function N of expressions in 2I(£i, £2) is called a cross-

norm if in addition to I-IV it satisfies the following "cross-property":

_ N(f ft v) = II/II IMI for fGEupE Et.
(2) A supplementary remark is made in Part A, §6.
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Lemma 3.6. A crossnorm N satisfies condition V.

Proof. This is an immediate consequence of the following relation

m £/< ® vv-• £// ® i>i\ & n( £(/<-/#) ® vi
\ i—l i=l / \ i—l

+       Z/i ® fa - pf)) +       ifc (ft - //) ® (n - vl)

= i; ii/i - //Ii iwi + e ii/.-h Ik - */ii + i h/i - //ii iin - wfl:
i=l 1=1 1=1

Sometimes we shall assume that the norm N satisfies the following condi-

tion:

VI. \\TZ-iF(fi)<Pi\\^\\F\\N(LtJi®<Pi) for F in Eu and J^.Ji®^ in
%(Et, Et).

Definition 3.4. From Lemma 2.1 follows that £",,1 £(/.)<£>.■ is invariant

under equivalence. Let f be an element of 2l*(Ei, £2) for which E"=i/»®^,- is an

expression. We define TjF as the transformation from £1 to £2 such that

t-f^uhu)^-
Lemma 3.7. IfTj = 0 thenf=0.

Proof. Let /^0 and £?_i/f® ipi be an expression for / for which the /<'s

and <pj's are linearly independent. Thus/ir^O. We can find an FCZEi, such

that £(/i)f^0. This implies XXiE(/i)<Pi^0, since the <p,'s are linearly inde-

pendent. Thus TjFt*0 and Tj9*Q. We have shown that/5^0 implies 775^0.

This completes the proof.

Lemma 3.8. Condition II, IV, awd VI for N imply I.

Proof. From II and IV follows that £?_,/,• ®^>,-cü0®0 implies

N(£Zmlfi ®<Pi) = 0. Now let /V&j/. ft^i) = 0. VI implies |E?_i£(/,)^|| = 0 for
Fin Ei. HenceE?„j/,®v<—0®0 by Lemma 3.7.

4. Among the functions N, a particular one which we shall denote by A7!

will be of great interest to us.

Definition 4.1. Let Zf-iZi®«?? be a fixed expression. We define

Nt (>*-1 f? ® «S) =inf Ej_i||/ij| 11 ^>i|| where inf (£/ze greatest lower bound) is taken

over the set of all expressions £?-] fi®<Pi equivalent to Ejli/i ®P?-

Lemma 4.1. Ai satisfies conditions II, III, IV, awd VI, therefore also I by

Lemma 3.8; Niis a crossnorm, therefore it satisfies V as follows from Lemma 3.6.

Proof. That A7i satisfies II and IV is obvious We proceed to prove III.

LetZ™ i/?®P? andE"-ig?ft'Ai De two given expressions, and lete>0 be given.

)



1943] DIRECT PRODUCT OF BANACH SPACES

Take an expression

207

such that

Similarly we find

such that

We have

e/i ® <pi~ e/° ® P<
i-1 i-1

iwi = ̂ i(e/.0®

0 0

gi ® ̂  ~ 2^ s< ® w
>-l i—l

i—l \ i=l /

e /,■ ® Pi- + ■ £ g< ®       x) /< ® P«'" + ■ £ * «#*
i=l i-1 i-1 i-1

Condition IV and Definition 4.1 give

*»(£/ ®      £* • *!') - e IWI IIp.II + z 11*11 INI
\ i-l i-1 / i=l i-1

= ^i( £/° ft pi) +     £<< ® <A°) +

This proves III.

We proceed to prove VI. Let z"-i/*®p< De an expression for /. We have

(Definition 3.4)

m = z*X/i)Pi * IWI £ IWI IWI

This holds for every expression in /. Hence

IMI * IHI-inft IWI IM -NM:
i=l

To prove the cross-property, we assume f9*0 and pp^O (for f = 0 or

p = 0, the proof is obvious). Let F££i be such that £(/)=||/||, ||F||=1. If

e"=i/i®Pi—/ftp, we have (Lemma 2.1)

lk(/)p]| or yj-iMi * £IWI IWI

Therefore A7i(/®p) =||/|| ||p||. This completes the proof.

Lemma 4.2. Ni is the greatest crossnorm.
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Proof. For any crossnorm N, we have

n( z f\ ®   ^ z Nif ® ;%) = z i!/°n p.
\ «=1 / i=l i=l

Condition IV for N implies

N ( Z /° ®      ^ inf £ U/41       -Ni(±fi9 *)

where inf is taken over the set of all expressions Z"-i/«®P» equivalent to

Zf-J?®*>?-
Lemma 4.3. 77ze worm A7 associated with a crossnorm N, satisfies the condi-

tion N(F®<p)^\\F\\ iui /or FC£i, <pC£2.

The proof is immediate.

Definition 4.2. IFe de/twe 2V0:

No ( Z /,• ® v,-) = sup (I Z F(fd*M /INI Ml)

where sup (/Ae /eas£ upper bound) is taken over the set of numbers obtained when

F resp. <f> varies in E\ resp. Ei.

Lemma 4.4. No and No are crossnorms.

Proof. It is not difficult to verify that No is a crossnorm. We shall prove

that No is a crossnorm. We have

(|(f° ® *°)(z/< ® v^I/a^Z/,- ® v<))

^ I (f° ®   ( z fi ® in) I (|MI lk°ll /1 (f" ® *°)( Z /«® *<) I)

Hence (Definition 3.2) F0 (F°®<p°) ̂ \\F°\\ ||(p°||. This together with Lemma

4.3 concludes the proof.

Lemma 4.5. The associate N with a crossnorm N^N0 is also a crossnorm.

Proof. Lemma 3.3 gives N^N0. In particular N(F®cj>) ^N0(F®(b)

= || F|| \\<p\\ by Lemma 4.4. An application of Lemma 4.3 concludes the proof.

Theorem 4.1. The associate N with a crossnorm N is also a crossnorm if

and only if N^N0; N0 is therefore the least crossnorm whose associate is also a

crossnorm.
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Proof. The sufficiency is proved in Lemma 4.5. We shall prove the neces-

sity. Suppose that for a crossnorm N and a certain expression X".)/?®'?? we

have

#(Z/° ®    < ® p°).

Then, there exists an F°EEi and <p°£.E2 such that

\ i=l /       ' i=l
:rtn*i

and consequently

#(/ ® <p°) ̂ (p° ® *") (i fi ® w) [/*( £■/ ® *l) > IM ik'ii

or A7 is not a crossnorm. This completes the proof (3).

Theorem 4.1.1. .4 crossnorm N satisfies condition VI if and only if its

associate N is also a crossnorm.

The proof is similar to that in Theorem 4.1.

In our future work, speaking about "the least crossnorm," we shall have

in mind "the least crossnorm whose associate is also a crossnorm," namely N0.

5. The least crossnorm No, as well as the greatest crossnorm Ni, are

defined for any two Banach spaces Ei, Ei. For this reason we shall call them

general crossnorms. Similarly (\/2)(No+Ni), (\/2)(Na-\-Ni), • • • are gen-

eral crossnorms (4).

Let K denote the smallest class of crossnorms satisfying the following

conditions:

1. NiEK.
2. If NEK, then NEK.
3. If A70 and A700 belong to K, then aA7°4-(l-a)Nao belongs to K for

0<a<l.

4. If A0, A00, A000, • • • denotes a monotonic sequence of crossnorms be-

longing to K, then its limit (which exists because the sequence is bounded by

the least and greatest crossnorms) also is in K.

Definition 5.1. Crossnorms in K are defined for any two Banach spaces

E\, E2. For this reason we shall call them general crossnorms.

Lemma 5.1. // Nm and A7® denote two crossnorms (not necessarily general)

and a, b real numbers, such that a-\-b = l, 0<a <1, then

(3) An immediate problem is mentioned in Part B, §6.

(4) For a general crossnorm N, N is to have the following ^gmficance in Sl*(Ei, £2). We

consider A7 on £2). For this there is an A7 defined on H*(£i, £2). We consider the latter

confined to Sl*(Ei, BudQVCBt, St).
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a N™ + 6 Nm g a Nw + b Nm.

Proof. We shall prove that for any FoE2l*(£i, £2) we have

|7q(/)| |7.(fl| , .     17.(7) i
sup-5--— > a sup-h 0 sup •

aNi»(J) + bN™(f) N™(J)

where sup is taken over all f's (r*0) in 2I*(£i, £2). Suppose that the contrary

holds, that is, for a certain F0 the last inequality does not hold. Then for a

certain /0 in 2l*(£i, £2) we have

17,(7«) | I      I  , . I I
> a-h b

aN<»(fo) + bN™(J0) N^ifo) iV<2)(/o)

This gives: {A7(1)(/o) — Nw(f0) }2<0. This cannot happen, and therefore the

proof is completed.

Corollary. Let N" and A700 denote two general crossnorms, and a, b real

numbers, such that a + 6 = l, 0<a < 1, then

aN° + bN00 ^ aNa + b A700.

Lemma 5.2. 7/ Ndenotes a general crossnorm and N its associate, then putting

N™=aN+(l-a)N, 0^a = l, we have NM + NM^N+N(*).

Proof. For a = l -the statement is trivial, For o = 0, N + A7^ N+ N as

follows from Lemma 3.2.. For _0<a<l, Lemma 5.1 gives Nw + Nw

g {aN+{l-a)N} + {aN+(l-a)N} = A+Ä7 as follows from Lemma3.2.

Corollary. For a general crossnorm N, we have (l/2)(A-f-A7)

^(1/2)(A+Ä).

Proof. N<-ll2) + N<-1i2)^N+N = 2N(-1'i'> (Lemma 5.2). Hence Ä7"'21 = A(1/2).

This completes the proof.

We shall show an immediate application of the last result.

Theorem 5.1. There exists a general crossnorm N, with the following prop-

erties :

a. N is identical with its associate N.

ß. A = limn,00 NM, where {NM} is a monotonic sequence of general cross-

norms defined in the following way: Let Ni denote the greatest crossnorm. Put

A(1) = (l/2)(Ai-f-Ä7i). Let «>1, and suppose we have defined N(k) for k<n,

then put A(n) = (l/2)(A<"-1) + Ä7<"-1)).

Proof. Since N% is the greatest crossnorm, its associate Ni is also a

crossnorm (Lemma 4.5), and therefore Nt. Lemma 3.3 and the corollary

to Lemma 5.2 give

(6) For simplicity of notation NM shall denote the associate with iV(0>.
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Fi g F<» ^ Nw g iVi.

The last inequality proves that Na) is a crossnorm, therefore A7(s) is also a

crossnorm. Similarly we obtain

Ni ^ F(1> ^ F<2' ^ A(2) ^ Ar(l) ^ Ai.

This proves that A7C2) is also a crossnorm, therefore Nm is a crossnorm. Re-

peating the same process, we obtain a decreasing sequence of crossnorms

Ni ^ Nw ^ Nm ^ • • •

and an increasing sequence of its associate crossnorms

Ni g F(1) ^ F<2> ̂  • • • .

The first sequence is bounded from below by A^i, hence is convergent;

let N denote its limit. The second sequence is bounded from above by Ni,

hence convergent; let $1 denote its limit. Therefore:

(1) lim... N^=N; lim».«,

It is easy to verify that

Nw _ Är<n> ̂ (1/2«)(A'! - Ni)       for n = 1, 2, ■ • •

because

NW - F<» = (l/2)(Ari + Fi) - F<u ^ (l/2)(Ar1 + Fi) - Fi

= (t/2)(tf, - Fi),

iV(2> _ ftm = (1/2)(A<1> + F<1') - F(2) = (l/2)(N<-» + F">) - F(1)

= (lß)(N™ - F(1)) ^ (l/22)(iVi - Fi),

Therefore: N=$l. We_shall prove N=N. Since N^NM for « = 1, 2, • • •

N^NM hence (1) gives F = 9c or

(2) F = A7.
On the other hand,

F<"> ̂  9c = N for « = 1, 2, • • • ;

hence F(n)^F and therefore (Lemma 3.2) NM}zN~. (1) gives

(3) iV^jf.
(2) and (3) give the required result(6).

Theorem 5.1.1. Let N" denote a general crossnorm (Definition 5.1). The

same construction (which we have applied to Ni in Theorem 5.1) applied to N°,

will always lead to a crossnorm N satisfying conditions a, ß mentioned in

Theorem 5.1.

(6) The immediate problem is mentioned in Part C, §6.
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Proof. Let us notice that for a general crossnorm N°, we have always

Ni^N°^Ni, hence also Ni^N0^,Ni by virtue of Lemmas 3.2 and 3.3.

This assures that the associate with a general crossnorm is also a crossnorm.

We put N<-1) = (l/2)(N°+N°), JV»> is a crossnorm and Na) ^ A7"'15 (Lemma 5.2)

is also a crossnorm. We have therefore the situation mentioned in Theorem

5.1. Let «>1, and suppose we have defined Am) for k<n, then put

Ar(n) = (1/2)(A7<»-i) + Ä7(n-«)._As in Theorem 5.1 we prove that limn.M NM

exists; call it N, and lim».. A™ exists; call it 9c. Further,

#<»> _        g (l/2"-1)(Ar(1) - iV(1))    for n = 1, 2, • • • ;

hence N = 91. Finally we prove (in exactly the same way as in Theorem 5.1)

that N = N.
We shall apply our results to Hilbert spaces. Let £i, Et, denote two Hilbert

spaces, and N a crossnorm in 2I(Ei, £2) (Definition 1.3).

Definition 5.2. N will be termed self-associate if for every expression

£j"-iE,<8><py in 2I(£i, £2), we have

m m

Ä(£ £y®0i)=iV(E/y®^),
j-i j-i

where fj resp. <Pi is the element in £1 resp. E2for which F,-(J) ■ (/, /,) in £1 resp.

</>,<<?) = (<?< <Pi) ** Et.

For two Hilbert spaces £1, £2, F. J. Murray and J. von Neumann intro-

duce the following crossnorm in 21 (£1, £2) [lO]:

(n \ /    n      n \ 1/2

E/< ® vi) = j £ £ CA, /»)(«, *>*)J

where the symbol (/<,/*) denotes the inner product. Let A7 denote the associ-

ate with A7, and let

£ Ff®<p°j
1-1

be a fixed expression in 21 (£i, £2). We have

(1)     = sup I (fy, ® **)(£/< ® ̂ )|/^ E/.- ® v.)

E E (A. /*)(*><. <pd) / < E E (A. A)(vi, v*) ̂
j-l i=l / 1 /      1 i=l *=1 )

where £?(/) = (/./")> <Aj°(v) = (p. V°)- Applying Schwarz's inequality to the

numerator, we get
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«m    5     0    0     0    o 1 1/2 (   "    " "4 1/2

£ £ (/,-. /») to, ee (/.-, /*) («, Vk)}
)'=1 !=1 / V i-1 A;=l j

/ /    n     n \ l/2\

/{ ££<*,/*)(p<,p*)J J
or

1/2

(2) x(£ti9:ty*#(t/**™)-

On the other hand, taking in particularEjlij^ftpJIor the variable expression

£"-i/iftpi, we get lrom (1)

±f) ® *;) ̂  I e e     f% I/{ e e ^)}1/2
\ 7=1 / I 3=1  1=1 1/       V  /-I  (=1 .

/mm \ 3

= ee(/!,k;)\ j'=i ;=i ;
This means N(ZT-iFJ®^) = WET-itf®«»?)- The last inequality together
with (2) proves that

ä( i>- ® *') =     E /? ® p°)

or the crossnorm introduced by F. J. Murray and J. von Neumann is self-

associate in the sense of Definition 5.2.

We shall denote this crossnorm by Sm.n-

Theorem 5.2. IfE\ and £2 denote two Hilbert spaces, then every self-associate

crossnorm in 2l(Ei, E2) is identical with Sm.n-

Proof. Let A7 be a crossnorm in 2I(£i, £2). Since £i = Ei, £2 = £2, for an

expression E^-iE?®*?" in 2I(£i, £2) we have

y (i>° ® *;) = n( e /' ® f0/)

= sup(|eE(/.-.f°i)(**.p°) /n(£/«® p.))

where £?(/) = (/, ff) in £1, <p°(p) = (p, p°) in £2. Taking in particular

£jL]J?®P° for the variable expression £"=i/''®P>' we get

m m m

NiT.fi ft p>(£/,® «$)fc{&r.»(£>5 ft ̂ F-
j-i 1=1 j-i
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In particular if A7 is self-associate in the sense of Definition 5.2, that is,

^<&i/?®«^.-^<B-iJ7®#5) ^ get

N2^Sm.n   or N^Sm.n-

Taking the associate crossnorms for both sides of the last inequality, we get

N^Sm.n, or since N and Sm.n are self-associate N^Sm.n- This gives

N = Sm,n, and the proof is completed.

Theorem 5.3. If E\ and E2 denote two Hilbert spaces, then the general cross-

norm N constructed in Theorem 5.1 by means of the greatest crossnorm Ni

coincides with the usual self-associate crossnorm Sm.n-

Proof. From the construction of N, and Ex = E\, E2 = E2 obviously follows

that N is self-associate in the sense of Definition 5.2. Thus, N is identical with

Sm.n by Theorem 5.2.

6. In this section we present some remarks about the work of the preced-

ing sections.

A. As a consequence of Lemma 3.4, Ei®EiCLEi®E^ has been proved. It

does not appear to be a simple matter to describe the exact conditions im-

posed upon a crossnorm, under which the relation Ei®Ei=E\®Ei holds.

B. We have proved the existence of the least crossnorm, whose associate

is also a crossnorm. We did not settle, however, whether the associate with

every crossnorm is also a crossnorm, or there exist crossnorms whose associ-

ates are not crossnorms (7).

C. The general crossnorm N, constructed in Theorem 5.1 by means of

the greatest crossnorm Ni, we are justified to term self-associate (extending

hereby Definition 5.2). Theorem 5.1.1 states that the same construction

applied to any general crossnorm will always lead to a self-associate cross-

norm. We did not settle, however, the problem of "uniqueness," that is,

whether the same construction applied to two different general crossnorms

will always lead to the same self-associate crossnorm.

In connection with the question of uniqueness let us mention the following

problem.

Let Na and A00 denote two general crossnorms, and N° 5= A00. Under what

conditions is N0+N"t A004-Ä00?

7. The following crossnorms are worth mentioning.

Definition 7.1. Let ££.j?®«9? be in 2T(£i, E*% We put tf£Xi#**g)

= inf (maxej.±i ||E"-i£«ll/«l|p»'l|) where inf (that is, the greatest lower bound) is

taken over the set of all expressions £"-i/»®<p« equivalent to £«Lj/? ®p?.

Theorem 7.1. N in Definition 7.1 is a crossnorm.

(7) Added in proof: The author has since shown that if Ei and Ei are reflexive, that is,

Ei = Ei, then the associate of every crossnorm is also a crossnorm.
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Proof. It is obvious that N satisfies II and IV of Definition 3.1. Weshall

prove III. For two given expressions Zli/iftPi. £"-1*®^ and a given

e>0, we can find two expressions 7        ft<p', £<_igj ft'/'' such that

£ /,'  ® (p/ ~ X fi ® <Pi'< maX

X fi ft lA/ ̂  £ * ft max
i-l i-l «,-=±1

£«ll//lk'

£«<lk/||#

^ #(£/< ft v.) + «/2,

^ a-( i: gi ft ^) + 6/2.

Let e/ = + 1, i = 1, • • • , &; ??/ = + 1, j = 1, • • • , r, be chosen so that

iS/ll/.'lk + 2>Jb'll*;    =     max        £«11/711*/ +Xf#|U/||*/
i-l >'-l ei=±l;iIj-±l       i-l i—1

then IV and Definition 7.1 give

n( £/i ®     £f< ®   ^ II £e,'Ii//ik/ + £,/M*f
\ i-l i-l /       II i-l i-l

k j r

^   max     £ei||//||p/    +   max £«i||«/||*/
«i=±i ii i-i «i-±i ii i-i

^ ar( £/i ft Vi) + a( £ gi ft +

This proves III. We shall prove VI

£F(/,)^i ^ max £^|F(/i)Ui

Let iji, • • • , r)n denote that system of numbers 1, —1, for which the right

side of the last inequality is a maximum. Then,

£i«ll/<ll* ^ ||F||- max
<j=±i

and the proof of VI is a simple consequence of Lemma 2.1. Lemma 3.8 im-

plies, therefore, I for N.

We complete the proof of the theorem by showing that N has the cross-

property. Let/^O, <p9*0 and £?=i/iftpi^/ft<p. Choose an FCE\ such that

F(J) =11/11. IM|=1. Lemma 2.1 gives

Ml = \\F(f)<p\\ =
or

£F(/,)pi

\ip\\ = max
€.-=±1

= ||F|| max
ti=±i
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This proves

N<f®P) = 11/11IMI-
Definition 7.2. We define a crossnorm N in 21 (Ei, £2) by means of the

least crossnorm No in 2I(£i, £2). Let k denote a natural number. For Z"-i/»®P»

in 2I(£i, E2) we put

N ( Z /< ® Pi)

- •up(|(2>/® */) ( Z /i ® P<) yNo( ZFj ® p,-))

where sup (the least upper bound) is taken for all sequences of k terms Fi, • • * , Ft

in Ex; <pi, • • • , <pk in £2.

Theorem 7.2. For every natural k, N^) is a crossnorm.

Proof. I. If Z?-i/<®Pi—Lemma 2.1 gives N(k)Q2tJi®P>) =0. If
A7w(Z?-i/i®P»)=0, then taking Ex= • • • =Fk = F; 0i = • • • =p* = p, we

have Z"-i/'®P'—0®0 by Definition 4.2 and Lemma 4.4.

That II, III, and IV hold is obvious. We shall prove that N&) has the

cross-property. We have

Nm(f> ® »>•) = sup I ( £ Fy ® *,) (/» ®      |/V„ ( ZF, ® Pi)

= sup 11 ( ® Pi) (/»® „•) 1(||/°|| |W] /| ( ZFi®Pi)(/°® p°)|)|
= ll/l Iri*-,

But on the other hand, putting Ei = • • • = Fk = F;<pi = ■ • • =<pk=<p we obvi-

ously get iV(i)(/0®p0)^||/°|| ||p°||. This completes the proof.
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