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1. Introduction. Let v(z) = v(rei*) be a function harmonic in the unit circle

< 1 and admitting there the Poisson-Stieltjes representation

(1) „(«*) = £ /'

1 - r2

1 + r2 - 2r cos (8 - <p)

where V{8) is of bounded variation over O_0^2tt. The Fatou theorem^), in

one form, has the following to say about the relation between v(z) and V(6) in

(1):

Theorem A. If Vw(0) =Iimt,0 (V(8+t)-V(8-t))/2t exists, then V(reie)

—*V(d(8) as t—*i.

Theorem B: If the derivative V'iß) exists, then v(g)—*V'(9) as z—>eie along

any chord of \z\ <1 (hence along any "non-tangential path" or "in angle").

The converses of these theorems are in general not true. If v(z) is positive

however, both converses can be proved. One result is that if v(reie) is a

bounded function harmonic in |z| <1, and if its boundary function v(8) is

defined as the limit, wherever it exists, of v(z) as z—»ei9 "in angle," then v(8)

is a summable function which is precisely equal to the derivative of its in-

definite integral. The converse of Theorem A for positive functions follows

readily from known theorems, and it is the main object of this paper to deduce

from it a strengthened form of the converse of Theorem B for positive func-

tions.

We shall have occasion to use the theorem(2) that a harmonic function

has the representation (1) if and only if it can be written as the difference of

two non-negative (or two positive) harmonic functions. In particular, every

positive harmonic function has the representation (1) with V(8) increasing.

2. The converse of Theorem A for positive functions. It will be simplest

to infer the converse of Theorem A for positive functions from a series of re-

marks.

(i) The limit (if it exists) V(1)(8) =limM [V(8+t) - V(8-t)]/2t is known

as the generalized symmetric derivative of V(8).

Presented to the Society, May 3, 1941 under the title A converse to the Fatou theorem; re-

ceived by the editors May 12, 1942.

(1) Fatou's original paper is in the Acta Math. vol. 30 (1906) pp. 335-400.

(2) See Evans, Logarithmic potential. Discontinuous Dirichlet and Neumann problems, Amer.

Math. Soc. Colloquium Publications vol. 6, 1927, p. 48.
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(ii) If £(a„ cos nd-\-bn sin nd) is the Fourier-Stieltjes series for d V(8), then

v(rie) =£r"(a„ cos nd-\-bn sin nd) is the Fourier series expansion for v(z), so

that the existence of the limit limr_i v(reie) is equivalent (by definition) to

the Abel summability (summability A) of the series T(an cos nd-\-bn sin nd).

(iii) It is a well known theorem(3) that a series is summable (C, n+1) if it

is summable A and if its wth Cesäro means are positive.

(iv) It is elementary that the (C, 1) means of the Fourier-Stieltjes series

of a non-decreasing function are positive(4).

(v) By a theorem of Hardy and Littlewood(5), summability (C, a) with

a >0 for the Fourier-Stieltjes series of a non-decreasing function implies sum-

mability (C, ß) for every ß>0, and is equivalent to the existence of the gen-

eralized symmetric derivative F<d(0).

The converse of Theorem A for positive functions follows directly from

these remarks.

3. The Poisson-Stieltjes integral in the half-plane. For some purposes it

is convenient to work with integral representations in the half-plane rather

than in the circle. A function u(x, y) harmonic in the half-plane y >0 admits

the Poisson-Stieltjes integral representation

1 c"    yO + '*)
(2) *(*, y) = - —- dir®,

it j_m y2 4- (t - x)2

where U(t) is of bounded variation over the closed infinite interval [— oo , a> ],

if and only if the transformed function v{w) obtained by mapping the half-

plane (by z = i (1 — w)/(l +w)) onto the unit.circle |w| <1 has the Poisson-

Stieltjes representation (1), where Z7(tan 0/2) = F(0)/2. Note that (2) is

not actually an improper integral, for the integrand is continuous over

the closed infinite interval [ — °o, so ] and Uit) is of bounded variation

there; also note that U(t) may have a jump at infinity. Obviously U'(t)

= V'(2 arc tan /)/(14-*2) when either derivative exists; thus U'(fi){=V'(0).

We can rewrite (2) by removing the jump of U{t) at infinity as ky and writ-

ing Ui(t) = fl(l+t2)dU(t). Then (2) becomes

(3, ,,(„) = 4y + ±£

The integral is absolutely convergent and the kernel is simpler than the

kernel of (2). Also U{(t) — V'(2 arc tan t) so that the Fatou theorem is gen-

erally valid. On the other hand, U\{t) is not of bounded variation in the in-

(3) See Kogbetliantz, Sommation des siries et integrales divergentes par les moyennes arith-

meiiques et typique, Memorial des Sciences Mathematiques vol. 51 p. 40, Theorem 21.

(*) See Titchmarsh, Theory of functions, p. 412. It is only necessary to replace the Lebesgue

integral by a Stieljes integral in the equation for <r„.

(5) See Zygmund, Trigonometrical series, p. 263 and p. 266, Example 11.
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finite interval. We shall find it convenient to use (2) rather than (3), and ad-

just the mapping of \w\ <1 onto y >0 so that any desired boundary point

maps to the origin z = 0 where the desired Fatou relation holds.

If Ui(t) is absolutely continuous with derivative u(t) then (3) becomes

l rx
(4) u(x, y) = ky 4-I

it J
u{t)dt.

y2+(t- x)2

If the original function v(w) admits the ordinary Poisson representation

1 - r2

4- r2 - 2r cos (0 - <j>)
(5) v(re*+) = — f -: v($)dO,

2tt J o 1

the transformed function has the representation (4) with k = 0 and nil)

= v{2 arc tan /).

For the purposes of this paper, the factor 1 +t2 in the numerator of the

integrand of (2) may be dropped. We are interested in limiting behavior as z

approaches the origin along rays (rx, ry), 0<r^l, y>0. But

/(ry)t2                           rx yt2
-—-dU{t) = r-

-oo (ry)2 +(t- rx)2              J_M y2 + (t - x)2
dUirt).

We consider an angle space by restricting x to — Xo<x<x0- The integrand

of the right member of (6) is bounded over — x0<x<x<>, -»^igoo, so

that the absolute value of the integral is bounded by rMV (where V is the

variation of U(t)). Thus this term approaches 0 uniformly as z approaches the

origin in any angle space, and we can disregard it. We have left to consider

the harmonic function, again denoted u(x, y),

(7) «O, y) - - f M ——7- dUit),
* J-* y2 4- (t — x)2

which can be written

f*\ (       ^     1  C I        » U(rt)
(8) u(rx, ry) = — I --d-.

ir        y2 + (t — x)2 r

The Fatou Theorems A and B follow at once from (8). The assumption

of Theorem A is that [U(t)~ U(-t)]/2t-+Uw(0) as *-»0. Thus [U(rt)

- U(-rt)]/r = 2t(U)m(Q)+tR(rt) where \R(t)\ is bounded, say by M, and

I R(t) I ̂ 0 as r-»0. For x = 0, (8) becomes

(9) «(0,fy)=-|    -^-d—--L
it J o    J'2 4- t2   L r J

and if we substitute the above expression in (9) and integrate the last term

by parts, we have
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2 f"«, A t2y
u(0, ry) = tWO) + - f R(rt)-

■K J o (y« 4- |«)«
(10) '

2  /•'/2
= £7(1,(0) 4- — I sin2 ßdß,

TT J 0

where /3 = arc tan //y. For r small enough, | R(rt) | is arbitrarily small over as

large a part of the range of t, and hence of ß, as desired. Over the remaining

part of the range of ß the integrand is bounded by M. Therefore the integral

approaches 0, and 77{1)(0) = limr..i w(0, ry) which is the conclusion of Theorem

A.
Theorem B can as easily be inferred. We assume £7(0) =0, and have

U(rt)/r = tU'(0)+tR(rt), and instead of (10) this gives

2  f "     a      Kt- x)y
u{rx, ry) = U'(0) + — f R(rt)

IT J _,c

dt.

Now \t(t—x)/(yI+(t—x)2)\ <K over — xo<x<x0, — 00 =/S <»,and the ab-

solute value of the integral is therefore bounded by

2K C *'* ,
- I      I R(rt) I

T   J -x/2

which approaches 0 with r as in the proof of Theorem A.

If one will compare these proofs with the corresponding proofs carried out

in the unit circle (6), the advantages of the half-plane representations will be

appreciated.

Using the representation (7) the converse of Theorem A for positive func-

tions can be deduced immediately from the following integral Tauberian

theorem of Hardy and Littlewood(7).

Theorem. Letf(t) be positive, and suppose that f(t)/(t+xy G£(0, <»)/or

some (and so for all) x>0. Suppose that

f1« (/+*)' x'

as x—> «> (as x—>0) for 0<v<p. Then

r' #r(p)
F(t) =      f(u)du-—-

Jo rv)r(P -0-4D
as t—* oo (as t—*0).

The statement of the theorem can be modified to include Stieltjes integra-

(6) See Evans, loc. cit., pp. 39-43.

(7) Hardy and Littlewood, On Tauberian theorems, Proc. London Math. Soc. (2) vol. 30

(1930) p. 25.
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tion, and then only elementary changes of variable are required to put the

theorem in a form directly applicable to the Poisson integral for the half-plane.

We shall have occasion to use the following theorem (8).

Theorem. Let U(t) have a jump m at f = 0; thus m = 0 is equivalent to the

continuity of U(t) at t = 0. Then as z=x-\-iy approaches the origin along the ray

x=Ry, yu(x, y) approaches the value m/(l + k2)w. In particular, U(t) is con-

tinuous at t = 0 if and only if yu(x, y) approaches 0 along some ray (and hence

along all rays).

In proof we consider

If" y2
(ry)u(rx, ry) = — | -- dU(rt).

■k j-x y2 + (t — x)2

Now as r-+0, U(rt)-+V(t) where V(t) = £7(0+ ) for 0<t< », V(t)=U(0-)

for — oo </ <0, and V( + oo) = £7( + °o). Then by theHelly-Bray theorem con-

cerning the convergence of sequences of Stieltjes integrals(9),

If00 y2 my2
(ry)u(rx, ry) -» —- W) = •

x J_M y2 -f (/ - #)2 x(y2 4- *2)

Since x = ky the theorem follows.

4. The converse of Theorem B for positive functions. We shall prove the

stronger theorem:

Theorem 1. Let u(z) =u(x, y) be a positive harmonic function in the upper

half-plane y >0, and having therefore the representation (2) with U(t) increasing.

If Iim u(z) =u(0) as z approaches the origin along each of two rays, than U'(0)

exists and equals u(0).

We shall carry through the proof in a number of steps, using (7) instead of

(2).
(i) If u(z)—»m(0) as z—>0 along each of two rays then u(z)—->w(0) uni-

formly as z—»0 between the rays. If the angle space between the rays is opened

up to a half-plane by a power w = eißza we obtain from u(z) a new positive

harmonic function U\(x, y) continuous in the closed half-plane y=0 except

possibly at the origin, and having a boundary function U\(t) which is con-

tinuous at the origin if it is defined there to have the value u(0). Since

U\(x, y) is positive it admits the representation (7) where U\(t) has the con-

tinuous derivative U\(t) when tr*0. Thus U\(t) is absolutely continuous if

(8) Fejer, Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, J. reine

angew. Math. vol. 142 (1913) pp. 165—166. See also Warschawski, Bemerkung zu meiner Arbeit:

Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math.

Zeit. vol. 38 (1934) p. 682.
(9) See D. V. Widder, The Laplace transform, p. 31.
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it has no jump discontinuity at the origin. But by the theorem at the end of

the last section, U(t) is continuous at / = 0, which implies successively that

ru(rx, ry)—»0 as r—»0 for every point (x, y) in the upper half-plane y>0, that

similarly ru\(rx, ry)—»0, and finally that Ui(t) is continuous at the origin.

Therefore Ui(t) is absolutely continuous and Ui(x, y) has the representation

The continuity of U\(t) at the origin implies the continuity of Ui(x, y) at the

origin, which proves the assertion (i).

(ii) Next, u(z)—»m(0) as z—»0 along any ray to the origin. Let h and h be

the two given rays and suppose that h makes the positive angle a with /«. Let

h make the angle a with l2 (we suppose that ls lies in the upper half-plane).

We shall show that if l:(rx, ry) is any ray between h and h, then u(rx, ry)

—»m(0) as r—->0. We need only to open up the angle space between li and h

as in (i); h becomes the ray perpendicular to the axis at the origin. The new

positive harmonic function U\(x, y) has the representation (2) and by hy-

pothesis (a) Mi(0, ry)—>m(0) as r—>0, (b) Z7i(/) is absolutely continuous for

t >0, and «i(0 = t/KO—>w(0) as i->0 (from the right). Thus tA (/)/*—>w(0) as
t—»0 from the right. Application of the converse of Theorem A for positive

functions shows that J7i(/)//—»m(0) as /—>0 from the left. Thus 17((0) exists

and equals w(0). By the Fatou theorem ui(rx, ry)—>w(0) as r—>0 for every

(x, y) with y>0. This proves the statement about rays between l2 and /3.

The assertion (i) together with a finite number of applications of the above

process, proves (ii).

(iii) It remains to prove from these facts that U'{0) exists and equals

m(0). By the converse of Theorem A it is sufficient to prove that U(t)/t—»z/(0)

as /—»0 from the right. The obvious device is to open up an angle space hav-

ing the positive real axis as one of its bounding rays. But it is then somewhat

difficult to establish the relation between the functions c7i(r) and U{t) for

positive /. We shall proceed differently. Integrating (7) by parts we have

(ID
2y(t - *)

U(t)dt.u
[y* 4- (t - x)2]

By (Ü)

(12)
2ty U(rt)

dt -» w(0) 0.as r
(y2 + t2)2 r

We can assume that E/(0)=0, and the integrand in (12) is accordingly non-

negative. We can therefore integrate and invert the order of integration,

giving
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r1 1   r"      2ty     ( rl U(rt) \

-if 2" (rM*\*.
TT J_„ (y24-/2)2 \ Jo     r )

In particular, U(r)/r is integrable over every finite interval. We can now per-

form the same operation on (11), justifying the change in the order of integra-

tion by absolute integrability. Thus

f1 1  f°      2y(t - x)    ( (" U(r) \
Mx'y) = Jo <rx'ry)dr = 7 J_„ W5^Ui ~vdrr

and integrating by parts,

W)
y2 4- (t - x)2 t

ui{x, y) = — f     „ ,  /-— —— it.

The function Mi(z) = U\{x, y) is obviously harmonic and positive in the upper

half-plane, and wi(z)—>m(0) as z—>0 along any ray (rx, ry), y >0. We now em-

ploy the device suggested at the beginning of (iii). Let h and h make angles

a («<tt/2) and la with the positive real axis, and apply the transformation

w = z*l2a. The harmonic function Mi(z)has the boundary functionti\(t) = U(t)/t.

After the transformation, the new harmonic function u2(w) has the boundary

function u2(t) =ui(t2a'T). In the Stieltjes form U2{t)=u2{t) and by definition

U,(t)/t-*u(0) as t—»0 from the left. By the converse of Theorem A for positive

functions

U2(t)

.Ift Jo
u2(s)ds —> w(0)

as £—>0 from the right. The following lemma is due to Landau(10).

If xf'(x) increases with x and f(x)~xa (a>0) as x—>0, then f'(x)~axa

as x—*Q.

Here

At) = f
J 0

u2{s)ds <~ tu(0)

as /->0, and tf'(t) = tu2{t) =ti-2al*U(t2alT) which increases with Therefore by

Landau's lemma, u2(t)~u{0) as t—>0, that is, U(t)/t^>u(0) as t—>0 from the

right. We now apply the converse of Theorem A again to obtain U(t)/t^u(0)

as t—>0 from the left. Thus £/'(0) exists and equals u(Q) ,and the proof of the

theorem is complete.

(10) E. Landau, Beilrage zur analytischen Zahlentheorie, Rend. Circ. Mat. Palermo vol. 24

(1917) pp. 81-160.
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It should be remarked that the direct converse of Theorem B for positive

functions can be proved from considerations of the integral representation

(7) without any reference to the converse of Theorem A.

5. A counterexample. In this section we shall show by a counterexample

that neither of the converses of A and B is true for the general representa-

tion (2). We first define the function U{t) and then define the harmonic func-

tion u(z) by the representation (7). The graph of U(t) will consist of a se-

quence of triangular peaks separated by intervals of the /-axis and converging

to the origin, the vertices of the peaks lying on the line s=t over the points

t = 2~n, the slopes of the sides of the peaks to be determined by later con-

siderations. Such a function U{t) is clearly of bounded variation.

We thus define U{t) as follows:

£7(0 linear on 2~n—an^tS2~n and on 2~n^t^2-n+an, and £7(0=0else-

where in 0</<l. The an are positive numbers to be chosen later subject to

the restriction noted above. On 2-n—an<t<2~n, dU(t) =2~ndt/a„ so that

£7(/) =

0,        t < 0

0,        t. >':!

(1/2)», / = (1/2)", n = 1, 2, • • •

0 ,        t = (1/2)" ± a„, 0 S an ^ 2~n-3

1 y y
dt

Thus

u(x, y)
y[2(* - x) - an]

111UA

2-"S<g2-»+°n| [y2 4- (/ — x — a„)2\[y2 4- (/ — x)2\

Consider the term

y 2(t — x) — ai

2   [y*+(t-x- aO*][y*+(t - x)2]
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on a ray x=ky. If we allow x, y, t and ax to vary, subject to the restrictions

l/2—ai^/^l/24-öi, x = ky ,the term has a maximum value

Mu. By homogeneity the general term

y 2{t — x) — a„

2" [y2 +(t - x - any] [y2 +(t- xY]

with 0 ^ an ^ 2-"-', 2-n — an^t^2~n+an, x = ky has the maximum value 2"Mk.

Now choose the constants an as 2-2". Then a„ times the general term above is

bounded by 2~nMk.

It is clear that the general term approaches 0 as y approaches 0 (x = ky)

uniformly over the allowed range of t. Given e, choose N so that

00

Z 2—If* < e/2,
n—N+l

and choose yo so that for y<yo and x = ky, the sum of the first TV terms is

bounded in absolute value by t/2. Thus for y <y0 and x = ky, \u(x,y)\ < e, and

we have proved that u(x, y)—>0 as z—>0 along any ray to the origin. It is

e-bvious however that U{t)/t oscillates between 0 and 1 as /—»0 from the right,

and that [U(t) - U(-t) ]/2t oscillates between 0 and 1/2 as t-+0 from the

right.

6. Generalizations and applications. The procedure of Theorem 1 is ade-

quate for situations more general than that described there. Suppose, for

instance, we have not that u(x, y) approaches w(0) but that

l

u(rx, ry)dr

exists and approaches m(0) as z=x+iy approaches the origin along each of

two rays h and h We open up the angle space as before and get a positive

harmonic function Ui(x, y) admitting the representation

i f06 y

tt J_„ y2 4- (t - x)2

with the hypothesis that

(13) f «i(+ I rt\f)dr -> u(0)
J o

as r—»0, two separate statements being understood. Here ß = ir/a where a is

the angle between li and 1%. We now need the following lemma:

Lemma. If u(t) is a positive function such that for some a>0

u(ta)dt ~ &5
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as s—»0, then

(14) u(t)dt ~ ks.
o

In proof we multiply both sides by sa~2 and integrate from 0 to r. If we

then integrate the left member by parts the conclusion follows.

If rt is replaced by t in (13) and the lemma applied, we obtain as a con-

clusion precisely the hypothesis of the Fatou Theorem B for the harmonic

function u\(x, y) (with U(s) absolutely continuous and equal to the integral

(14)). Therefore «i(z) —>m(0) as z—»0 "in angle," which is equivalent to the

statement that m(z)—>m(0) as z—»0 along any path between h and h. We can

therefore apply Theorem 1 to infer that t/'(0) exists and equals m(0). Also

where z = x-\-iy = r(cos 0+i sin 6), and the new hypothesis is thus that the

integral Holder mean approaches w(0). We have thus proved the following

theorem:

Theorem 2. Let u(z) = u(x, y) be a positive harmonic function in the upper

half-plane y > 0, and having therefore the representation (2) with U(t) increasing.

If u(z) has the (H, 1) limit u(0) as z = xJ\-iy approaches the origin along each

of two rays, then U'ifS) exists and equals w(0).

Corollary 1. As a consequence of the Fatou theorem u(x, y) has the ordinary

limit w(0) as z=x+iy approaches the origin along any ray of the upper half-

plane.

Corollary 2. If w(z) has the (H, n) limit w(0) as z approaches the origin

along each of two rays, then t/'(0) exists and equals u(0).

This is a trivial consequence of the Landau lemma used in §4, for if u(t)

is positive, and

1
u(sx, sy)ds = —

then direct application of the lemma gives that

o

A finite number of such steps reduces the hypothesis of the corollary to that

of Theorem 2.

Again, it is clear that we have used the monotonicity of U(t) (positivity



1943] CONVERSE OF THE FATOU THEOREM 249

of u(x, y)) only locally about the origin, and the hypothesis can be accord-

ingly weakened to that extent.

It is interesting to see what can be said for other statements of the Fatou

theorem. A somewhat stronger form of the theorem than that contained in

the first section concerns the ordinary Poisson integral representation

1 riT i - **
v(re**) = — I -v(8)dd.

2xJ0    1 + r2 - 2r cos (0 - <b)

Let ve(z) = dv(rei9)/dd. Then ve{z) is a harmonic function in \ z\ < 1 which does

not in general admit a Poisson-Stieltjes integral representation.

Theorem A'. If vil)(d)=\im M [v(6+t)-v(6-t)]/2t exists, then ve(re'e)

—W(d(0) as r—»1.

Theorem B'. If the derivative v'(6) exists, then ve(z)—>v'(d) uniformly as

z—>ei9 "in angle."

The proofs are essentially the same as those for Theorems A and B. As

before, we must impose some further restriction on v{6) in order to deduce the

converses of Theorems A' and B', and we try the local condition that,

v(0)— v(00) change sign at 90 that is, that [v(6) — v{9o)](0 — 80) be of constant

sign (admitting the value 0) in some neighborhood of do- We may obviously

take v(8o) =0. Thus in the half-plane our hypotheses are that u(x, y) has the

/representation

; 1 f°° yI u(x, y) = — I- u(t)dt,
x        y2 -f- (t — x)2

where the integral is absolutely convergent, that tu(t) =0 in some neighbor-

hood of the origin, and the du(x, y)/dx = ux(x, y) has the property that

ux{rx, ry)—*l as r—>0 for every (x, y) with y > 0. For the converse of A, the as-

sumption holds only along the ray x — Q. Now

1   r 00      2y(t - *)

u^y) = i;L [,»+(/-*)•]
and

If"      2y/ u(rt)

The integrand here is positive in the neighborhood of r = 0, t = 0, and since

«*(0, ry) is integrable over 0<r<l we have

/■1 1   r00       2yt      / f1 u(r) \

and in general
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f ux{rx, rv)dr =— f -7——-—-( f -^-dr\dt
Jo x J_„  [y2 + (/ - x)*]\Jo    r )

y «(')1 rx

x «/ —00x >>2 + (» - xY t
dt.

Since u{t)/t is non-negative in some neighborhood of / = 0, we can apply

Theorem 1 with u(t)/t= U'(t) to obtain

1   r'u(r) - «(- r)
(a) — I -dr —> /

( Jo 2r

as i—>0, as the converse of Theorem A', and

«(r)
(b) — -^aV-W

t Jo r

as /—»0, as the converse of Theorem B'.

To obtain the symmetry of the earlier case we should now prove that (a)

and (b) can be taken as weakened hypotheses for the Fatou Theorems A' and

B'. This is in fact the case, but we shall omit the proofs here since they are

essentially the same as the proofs of Theorems A and B.

The relation between Vt(tv) in the unit circle and ux{x, y) in the half-plane

can be easily established. They are different functions even when transformed

so as to have the same domain of definition, but they have the same asymp-

totic properties at the origin in the half-plane.

If /(z) is a bounded analytic function in the unit circle |z| <1 it is,

known(n) that if lim/(z) exists as z approaches a boundary point e'e along

some curve, then /(z) has that limit as z—>eie "in angle." Thus there is no

difference between situations A and B in this case. The Fatou theorem im-

plies(12) that limr_i f(reie) exists for almost all 6, and the converse of the

Fatou theorem (Theorem 1) implies that if/(0) is the boundary function thus

defined then/(0) is precisely equal to the derivative of its indefinite integral.

(") See Nevanlinna, Eindeutige Analytische Funktionen, p. 65.

(!2) See Bieberbach, Funktionentheorie, II, pp. 147-148.
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