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1. Introduction. The boundary problems with which this discussion is

concerned may be given in either the form

u"(x) + {pn(x)\ + #m(*) }«'(*)

+ {p2i(x)\2 + pn(x)\ + p2o(x)\u(x) = 0,

hn(\)u'(d) + hi2(\)u(a) + ha(\)u'(b) + ki4(\)u(b) = 0,        i = 1, 2,

in which the coefficient functions Pik(x) and the solution u(x) are scalars, or

in the form

2) u'(*)= {X?i(«)+?.(*) }u(x),

§„(X)u(a) + §6(X)u(o) = o,

in which the German capital letters designate matrices of the order two and

the solution u(x) is a vector, that is, a matrix of two rows and one column.

In either form the parameter X is to be taken as complex and unbounded,

while the variable x is to be taken as real and on the finite interval (a, 6).

On this interval the coefficients pik{x), or the elements of the matrices $*(*),

are assumed to be differentiable, and such that the functions r{x) which, in

the case of the system (1.1), satisfy the equation

(1.3) r\x) + Pu(x)r(x) + p22(x) = 0,

or, in the case of the system (1.2) make the matrix

(1.4) -;(»)3}

singular, fulfill conditions to be stated below in §2. The coefficients ä«(X) of

the boundary relations in (1.1), or the elements of the matrices ^>0(X) and

§&(X) in (1.2), as the case may be, are to be polynomials in X of any degree,

and may, of course, in particular be constants.

Any boundary problem of this type is compatible either for all values of X

or for no such value, or for a certain set of characteristic values which is

finite or denumerably infinite. This discussion is primarily concerned with the

latter case. With an infinite set of characteristic values, there exists, then,
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an associated set of characteristic solutions, and by familiar procedures an

infinite series of these solutions may be associated with an "arbitrary" func-

tion or vector. The series is then designated as a formal expansion of that

function or vector, and the latter is in turn designated as the generating

element of the expansion.

Contingent upon the fulfillment of certain more or less general conditions

by the generating element, the behavior of an expansion, that is, its diver-

gence, convergence, summability, value, and so on, is essentially determined

by the boundary problem itself, specifically by the character of the adjust-

ment which maintains between the differential equation and the boundary

relations. This adjustment has, therefore, been made the basis for a classifica-

tion of boundary problems into categories which are identified by the desig-

nations "regular," "mildly irregular" and "highly irregular."

For boundary problems of the regular type a relatively complete and

familiar theory exists. The formal expansions include the classical Fourier's

series as special cases, and have, broadly speaking, the salient properties of

these series. Thus, in particular, they converge to the value of the generating

element in an appropriately conventional sense whenever this element is

integrable over the fundamental interval, and is of bounded variation in some

neighborhood of the point under consideration.

Though less has been written upon boundary problems of the mildly

irregular typeO), the state of their theory is roughly comparable with that

of the theory of regular problems. In general the formal expansions are diver-

gent, but are summable by means of familiar type to the values of the gener-

ating elements.

By contrast with this, nothing that may properly be referred to as a

general theory has heretofore been given for boundary problems of the

highly irregular type. In these the classical methods apparently lead into

insurmountable difficulties, and simple examples show that these difficulties

are not due to the methods alone. The literature on problems of this type is,

therefore, scant. Only problems which are markedly specialized and sym-

metrical have been analyzed at all(2), and in them, even in the face of their

specialization, the results obtained are only in slight measure comparable

with those of the theory of regular problems. Existing discussions, far from

(*) Cf. M. H. Stone, Irregular differential systems of order two and the related expansion

problems. Trans. Amer. Math. Soc. vol. 29 (1927) pp. 23-53. R. E. Langer, The expansion prob-

lem in the theory of ordinary linear differential systems, Trans. Amer. Math. Soc. vol. 31 (1929)

pp. 868-906.
(2) Cf. J. W. Hopkins, Trans. Amer. Math. Soc. vol. 20 (1919) pp. 245-259. L. E. Ward,

Trans. Amer. Math. Soc. vol. 29 (1927) pp. 716-745, ibid. vol. 32 (1930) pp. 544-557, ibid. vol.
34 (1933) pp. 417^34, Ann. of Math. (2) vol. 26 (1925) pp. 21-36, and Amer. J. Math. vol. 57
(1935) pp. 345-362. In all of these the differential equation of the problem is of a form included

in d»u/dx»+{\'l+<t>(.x)}u = 0, »S3. Also, J. I. Vass, Duke Math. J. vol. 2 (1936) pp. 151-165,
in which the differential equation is d2u/dx?—2\ cos (pir/q) • du/dx+\1u = 0.
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applying to such formal expansions as have arbitrary generating elements,

have been restricted to cases in which these elements are analytic as functions

of the complex variable, and beyond that are of certain distinctive and

extremely special structures.

The present paper is based upon a wholly different mode of approach to

the problem. Its method is, in brief, the imbedding of the highly irregular

problem in a continuous family of boundary problems of which all other

members are regular. The given problem is thus approached through limiting

considerations applied to existing theory. It is found on this basis that a sub-

classification of the highly irregular problems into two virtual sub-categories

is requisite. For problems of the first sub-category, and this includes all

problems of the second order and highly irregular type that have been dis-

cussed heretofore at all, a theory is derived which is in many respects closely

aligned with the existing theories for regular and mildly irregular problems.

Though the expansions are non-convergent, they are shown to be summable,

in certain specifically defined senses, to the values of the generating elements,

whenever these latter fulfill conditions such as are familiarly imposed in the

theory of Fourier's series. For problems of the second sub-category no results

are derived, and it seems improbable that any expansion properties as con-

ventionally understood inhere in problems of this type.

The discussion has been restricted to boundary problems of the second

order. The motive for this, however, is to be sought only in the desire to keep

the paper within its present bounds. The method set forth is evidently more

generally applicable.

Chapter 1

The given boundary problem

2. The normalization of the differential equation. The forms of the bound-

ary problems (1.1) and (1.2) remain unchanged under any integral linear

change of the independent variable x. Since a suitable change of this kind

reduces the interval (a, b) to the interval (0, 1), it may be assumed without

loss of generality, that a = 0 and 6 = 1. In the following this will be done.

To obviate the incidence of complications which are not germane to the

matter essentially at issue, it will be assumed that on this interval the coeffi-

cients pki(x), k = \, 2; 1 = 0, 1, 2; if the boundary problem is given in the

form (1.1), or the elements of the matrices tyi(x) and $(>(*), if the problem

is given in the form (1.2), are differentiable to any desired order, or at least

to such orders as may be effectively called for.

If the boundary problem as given is in the form (1.1), let ri(x) and r2(x)

designate the roots of the equation (1.3), and let it be supposed that these

roots remain distinct on the interval (0, 1). The equations

q{ -     * 2*'
— — — pio — 2 — >
qi 4>
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9t      , ,
ri-rx = pa + pu —,

then define the functions q{ /q% and <p'/<p, and if 32 is determined from the

formula

(              *' , *"\
= — I pw + pio-1-1,

V 4>      4> /

it is found that the equation obtained from the system

^ ^ yi{x) = XriO)yi(» + qi(x)yt(x),

yl{x) = qi(x)yx{x) + \r2(x)yn(x),

by the elimination of the function y2{x), is identical with that obtained from

the differential equation in (1.1) by making the substitution u(x) =<p(x)yi(x).

This substitution, together with the first of the equations (2.1), reduces the

boundary relations of (1.1) to the forms

(2.2)      «*f»*(0) + »«(A)y»(Q) + »a(X)yt(l) + »«(X)y,(l) = 0,     »- 1, 2,

in which the coefficients vu(k) are again polynomials in X. The differential

system (1.1) is thus reducible to the form (2.1), (2.2). This latter may be

conveniently written in matrix form, thus

»'(*) = {X9t(«) + Of*) }*(*),

33<0)(X)f)(0) + 93(1)(X)t)(l) = 0,

in which

(2.4)

„, .   /yi(*)\   w, ,   M(«)    0 \ / 0   *,(*) \

W*)/ V 0    r*(*)/ \?j(*)    0 /

23<°'(X) - faQO),     SB«)(X) m (t.i>w(X))(*).

If the boundary problem as given is in the form (1.2), let ri{x) and r2(x)

be the roots of the determinant equation

a). . <u. .
pn (#) - r   P12 (x)

fU W p22 (X)

= 0,

in which (p^\x)) = ^i(x), and let it be supposed that these roots are distinct

on the interval (0, 1). The nonsingular matrix t(x) which fulfills the relation

Vi(*)Z(x) = £(*)9c(«)

then exists, and the substitution u(x) = X(x)to(x) gives to the differential

(3) Throughout the paper German capital letters will be used to designate square matrices

of order two. Lower case German letters will correspondingly be used to designate vectors of

two components, and Latin letters to denote scalars.
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equation in (1.2) the form

te'oo = {m(x) + ?,(*)}»(*),

with

*»(*) = ar'wi^owsw - r(*)j.

The further substitution

W(«) = (i^*"*)»««,

reduces the equation to the differential equation in (2.3), and in fact the entire

boundary problem (1.2) to the form of (2.3). Since the problem, whether given

in the form (1.1) or in the form (1.2) is thus reducible to (2.3), the further

considerations may be confined to this latter form.

It has already been assumed that the functions ri(x) and r2(x) are distinct

on the interval (0, 1). Further restrictions upon these functions, which are

imposed in all existing theories of boundary problems (2.3) when the inde-

pendent variable is real(6), and which are now also to be imposed herewith

upon the present discussion are the following:

Hypothesis 1. On the interval (0, 1) the functions ri(x), r2(x), and

{r"i(x) — r»(«) }, are bounded from zero, and each of them is real except possibly

for a constant complex factor.

There are essentially two types of configuration which conform to this

hypothesis, namely:

Configuration 1,

(2.5) r/«) ■ vfi{x), i = 1,2,

in which &i and a2 are constants different from zero with a ratio which is not

real, and p(x) is a real positive function which is bounded from zero; and

Configuration 2,

(2.6) rX«) * fffiM, 3 = If 2,

in which a is a non-vanishing constant, and pi(x), p2(x), are real functions

which are bounded from each other and from zero.

To this point no stipulation has been made as to the assignment of sub-

scripts to the functions r\{x) and r2{x). It is convenient to assign the sub-

scripts now and henceforth in such a way that in the event of the configura-

tion 1, the value of {arg fi(*)— arg r2(x)} lies between 0 and ir. If the relations

(4) Through the paper 8,-, = 0 if it*j and o<, = l if i—j.

(5) For the theory when x ranges over a region of the complex plane cf. R. E. Langer, The

boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer.

Math. Soc. vol. 46 (1939) pp. 151-190.
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TM m f rj{x)dx, j = 1, 2,
J a(2.7) „„

Tj = r/i),

are used to define their left-hand members, it follows then in the event of

configuration 1, that

(2.8) 0 < arg T, - arg T2 < t.

In the event of the formulas (2.6) the value of {arg r%(x)— arg Ti{x)} is a

multiple of ir. By a suitable assignment of subscripts in this case of con-

figuration 2, one or the other of the sets of relations

(a) arg I\ - arg T2 = 0,      | Ti| >| r.|, or

(b) argTx - argT2 = w,      \ Ti\ ^| T2| ,

may therefore be achieved. It will be assumed in the following that the sub-

scripts have been so assigned.

3. The boundary conditions. The components of the vector boundary rela-

tion of the system (2.3) are given explicitly in the equations (2.2), and in this,

as has already been noted, each coefficient b,i(X) is a polynomial in X, which

may in particular vanish. Individually these relations are, of course, not

uniquely specific, since they may be replaced by any independent linear

combinations of the two without any modification of the content of the

conditions as a whole being thereby induced. In the vector form of the condi-

tion, as it appears in (2.3), such a replacement is accomplished by the multi-

plication of the relation on the left by some nonsingular matrix, and con-

versely any such multiplication by a nonsingular matrix is of merely formal

effect.

If in either of the relations (2.2) all four coefficients bü(X), 7 = 1, 2, 3, 4,

have some factor (X—Xo) in common, the boundary problem is compatible

at X0. The same, but no more, follows if they have (X;—X0) as a multiple

common factor. A reduction of the multiplicity of such a factor is, therefore,

a permissible formal simplification, and in proceeding it will be assumed

that such simplifications have been made, so that any common factor of the

coefficients tiü(X), with * = 1 or i = 2, is a simple factor of at least one of them.

If the two relations (2.2) are linearly dependent identically in X, the

boundary problem is permanently compatible, and, from the point of view

of this discussion, is without interest. That case is, therefore, to be excluded

by the assumption that of the matrices

/Ou(X)   Dii(X) »
(3-D 85<M>(X)-(    \'      ll),     h,l= 1, 2, 3, 4; A */,

fn(X)\

MX)/'
at least one is not identically singular.

Let the maximum degree of the polynomials ö,;(X) be designated by r.
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The matrices (3.1) are, then, all expressible in the polynomial form

33<M>(x) = £».!.♦) + xe^'''1' + • ■ • + \r&h'l-T\

with each symbol 6 standing for a constant matrix, and with

for some indices (A, /). If the matrices (£(*•'•'■> are not all singular, let t2 = t.

Otherwise, let a set of constant elements Sij be determined such that the

matrix (sj3) is nonsingular, whereas

(i) (su, H o,

for some (A, Z),

for all (A, /)(6). Because of the assumption made above relative to the matrices

(3.1), t2£;0. If the boundary relation of the problem (2.3) is, then, multiplied

by the matrix (sij), and if thereafter the matrices (siy)23<A)(X), A = 0, 1, are

again denoted simply by 33(W(X), it follows that each element of these matrices

is a polynomial in X, and that when Ti = t, then t,- is the maximum degree of

the elements in an ith row.

It may be noted now that either one of the integers n and t2 may be in-

creased by unity by the multiplication of the boundary relation on the left

by the respective matrix

in which Xx and X2 are any values of the parameter for which the boundary

problem is initially incompatible. It is thus a matter of an adjustment of

the boundary problem to assure the relations

It must be noted, however, that this adjustment (which plays no role except

in §28) is not wholly formal, for since the matrix factors used in achieving

it are singular for a value of X, that value is introduced as a characteristic

value by the adjustment.

Finally, in virtue of the structure of the matrices 93<0)(X) and 23(1)(X) as

(') For the purposes of multiplication vectors are always to be regarded as matrices, of one

row and two columns if they are left-hand factors, and of two rows and one column if they are

in the role of right-hand factors.

(ii)                                   (S2i,               = o,

for all (A, /). Then let t2 be defined as the least integer for which

(«*, ̂ )fX***§<M,«+a H-+ X'S«*-'-'')} - o,

(3.2) i = 1, 2.
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now arranged, it will be clear that the matrices SB^X), h = 0, 1, as defined

by the formulas

SB<°>(X) - (5iyX-023«»(X),

©«"(X) m (M-")2J(1>(A),

have elements which are polynomials in (1/X), at least one element in a first

row, and at least one element of a second row having a constant term which

is not zero.

4. The solutions of the differential equation. Under the Hypothesis 1 of

§2, the forms and structural properties of the solutions of the matrix differ-

ential equation

(4.1) Wlx, X) = (X«R(*) 4- 0(*)}E)(*, X),

and hence of the vector differential equation of the boundary problem (2.3)

may be regarded as known (7), especially insofar as large values of the param-

eter are concerned. Certain of these properties are relevant to the discussion

at hand and may be cited as follows.

(i) With the matrix G£(x, X) defined by the formula

(4.2) «(*, X) = (5,^ricx)))

and with ^5(0,(#) defined to be identically the unit matrix, explicit formal

procedures may be applied to determine successively the matrices of a se-

quence tym(x), ft=l, 2, 3, • • • , so that the expression

(4.3) I Ex-*r»>(*)je(*,x),

formally satisfies the equation (4.1), namely so that upon substitution of the

expression (4.3) in the place of $)(x, X) in the equation (4.1), the coefficients

of like powers of X in the two resulting members of the relation are in every

case equal.

(ii) The infinite series (4.3) is in general divergent. However, to each X

half-plane of the set defined by the relations

(4.4) (» - 1/2)» - arg {Ti - T2} = arg X ̂  (» 4- l/2)x - arg fr* - T2\,

for integral values of n, there corresponds an actual analytic solution of the

equation (4.1) which is asymptotically represented by the expression (4.3)

for the values of X in that half-plane.

(iii) In terms of any analytic nonsingular solution ty(x, X) of the equation

(4.1) the general solution of that equation, and the general solution of the

(') Cf. G. D. Birkhoff, and R. E. Langer, The boundary problems and developments associated

with a system of ordinary linear differential equations of the first order. Proceedings of the Ameri-

can Academy of Arts and Sciences vol. 58 (1923) pp. 51-128.
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vector differential equation of the boundary problem (2.3), are given, respec-

tively, by the formulas

(4.5) $#,X)C«, &<#,»€«>,

in which and c(1) are an arbitrary matrix and an arbitrary vector that are

independent of x.

If in the first of the expressions (4.5) the matrix is written as

f)_1(0, X)S, the general solution of the equation (4.1) is expressed in the form

(4.6) 2)0, m-KO, X)C.

In this form the solution involved is wholly determined by the matrix E,

since the form (4.6) is invariant under the substitution of any one nonsingular

solution 2)0, X) for any other one. The general solution of the vector equation

(2.3) may be similarly given by the formula

(4.7) 9(*,A)|)-1(0,X)c.

Any specific one of the solutions 2)0, X) to which the statement (ii) above

refers, defines through the formula

(4.8) 2)0, X) m y(x, X)@0, X),

a matrix ^30, X) which is analytic in X, and which, by (ii), is such that for X

in the respective half-plane of the set (4.4), the relation

CO

(4.9) <ß 0, X) ~ 3 -f Z X-A?5<*> 0)

maintains. From this it is evident that the matrix in question is nonsingular

when |X| is sufficiently large, and that, therefore, it may be used in the role

of 2)0. X) in the formulas (4.6) and (4.7). The asymptotic representation of

the solution (4.6) or (4.7) determined by any specific matrix & or vector c is

thus obtainable from the relations (4.8) and (4.9). This representation is valid

for all large values of X, despite the fact that the matrix ty(x, X) to which the

relation (4.9) applies is different in different half-planes (4.4), precisely by

virtue of the fact that the formulas (4.6), (4.7) are invariant under replace-

ments of the solution 2)0, X).

Chapter 2

The family of boundary problems

5. The formal construction and characteristic equation of the family. Let

Hu, i — I, 2; / = 1, 2, 3, 4, be a set of constants, which for the instant may re-

main unspecified, and let v be taken as a parameter whose range is to include

the value zero. The formulas

93(0)(X, k) ■ 33(0)(X) + K*<An),

SB^'O ") - «(1)(X) 4-
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then define the matrices which appear as their left-hand members, the ele-

ments of these matrices being polynomials in X and linear polynomials in v.

The differential system

»>'(*, v) = {X5R(*) + 0(«)}>»(*, v),

93<°»(X, v)t)(0, w) + «CD(x, „)t,(l, v) = o,

then defines a family of boundary problems which yields the given problem

(2.3) for the parameter value v = Q.

If, on the pattern of the formulas (3.3), the matrices 2B(A)(X, v), A = 0, 1,

are now defined by the formulas

(5.3) *B<"(X, v) = (S.A-^SJ^X, v), k = 0, 1,

it follows from (3.3) and (5.1) that

2B(0)(a.    » SB<«(X) + KM.

8B<l>(X, x) m 2B<l>(A) +

The elements of these matrices are therefore polynomials in (1/X), of which

the constant terms are linear in v and all other terms are independent of v.

Moreover, at least one element in a first row and at least one element in a

second row has a constant term that does not vanish when v = 0.

The general solution of the differential equation of the problem (5.2) is

given by the expression (4.7), a non-trivial solution being associated with a

non-vanishing vector c. Upon substitution of this expression into the bound-

ary relation, the latter assumes the form

(5.5) £>(A, Og-KO, X)c = o,

in which

(5.6) S)(X, v) m Sß(0)(X, „)g)(0, X) 4- 93(1)(A, p)g)(l, X).

The condition that there exist a non-vanishing vector c to satisfy the equation

(5.5), and hence that there exist a non-trivial solution (4.7) of the boundary

problem is, therefore, evidently that the matrix (5.7) be singular, namely that

(5.7) D(X, ») -0,

where D(X, v) denotes the determinant of the matrix (5.6). The compatibility

of the boundary problem corresponding to any specific value of v, is thus

contingent upon X being a root of the characteristic equation (5.7). These roots

are called the characteristic values.

It will be noted that the matrix SD(X, v), and hence also its determinant

Z7(X, v), depends upon the choice of the nonsingular solution ty(x, X) of the

equation (4.1) which appears in (5.6). However, as has already been observed,

any product ty(x, X)g)_I(u> X) is independent of the solution g)(x, X) from
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which it is formed. From this it is seen at once, that the product

(5.8) $(X, ^-'(O, X)

is invariant, and that the left-hand members of the equations (5.7) formed

from different solutions §)(x, X) differ only in their non-vanishing constant

factors. The characteristic values, as roots of the equation (5.7), are thus

independent of the choice of %)(x, X).

Since the determinant D(\, v), when formed from a solution §)(x, X) that

is analytic in X, is itself analytic, the number of characteristic values in any

bounded portion of the complex X-plane, and hence in particular within any

circle however large, is evidently finite. For the consideration of those roots

which lie outside of a suitably large circle, it is convenient to construct the

equation (5.7), for X in any half-plane of the set (4.4), from that solution

to which the formulas (4.8), (4.9) apply. If the elements a,-j(X, v), *■=!, 2;

7 = 1, 2, 3, 4, are defined, then, by the formulas

(ati) - 2B«»(X, vmo, X),

- mPQi, *Mi, x),
it is found that

(5.10) ©(X, v) m (SyX'A'oy + <k&&%

The determinant £>(X, v) is accordingly given by the formula

(5.11) D{\ v) = \r^{Ai - ,42e*ri + ^3ex(ri+rs) _ Ate™},

in which, if au is interpreted as being identical with an,

(5.9)

(5.12) Afr,v) 1=1,2, 3, 4.
Oil 01,1+1

<hi ö2,j+i

Since the matrices §)(x, X) which enter into these formulas are different

for X in different half-planes (4.4), the elements o,i(X, i>), and the determinants

Ai(r\, v) are also different functions for such different values of X. However,

each solution §)(x, X) in question is asymptotically described as it is used by

the relation (4.9), and in this relation the matrices on the right are specific

and independent of X. It follows that each element a,i(X, v), and likewise each

determinant (5.12), may be taken as asymptotically equivalent to a respec-

tive formal power series in 1/X, and thus as subject to a single representation

for all large values of X.

It is useful, for the exploitation of certain symmetries to extend the

definitions of the elements au(k, v) and of the determinants ^4((X, v) to all

indices I. This may be done by the conventions

(5.13) ***** ,
Ai, = Ait, for h m l2 (mod 4).
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If the constants Vi are then defined, thus, for all integers h

(5.14) F2n_1 = (- l)*j—— j, V2h={-

it is easily verifiable that the formula (5.11) may be written in the form

m+3

(5.15) '  D{\, v) = X'i+'.^"i^ (- t)m*i**;
l=m

with any choice whatever of the integer m. The characteristic values other

than zero, and hence all those which are numerically large, are thus roots of

the equation

(5.16) Am*7- - Am+1ew^ + Am+2e™*>+> - Am+3e^« = 0.

6. On the regularity or irregularity of a boundary proble/n. For any given

value of v, any specific coefficient -4;(X, v) of the equation (5.16) is a function

of X. This function either vanishes identically or is asymptotically represent-

able by a series in powers of 1/X, with a constant term that may appropriately

be designated by the symbol Ai(*x>, v). The coefficient ^4;(X, v) in question

will be said to be regular or irregular at the given value of v, according as its

constant term Ai{ », v) is different from zero or vanishes.

If a given boundary problem is one that fulfills the hypothesis 1 in the

manner of the configuration 1 of §2, the points \ V~i for any four successive

indices /, mark the vertices of a parallelogram centered at the origin in the

complex X-plane. The abscissas of these vertices evidently determine the

magnitudes of the respective exponentials in the left-hand member of the

characteristic equation (5.16), and that exponential which is associated with

the vertex furthest to the right is the dominant one. Inasmuch as the orien-

tation of the parallelogram is a function of arg X, and any specific vertex is

furthest to the right for some values of arg X, the exponentials in the equation

(5.16) may in this case all be characterized as in an obvious sense, potentially

dominant.

If the boundary problem fulfills the hypothesis 1 in the manner of the

configuration 2, on the other hand, the points XF; are collinear, and lie upon

the segment terminated at XFi, and XF3 if the formulas (2.9a) apply, and on

the segment terminated at XF2 and XF4 if the formulas (2.9b) are applicable.

Since a position furthest to the right is impossible for all but the end points of

the segment, only two of the exponentials which appear in the equation (5.16)

are in this case potentially dominant.

The type of the boundary problem is essentially determined by those

coefficients Ai(\, v) that are associated with potentially dominant exponen-

tials in the characteristic equation. If the coefficients of the potentially

dominant exponentials are all regular, the boundary problem itself is said

to be of the regular type. If at least one coefficient of a potentially dominant
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exponential is irregular, but no one vanishes identically, the boundary prob-

lem is said to be of the mildly irregular type. Finally, if in the equation (5.16)

at least one coefficient of a potentially dominant exponential is identically

zero, but at least two coefficients of the equation are not identically zero,

the boundary problem is said to be of the highly irregular type.

It will be observed at once that this classification fails to account for such

boundary problems as have characteristic equations with less than two non-

vanishing terms. Such problems, however, have no expansion theories associ-

ated with them. For, if in the equation (5.16) just one term is non-vanishing,

the number of characteristic values is clearly finite. On the other hand, if

every coefficient vanishes, the equation (5.16) is evidently vacuous. The

boundary problem is then compatible for all values of X, and no characteristic

values are distinguished.

The classification thus described applies in particular to the boundary

problem (2.3) which was originally given, and which is identified in the

family by the parameter value v = 0. The discussion at hand is concerned

wholly with the case in which that problem is highly irregular. Of those

coefficients Ai(\, 0) which multiply potentially dominant exponentials in the

characteristic equation, at least one is therefore to be taken as identically

zero. It will be supposed, primarily for the purpose of delimiting these deduc-

tions to their present bounds, that those coefficients which do not vanish

identically are regular. Although this is in fact a restrictive hypothesis,

inasmuch as the case in which some non-vanishing coefficients are irregular

is a more general one, the features which are engendered by such irregularities

are, from the standpoint here to be maintained only secondarily germane.

They constitute in the first instance the salient source of the distinctions

between the regular and the mildly irregular cases.

Hypothesis 2. The given boundary problem is one for which at least one

coefficient of a potentially dominant exponential in the characteristic equation

vanishes identically, and for which the non-vanishing coefficients are regular and

at least two in number.

7. Specifications upon the family of boundary problems. Inasmuch as the

constants Ku introduced in §5 have remained unspecified, the boundary prob-

lem of the family associated with any value of v different from zero has been

only formally defined, and its type, in particular, has remained indeterminate.

This is now to be made specific. From the formulas (4.9), (5.4) and (5.9),

the evaluations

«<r(°°i ") = 0) + v ku,    i = 1, 2; I = 1, 2, 3, 4,

are obtained. Through the relation (5.12), therefore, the expressions Ai{ °o, v)

are formally quadratic polynomials in v in which the coefficients of the linear

and quadratic terms are functions of the constants Ku. It is now to be stipu-
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lated that these constants be chosen so that the coefficient of each quadratic

term vanishes. More precisely: The constants Ku, i = l, 2; 1 = 1, 2, 3, 4, shall

be such that each expression Ai(<*>, v) is a linear polynomial in v, and not

identically zero.

That this specification is not impossible of fulfillment in any case, may be

established as follows, by the explicit display of a set of constants which

have the requisite properties. Under the hypothesis 2, there exists an index p

which is such that

(7.1) A,(\,0) = 0, Ap+l(*,0)*0,

and Ap+2{&>, 0), Ap+3(x, 0) are not both zero. With such an index p let the

constants ku be taken thus:

KiP = — ai,p+2(«>t 0),      Ki,p+i = 0,     k,-,p+2 = — a;p(°°, 0),     Ki-p+3 = 0,

i = 1, 2.

It is readily computed that with these constants

^p(°°. «0 = vAp+1(co, 0), N

.4p+1(oo, v) = Ap+^co, 0),

Ap+2(x>, v) = Ap+2(cc, 0) 4- vAp+3(<x>, 0),

Ap+z(«>, v) = Av+3{», 0) 4- vAp+2(<x>, 0),

and since each of these expressions is a linear polynomial in v with at least

one nonzero coefficient, they evidently all have the structure prescribed.

With the coefficients A j(X, v) thus constructed, it is evidently possible to

determine in the complex p-plane a closed neighborhood of the origin within

which they are all regular except possibly at v = 0. Such a neighborhood will

be referred to as a proper region for v, and henceforth it shall be understood

that all values of v that are brought into question lie in such a region. With

the parameter so delimited the family of boundary problems is now such that

each of its members associated with a value of v different from zero is of the

regular type, and only the originally given problem is irregular. In an evident

sense, therefore, the given highly irregular boundary problem has been im-

bedded in a continuous aggregate of regular problems, and appears as

analytically approachable through this aggregate by the medium of a passage

of the parameter to the limiting value zero. The continuing discussion is

almost exclusively concerned with considerations centering upon such an

approach. Inasmuch as it is adequate to the ends sought to restrict the con-

siderations to modes of approach in which arg v is bounded, that restriction

is to be understood henceforward.

8. Two sub-categories of highly irregular boundary problems. Rouche's

theorem. The method by which a theory for boundary problems of the highly

irregular type is thus to be deduced, depends essentially upon the establish-
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ment of a one to one correspondence between the characteristic values and

solutions of the given problem with those of the regular problems of the

imbedding family, and the consequent expression of the former as limits of

the latter as V—+0. The existence of these limits as finite values is, therefore,

obviously a primary requisite, and since they may or may not all exist, de-

pending upon the individual problem at hand, a partition of the entire

category of highly irregular boundary problems into sub-categories is called

for. These will be distinguished by the designations A and B. Problems in

which the limits in question do all exist will be allocated to the sub-category

A, and to them the theory under deduction will be applicable. All highly

irregular boundary problems of the second order for which any analyses at

all are at present extant belong to this sub-category. On the other hand,

problems in which some of the limits fail to exist will be allocated to the sub-

category B. To them the theory will have no application, and it seems im-

probable that problems of this type admit of any expansion theory of a

customary sort.

A familiar theorem(8), upon which many of the considerations which

follow are to be based, may be stated thus:

If within and on any specific closed contour of the complex X-plane, two

functions <p(X) and ^(X) are each analytic, and if on this contour the relation

(8.1) . |*(X)| <U(X)|,

maintains, the equation

(8.2) .      *(\)-UKA) = 0,

has precisely as many roots within the contour as has the equation

(8.3) 0(X) = 0.

For future reference it will be noted here, that due to the manner in

which the parameter v enters into the structure of the functions Ai(\, v), the

following may be stated.

If  At(\, 0) m 0, then
(8.4)

A i(X, v) = v {ß, + Vi(\, v)), with ßt * 0.

If   Ai(\, 0) ^ 0, then
(8 5)

A,(\, p) m {ai + pV 4- 9«(X, v)},   with at + p> ^ 0.

In either case »7i(X, v) designates a function that is asymptotically represent-

able by a series in powers of 1/X with a vanishing constant term, and other-

wise with coefficients that are polynomials in v. It is evident, therefore, that

the relation

(8.6) lim v,(\, v) = 0,
x->»

(8) RouchtVs theorem. Cf. E. C. Titchmarsh, The theory of functions, Oxford, 1932, p. 116.
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maintains uniformly as to v. The coefficients en and ßi are in every case con-

stants.

Chapter 3

Boundary problems of the sub-category B

9. Problems of the configuration 2. In the case of any boundary problem

which fulfills the hypothesis 1 in the manner of the configuration 2 of §2,

the ratio of the constants Ti and T2 is real. It will be shown that all such

problems are to be allocated to the sub-category B. If the case in hand is one

to which the formulas (2.9a) are applicable, the constant y which fulfills the

relation ri = 7r2, is positive and greater than 1. The potentially dominant

exponentials in the characteristic equation (5.16) are those in which the sub-

scripts are odd, and at j» = 0 the coefficient of at least one of these is zero.

Let p be chosen so that this coefficient is ^4j,(X, v). It is found then, that after

division by the leading exponential the equation (5.16) may be written in

the form

(9.1)     Ap(\, v) - Ap+,(\ ">TXr + Ap+U(\, ,)*(*+?*¥ - Ap+i,(\, ")exr = 0,

with s = l, and with T = r2 or T= — T2 according as p = l, or p = 3. If, alter-

natively, the problem given is one to which the formulas (2.9b) apply the

value of 7 which fulfills the relation Ti= — 7r2 is positive and at least equal

to 1. In this case the potentially dominant exponentials are those with even

subscripts, and if AP(K, v) is taken as the coefficient of such a one and as

vanishing at f = 0, it is found that the equation (5.16) is again expressible in

the form (9.1), in this instance with j= —1, and with r = r2 or T= —T2 ac-

cording as p = 2, or p=4. The problems of the configuration 2 may, there-

fore, all be analyzed by a consideration of the equation (9.1).

The case in which 7 = 1 may be readily disposed of. The equation (9.1)

is then quadratic in exr, and as AP(K, v) tends to the limit zero with v some

roots exr and hence some characteristic values X, become infinite. In the

further considerations, in which it may now be assumed that 7>1, it is con-

venient to analyze separately the cases in which -4p+3.(X, v) does not vanish

with v, and that in which it does.

If the formulas (8.5) apply when l = p-\-3s, then since (8.4) applies when

l = p the characteristic equation (9.1) is expressible in the form (8.2) with

Ctp+3t

<t> = ßP-e*r,
v

* = vP(\v)-(l/")e^{ßp+lsv+Vp+3t(\, v)+Ap+t(\,v)e<y-^r-Ap+u(\,v)ey*r}.

The roots of the equation (8.3) are located at the points X„ given for integral

values of m by the formula
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(9.2) X* = (i/T) |2mxi + log ("^-)| •

If 5 is any positive constant such that o\Vi\ <ir, these roots are enclosed

individually by the circles of the nonoverlapping set

(9.3) X = xt-fAX,       I AX I = 5,

and it is seen at once that on any such circle

(l/„)exr = (ßp/ap+s,)e™,

and that as v —»0,

X —f oo,   and   e?xr —* 0.

Since by the first of these relations

<£(X) = ßp(\ - e™x),

on any circle (9.3), there clearly exists a positive constant M which is inde-

pendent of v, and such that for X on the circles the relation | <p(X) I > M main-

tains. But it is also clear from the evaluations given, that [ t^(X, v) \ <M when-

ever I v\ is sufficiently small. For all such values of v, therefore, the condition

(8.1) is fulfilled, and it follows that each circle contains a root of the equation

(8.2) , namely contains a characteristic value. It is evident from (9.2), how-

ever, that each of the circles (9.3) recedes to infinity as v—»0. The enclosed

characteristic values therefore approach no finite limits.

If with l = p+3s the formulas (8.4) apply, then since they also apply with

l=p, it follows under the hypothesis 2 that the function AP+,(K, v) is given

by the formula (8.5). In this case the characteristic equation (9.1) may be

written in the form (8.2) with

4> = ßp - (ap+,/v)ey^,

t = Vp(\ v) ~ (1/V)^xr{/W + Vp+.(\ v) - Ap+2t{\, v)e™}

- e*-r{ßp+z. + r,p+i,{\ v)}.

The roots of the equation (8.3) are now located at the points

Xt = (l/7r) ^2mTi + log (-^-)|,

and with this interpretation of X„ these roots are again enclosed in the circles

(9.3). On these circles it is seen that

(l/„)eTxr = (ßp/ap+a)ey™,

<KA) = ßP(l - errax),

and that as v—>0
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X —> oo,   and   exr —> 0.

By precisely the reasoning of the previous case it is seen that each circle en-

closes a characteristic value and carries it to infinity as v—*0.

The assertion that all boundary problems which conform to the con-

figuration 2 are of the sub-category B, has thus been substantiated.

10. Problems for which two consecutive coefficients of the characteristic

equation vanish. Since by virtue of the results of the preceding section, the

continuing discussion is concerned only with boundary problems which con-

form to the configuration 1, the points Vi, 1 = 1, 2, 3, 4, in the complex plane

mark the vertices of an actual parallelogram, and each exponential in the

characteristic equation is potentially dominant. Let the interior angle of this

parallelogram at the vertex Vi be designated by coj. The cases upon which

the attention is to be focused in this section, are those in which for some

index I the two consecutive coefficients, Ai(K, v) and Ai+i(k, v) vanish with v.

Since the respective angles ui and ai+i are adjacent angles of the parallelo-

gram, one of them at least does not exceed a right angle, and if this one is

designated by aP, the index p is thereby fixed to be such that

AP(k, 0) = 0,      ccp = x/2,

and also such that with either s = lors=—l,as the case may be,

Apr.(\, 0) = 0.

With this determination of p the formulas (8.4) apply when l =p, p+s, and

the formulas (8.5) do so when l = p+2s, p—s. After division by v and by the

leading exponential, the characteristic equation (5.16) is accordingly ex-

pressible in the form (8.2) with

<t> = ßP~ («„-,/") ex(F,~

(10.1) * = Vp(\, v) - {ßp+. 4- t,p+.(\, v)) ******

- {Vv)eWr-r-Vv){ßp_.v + „p_,(x, v) - Ap+U(\, v)e^--^\.

In this instance the roots of the equation (8.3) lie at the points

(10.2) Xl = -    1       l2wx» + log(—)\.

With this interpretation of X£, these roots are enclosed in the circles of the

set (9.3). On these circles

1 ßP
(10.3) — ex(Vp-.-rP) = e(Fp-^-rJ,)AX|

v Ctp-,

and hence

(10.4) <P = ßp(l - e"V-.-Fp]4X)
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The quantity on the left of the relation (10.3) is thus seen to be bounded

uniformly as to v and m, and the existence of a constant M which is inde-

pendent of v and which is such that | <p | > M for all X on the circles, is evident.

Consider now those circles of the set above which are associated with the

values of m for which sm is positive. On these circles

X[FP+S - Vp] = Vp+' ~ V* {Imiri + log 1 v\}

(io.5) .*:„    ' >• r  . l
+ \Yv4* - VP}L\ + --—— log (—^-r)!

I Vp+. — Vp \ttp-, 19\f)

t vp+, - vp\
\ Vp-. -Vp]

With the evaluation

(10.6)

the real part of the first term on the right of the formula (10.5) is found to be

Vp+.

V,
- < 2smw sin cop + cos uip ■ log -.—r > .
p-» — Vp 1 V \v\)

This becomes negatively infinite as v—»0, and since the remaining term on

the right of the formula (10.5) is bounded, it follows that

e\lVr+,-Vv]-j o.

Since for X on the circles in question X—v_,0 °o , the inequality | i/'l < M main-

tains for all values of v that are sufficiently small. For such v, then, each of

these circles contains a characteristic value, and these values become infinite

as y—>0. Any boundary problem for which two consecutive coefficients of the

characteristic equation vanish must, therefore, be allocated to the sub-

category B.

11. A third type of problem of the sub-category B. If for the given bound-

ary problem the index p is determined so that

(11.1) Ap(\, Ö) =0,

it may be assumed in this continuing discussion that

(11.2) ^lP-i(X, 0) fi 0,      .4P+1(X, 0) yi 0,

since the alternative has been disposed of in §10. The characteristic equation

(5.16), after division by v and by the leading exponential, may, therefore, be

written in the form (8.2), in which the function <p is as given by the formula

(10.1). The corresponding function \p is then expressible in the form

(11 3)* = "p(X' "} " (-1^eMVr''Vp)i^-'v + "*-(X- ")

- [-4p+2s(X, v)ew*-.-vP) _ Ap+s(x, „)]eMVP+.-v^.>}(
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and in these formulas the index s may be taken to be either 1 or —1. As in

the preceding section, the roots of the equation (8.3) are given by the for-

mulas (10.2), and are thus enclosed in the respective circles (9.3). Let the

attention be directed upon those circles of this set that are associated with

indices m for which sm exceeds a certain positive value to be further deter-

mined below, and let X be considered upon these circles. The evaluations

(10.3) and (10.4) then maintain, and for some positive constant M which is

independent of v, the function <b fulfills the relation \<p\ > M.

From the formulas (9.3) and (10.3) the equality

\[VP+, - F„_s] = I" Vp+' ~ Vp - l|{2*« + log Ml

+ [Vp+S - Vp-.]\a\ +        1        log i-^f-r)} ,
V V p+, — Vp \ap-e\ v\f )

may be verified. In the right-hand member of this the second term is inde-

pendent of m and is bounded as to v, whereas the first term has a real part

which may be computed, with the use of (10.6), to be

- 1        ,        , , .
' 2smir I Vp+s — Vp I sin wp

(11.4) I V,-, — V

+ [ I Vp-, — Vp I — I Vp+S — Vp I cos up] log I v I}.

If the constants F; and w„ involved in this are such that

(11.5) I Vp-S - Vp I - I Vp+e - Vp I cos up > 0, s = 1, - 1,

it is clear that the value (11.4) becomes infinite as >>—»0. The cases contrary

to this are those which are here to be specifically considered.

If the boundary problem under discussion is one for which the relation

(11.5) is not fulfilled, either when 5 = 1 or when s = — 1, then for such s the

quantity within the brace in (11.4) is arbitrarily large when sm is sufficiently

large, and the absolute value of the exponential

is accordingly arbitrarily small uniformly in v. It may be seen, therefore,

from (11.3) and (10.3) that for all values of v such that |»»| is suitably small

and for the values of m such that sm exceeds a value appropriately large, the

relation

|#| < M

is fulfilled. With the condition (8.1) thus met, each of the circles in question

contains a characteristic value, and retains it in its interior as v—>0. Inasmuch

as the circles recede to infinity as v—»0, it is clear that any boundary problem
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which does not satisfy both of the relations (11.5) must be allocated to the

sub-category B.

The failure of either one of the relations (11.5) admits of a simple geo-

metrical interpretation. Relative to the parallelogram with vertices at the

points Vi, 1 = 1, 2, 3, 4, in the complex plane, the symbols wp, | Vv-,— Vp\,

\VP+,— VP\, respectively designate the angle at the vertex Vp and the

lengths of the adjacent sides. If cop is a right angle or an obtuse angle, no

failure of the condition (11.5) is possible. However, if wp is acute a failure is

possible and is articulate of the fact that one of the sides of the parallelogram

adjacent to the vertex VP is exceeded in length by the projection of the

other one upon it. It will be seen at once that in such a case the diagonal

Vp-iVp+i divides the parallelogram into two triangles each of which has at

one of the vertices Fp_i, Vv+X an angle that is not acute. The boundary prob-

lems associated with such a configuration are, therefore, those which are

allocated in this section to the sub-category B.

As has been remarked above, the theory under deduction will have no

application to boundary problems assignable to the sub-category B. A hy-

pothesis to disbar such problems from further consideration is, therefore,

called for. To facilitate its enunciation, among other things, it is convenient

to adopt here the relations

(li .6)     rJn_! = (- i)*+'ri, r2, = (- i)*+t2,   h = o, ± 1, ± 2, • • • ,

which extend the definitions of Ti to all indices /. It will be noted that under

them

Th = Yh,   if   h = h (mod 4),

and from the relations (5.14) that

(11.7) Yi = V,+l - Vi.

The vector Tj thus represents the 7th side of the parallelogram with vertices

at the points V~i, and for all I

(11.8) arg T; — arg ri+i = co;.

The characteristic equation may accordingly be written, with any choice of /,

in the form

(11.9) ^,(X, v) - At+1(\, v)e^i + Al+2(\, 0eHr'+rw) - Ai+3(\, v)e^>* = 0.

Since the values | Vv\, \ Vv+i— Vp\, are now symbolizable by

I rp_i|, I rp|, and hence have in some order the values | Ti|, | r2| the condi-

tions (11.5) may evidently be expressed in the form (iii) below.

Hypothesis 3. The given boundary problem is one whose characteristic

equation, when written in the form (11.9) with v = 0, fulfills the specifications:

(i) the ratio ri/T2 is not real; and
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(ii) if AP(K, 0)=0 then A^co, 0)-.4,,+i(<», 0)^0, and
(iii) cos wp< |r2|, |r2| coso)p<|ri|.

Chapter 4

The characteristic values

12. The characteristic values for restricted values of v. In the complex

X-plane the relations

- r/2 - arg (?, - Tl+1) = arg X < - r/2 - arg (V, + Tl+1),

|X|^iV,

define, for each index / and for any non-negative real constant N, a region

which is to be denoted by Si(N). Any four consecutive regions of this set

cover the part of the plane which lies outside of the circle with radius N

centered at the origin. The asymptotic distribution of the characteristic

values may therefore be determined by a study of their distribution in the

region (12.1) with the index I unspecified.

The characteristic equation of the family of boundary problems has been

written in the form (11.9). If the abbreviations

(12.2) a(v) = Ai(cc, v),

are adopted, the further relations

(12.3) Afa,v) ««,Wll + xA')},

define the functions xi(X, v) here involved, and these are evidently all arbi-

trarily small, uniformly as to v in any proper ^-region, when X lies in a region

(12.1) in which N is sufficiently large.

Under the relation (2.8), which maintains in all boundary problems now

under consideration, the constants of the set

( Ti ± r;+i )
sin arg <-> , / = 1, 2, 3, 4,

1 )

are all positive. Let a designate the smallest one of these constants, and let

ßi be any positive constant less than a. It is then easily verified that the rela-

tion

(12.4) I «m*h I ̂  e-'iM, for X in Si(N),

maintains, and that when v is restricted to a part of its proper region in

which

(12.5) I r| 2t e~^N,

then the values
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1
(12.6) j = 0, 1,

are arbitrarily small in Si(N), if N is sufficiently large.

With the symbol r standing in the place of either 0 or 1, consider the

functions 0(X, v) and ^(X, v) defined by the formulas

0(X, v) m 1-—e^t + rUo-— «m^A ,
ci(v) 1 c,(v) )

*(X, v) m (1 - 2r)U*-— e^eS ,
1        ciM )

in which
ci{v)

Ai+Z(\, v)
öo(X, v) m X!(X, v)-—-e^m,

cm

Al+2(\, v)
öi(X, v) =- x/+i(X, v)-—-- e*rw.

If X* is taken to designate any zero of the function <p(X, v) in the region

Si(N), the equation <p(X*, v) = 0 may be written in the form

(12.7) ^g,r|=1 + ^^..
cm 1 4- r^fX*. p)

On the circle

(12.8) X = X* 4- AX,       I AX I = c,

in which e is positive and less than the smaller of the numbers ir/( r,-|, j = 1, 2,

but otherwise arbitrary, the relation (12.7) yields the evaluation

cwM lp    i + ^„(x*, p)
- gxr( = -1-er;ix

cm 1 4- r*i(X* r)

and since 0O and 0i are arbitrarily small over the region Si(N), it follows that

on the circle (12.8) the function (p(X, v) differs by arbitrarily little from the

value (1 —er'AX), while the function ^(X, v) is arbitrarily small. Since a relation

(8.1) thus maintains upon the circle (12.8), the equations (8.2) and (8.3) have

the same numbers of roots within it.

Now when r= 1 the equation (8.3) is the characteristic equation and (8.2)

is the equation

ct+i{v)
(12.9) 1 - ■-— e^-i = 0,

em

whereas when r = 0 the roles of these two equations are reversed. It follows
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that the roots

* 1 ci+i(v) )
(12.10) X!>m = (l/r,)^2«xi - log —— } ,

1 ci(v) )

of the equation (12.9) which lie in the region Si(N), may be set into one to

one correspondence with the characteristic values in that region, with corre-

sponding elements within a distance e of each other. Since the points X*m are

spaced at distances exceeding 2« from each other, it must be concluded that

the characteristic values in the region Si(N) are all simple, and that they are

enumerable and denotable in the manner X;,m so that

(12.11) Xi < e, for X;,m in Si{N).

Inasmuch as the constant e may be taken to be arbitrarily small, and the

relation (12.11) is nevertheless fulfilled when N is sufficiently large, the use of

the symbolism of asymptotic representation, namely

(12.12) • \i,m~\*i,m

is evidently justified. The entire set of characteristic values is clearly enumer-

able, since those which lie within any circle of radius N centered at the origin

are finite in number, while those outside such a circle stand in correspondence

with the enumerable sets (12.10) with 1 = 1, 2, 3, 4.

The relation (12.5) restricts the parameter v from a neighborhood of the

origin v = 0. This prohibited neighborhood can, however, be made arbitrarily

small by the choice of a value of N that is sufficiently large. Irrespective of

how small the proper region to which v is initially confined may be, therefore,

the considerations above are applicable for a range of values of v that is not

empty when the characteristic values concerned are remote enough from the

origin of the X-plane. Now for v in a suitably small region, a comparison of

the formulas (12.2) with (8.4) and (8.5) shows that when ai^O then the

difference {log Ci{v)— log on] is arbitrarily small, whereas when cti = 0 then

log ct(v)=\og (pV). It may be drawn from the relations (12.11), therefore,

that

(12.13) I \,,m - xE'j < 2«, forX;,ro in St(N),

where

(12.14) x^.* = (i/r^limi - (- i)' log        ,     j = o, 1,
1 pV )

when k is any index for which Ak(^, 0)=0, and

(12.15) C;,m = (l/r,_,)|2Wxj - (- 1)'' log , / = 0, 1,
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when q is an index for which Aq-i(\, 0) f^O, Aq(\, 0)^0, and Aq+i(K, 0)^0.

It will be observed that the points (12.15) are constant as to v, and hence that

any characteristic values represented by,them through the relation (12.13)

are asymptotically constant. Under the hypotheses made, however, at most

one index q can exist, and there may be no such index at all for the boundary

problem under consideration. In at least two and possibly in all four of the

regions Si(N), 1 = 1,2, 3, 4, the characteristic values accordingly refer through

the relations (12.13) to points of the respective sets (12.14), and so depend

in an essential manner upon v.

It will be observed for later reference that insofar as an index k is con-

cerned to which the formulas (12.14) apply, the reasoning epitomized in the

relations (12.13) would be in no way affected if the function Ak+i(\, v) were

replaced by 0, and the functions Ai(k, v) for l = k — 1, k, k-\-l, were replaced

by their leading terms as those are given in the formulas (8.4) and (8.5). These

replacements substitute the equation

(12.16) pV - a4+iexr* ~ <**-iexri+l = 0,

in the place of the characteristic equation. In the regions Sk-i(N) and Sk(N),

therefore, the roots of this equation are also represented asymptotically by

the points of the sets (12.14).

13. On critical values of X and v. By virtue of the hypothesis 3 the

boundary problem at hand is one for which the relations (11.2) maintain if

the index p is suitably determined. Let such a determination of p be fixed

upon, and throughout this section let it be understood that k is used to stand

at will for either p or £4-2. For these values of k, the equations (12.16) are

to be considered in the respective X half-planes Sk-i,k, of which each consists

of the pair of adjacent sectors Sj;_i(0) and Sk(0).

If, for any value of v, the equation (12.16) admits of a multiple root in the

half-plane Sk-\,k, that root is a zero of the derived function

(13.1) {ctk+1Tke™<< -f a*_iri+1exr*+i}.

It is, therefore, a point of the set

1       ( ak+1Tk )
(13.2) X<*»«> *-< (2m -f- 1)** 4- log->,      m = mk,

Tje+i — vk \ a*_ir^+i;

with the integer mk such that it lies in the region in question. Upon substitu-

tion of the values (13.2) into the equation (12.16), the respectively corre-

sponding values of v are found to be given by the formulas

(13.3) = Hke~ma, k = p,p + 2,

in which each coefficient Hk is a (complex) constant independent of m,

whereas
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- 2t{Tp
(13.4) 0 =- ■

rp+i — vp

The equation (12.16) obviously defines v as a single-valued analytic func-

tion of X. For the deductions at hand, however, the inverse relationship,

namely the dependence of X upon v is of more immediate consequence. In the

map defining this dependence the points (13.3) are branch points. According

as the domain of v includes these points or excludes them, the equation (12.16)

may be regarded as defining X(e) as an infinitely many-valued function, or as

defining its infinity of roots as distinct single-valued functions of v. Of these

alternatives the latter one is to be adopted, and the points (13.2) and (13.3)

are to be referred to henceforth as critical values of X and v, respectively. It is

to be shown, among other things, that there exist in the domain of v paths of

approach to the origin which avoid the critical values, and in fact that there

exist such paths along which \ v\ varies monotonically and arg v varies within

an arbitrarily prescribed positive range, and along which the roots of the

equation (12.16) are uniformly bounded from the critical values of X.

The formula (13.4), together with the hypothesis 3, assures that both the

real and the pure imaginary components of the constant A are positive. For

k = p and for k = p-{-2, therefore, the points of the respective set (13.3) lie

upon a logarithmic spiral which winds in upon the point v = 0, the points

given by successive indices m being spaced along this spiral at regular angular

intervals of magnitude equal to the imaginary part of fl. Let <ci be defined as

the smallest positive constant of the set

— <*« - 1
r„

k = p, p + 2; q = p, p + 2; s = 0, + 1, + 2,

The relation

(13.5)

v(k,m) _ j,(q,r)

,(Q.r)
^ «1,

maintains then for every pair of distinct critical values v<Jt'm) and v^-r\ irre-

spective of whether they lie upon the same or different spirals.

Together with a prescription of continuity at 2 = 0, the formula

Tp+1(er»* - 1) - rp(e^ - 1)
F(z) =->

(Tp+1 -Tp)z*

defines F(z) as a function of z which is analytic over the finite z-plane. This

function is, therefore, in particular bounded in the unit circle, and M may

accordingly be chosen as a constant such that M—\, and

I F(z) I < M, for I 2 I ̂  1.
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With any prescribed value arg v<,, and with any positive constant 8 that is

exceeded by both of the constants it and Ki, let 2ji designate the sector

I arg v — arg va \ < 8/2.

With such a value of 8 chosen, the relations

sin (5/2) 1 »'*

M
(13.6) I X - a<*'"> I < {-77-~f    ' k = p, p + 2;m = mk,

define in the X-plane a set of circular regions with fixed radii, and centeredjat

the critical points (13.2). Through the relation (12.16) these regions are

mapped upon respective neighborhoods of the points i><*.m>. These will be re-

ferred to briefly as critical neighborhoods. 0> «

From the relations (12.16) and (13.2), it may be drawn without difficulty

that

= 22F(z),   with   z = (- 1)(*-^'2(X - A<*'m>)-
pik.m)

It follows from this that every value X within a region (13.6) corresponds to a

value of v such that

(13.7)

,(k,m)

v(k,m)

■ (SA
— sin 1 — 1,   with   h\ < 5,

namely, that the critical neighborhood of the point i/*«m> is wholly within the

respective circle of the set (13.7). Since 8\<K\ and 5i<7r, it is clear on the one

hand, because of the relation (13.5), that no two of the circles (13.7) have any

points in common, and on the other hand, directly from the formula (13.7),

that no one of them includes the point v=0. Since each circle furthermore

subtends at v = 0 the angle 5i, which is less than the angle of the sector ^j,

the following facts are easily verified. If from the sector all points which

belong to any circle of the set (13.7) are deleted, the remainder of the sector

is a connected region within which there exist continuous paths of approach

to the vertex v = 0 along which | v \ steadily decreases. This is what was to be

shown. Since along such a path v remains in the chosen sector, the oscillation

of arg v does not exceed the prescribed value 8, and since v enters no circle

(13.7), no root of the equation (12.16), either with k = p or with k = p+2,

enters into a region of the set (13.6). The roots of the equations (12.16) thus

remain uniformly bounded from the critical X-values. Paths in the p-plane

having the properties enumerated will be referred to henceforth as regular

paths for v.

It may be noted incidentally that the cases in which the imaginary com-

ponent of the constant Q/ir is rational are peculiarly simple. From the for-

mulas (13.3) it may be seen that the critical points j>(*-m> then all lie upon a
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finite number of rays from the origin of the y-plane. The circles (13.7) includ-

ing the critical neighborhoods are therefore centered upon these lines, and any

section accordingly includes rectilinear paths of approach to v = 0 that are

regular.

It is familiar, and can easily be proved, that any exponential sum all of

whose zeros occur at points of the set (13.2) is uniformly bounded from zero if

X is uniformly bounded from the points in question. Any quotient obtained

by the division of a function (13.1) by one of the exponentials which it in-

volves is such a sum, and is therefore bounded from zero when X remains

outside of the circles (13.6). With any regular path for v there may, therefore,

be associated a positive constant of p which is such that for all values of v

upon the path the relations

(13.8) I ctk+iTk*"*-*»* + ai_1r,i+1<:x<r*+i-r*+'-1 ^ p,

k = p, p + 2;j = 0, 1,

are fulfilled by every root of an equation (12.16).

14. The loci of the roots of an equation (12.16). As the parameter v varies

along any regular path, the roots of the equation (12.16) with k = p, in the

respective half-plane Sp-i,p, remain distinct and trace out continuous loci in

the X-plane. It is to be shown that there exists for each of these loci a finite

terminal point corresponding to the parameter value v = 0, and hence that

every root of the equation in question approaches a finite limit as v—»0.

The change of variable and parameter from X and v to z( = x+iy) and ß,

as given by the relations

z = (*/2){x[r, - rp+l] + log —1,

(Tp+1 log ap+1 — Tp log ctp-A
ue>> - p> exp <-> ,

v. 1 p — I p+l )

with p = 0, transforms the equation (12.16) into the equation

(14.2) e-z(ß+ia+i)-i8 _J_ g-z(ß+ia-i)-ie — ^

with

rp 4" rp+t
(14.3) a - iß =

r

If Zo indicates the point corresponding to X = 0, the region Sp-i,p is transformed

into the half-plane

(14.4) - t + tan-' ß/a = arg (2 - z0) ^ tan-1 ß/a,

and this includes all except possibly a finite segment of the positive axis of

reals.
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From the equality of the pure imaginary components of its two members,

and the equality of their absolute values, the complex equation (14.2) may be

made to yield the pair of real cartesian equations

(a) ey sin { [l 4- <x]x + ßy + d\ = e~y sin { [l — a]x — ßy — o},

(b) 4e2«f {cos2 x + sinh2 y) = /A2"*.

Since ß is proportional to ] v |, it may be taken to fill the role of the parameter.

Along any regular path, 0, which differs from arg v by a constant, is then

determined as a function of p, the oscillation of 6 being less than 5 for any

path in a sector 7^, By virtue of the hypothesis 3, the real constants a, ß,

which appear in the equations (14.5), and which are defined by the relation

(14.3), are such that

- 1 < a < 1,      0 < |8.

It may be noted, however, that in the equations (14.5) an interchange of

a and —a may be achieved by the substitution of — y and — 0 in the place

of y and 0. Since any result derived for a>0 may, therefore, be translated to

apply when a<0, there is no essential loss of generality in assuming for the

explicit discussion that a = 0, and this will be done in the following.

With any choice of an initial parameter value v0, which is such that for the

associated value 0O the constant

0„ 4- f>/2)«

(1 - a)v

is not an integer, it is possible to associate an integer w0 such that for all real

constants 6"0 which are numerically sufficiently small, the relations

. I 3o I      (?. 4- 1/2)«* 4- 0o 4- o0a I So I
(14.6) ns + ---<--<(Ms+i)_J-1,

it (1 — a)ir t

are fulfilled when s = 0 with ffo = 0. If the case is one in which a>0, there exist

then a pair of positive increasing sequences of integers {qe} and {n,}, for

which the relations (14.6) are fulfilled when s = i, 2, 3, • • • . It thereupon

follows further, again if | 50| is sufficiently small, that the relations

;   I So|      (p. + 1/2)™* 4- 0o 4- S0a \So\
(14.7) n,4-J-<-—■—-<(n,+ l)--—

T (1 4" CtJT T

are fulfilled by the integers of a third increasing sequence {p.}. Let such

sequences relative to the chosen constant S0 be fixed upon. If the case is one

in which a = 0, these sequences may be taken arbitrarily, since the relations

(14.6), (14.7) imply no specifications for them.

Consider the relations
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(a) y = 0,   (1 + a)x + ßy = (/>.+ 1/2)t - 0O +

(14.8)

(b)

Cq, + l/2)r + So 4- So

1 - a

(c) y ^ 0,   (1 - «)* - ßy - (9. + 1/2)t + 0o 4- So.

In the (x, y)-plane the first and third of these define half4ines which terminate

upon the axis of x, and the second is the segment intercepted by them upon

this axis. The set of relations as a whole therefore defines a broken line which

divides the region (14.4) into two parts, in the one of which, to be denoted by

Z„(5o), the abscissas are bounded above. It is clear that a region Zs(8o) with a

larger index includes any one with a smaller index, and that the bound upon

the abscissas increases indefinitely with s. Let it be assumed now that the

path of v lies in a sector for which 8 fulfills the conditions imposed upon

I 5o| above. It is to be shown for the equations (14.5) that every root (x, y)

which initially lies within any region Zs(8) remains within that region as ju—>0,

and that any root which is initially outside of any region Zs( — 8) remains

outside.

Consider any root in a position in which its ordinate is positive. For

this position the equation (14.5a) shows that the sine function in the left-

hand member of that equation is numerically less than unity, and hence that

the value of { [l -\-a]x+ßy+6} is not an odd multiple of tt/2. With a suitable

determination of s, therefore,

where p3 is a member of the sequence so designated through the relation

(14.7) in association with the value of 8o = 8. The point (x, y), therefore, lies

in the region Z,(8), and since the relation (14.9) maintains while y>0, it is

clear that the root cannot issue from this region across the boundary (14.8a).

Similarly with s properly redetermined and ps a member of the respective

sequence associated with the value 80 = —8 through the relation (14.7) it is

assured that

The root (x, y) thus lies initially outside of the region Z,( — 8) with this index

s, and since the reasoning employed above shows it to remain outside so long

as y >0, it is evident that no root may enter any such region across the portion

(14.8a) of its boundary.

If in any of its positions the ordinate of a root (x, y) is negative, the equa-

tion (14.5a) shows that the value of {[l —ct]x — ßy — d} is not an odd multiple

of 7r/2, and hence that

(14.9) (1 4- «)* + ßy < (ps 4- 1/2)*- -00 + 5,

(p. 4- 1/2)t - 0o - 5 < (1 + «) * 4- ßy.
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(qai + 1/2)» + 0o - ö < [1 - a]x - ßy < (q. + 1/2)* + 00 + 5,

provided s and Si are properly determined, and the sequences {q,} and {qtl}

are associated with the values 5o = 5 and S0 = — 5 respectively, through the

relations (14.6). Since this configuration maintains so long as y<0, it follows

that no root may either issue from a region Za(8) or enter into a region

Z,( — 5) across a boundary (14.8c).

Finally, upon setting y = 0 the equation (14.5a) is found to reduce to the

form

cos x sin (ax + 0) = 0.

Of the roots of this equation those that are zeros of the factor cos x lie at

points of the set

(14.10) [(r+ l/2)x,0], r = 0, 1, 2, • • • .

They are shown by the equation (14.5b) to be uniquely associated with the

parameter value /x = 0, and thus, as points of loci which are traced out as p—>Q,

they are terminal points, and not points at which the loci actually cross the

axis of x. Such crossing points must accordingly be zeros of the factor

sin (ax+0), and hence points at which the respective values of {cyx+0o}

differ from integral multiples of x by less than the amount | 5o|. If a>0 no

such point lies on any segment (14.8b), either for 5o = 5 or for ö0 = —5, since

the relations (14.6) and (14.7) insure that on any such segment

«,x + I 50 I < ax + 0o < (n, + l)x — I S0 \.

On the other hand if a = 0 there exist no such points at all, as may be seen

from the relation (14.6) with s = 0. Since a root may, therefore, neither issue

from a region Z,(b) nor enter into a region Z,( — S) over the boundary (14.8b),

the assertion above has been substantiated.

This deduction admits of two specific and pertinent conclusions. In the

first instance, since every root remains within some region Z,(5), its abscissa

is subject to some upper bound. By the equation (14.5b), therefore, it ap-

proaches a limit as ß—»0, and this limit is a point of the set (14.10). In the

second instance, since no root may enter into any region Z,( — 5), it follows

that the distance of any root from the point zo is subject to a lower bound,

and that this bound is arbitrarily large for any root which is sufficiently dis-

tant at any specific value of ju.

As reinterpreted into terms of the variables X and v through the formulas

(14.1), the results may be formulated thus. The roots X' of the equation

(12.16) with k = p which lie in the half-plane Sp-i,p, all approach finite limits

as v—»0, and these limits are all points of the set

— 1     ( ttp+i)
(14.11) -\(2r + 1)t* + log-\.

Tp — Tp+i ( ap— i)
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Any such root X' which at any specific value of v is sufficiently large in abso-

lute value, remains arbitrarily large as v—»0.

15. The characteristic values as v—»0. In §12 it was deduced that if there

exists for the given boundary problem an index q, such that Ai(\, 0)p^0 for

Z = g —1, q, g + 1, then the characteristic values which lie in the regions

Sq-i(N) and Sq(N) are represented by the points of the sets (12.10) with

l = q — 1, q. Insofar as these deductions were concerned, the restriction (12.5)

upon the parameter v was wholly dispensable, since the relation (12.4) insures

that the values (12.6) are arbitrarily small when N is suitably large, without

recourse to the restriction upon v. The representations of the characteristic

values by the relations (12.13), (12.15) are, therefore, not only valid as stated

in §12, but maintain as v—»0.

The contrary is the case insofar as the characteristic values are concerned,

which lie in any region Sp-\(N)ov SP(N) with an index p for which AP(K, 0) =0.

That these values cannot be represented for unrestricted values of v by the

points (12.14) through the relation (12.13), is, in fact, immediately evident,

since these points recede to infinity as v—>0. For the deductions culminating

in the relations (12.13), (12.14) the restriction (12.5) was, therefore, essential,

and it accordingly remains to deduce for the characteristic values in any half-

plane Sp-i,p a representation which maintains as v—»0.

For X in a region SP(N), let the function 0(X) be defined by the formula

(15.1) <£(A) m ßpVe-*Tr> - ctp+1 - ap_1ex<I>«-IV.

With X=X'+AX, in which X' is any root of the equation (12.16), an alterna-

tive formula for this function is

<HX) = {<Ai(X0 - 4,2(AX)}tf>3(AX),

<*>i(X') = {ap+1Tp + a^lrH.1ex'«V*-r»>},

<£2(AX) - a^T, - Tp+1 - _ J. ,

i \ — er„+iAx \

<f>s(A\) = e~T^<-■-\ .

If the parameter v lies on a regular path, the relation (13.8) with k = p and

j = 0, insures the existence of a positive constant p which is such that

|<Pi(X')| >P for all choices of the root X' and all positions of v on the path.

The functions <p2(AX) and (p,(AX) are analytic for small values of AX, and

vanish at AX = 0. A positive constant e may be determined, therefore, such

that when | AX| =e, then |<p2(AX)| ̂p/2, and |<p.(AX)| 5^0. It is clear, then,
that on the circle

(15.2) X = X' + AX,       I AX I = e,

in which
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the function <p(X) fulfills a relation

(15.3) I *(X> I > Af,

with some positive constant M.

Let the function i^(X) be defined by the formula

,„ ,,*(X) - {Ap(\, v) - ß„v)e-™v - {/1P+1(X, v) - ap+l\ 4- Ap+i(\, V)e^
(15.4) , , ,

On the circle (15.1) an alternative expression for \p(K) is

(      Ctp+1 )

*(X) = Ap+2(\, e)exr»+i 4- Up —— e~*** - Vp+i ~ ßp+A
\     Pp J

4- {r,p — err^ - vp+i ~ ßP-Ae^r^-r"\
V ßp I

and from this it may be seen that

(15.5) \*(\)\<M,

provided N is sufficiently large and j ̂  | suitably small, since the exponential

exp {X^p+i —rp)} is bounded in the region SP(N), and the functions

exp {Xrp+i} and 77;(X, v), are then arbitrarily small.

By the deductions of §12, both the characteristic values and the roots of

the equation (12.16) in the region SP(N), are represented with an arbitrary

degree of accuracy at any specific value of v (j^O) by the set of points (12.14)

with k = p, j = 0, if the value of N is sufficiently large. Each characteristic

value thus corresponds to and is represented in an obvious sense by the

respective root X'. Since with the definitions (15.1) and (15.4) the equation

(8.2) is the characteristic equation, it follows from the relations (15.3) and

(15.5) by reasoning which is now familiar, that the circle (15.2) contains and

retains a characteristic value within it, and therefore that X' continues to

represent its associated characteristic value, so long as it remains in the

region SP(N).

By the formal interchange of the symbols ap-i, ßP-i, and Tp with cep+i,

ßp+i, and rp+i respectively, the deductions given above may be adapted to

the consideration of the characteristic values and roots X' in the region

Sp-i(N). Since it was found in §14, that any root X' which at an initial value

of v lies in the domain comprised of the regions Sp-i(N) and SP(N) remains

in this domain as v—*0, the asymptotic representability of the characteristic

values in the half-plane Sp-i,p by means of the roots of the equation (12.16)

as v—>0, has been established. In particular, therefore, every characteristic

value \im approaches a finite limit as v—*0, and |X;m| is subject to a lower

bound, which is indefinitely large with the index m and is independent of the

parameter v.
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Since as v—»0 along a regular path each circle (15.2) contains precisely

one characteristic value, it is a particular consequence that all such values

lying outside of some circle centered at X = 0 are simple, and that multiplicity

is accordingly possible at most in the instance of members of the finite set

which lies within such a circle. The following consideration shows, therefore,

that multiplicities of the characteristic values may be wholly obviated for

values of v different from zero by an appropriate choice of the path of v.

Within any circle about the origin, the determinant F>(X, v) given by the

formula (5.15), and F>x(X, v), its partial derivative as to X, are analytic func-

tions of X and polynomials in v. Their v eliminant, therefore, has at most a

finite number of zeros within the circle, and these zeros correspond through

the characteristic equation (5.7) to the values of v for which a multiple char-

acteristic value is possible. Inasmuch as these values of v are thus also finite

in number they may,—except for j> = 0, if that is among them,—be avoided

by the choice of the path of v. It will be assumed in the following that any

path of v that is brought into question does avoid these points. The relation

(15.6) Z>x(X, v) ^ 0, forx ^ 0,

is then fulfilled by every characteristic value.

Chapter 5

Sequences of contours in the X-plane

16. An ordering of the characteristic values. Through their designation

in the manner Xi,m the characteristic values have been grouped into sub-sets

which are distinguished by the respective index values 1 = 1, 2, 3, 4. For the

continuing discussion advantages no longer subsist in this, and these values

may profitably be regarded hence forth as members of a single simple se-

quence, in which the ordering is specifically such as will be described in the

following.

Let 5 be chosen as any positive constant which fulfills the relations

(16.1) 5 <-1—T, j = 1, 2,is I r,- [

and let 5i thereupon designate the smaller one of the values

(s/3) I r,I, /=i,2.

For those indices / for which ^4;(X, 0)=0 the functions ct(v), given by the

relations (12.2), are constant multiples of v, and hence if v0 is an initial

parameter value (different from zero) on any regular path that lies in a sector

yi>,, the relation

(16.2)
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is fulfilled along that path. For those indices / for which Ai(\, 0) ^0, on the

other hand, the functions cj(V) approach non-vanishing limits as v—>0. There

exists, therefore, a neighborhood of the origin in which the oscillations of the

respective functions arg ci(v) remain less than 5i, and hence if vq is chosen in

such a neighborhood the relation (16.2) is fulfilled for all indices I when v is

on the path segment terminated by v<> and the origin. It will be supposed in

the following that y0 is so chosen, and that v varies on such a path segment.

The relations

(16.3)
1 ci(v0)

— arg-
r* «,(*)

5
< —!

3

then maintain for all indices h and I.

Let the characteristic values be ordered now into a simple sequence

(16.4) XrW, r = 1, 2, 3, • • • ,

with an ordering such that at p0 their absolute values stand in a non-decreas-

ing succession, that is,

(16.5) I \r(p„) I = I Xr+1(fo) I, r = 1, 2, 3, • • • .

Through the asymptotic relationship (12.12), which maintains at ^ = ^0, this

ordering evidently serves immediately to order also the corresponding points

(12.10), at least insofar as those with sufficiently large indices m are con-

cerned, into the sequence

(16.6) A*(?), r = ru n+ 1, r, + 2, • • • .

Inasmuch as each member of this latter sequence is drawn from one of the

four sub-sets (12.10), it is clear that any consecutive five of them must include

at least two from some one of the sub-sets. To every sufficiently large index r,

therefore, there corresponds some index pair (/, m) such that

(16.7) I Ar-M^o) I — I Ar^o) I ̂  I \l,m+l(vf>) \ ~ \ Aj.mW | ■

In this relation the right-hand member differs by arbitrarily little from the

value 2ir/| Til, whenever m is large enough, as may be seen from the formula

(12.10). It follows in particular, from the relation (16.1), that the left-hand

member of the inequality (16.7) exceeds the value 326 whenever r exceeds

some specifiable value, and hence that for every such index r at least one of the

differences

I ArWro) 1 - I A *+,("o) I, J = 0, 1, 2, 3,

exceeds 85. It may be asserted, therefore, that there exists an increasing se-

quence of integers n of which no one exceeds its predecessor by more than

four, and for each of which the relation
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(16.8) I I ~ I X *Oo) I > 85,

is valid.

17. The sequence of contours Cn. For each index n for which the relation

(16.8) is fulfilled, let the circle in the X-plane which is centered at the origin

and of the radius An, with

(17.1) An = (1/2) { I X*+1(x0) I + I X»*[>0) |},

be designated as the contour Cn. It will be seen at once that

I X,*(f0) I < A„ - 45, for r ^ n,

I \*f>0) I > A„ 4- 45, for r > n,
(17.2)

and hence that at v = va no point of the sequence (16.6) lies within a distance

of 45 from any one of the contours C„. It is to be shown that a succession of

points vn may be chosen on the path v, such that | vn\ decreases monotonically

to zero, and such that no characteristic value lies within a distance of 5 from

the contour Cn when v is between vo and vn, namely when v is on the "path

segment" (i>0, v„).

If x, y, xo, and yo are any real values, and z=x+iy, z0 = Xo+iyo the relation

I   2 I       I   2 I 2 2
I z I - I zo I = (* — xo) 4- (y — yo)(y + yo),

is an obvious one, which leads easily to the inequality

I   2      21 i

(17.3)        iui -iZoii = *i 7i I +ly-yol-
I z I 4- I ZoI

Let any member of the set (16.6) be chosen, and let the indices (I, m) be deter-

mined so that this member is also given by the formula (12.10). Then with

1 c,(v)
t~t log

(17.4)
1    (                  ci(p) )

—T< 2min -f arg-— ) ,

and xo = x(i'0), yo = y(yo), the formula (12.10) yields  \z\ = (X,*^) |, |z0|

= |x*w|.
At v=vo, the relations

(   1 edw)   I) 2
(17.5) ll-rTT1^ -— ><(5/3)A„, 7=1,2,3,4,I I Ti I ci+1{v) I )

are all fulfilled for every sufficiently large index n. They evidently continue to

be fulfilled as v varies from v0, so long as it remains subject to a condition
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1
(17.6) log

1/2
= a2An ,

in which a2 is an appropriately determined positive constant. With each index

n concerned there may, therefore, be associated a point vn on the path of v

for which the equality in the relation (17.6) applies. The condition (17.5) is

then clearly fulfilled when v is between v0 and vn, whereas the sequence \vn\

converges monotonically to zero, as was asserted above. With v on the path

segment (t>o, vn), the formulas (17.5) and (16.3) show at once that

i     2 2 I
I x — Xq \ < (5/3)A„,

and

\y-y»\< (25/3).

The relation (17.3) accordingly yields the inequality

(1/3)5A„
(17.7)        x*w I -1 x*(„„) 11 < rr^rrrrTT, n + 23AI VW I + I Xr*(f0) I

and from this, together with the relations (17.2), it may be concluded that

I X*(y) I < A„ - 25, for r £ ft,
717 8)

I X*(k) I > A„ + 25, for r > n.

By the deductions of §12 the relations (12.11), with any positive «, are

fulfilled for all sufficiently large values of N, and maintain while v fulfills

the respective condition (12.5). Since in these deductions the role of e may

be taken by the constant 5 above, and since the corresponding role of N is

then filled by any of the constants A„ —25 in which n is sufficiently large, it

follows that all characteristic values \T(") which lie outside of the circle

|X| =A„-25, fulfill a relation

(17.9) I Xr(v) - X*W| < 5,

and do so for all values of v that satisfy the condition

I v I — g-"iCA»-2{).

Inasmuch as the relation

ai(A. - 25) > a2A}'n\

is fulfilled for all sufficiently large indices n, this specification upon v is implied

by the condition (17.6). The relation (17.9) thus applies in particular over the

path segment {v<>, vn), and from this, together with the inequalities (17.8), it

follows at once that on this path segment the relations
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Xr(V)   < An — 8, for r ^ »,
(17.10) .

I Xr(j») I > A„ + S, for r > n,

maintain.

No characteristic value comes within a distance of 5 of any contour Cn

associated with a sufficiently large index n, therefore, while v varies along its

path from i>a to vn.

18. The determinant D(\, v) on the contour Cn. As it is expressed through

the formula (5.15), the determinant £>(X, v) is the sum of four terms with

coefficients Ai(\, v) that are of the structure (12.2), (12.3). It is to be shown

that when, with a sufficiently large index n, X and v are respectively on the

contour C„, and the path segment (j>o, vn), the functions Bi(K, v) defined by

the formulas

(18.1) B|(X, v) = —-      {(- l)l+>\*i+**ci(i>)ew-™},
D(\, v)

are bounded uniformly as to n, namely that there exists some constant Af,

independent of n and /, such that for all indices /

(18.2) I Bi(\, v)\ < M, for X on Cn, and v on (v0, vn).

When |X| = A„, with a sufficiently large index w, and v is on (i>«, vn), the values

(18.3) \<i(>)j*A, 1=1,2,3,4,

all differ from zero. As X traces the circle Cn, each of these values is in its

turn the dominant one upon a respective arc of the circle. If this arc upon

which the largest of the values (18.3) is that given by the index h, is denoted

by Cnh), the relations

(18.4) 5= 1, for X, v, on C„A> and (vB, vn),

are fulfilled for all /, and it is accordingly clear that on this arc the index h

also marks the dominant one of the functions (18.1). The relations (18.2) will,

therefore, be established if it is shown that there exists a constant M such

that for every h

(18.5) I Bh(\, v) I < M, for v on (v0, v„) and X on C„A>.

From the relations (12.1), the arc C„h) is seen to lie partly in each of the

sectors 5„ and Sh-i- It consists, therefore, of two contiguous arcs which may

be conveniently denoted by CnhJ), j = 0, 1, and which lie in the respective

regions Sh-j. On each of these arcs the inequality (18.5) may be established

in the manner of the following. The formulas (18.1), (5.15) and (12.3) yield

for the reciprocal of Bh(K, v) the expression
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e\(Vh+l-Vk) _|_Z_ gX(FA+s-FA)

Ch

e\(Vh+t-Vh) _

By the use of the relations (11.7) the final two terms in this may be written

in the form

I    ChC )    \ Ch+i ) \Ch )

On the arc Cn",0), therefore, their sum is arbitrarily small, in virtue of the

relation (18.4), and the fact that with X in the domain S*(A„) and v on (vo, vn)

the values (12.6) are arbitrarily small. The remaining terms on the right of

the relation (18.6) are expressible in the manner

In this the first member is identical with the function

(18.7) {l _ e(x-xV»>r»}

because of the formula (12.10), whereas the remaining member is again arbi-

trarily small in virtue of the relation (18.4) and the fact that the functions

Xj(X, v) approach zero uniformly as |X|—>«>. Since with v on the path segment

(vo, vn) and X on the arc C„h'°\ the value (X—X*„)r* is bounded from the

multiples of 2wi, uniformly as to n, as was shown in §17, it follows that the

function (18.7), and hence the entire right-hand member of the formula

(18.6), is uniformly bounded from zero. Thus with a suitable constant M, the

relation (18.5) is established insofar as the values of X on the arcs C^® are

concerned.

For the discussion relative to the arcs CnA,1) the reasoning above may be

essentially adapted by the mere interchange of the roles of the third and fifth

terms on the right of the formula (18.6). Thus the sum of the third and fourth

terms, when written in the form

is seen to be arbitrarily small, since that is true of the expressions (12.6) with

l = h — 1. The remaining terms on the right of the formula (18.6) are expressi-

ble in the form

(18.6)

1 A^
- ~ 1 ~\~ xa — -
Bh(\, v) ch

Ah+z

Ch
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and this is uniformly bounded from zero, as was the value (18.7). The exist-

ence of a constant M for which the inequalities (18.5), and hence (18.2), are

valid, may thus be regarded as established.

Chapter 6

Adjoint boundary problems

19. The definition and the solutions of adjoint boundary problems. In

terms of the square matrices which appear as coefficients in the equations

(5.2), the set of relations

!'(*, v) = - i(x, p){W(x) 4- Q(*)},

(19.1) 1(0, p) - &(r)*<«(X, p),

3(1, p) » - 5M8»(X, v),

may be looked upon as constituting a differential system for a pair of vectors

b(i>), and %{x, v), of the form

(19 2) M - (JiW, h{p)),

i(x, v) m (zi(x, p), st(x, ?)).

With X and v at any specific values, this system will be characterized as the

adjoint of the respective differential system (5.2)(9). As in the case of this

latter, X and v are to be considered as complex scalar parameters. The vector

b(y) will be referred to as the parametric vector, and of a pair of vectors (19.2)

which together satisfy the equations of the system, the vector i(x, v) will be

called the solution(™). .

Let %)(x, X), as heretofore, be any nonsingular solution of the matrix

equation (4.1). The general solution of the differential equation of the system

(19.1) is then given by the formula

(19.3) !(*, p) m t(pW-K*, X),

in which l(v) is an arbitrary vector independent of x. Upon substituting this

form into the boundary relations of the system, the vector f (v) is found to be

subject to the evaluations

= M«<"(x, .09(0, x),

' f(") = - f>(")93(1>(X, r)9(l, X).

(*) The comparative structure of the systems is somewhat better shown if the equations

(S.2) are written in the form U'O, *) = {X$R(x)+O(*)}»)(*, v), 25 0)(X, y)l)(0, »0=a(?),

8»0, p)t)(l,p)--a(p).
(,0) This formulation of the adjoint differential system differs in some relatively minor

details from that given by the author in the paper: The boundary problem of an ordinary linear

differential system in the complex domain, Trans. Amer. Math. Soc. vol. 46 (1939) p. 165. It is

obtainable therefrom, however, by setting m = 2, 7)o = r;i = 0, j» = 1, and jö'(x)= — j(1,(*)

")•
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The consistency of these evaluations, as may be seen by the elimination of

t(v), is contingent upon fulfillment of the condition

in which 3)(X, v) is precisely the matrix given by the formula (5.6). A solution

of the system may, therefore, exist only in association with a parametric

vector which satisfies the condition (19.5). Conversely, it is seen at once,

every parametric vector which does satisfy this condition has a solution

associated with it through the relations (19.4) and (19.3).

The choice b(v) =o obviously satisfies the equation (19.5). It is, however,

uniquely associated with the solution i(x, v)=o. This solution, which is thus

always available, may properly be regarded as trivial, and to bar it from the

further considerations the specification

will be imposed. Under this condition the possibility of fulfilling the relation

(19.5), and hence the existence of a solution i(x, v), is contingent upon the

values of X and v, and the differential system (19.1) may accordingly be re-

garded as defining a family of boundary problems, precisely as such a family

is defined by the system (5.2). The two families (19.1) and (5.2) will be de-

fined to be adjoint.

Under the restriction (19.6), the equation (19.5) is solvable if and only if

X is a value for which the matrix S)(X, v) is singular. Such values of X are

accordingly to be designated as characteristic values of the boundary problem

(19.1). Since, as roots of the equation (5.7), they have already been identified

as characteristic values of the boundary problem (5.2), it must be concluded

that adjoint boundary problems have the same characteristic values. That

every such value is of the same index, namely admits the same number of

linearly independent solutions, for each of the two boundary problems fol-

lows also. For the numbers of linearly independent vectors c(r,(v) and b(r>(v)

which satisfy the respective equations

at the characteristic value Xr, are, of course, either both one or both two,

according as the rank of the matrix 3)(Xr, v) is one or zero. If this rank is zero,

it is clear that Xr must be of multiplicity at least two as a zero of the de-

terminant Z?(X, v). The multiplicity of a characteristic value is, therefore,

never exceeded by its index.

The solutions which are associated with any vectors c<r)(") and b(r)(y) ful-

filling the relations (19.7), are given, respectively, by the formula

(19.5) fj(K)£>(X, v) m 0,

(19.6) &f>) * o,

(19.7)
£)(Xr, iOc(rV) = o,

b(rV3)(Xr, v) = o,

(19.8)
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and by either one of the equivalent formulas

(19 9) *<r)(*' "} ■* b<r,W93CO,(Xr' v)2)(0' MHfc Xr),

*) = - b^(vW»(\r, "Wh XrJrH*. Xr).

For the purposes of subsequent deductions certain pairings of these solutions

are advantageous, and are definable whenever the characteristic value con-

cerned is of an index equal to its multiplicity.

Let da designate the elements of the matrix ©, so that

(19.10) ©(X, v) m {dtjfr, »)).

If Xr is a characteristic value of the index and multiplicity one, the relations

dkl(\r, v) * 0,       ZX.(Xr, v) ^ 0,

maintain if the subscripts (k, I) are suitably chosen. The relations (19.7) are

then in particular fulfilled by the vectors

(„) 1      / dk2{\r,v) \

dkl(K, v)\— dkl(\r, v)/'
(19.11)

7?x(Xr, v)

and neither of these is the zero vector. With the evaluations (19.11), the solu-

tions (19.8), (19.9) will be said to be a normal pair. If X, is a characteristic

value of index and multiplicity two, it may conventionally be regarded as the

pair of coincident values X, and X,+i. Since in this case the value

,.     D(\, v)
hm-
x-.x, (X — X„)2

is not zero, whereas it is the determinant of the matrix

(19.12) £x(X„ v) m ( lim —--),
\ X-.X, X — X, /

this matrix is nonsingular. It may then be verified that the determinations

cw« = {2Dx(X„ v) }-J &(.)(,) = (- i, o),

(19.13)

cc+i)(„) = {£>x(As+1, j-Y      V>+»{v) = (0, - 1),

fulfill the relations (19.7), respectively for r = s and r = s + l. With each of

them the respective solutions (19.8), (19.9) will also be said to be a normal

pair. No normal pairing of solutions will be defined in the instance of charac-

teristic values whose multiplicities and indices are not equal.
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20. The generalized relation of bi-orthogonality. Under the normalization

of the given boundary problem in §3, and the construction of its imbedding

family in §5, each element z\i(A, v) of the matrices 23(0)(X, v), 33(1)(X, v) is a

polynomial in X of maximum degree n, and ri = n. It is readily seen in virtue

of this, that the equations

t.-i

(20.1)    SJ««(X', v) = ®<*>(X", v) - (X" - X') £ (X")'S(M)(X',        A = 0, 1,
1-0

implicitly define the matrices which are .therein designated by 93(*'"(X', v),

and that any element v%'l)(\', v) of such a matrix is a polynomial in X' of

degree at most t,- — 7 — 1 if t< — 7 — 1 = 0, and vanishes identically if r,- — Z —1< 0.

The relation

f1 toro) + i'(xmx)}dx =      -1(0)9(0),
0

is an evident identity. If the vector J and the matrix §) involved in it are

taken respectively to be any solution lp(x, v) and the matrix §)(#, X) which

appears in the formula (19.8), the equations (19.1) and (4.1) may be used to

give the resulting equality the form

„ (X - X,) f 1 !<»>(*, i7)8t(*)9(*, \)dx
1.2) J o(20.2)

4- &<*>«{*<«>(X„ r)»(0, X) 4- 25(1)(XP, v)g)(l, X)} = 0.

In this expression the matrices 33(W(XP, v) may be replaced by their equiva-

lents as given by the formulas (20.1) with X'=X„ and X"=X. The subsequent

multiplication on the right by any one of the vectors (X—XP)-lc(5)(»'), it being

assumed that Xr^Xp, results then in giving the relation the form

l

?<*>(*, vW(xMx, \)cM(v)dx
0

(20.3)      - 6<»>(r) ]£V{8<J''>(XFf pMO, X)c<«'(0 + ®a,l)(X„ *)9(1, X)c<«>W}
1-0

=    - 1   6<»(y)g)(X, ̂ "(v).
X — Xp

As X—»X9 it follows from the formula (19.8) and the analyticity of the matrix

5)(x, X) as to X, that

limgKscXjcWM = 1, <«>(*, *}.
x-x4

It follows similarly from the first of the relations (19.7) that
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lim £)(X, p)c(4)(") = o.
x->x.

If Xp^X,,, therefore, each member of the relation (20.3) approaches a limit as

X—»X8, and the limiting form of the relation as it is given below under (20.5) (u)

may be regarded as established whenever the solutions 3tJ>)(a:, v) and ti/4>(a:, v)

are associated with distinct characteristic values. It is to be shown that the

relation (20.5) is valid also when XP = X8, provided the solutions involved are

each a member of a normal pair.

When \p=\g, the limit of the right-hand member of the relation (20.3) is

(20.4) --i<*>00&(V» *)C<«>(».

If ilp)(x, v) and t)(4)(x, v) are not members of the same normal pair, the char-

acteristic value in question is of the index two, and by the convention adopted

in §19, py^q. The vectors b(j,)(i>) and c^iy) are in this case evaluated by the

formulas (19.13), with (p, q) identified either with (s, $4-1) or with ($+1, s).

Under either alternative it is found directly that the limit (20.4) is 0, and

hence that the relation (20.5) below again maintains.

When p = q the limit (20.4) is easily found to be 1 if the characteristic

value is of the index two. The vectors bCp)C) a°d c(4)(iO are then as given by

the formulas (19.13) either with p = q = s, or with p=q = s + l, and the result

is immediate. If the characteristic value is of the index one, the expression

(20.4) for the limit is conveniently replaced by

, . ; . d'ki(Xp, v)D(\p, v)
- b<">(")2)x(Xp, „)r>>(y) -

dki(Xp, v)D\(\p, v)

which is its equivalent, since D(KP, v)=0. The vectors b(p)(v) and c(p)(»0 are

in this instance evaluated by the formulas (19.11), and with these values the

limit in question is found, as has been stated, to be 1.

The solutions of adjoint boundary problems which are members-of normal

pairs thus fulfill the relations

i(p)(x, v)dt(x)t)^(x, v)dx

(20.5) '°

b<J°« E XP{5B(M)(XP, VW\0, ,) 4- 8a,,)(X„ vWQ\l, „) }-*,

It will be observed that in the absence of the indicated sums in their left-hand

members, these relations reduce to the expression of a familiar property of

weighted bi-orthogonality of the solutions involved. This reduction evidently

maintains whenever ti = 0, namely whenever the boundary problem given is

(u) In which 6pq = 0 if p^ä, «„ = 1.
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one in which the boundary relations are independent of the parameter X. The

relations (20.5) may, therefore, be looked upon as generally expressive of a

property of the solutions of which bi-orthogonality is a specialization.

Chapter 7

Expansions in series of characteristic solutions

21. The formal expansions of arbitrary vectors. When the parameter v

is on a regular path, and v^O, all characteristic values, as has been seen,

satisfy the relation (15.6), and are therefore simple roots of the characteristic

equation. Every such value is, therefore, of the same index as multiplicity,

and the characteristic solutions of the adjoint boundary problems accord-

ingly have the property that they may be adjusted to appear without excep-

tion as members of normal pairs. It is essential for the continuing discussion

that this property be invariably present, namely also at v = 0. Since the

boundary problem is then as originally given, the inherence of the property

in it must be a matter of assumption, and this it will be made by the following:

Hypothesis 4. The given boundary problem is one for which every character-

istic value is of an index equal to its multiplicity.

On the basis of this hypothesis it may, and will be, understood in the

following, that the designations %(p)(x, v), t)(p)(x, p), are reserved to solutions

of normal pairs.

If with any sequence of scalar coefficients ocp(y), p = 1, 2, 3, ■ • • , the series

of characteristic solutions in the equation

00

(21.1) £i«,(pW»(*,') - f(*.
p=l

is convergent uniformly on the interval 0 =x J§1, and defines there the vector

f(x, v) as shown, and if over and above that the related series in the equations

(21.2) 71

E a»xVP,(l, p) = f'l\p), I = 1, 2, 3, • • • , (n - 1),
j>=i

also converge and define the indicated vectors f(i'l)(v), the coefficients in

question necessarily fulfill in turn the relations

(21-3)

- b(p,(") E {2$<0'"(XP, r)f».«(F) 4- »«''»'(X* ?)f<M)W},

P = 1. 2, 3, • • • ,
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in which the abbreviations

(21.4) ftM>(„) = f(0, „),      f<M>(» = f(l,

have been used. This may be established, simply by substituting for the

respective vectors f(x, v) and \(l'-l)(v) in the formulas (21.3), their equivalent

series (21.1), (21.2), interchanging the orders of integration and summation,

and applying then the relations (20.5).

With the formulas (21.3) thus at hand, the stated conditional basis, upon

which their relation with the equations (21.1) and (21.2) has been made

evident, may be abandoned. If with an arbitrary vector \(x, v), whose com-

ponents are integrable as to x, an arbitrary auxiliary set of vectors ^'■l)(y) is

taken to be associated, the formulas (21.3) relate to these vectors a sequence

of scalars ap(v) as indicated. With these scalars as coefficients, the series of

characteristic solutions

00

(21.5) £ ap(v)^\x, v),

is formally determined, and will be referred to in short as an expansion of the

vector f(x, v). Inasmuch as this definition of an expansion is wholly formal, the

question of the convergence of such an expansion must manifestly be regarded

as an open one. More generally, the amenability of any given expansion to

evaluation by "means of summability" of any specific type would be a matter

calling for investigation, as would also all questions hinging upon the relation

which any value thus conventionally assigned to an expansion may bear to

the original generating vector \{x, v).

22. The expansions as series of residues. In terms of any analytic non-

singular solution of the matrix equation (4.1), and the corresponding matrix

®(X, v) given by the relation (5.6), let &(x, £, X, v), which is to be known as

the "Green's" matrix, be defined by the formulas

®(*. f, X, v) m       X)2rl(X, ,)5B«»(A, „)9(0, \)$r\i, X),

f or 0 = £= x,
(22.1)

®(*. f, X, v)-m - 2)(*, X) 2)-KX, „)8$<»(X, ,)2)(1, x)^-1^ X),

for x < £ 3> 1.

At any set of arguments (x, £) this matrix, as a function of X, is analytic except

at the characteristic values, where singularities are introduced through at

least some of the elements of the matrix 3)_1(X, v). These singularities are

poles, as may be seen from the formula

<722(X, v)/D(\ r)   - du(\, v)/D{\, v)\
(22.2)       S)-H\, v) = I ),

<721(X, p)/D(\, v) dn{\v)/D{\,v))'
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and moreover poles of the first order whenever, as is here the case, each char-

acteristic value is of a multiplicity equal to its index. The residues are there-

fore non-vanishing, and may, in the case of the Green's matrix, be computed

from either one of the formulas (22.1), since the difference of the right-hand

members of these formulas is the matrix §)(x, X)§)-1(£, X), and is thus analytic.

With the notational choice of the prefix "resp" to indicate, for any matrix to

which it is applied, the residue at the characteristic value Xp, it follows, there-

fore, from the formulas (22.1) that

(22.3) resp ©(*, g, X, r) = g)(*, Xp) {resp £rl(X, v) }S<«(X„ *)2)(0, \PWKt XP).

With any choice of the characteristic value Xp, and with X distinct from it

but in a suitably small neighborhood of it, the identity

(X - Xp)£)-i(X, v) m {—£>(A, v)
v.a — ap

is an obvious one. Its limiting form as X—>XP is contingent upon the mul-

tiplicity of this characteristic value. If Xp is simple, the formula (22.2) shows

the limit to be

1      /    d22(\p, v) -di2(\P,v)\
resp S)-1(X, v) =-1 ],

D\(\p, v)\— d2i(\p, v)       du(Kp, v)/

whereas it may be seen directly when the characteristic value is multiple, say

when Xp=Xp+i, that the limit is

resp ©-'(X, v) = {£)x(XP> v)}~\

With these two alternatives there are associated respectively the formulas

(19.11) and (19.13), and from them it may be verified that

(22.4) resp ©"HX, v) = £ { - c<"(f)6<« W} (12),

in which the sum indicated upon the right consists of the single term for

which h = p, or of the pair of terms for which h=p, p + 1, according as Xp is

simple, or Xp=XP+i. The substitution of the result (22.4) into the formula

(22.3) leads, in virtue of the relations (19.8) and (19.9), to the conclusion

that

(22.5) resp ©(*, f. X, v) = £ { - *<«(*, ,)S(W«- ')} -

Consider now, in the case of any expansion (21.5), the term, or pair of

terms, associated with any characteristic value. Since ap(v) is a scalar, and

(u) The vectors are to be regarded as matrices for the purposes of the multiplications indi-

cated. Thus {ccw(")l>(MM} is a square matrix.
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because of the evaluation (19.8), the formula (21.3) leads directly to the

equation

a,«H('>(*. ') = f V'(*, ")S(p)(f, >)*(Öftt. »)dt
J o

- DC*, X><*)(r)6W(')£ {SS(0'°(XP, ^)f(M,W + ©«-»(X^ r)f<">(»)},

and this, together with the results (22.4) and (22.5), yields the relation

Z "hW'Kx, y) = ~ f res,®(*, (, X, v)8t(Öftt.

(22.6)

+ resp \ux, X)S)-1(X, 0 Z [«»'»(X,*)!<••«>« + »".«(X,r)f«.'>(r) ]} .
1 1=0 !

The terms of any expansion (21.5) are thus expressible as residues in the

complex plane. It follows from this, of course, that any finite set of such

terms may be summed by a suitably designed contour integral as to X, the

contour of integration being chosen to avoid the characteristic values, and to

enclose precisely those which are associated with the terms of the set in

question. In §17 a certain infinite sequence of contours C„ was defined, any

one of the sequence, C„, enclosing precisely those characteristic values Xp for

which |XP| = |X„|. If for the values of n there concerned, the initial partial

sums of the expansion (21.5) are denoted by 8(x, v, n), in the manner

it

(22.7) «(*, a, Wij <»>(«, r),
p-i

it follows that these sums are evaluated respectively by the formulas

•(*, p, n) - ^4- f   f ®(*, & X, v)m)KZ, ")<tMS
2vi Jo   J c.

(22-8)

+ E — f &(*, X)S7-»(X, r)[*«.»(X, r)f<••»>(») + »(».')(X, r)f(».»>(r)lJX.
>_o 2xt J cH

23. On matters of convergence, divergence, and summability. When the

parameter v is on a regular path, and v^O, the formulas (21.3) associate with

any suitable vector f(ar, v) an expansion (21.5) in solutions of a boundary

problem of the regular type. Such expansions, both in the vector form here in

question, and in the alternative scalar form(13), are familiar, and it is known

(13) For a discussion of the relations between the scalar and vector formulations, cf. the

author's paper, The expansion problem in the theory of ordinary linear differential systems of the

second order, Trans. Amer. Math. Soc. vol. 31 (1929) p. 887.
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that their properties are broadly exemplified by those of the classical Fourier's

series. In particular, if x is an interior point of the basic interval, and if in

some neighborhood of it the components of the generating vector \{x, v) are

of bounded variation, the expansion converges at this point to the average

value, namely

(23.1) limS(s, v,n) - (1/2) {f(* +,«-) + f(* -,»-)}, M 0(M).
n—*«>

These statements, on the other hand, do not ordinarily apply when v = 0.

The expansions are then relative to the given boundary problem, which is

highly irregular, and little theory of such expansions is known. Indeed, as to

boundary problems of the second order—the only ones here immediately

pertinent—all highly irregular cases that have been analyzed at all are sub-

sumable in the scalar form

f'(x) - (2X cos pir/q)y'{x) + \2y{x) = 0,

(23.2) (1 - a)y(0) + ay'(0) = 0,

MO) + *i/(0) 4- b3y(l) 4- 64y'(D = 0,

with constant coefficients, and in particular with a equal to either 0 or 1,

and with p and q relatively prime integers(16). Moreover, definitive results

(uniform convergence), even for the expansions based upon these restricted

systems, have been obtained only for highly specialized generating functions,

specifically only when these functions are of the structure

f(x) = x1+0<p(a;«),

with <p{z) some analytic function of the complex variable 2 which is bounded

in the circle \ z\ <1(16). The disparity between theorems such as these, and

those which comprise the theory of expansions relative to regular boundary

problems needs no emphasis.

That the expansions associated with highly irregular boundary problems

are in general divergent, even when the generating functions are analytic, is

observable from the simplest of explicit instances. Thus the expansion gener-

ated by the function/(x) = 1 relative to the boundary problem (23.2) with

a = 0, &4 = 1, bj = 0, j = l, 2, 3, is found to be

71=1 l

sin (nir — c)x sin (nir + c)x}
gx(nr—c)cot c _ _J_ g— x(nx+c)cot c _'

ntr — c w + c I

(M) A proof of this is also implicit in the deductions of Chapter 8 below.

(H) J. I. Vass, loc. cit.

(16) For highly irregular boundary problems of order higher than the second, the known

expansion theorems are similar and of comparable generality. They refer exclusively to boundary

problems in which the differential equation is of the form y(n'(*)+ j^"}y{x) =0, n^3,

or some specialization of this form. Cf. J. W. Hopkins and L. E. Ward, loc. cit.
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with c = pir/q. On the interval 0 <x < 1 the terms of this series fail to approach

zero as «—>«. The generating function f(x) =xk+1 leads to a similar result

whenever k is not an integral multiple of q.

It will be clear, even from these fragmentary citations, that potentialities

of fruitfulness in application to expansions of the type (21.5), with generating

vectors that are in any broad sense arbitrary, are to be sought only in

schemes of evaluation which refer to, and are based upon, some notion more

general than that of ordinary convergence. In the following, two such modes

of summation, each one of a familiar pattern, are to be defined.

To begin with, since the boundary problem originally given is identified

with the parameter value v = 0, the expansion generated relative to it by a

vector f(x), is obtainable from the formula (21.5) by the identification of

f(x) with f(x, 0), and is, thus

00

(23.3) T,*p(0W'Kx,0).

Now under the hypotheses to which the boundary problems have already

been subjected, the characteristic values, and hence also the characteristic

solutions, are continuous as functions of v along any regular path, inclusive

of the terminal point v = 0. If the vectors f(x, v) and \<-'-l){v) are, therefore,

likewise taken to be continuous in v, and such that

(23.4) lim ffi, v) -.-f(.),

it is evident from the formulas (21.3) that each individual term of the ex-

pansion (21.5) is continuous and approaches the respective term of the

expansion (23.3) as a limit when v—»0. This latter series may, therefore, be

regarded as formally given by the expression

lim lim %(x, v, n).

The expansion (23.3) is now to be defined as summable by the "means A" to

the value

(23.5) lim lim 8(x, v, n),
v-*0 n—»oo

if and when with some determination of \{x, v) and %u-l)(v) as vectors continuous

in v and fulfilling the relation (23.4), the limit (23.5) exists.

The notion of summation basically involved in these means, will be recog-

nized as that which similarly underlies the classical means identified with the

names of Abel and Borel. For these latter may be looked upon as evaluating a

series
00

(23.6) ]L«p(*)>

*
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respectively, by the limits

n

lim lim 2*(l r- v)pup{x),
y-*0+ „->» v=i

and

lim lim
»>->0+ n-»«>

By the use of the relations (23.1) and (23.4) in conjunction with the ex-

pression (23.5), it will be evident that the deductions of the preceding sec-

tions have effectively established the following facts.

Theorem. The expansion (23.3), generated by an integrable vector f(x), is

summable by the means A to the value

at any point x of the interval 0 <x < 1, whenever f (x) is such as to admit at that

point of representation in the manner (23.4), by a vector f(x, v) which for every

v on a regular path other than v = 0, fulfills the conditions

(i) that it is continuous in v;

(ii) that its expansions relative to regular boundary problems converge to the

value

Since the role of f (x, v) in this theorem may in particular be taken by the

vector f(x) itself, provided it fulfills the condition (ii), the following speciali-

zation of the theorem is evident.

Corollary. The expansion of an integrable vector f (x) relative to the highly

irregular boundary problem is summable by the means A to the value (23.7),

whenever f(x) is such that its expansions relative to regular boundary problems

converge to that value.

A second scheme of summation alternative to that described above may

be defined in the following manner.

The expansion (23.3) shall be said to be summable by the "means B" to the

value

(i) with the role of f(x, v) taken by the vector \{x) itself, and the vectors \u-

independent of v;

(ii) with the points v{, v% , v» , ■ ■ ■ on some regular path of v; and

(iii) with

(23.7) (1/2) {f(*+) 4-f(*-)},

(i/2){f(*+,io + f(>-,i<:

(23.8) lim S(x, »»„',»),

if
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lim v~ = 0,

the limit (23.8) exists.

The means for summation of an expansion as thus defined may be seen

without difficulty to bear in principle a resemblance to the classical means of

Cesäro and Riesz. For these latter may be formulated respectively as assign-

ing to a series (23.6) the evaluations

n

lim iK' }uP{x),  with   vn' = 1/«,
»-♦« p—i

and
n

lim X {l — <>>{p)vn }up(x),  with   vn' = l/oi(n),
n->» p_i

the function w(») being positive, increasing and unbounded.

Of the two schemes thus described, the means B may be characterized as

providing a subtler mode of summation than the means A, in much the same

sense as the means of Cesäro may be regarded as less drastic than those of

Borel. It is only consistent with this, that no inference of summability of a

highly irregular expansion by the means B is readable from the deductions

already made. It is upon this point that the continuing discussion is focused.

Chapter 8

The summability of the expansions by the means B

24. The formula for the partial sums. For any index n which identifies a

contour of the sequence C„ defined in §17, the terms of an expansion that

correspond to the first n characteristic values, are summed by the formula

(22.8). The role of this formula in any analysis of the expansion is, of course,

a central one; its convergence as n—>», with either v fixed or v suitably de-

pendent upon n, being tantamount respectively to the convergence or the

summability of the expansion. The convergence of these sums, with appropri-

ately disposed parameter values, must, therefore, in due course be considered.

Preparatory to this, however, it is to be shown in this section that the for-

mula (22.8) may be expressed in such a manner as to display, among other

things, the fact that its elements are bounded as to n when v is bounded from

zero. This is obscured in the formula as it stands, due to the fact that certain

of its matrix factors have elements that are polynomials in X, while others

involve exponentials each one of which is clearly unbounded for some range

of arg X as n—> °°.

The Green's matrix has been defined by the formula (22.1). For the pur-

pose of giving alternative expressions for it, let the matrices 3r be defined

for all subscripts r by the formulas
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/O 0\ /l 0\

31" (o o>      31 * (o o>

*-a *-cd-
3* = 3i,   if   As/(mod 4),

and let the relations

(    3r+2,   when   0 £ £ jg; £
(24.2) ^ =- ^

(. — 3r,     when   * < I 2s 1,

specify the matrices 3(r)(x, £). It is then a matter of simple verification that,

irrespective of the choice of r, the formulas (22.1) are replaceable by the

relation

(24.3) ® = gKx^'g)-1© + VMSrHwWQSr - S?cl,g)(i)3r+2}ria)(17).

In virtue of the formula (5.6), the relation (24.3) is independent of the

choice of §)(x, X) as a nonsingular solution of the equation (4.1). This solution

may, therefore, be chosen at any value of X to be one to which the formulas

(4.8), (4.9) apply. It will be supposed throughout that the solution §)(x, X) is

always so chosen. The elements au(K, v), given by the relations (5.3) and (5.9),

are then specific, and the matrix SD(X, v) is subject to the formula (5.10).

Let the matrix 5Do(X, v) be specified by the definition

(«22 4- d2ieXTi   — an — aue*ri\

1      xr )'— a2i — ff28exri       an 4- ai3e V

and let Z>0 designate its determinant. A comparison with the formula (5.10)

yields then the evaluations
1

= — £V(5iiX~T<),

(24.5) D0

D = XTl+"Z)o.

Now it was observed in §20, that the elements of the matrices 33(M)(X, v),

which occur in the formula (22.8), are polynomials in X of maximum degree

Ti—l — l. In accordance with this, the matrices2ö(M)(X, v), as defined by the

relations

(24.6) 8B<M> m X'+^X-'O^'",       A = 0, 1; I = 0, 1, 2, • • • , (n - 1),

have elements that are polynomials in 1/X, and it is clear that in terms of

them

(17) Throughout the remaining discussion the explicit indications of functional arguments

will be curtailed in the interest of simplicity in the formulas. Those variables that do not require

current attention will therefore frequently be omitted.
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(24.7) JD-W'" = —-— £03B(M).
\l+*D0

Since by the relations (4.8), (5.3), (5.9), and (24.5) the evaluations

3)-»»<«g)(0) =—£o(oiA,
Do ■

Do

also maintain, it will be recognized that the formula (24.3) is alternatively

expressible in the form

(24.8) ® = §)(*)3<'>ri(Ö + 9(*) - ®o{ MST - (aij+iWmr+AV-K!;).
Do

The elements of the matrices ^(x, X) and $-1({, X), which enter into this

through the solution 2) and its inverse, and hence also the elements of the

matrices (5.9), are, as has been observed in §5, asymptotically representable

by formal power series in negative powers of X. Through the relations (24.7)

and (24.8), the expression of the integrands in the formula (22.8) without the

utilization of any positive powers of X has thus been attained.

For the further analysis of these formulas, let the matrices 2M*> X) be

defined, for all indices r, by the formula

(24.9) %{x, X) sgK*. xH&g-Kl) + &+*}•

The relations

2) = 2M@(i)3r4-&+2},
(24.10) _j     .        _j , _,

2)  = (l) + 3r}2W2,

follow at once, and as a consequence the formulas (24.8), (24.7) may be re-

written into the forms

® = 2)(^)3(r'2)_1(Ö + tyr{x)UMr%ltä,

(24.11) 1
2K*)T*B(M) =-%{x)\XM^"-l\

x!+1

in which

(24.12) 1 :
Ur=--{(g(l)3,-r-3r+2}3)o.

Do
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On the contours of the sequence C„, let the arcs C„T be defined by the

relations

(24.13) — 7r/2 — arg rr_i S arg X = — w/2 — arg Tr.

Any two contiguous arcs of this set comprise a semicircle, and those associ-

ated with any four successive values of r constitute a complete contour. Upon

associating with each arc Cnr the respective evaluations (24.11), the formula

(22.8) may now finally be expressed in the form

(24.14)   S(z, v, n) = «0(*, ») 4" *if>. v> n) + ®z(x< *. »).

with

So**, n)

(24.15) »i(x,v,n)

82(x, v, n)

- 1

2iri

r-l •/ 0    •/ C„,

E f »r(*)U,E X-l{SB<«-»P'" + ®«.»f«.»}
27ri r=i J Cnr l-o

</X

X

Of the matrices which enter into these formulas those designated by 2lr

are shown by the relations (24.12) to involve no exponentials, and to be

bounded for all large values of | X |. The matrices Ur, on the other hand are

less simply constructed. By the formula (18.1) and the second one of the

relations (24.5), the equality

Do

(- iy+iBr(\, v)
g-X(Vr-Fl)i

is established, and in virtue of it the matrices in question are found to be

explicitly as they are given by the table:

(24.16)
Ur(X, y) _ßi_ So

-Bt /e-*r2 o

d{v) \0 1/
Sc

Consider the exponentials which occur in the elements of any one of the

matrices

(24.17) {»OOS'V'tt)},      %Kx), Ur.

They are in every instance of a form which, in terms of the abbreviations

(24.18) TAx',x") =■ U*>) - r ,(*"),

may be written as
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(24.19) exr.tf.«), s = r, r + 1,

with the arguments a, ß each taking some one of the values 0, £, x, 1(18).

Moreover, when they are so written, the subscripts s being related to the

index r that identifies the arc of integration as is indicated in (24.19), then in

every instance the relation ß= a is fulfilled. It will be shown that because of

this every one of the exponentials in question is bounded over the range of

integration for which it is involved.

From the formulas (2.5) and (2.7) it follows that when /3=a, then

r.GS.a) = |r.(p\ a) I e<»rgr..

Under the substitutions given by the relations

A = + iAneTtf-'wgr.,

the upper or lower signs maintaining according as s = r or s = r4~l, the arc

Cnr corresponds to the range

(24.20) 0 S e = ur-i,

in which the angle ur-i is that given by the definition (11.8). The evaluations

(24.21) I exr.C/s.oO | = e-An\r,(ß,«)\«in«, for ß ^ a,

then show that on this range the exponentials concerned are bounded as to n.

It follows that with the possible exception of Ur the matrices (24.17) are all

bounded on the respective arcs of integration involved in the formulas (24.15),

and that unboundedness can inhere in the matrix VLr only through the scalar

factors indicated in the table (24.16).

By the relations (18.2) the scalar functions BT(\, v) are shown to be

bounded as to n uniformly as to v, provided the range of v is restricted to the

path segment (i>o, vn) when X is on the contour C„. This condition is fulfilled

in particular when v is bounded from zero, and since in this case the bounded-

ness of the coefficients \/cT{y) is also assured, the uniform boundedness of the

elements of the matrices Ur(X, y) follows. If v is not bounded from zero, on the

other hand, this conclusion may not be drawn, since it is the earmark of any

highly irregular boundary problem that at least one coefficient cT(v) ap-

proaches zero with v. However, from the formulas (12.2) and (8.4) it is seen

that at all events the functions v/cr(v) are bounded. It may accordingly be

inferred that the elements of the matrices

(24.22) \v]\r(\v)\,

are uniformly bounded for v on the path segment (vn, vn) when X is on the

cirC Cnr*

(Is) It may be noted that r,(V) = r,-(>', 0), and that r,(*', *") = Ti+2(x", x'), since

r,(*')«-rv+,.(*').
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25. Lemmas. An analysis of the terms in the relation (24.14), as these are

given by the respective formulas (24.15), may be based in large measure upon

certain auxiliary deductions, of which some may be regarded as elementary,

whereas others are appropriate adaptations of classical convergence theo-

rems. The isolation and specific formulation of these deductions is a matter

of evident convenience for their later applications. They will, therefore, be

set forth in this section in the form of lemmas, in the interpretation of which

it shall be understood that:

(i) Any interval designated by (a, ß) is such that 0=a<ß—l;

(ii) The symbol ynr is a designation of the semicircle composed of the

arcs C„,r-i and Cnr;

(iii) The range of the index n is the sequence of integers for which the

contours Cn have been defined;

(iv) For any value of n the range of the parameter v is the segment

{vt,, vn) of some chosen regular path;

(v) The range of the variable £ is in every instance an interval (£], £2) for

which 0^£i<£2 = l;

(vi) Relative to any interval (£1, £2) and any sequence of arcs ynr, the

symbol !JJc(£> X, v) is a generic designation for matrices whose elements

m»;(£> X, v) are uniformly bounded, namely which fulfill some set of relations

(25.1) I mtt% X, v) I = Pij,

in which the p,-,- are positive constants.

(vii) The symbol 3r(£', £", £, q) is defined by the formula

(25 .2) &(r, r, £, (?) - f   e^M'^"m(l X, v)d\/\*.
Tnr

Lemma 1. The elements of the matrix

(25.3) f 2»(f,Xftv)x

are bounded uniformly as to £, v and n if q = 0, and if q>0 they approach zero

uniformly as to £ and v, as n—*=o.

The asserted facts are obvious in virtue of the relations (25.1).

Lemma 2. If ß>a, the elements of the matrix

(25 .4) ' 3,(0, a, I q)

are bounded uniformly as to £, v and n if q — 0, and if q>0 they approach zero

uniformly as to £ and v, as n—* «s.

Since any arc Cnr is identified with the respective range (24.20), the rela-

tions

d\
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sin cor_i_,-
(25.5) sin 6 =-6, j = 0, 1,

C0r_l_,-

maintain on the respective portions Cn,r-j of the arc of integration ynr. By

virtue of the evaluations (24.21), it is therefore seen that the elements of the

matrix (25.4) are dominated by those of the sum

JL  i_„ car-i-i       ( . sin cor_i_,- )

EA,    I        exp \ - An I Tr(ß, a) | -6 \ dß{pu).

An explicit integration shows these dominant elements to be at all events

bounded as to n, and to approach zero if q is positive.

Lemma 3. The elements of the matrices

(25.6) 3r(ß,t,$,q),   with &<ß,

and

(25.7) 3frtt, «,£,?),   with   « <iu

are bounded uniformly as to £, v and n if q — 0, and if q>0 they approach zero

uniformly as to £ and v, as n—*».

Since in the identity

exrr(/s,£) = gXrvtf.fjKgxrvCM),

the final exponential is bounded on the arcs yn„ as is shown by the evaluations

(24.21), the matrix (25.6) is in fact of the form (25.4) with a = £2. Similarly

the matrix (25.7) is of the form (25.4) with /3 = £i. The assertions therefore

follow from the Lemma 2.

Lemma 4. For a g= £i < £j     the matrices

(25.8) f(2%(l a, £, 1)<7£,

and

(25.9) f V(p\£, £, D#.
J h

approach o as n—* so, uniformly as to £i, £2 and p.

By virtue of the relations (24.21) and (25.1), the elements of the matrix

(25.8) are respectively dominated by those of the sum

Z f ' f" '   exp { - A, I F,(f, a) I sin d}(Pil)dddl
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These latter are, however, in turn uniformly dominated by the elements of

the matrix sum, which, with any suitably small positive e, is given by the

formula

Mrsa+i   p Ur—l-i

0

+ I exp l - A„ I rr(a + e,a)\ -6 \ (p,y)oW£ \ .

In these matrices the elements of the first two may be made arbitrarily small

by the choice of e, and those of the remaining ones are then arbitrarily small

when n exceeds some specific value, as is shown by explicit integrations. The

convergence of the matrix (25.8) thus follows, and a similar argument estab-

lishes the fact for the matrix (25.9).

Lemma 5. If ä (£, v, n) is any matrix such that:

(i) its elements are uniformly bounded;

(ii) for a = £i < £2 = ß the matrix

(25.10) f ?, »)#

approaches 0 as n—> w, uniformly as to £1, £2 and v; the relation

lim  f Stil    »)f(Ö# = 0,

maintains uniformly as to v,for every vector f(£) whose components are integrable

over the interval (a, ß).

This is an immediate consequence of a familiar general convergence the-

orem^9).

Lemma 6. If $(£, v, n) is any matrix such that:

(i) for o!^£i<£2=/3, the elements of the matrix (25.10) are bounded uni-

formly as to £1, £2, v, and n;

(ii) for a<£i<£2<p\ the matrix (25.10) approaches 0 as n—»00, uniformly

as to v;

(iii) fora<&<ß

lim  f '*?({, = 8«i»;
n—♦« J a

(iv)/ora<£i</3

(19) E. W. Hobson, The theory of functions of a real variable, Cambridge University Press,

Vol. II, 1926, p. 422.
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n—*<o J tjj

the relation

lim «(£, v, ff)f(Ödf = 8„f(a+) + SflffJJ-),
a

maintains for every vector f (£) whose components are of bounded variation on the

interval (a, ß)

This is an evident formulation of a familiar theorem in singular inte-

grals (s0).

Lemma 7. If $(£, v, n) is any matrix which fulfills the specifications (i)

and (ii) of Lemma 6, the relation

maintains uniformly as to v, for every vector f(£) whose components are of

bounded variation on the interval (a, ß), and for which f(a+) =o, f(ß —) =0.

The argument by which the Lemma 6 is established, serves also to prove

the assertion here, the conditions (iii) and (iv) of the Lemma 6 being dis-

pensable because of the vanishing limits of the vectors f(£) concerned, at

£ = a and £ = /3.

On the basis of these lemmas an analysis of the expressions (24.15) is to

be given in the remaining discussion. Consistent with the prime purport of

this, which is ultimately to establish summability of the expansions by the

means B, it will be assumed henceforth that all vectors f(£) and fc',!> which

are brought into question are independent of v, and that the vectors f(£),

moreover, all have components that are integrable over the interval (0, 1).

The point x at which an expansion is considered will always be regarded as

fixed. Since the analysis which applies when x is an end point of the basic

interval (0, 1) differs materially from that which is applicable when x is an

interior point, these cases will be separately discussed,—the latter in §§26

and 27, and the former finally in §28.

26. The convergence of the vector $0(x, n), when 0<*<1. With the use

of the evaluations (24.2) of the matrices 3<r)(x, £), the formula for the vector

3o(x, n), as it is given by the first one of the relations (24.15), is found, after

the collection of similar integrals over abutting arcs of integration, to be ex-

pressible in the form

»)f(ö# + — f V1'«, »)f(öde,
2iri J x

(20) Cf. Hobson, loc. cit. pp. 446-448.
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the matrices JJ(W(& n) being given explicitly by the formulas

(26.2) ä«»«,«)- - £ f m*)s*®rKt)m)*\
r~l J 7»,

and

(26.3) J&<*>4«*<*)— £-f 9(*)3»®-l(?)8?(f)^

Consider the matrix Ä(0,(x, £). Since by the formula (4.8) the matrix

2>(x) is factorable in the manner ^(x)(S.(x), whereas the identities

(26.4) e(*)3*<S-l(Ö * r = 1, 2,

maintain, as may be easily verified, it is seen that the formula (26.2) is given

somewhat more explicitly by the form

(26.5) Ä(0)tt,») - - £ f e*r>-«>$('*)3ir?-l(Ö*(Ö<*X.

Now by the formula (4.9) the matrix $(*), and hence also its inverse, differs

from the unit matrix by a term which is uniformly of the order of 1/X. Aside

from its scalar exponential factor, the integrand shown in the relation (26.5)

is, therefore, of the form

£MI(Ö + (1A)3R(£, x).

With the use of the relations

(26.6) M(£) - IV «)3v, r = 1, 2,

which follow from the fact that the functions r,-(£) which are elements of the

matrix 9i(£) can also be expressed respectively as Tj(£), the complete inte-

grands in the formula (26.5) are, therefore, seen to be of the structure

exrr<*,f)rV (£)32r + f, (, l).

An integration with respect to £ accordingly yields the relation

d\      r d\

(26.7)

/'«                       '   ( /•                   d\      r <7X
Ä(0,(£, «)# =       I   *»V«"'»3b-I l^Wfcr

£l                                          '=1  (      Tnr                               X J7„, X

Let a; now be fixed upon as any point in the interior of the interval (0, 1)

in some neighborhood of which the components of the generating vector f(£)

are of bounded variation. With a suitable determination of e as a positive

constant, the neighborhood in question contains the interval (x — e, x-\-e). It

will be supposed in the following, that an e has been determined upon which
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fulfills this condition. Then, on the one hand, if the points £, £i, and £2 lie

upon the interval (0, x — e), the integrals in the formula (26.5) are of the

form (25.6) with q = 0 and ß = x, whereas each integral in the formula (26.7)

is either of the form (25.6) with q = l, or of the form (25.9). It follows from

the Lemmas 3 and 4 that the matrix $(0)(£, n) fulfills the hypotheses of the

Lemma 5, relative to the interval in question, and hence that

(26.8) lim  f    $«»(£, »)f(£)</£ = 0.
n—»« J 0

On the other hand, if the points £1 and £2 are taken to lie upon the interval

(* — e, x), it is found similarly by the use of the Lemmas 1, 2, and 4, that the

matrix $(0)(£, n) fulfills the hypotheses of the Lemma 6, with a = x — t, ß = x,

and with 2a=0, 2ß=wi^y. It follows, therefore, that

(26.9) lim  f   $«»(£, «)f(£)d£ = riff.*-).
n—*w J x—t

If the consideration is now turned to the matrix $(1,(£, n) with £<£, the

reasoning given may be essentially repeated. It is found, thus, on the basis of

S2r9J(Ö m - r/ (f)3>, r = 3, 4,

lim   f1   «<»({, «)f(£)<*£ = 0.

lim  f    Ä(l)(£, «)f(£)d£ =
«—»00 J x

The convergence and limiting values of the terms of the formula (26.1) have

thus been established, the results admitting of summary in the following form.

The vector &o(x, n) converges as n—> =0 to the value

(26.13) (l/2){f(*-) 4- f(*+)},

at every point x which is in the interior of the interval (0, 1) and in some neighbor-

hood of which the components of the generating vector f (£) are of bounded variation.

27. The summability of the expansions at interior points of the interval

(0, 1). By the second one of the formulas (24.15) the product of the vector

$i(x, v, n) by v is expressible in the form

the relations

(26.10)

that

(26.11)

and that

(26.12)

(27.1) vSilx, v, n) = f «(£, v, »)f(£)rff,
J 0
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with the kernel matrix Ä(£, v, n) given by the relation

(27.2)    £({, r,»)«^4rf %{x) {xUr(X, v) }2fr(X, ^"^MÖ^X-
2irt r-i«7cnr

It was observed in §24, moreover, that each matrix which appears in any

integrand of this formula (27.2), has elements that are uniformly bounded

over the range of integration concerned, provided the parameter v is re-

stricted to the respective path segment (v0, vn). Under this restriction upon v,

which is to be imposed and maintained throughout this discussion, the inte-

grands of the formula (27.2) are thus all of the type Slid, X, v), as that has

been defined in §25. A somewhat more explicit determination of the structure

of these integrands is requisite, and is obtainable as follows.

By the formula (24.9), the matrices $)r{x) are found to have, for the several

indices r, the forms given by the table:

(27.3)

_2)r(*, X)_

^XV<i>')$(*)3fi + eXr2(l'0)33(*)34

^r.u.*)^*)^ + exr4(i.*)^(*)«jt

exr1(x,o)sj3(;».)32 _|_ gXivi.zJSR^)^

If these forms are substituted into the relation (27.2), and thereupon the

integrals involving any specific exponential over contiguous arcs of integra-

tion are collected, it is found that the result may be written in the manner

(27.4) *({.    ») = £ f  «Xr'(*-0)a»(f, X, v)d\ + j£ f  e*rra.*m(!-, X, v)d\.

Specifically the matrix indicated here by SDc^, X, v) over any semicircle 7„„

is identifiable as the product

(27.5) [V(x)%r{vUr-i}^r-^r+\-i(0]m) on the arc Cn,r-,;       j = 0, 1.

Consider any matrix £(x, X, v) which fulfills a relation

(27.6) 3(09(0-C

in which S is a matrix that is constant as to £. It may be deduced from the

equation (4.1), then, that 3(1) "s a solution of the adjoint differential equation

(27.7) £'(£) = - 3(Ö{MR(Ö + C(0},

and from this it follows that with any choice of £i and £ on the interval (0, 1)
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(27.8)   f 'äilMQdS = ~-{ä8 " mi) + f' 3(ÖO(f)*| ■

This formula is applicable to the integration of the relation (27.4). Since the

matrix products enclosed within the square brackets in the expressions (27.5)

are each of the type prescribed by the designation 3, the integration of these

expressions is given by the formula (27.8). Since, furthermore, each matrix

thus designated by 3 1S °f the type denotable by 3)?(£, X, v), the entire

right-hand member of any resulting relation (27.8) is clearly of the form

(l/X)9Ji(£, X, v), uniformly as to the choice of £i, on the interval (0, 1). The

formula (27.2) leads, therefore, also to the relations

X
f «((, v, n)d% = S f eW*.«m($2, X, p)

(27.9) Jfl r=lJy"

Ar <tx
+ £      rfr><M>3»(fc, X,r) —•

r=3 «7 t„r x

The integrals in the right-hand members of the formulas (27.4) and (27.9)

may now all be recognized as being of the forms (25.4) with q, respectively,

equal to either 0 or 1. It follows from this by the Lemma 2 that the matrix

(27.2) fulfills the hypotheses of the Lemma 5. By that lemma, then, the rela-

tion (27.1) leads to the conclusion that

(27.10) lim {p&i(x, p,n)} = o,
n—*»

uniformly as to v on the segment (v0, vH).

The analysis which has thus been given for the second one of the for-

mulas (24.15) may be applied equally well, and in a wholly similar manner

to the third one of these formulas. It yields in this instance an evaluation of

the form

n-l   1/2      f% ^

pUx, v, n) = E Z \ Z      e^*-°m(\, p) — f<*'!
mmU^,„ X

+ Z I   e>rr<i.*>gw(A, „)        f (M> I,
r=3«77„, X ;

and inasmuch as each integrand on the right of this equality is of the type

(25.4) with q>0, it follows from the Lemma 2 that irrespective of the vectors

f(A.O involved,

(27.12) lim {p&a(x, v, n)\ = o,

uniformly as to v on the segment (p0, vn)-

In virtue of the conclusions (27.10) and (27.12), it may evidently be in-
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ferred that there exists a positive monotonic sequence of constants

«1, «2, «3» • • •

which converges to zero, and which is furthermore such that for each index

n, and for all values of v on the respective path segment (v0, vn), the relations

(27.13) I v8i(x, v, n) + v$2(x, v, n) \ < en,

are fulfilled. On the path of v let the sequence of points

(27.14) ti»fi'.*tt ■ ■ ■

be determined now so that

(i) vn' lies on the segment (v0, vn),

CO
(27.15) lim vi = 0,

n—»oo

and

(iü)

(27.16) lim-^- = 0.

The determination of such a sequence is clearly possible. Since the inequalities

(27.13) are, then, in particular fulfilled when v=vJ, it follows from them,

together with the relation (27.16), that

(27.17) lim {»i(*.    , n) 4- %2(x, vJ, n)\ = o.

This result, taken in conjunction with that of §26, permits of the conclusion

which follows.

Theorem. The expansion generated by an arbitrary integrable vector f (£), and

an arbitrary set of associated vectors f(A,,), h = 0, 1; /= 1, 2, 3, ■ • ■ , (tj.— 1); is

summable by the means B to the value (1/2) {f(x — )4-f(x4~)} at every interior

point of the basic interval in some neighborhood of which the components of the

vector f (£) are of bounded variation.

28. The summability of the expansions at the end points of the interval.

The reasoning of the two immediately preceding sections depends explicitly

upon the relation 0<x<l, and is essentially inadequate when the point at

which the expansion is considered is an end point of the basic interval. At

these points, x = 0, and x = l, therefore, distinct considerations are requisite.

Such are to be given in the following, it being assumed throughout their

course, firstly, that the given boundary problem has, if necessary, been ad-

justed in the manner described in §3, so that the relations (3.2) maintain;

and secondly, that only such expansions are brought into question as have

generating vectors f(£) whose components are of bounded variation in some
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right-hand neighborhood of £ = 0 and in some left-hand neighborhood of £ = 1.

A positive constant e may be determined in each case, then, so that the

boundedness of variation assumed is maintained over each one of the in-

tervals (0, e) and (1 — e, 1). It will be supposed that e has been so determined.

The pair of intervals (0, e), (1 — e, 1) will briefly be designated by the symbol

A, and it shall be understood that the designations f(0) and f(l) signify the

limiting values f(O-f-) and f(l—), respectively.

As a function of £ the Green's matrix ®(x, £, X, v) is a solution of the

differential equation (27.7), as may be seen at once from its definition (22.1).

It is found in virtue of this that the relation

(28.1) - Cm\dt=< f {©£ + ®0}f—- f W*s,
J 0 J a X        J ,

maintains, and furthermore that every differentiable vector n(£) satisfies the

identity

0= ri^g} f!_ c {©tg+®fl'lfi
J a at X      J a X

(28.2) *f

+ f    {X®3(8 + ®£>ß -®fl'} — •
V m X

The specific vector for which this identity is to be utilized, and to which the

designation fl(£) will hereafter be restricted, is the following one:

(28.3) 1(0 "flCQ + Gt - ÖKO).

If the respective members of the identities (28.1) and (28.2) are added,

and their sum is integrated over the contour C„, the result is an evaluation of

first integral in the formula (22.8). With a suitable grouping of the terms over

the several ranges of integration, that formula is, therefore, found to be ex-

pressible in the form

5

(28.4) «(*, v, n) = f(*) 4- Z *ok(x, v, »),
k=0

with

(28.5)

and

1   C    C   o <    > «X
-m + —.i I -{®a}-dt

- f 9(*)£>-l{25(0'0)(X)f(0) +%w(\)\(l)\d\,
Tl J C.

(28.6)      801 =- £ —. f 9(x)©-1{Sß(,1•"(X)f(0•I, 4-25(l',)(X)f(1',)}rfX,
i=i 2iriJc.
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and with the remaining terms expressible through the matrices

1 r
«<»(*, i, v, n) m — I ®(x,t,\,r)-7->

2irt J c„ A

l  r d\
(28.7) *(»(*, {, Vtn)m —     ®t(*, f, X, y) —,

2iri J c„ X

««>(*, £F * ») * — f ®(«, 5, X, *)«(0<*x.
2jrt •/ c„

by the formulas

«o2 = J V>{Qb - i'}4S,
(28.8)

«03 =   f Jt<l>{Of " b'}^.

«04= ffiw{f-a}#.
•7 A

= - J1 Vs>{f- B}4

and

(28.9)

«06

Consider the formula (28.5). If the indicated integration as to £ therein

is performed, and the expression \(x) is replaced by its equivalent

If fiX
-I f(*)->
TtlJc. A2ri •/ c.

the formula is seen to be alternatively

«oo = -—: f   {«<*, 1 -)f(l) - ®(x, 0 +)f(0) - f(*)
2ti J c.

(28.10) , „ d\
+ g)(*)S)-1[X««'0)(X)f(0) + X»»-»(X)f(l)]} — •

A

Now the definition (22.1) of the Green's matrix leads to the evaluations

®(0, 0 +) = - 3 + g)(0)S)-123(»'(X),

(28 11) @(0' 1 _) =        " m S)"1Sß<1,(X)•

®(i, o +) = 9(1) SrWPfr),
®(i, l -) =   3 - 2)(i)S)-1S8'1>(x),

whereas it follows from the relations (20.1), with X' and X" identified, re-

spectively, as X and 0, that

(28.12) XSB<"'»'(X) = »<»(X) - 33w(0), h = 0, 1.
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In virtue of these substitutions the formula (28.10) reduces, irrespective of

whether x = 0 or x = l, to the form

-4 f 2K*)^l-^,{»c,H0)f(ö)+«<l>(0)f(i)},
2iri J c. X

and this leads finally, through the evaluations

9(*)srKx3 = g)r(*)ur{x-"32 + x-»3«],    r = 1,2,3,4,

to the relation

(28.13) vSoo - — E E I 9r(*){«-Ur}3M—- {»<"(0)f(0) +»«>(0)f(l)}.
2irt      j=i Jc„r XT»+1

The transformation of the formula (28.6) is more direct. Through the

mere use of the second one of the equations (24.11), it yields, namely the

relation

1    ri-l   4      1/. ^

(28.14) *, = -ZZI 9r(*){*Ur}SBtA-»—rftM>.
2irt i_i r_i a_o ./ cw X'+I

Under the restriction of the parameter v to the path segment (po, vn), each

matrix factor which appears in an integrand in the formulas (28.13) and

(28.14) has been seen to be uniformly bounded over the range of integration

for which it is involved. Due to the relations (3.2), and by the Lemma 1,

therefore, it may be concluded that

lim {v3oo(#, v, n)} = o,

(28.15) . -,,
lim {v8oi(«, p, n) } = o,
n—*«o

uniformly as to v on the segment (i^o, f„).

On the basis of the first one of the formulas (24.11), and by considerations

which are now familiar, it is found that both when x=0 and when x = l the

definitions (28.7) assure for the matrices p®m(x, £, v, n) and v^w(x, £, p, n)

the forms

(28.16) = E I   «xr'(llt)SWtt, X, p) — + E I   «xr'(£'0,9tf(£. X, v) —,
'-■•'V X' r-3 «7 ̂  X'

i = o, l,

provided v is restricted to range between vo and vn. For any choice of £i and

£2, moreover,

(28.17) f *%« <«(*, 8# = *««>(*, |2) - !»«(»)(*, £0,
■'«1



360 r. e. langer [March

and

(28.18) h f«*

 t,

the latter one of these relations following from the fact that the matrix ©

satisfies the differential equation (27.7).

The Lemmas 1 and 4 applied to the formula (28.16) with .7 = 1, show

readily that the matrix v$m(x, £) fulfills the hypotheses of the Lemma 5 with

8a(j/)=£), and ^(p) =£), and with (a, ß) as any subinterval of the interval

(0, 1). Since the vectors {0(öb(Ö-fl'(ö } and {q(£)f(ö - g'(ö } have com-

ponents that are of bounded variation respectively on the interval (e, 1 — e)

and the pair of intervals A, it follows from the formulas (28.8) and the

Lemma 5 that

lim {v$02(x, v, n)} = o,
•!—♦«

(28.19)
lim \v8oz(x, v, n) \ = o,
n—*»

uniformly as to v on the segment (p<>, vn).

The formulas (28.17) and (28.16) with.7 = l, show readily that the matrix

v$(2)(x, I) fulfills the hypotheses of the Lemma 7 relative to the intervals A.

The formulas (28.18) and (28.16) with j = 0, show similarly that the matrix

vSt9)(x, £) fulfills the hypotheses of the Lemma 5 relative to the interval

(e, 1 — e). In virtue of the formulas (28.9), and the fact that the vector

{f(?)— fl(£)} vanishes at £ = 0 and £ = 1, it follows, therefore, lastly that

lim {v&0i(x, v,n)\ = o,
n—*«

(28.20) .     / ,
lim \v%os(x, v,ri)\ = o,
n—*w

uniformly as to v on the segment (po, vn).

The results (28.15), (28.19) and (28.20) evidently insure the existence of a

sequence of positive constants «i, €2, e3, • • • which converges to zero, and

which is such that the relations

v £ %ok(x, v, n) < <n, » = 1, 2, 3,

maintain, irrespective of how in the «th one of them the value of v is chosen

on the path segment (po, vn). In particular, then, these points may be chosen

as the respective members of a sequence (27.14) which fulfills the relations

(27.15) and (27.16). For such a choice it is clear that
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5

lim £ &ok(x, v„', n) = o,
»-♦« jt-0

and this result yields through the relation (28.4) the following and final con-

clusion.

Theorem. The expansion generated by an arbitrary integrable vector f(£)

whose components are of bounded variation in some right-hand neighborhood of

the point £ = 0, and in some left-hand neighborhood of the point £ = 1, is sum-

mable by the means B to the vector \{x) at the points x = 0 and x = l.

University of Wisconsin,
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