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This paper presents a different approach to the problems of geometrical

optics, in order to attack some problems hitherto insoluble in practice.

The investigation has been restricted to rotationally symmetric optical sys-

tems for practical reasons only; the procedures can be applied to the general

case. Let us choose two rectangular coordinate systems such that the z- and

z'-axes coincide with the optical axis, the y-andy'-, and x- and x'-axes being,

respectively, parallel. An object ray is then defined by its intersection point

with the plane z = 0; (vector aT", coordinates x, y, 0) and by the vector s" of

length n (n refractive index) along the ray (coordinates £, rj, f = (w2 — £2 —»72)1'2);

the image is given by a'~(x', y', 0) and $'"*(£', r' = («'2-£'2-'?'2)l/2), with

n' the refractive index of the image space.

The problem of the optical designer is to find the image ray if the object

ray is given, or in other words, to compute, for a given optical system, x',

y', and n' as functions of x, y, £, and r). If this problem is solved for a single

surface and arbitrary positions of the object and image planes, it is solved

for any rotationally symmetrical optical system merely by making a succes-

sion of substitutions. To solve the problem for a single surface, which will

here be assumed to be a spherical surface, we first place object and image

planes at the center of the refracting surface, and then calculate the functions.

Having done this, we have only to compute the intersection points of the

image rays with a parallel plane through another origin, a simple geometric

problem. We can use this method for the manifold of all rays in a procedure

similar to the ordinary way of tracing meridional rays; and applied to an

individual ray, it becomes a straightforward method for tracing skew rays

through an optical system.

I. General formulae

Before deriving these equations, we shall inspect the general conditions of

optical image formation^). Because of the rotational symmetry we can write

Presented to the Society, October 31, 1942; received by the editors April 17, 1942.

(') The term "optical image formation" refers to the one-to-one correspondence of object

and image rays in an optical system. Not every one-to-one correspondence can be considered

as an optical image formation. The conditions are derived in this paper: For the mathematician

it might be noted that an optical image formation is a special kind of contact transformation.
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x' = A x + BL       f = Cx + D£
(1)

y' = Ay + Br,,      r,' = Cy + DV

in which A, B, C, and D are functions of u\, u2, and «3, which are symmetric

functions of x, y, £, and r>:

Ml = (l/2)(z2 + y2),

(2) u2 = «| + y??,

«3 = (l/2)(£2 + r,2).

However, A, B, C, and D are not arbitrary functions of ui, u2, and tt».

Our first task is to derive the differential equations connecting them.

According to the fundamental optical invariant(2), for any two-parameter

manifolds (parameters u, v), we have (abbreviating ds^/öw =57).

(3) Su  Ctv     — Sd   Ctu    — 5« öp  — Sv du .

Taking the following variables in turn for u and v: x,y; x,£\ x, w; y, £; y, 77;

and £, 77 and turning from the vectors to the coordinates, we find that

(*,'{,' + yiii) - {.xig + y„V) = 0,

(4) (*.'(/ + yhi) - (»/{.' + y(ni) = 1,

Writing A, for dA/du,, and so forth, we now obtain from (1) and (2),

= A + Axx* + (A2 + Bt)k + 52£2,

(5) at,' = A xxy + A2xn + B£y + B2fr,

Inserting (5) in (4), we obtain the equations

(xt, - y§I = 0,

(AD - BC) 4- x2I 4- xtfl 4- &tl = 1,

xyl + xi)II -f frill = 0,

*yl 4- y|i/ 4- ̂ /// = o,

(^Z) - £C) 4- y2I + ynll 4- r/2/// = 1,

(xrj - yQIII = 0;

(2) For the historical background of formula (3) and its connection with different branches

of mathematics, the reader is referred to M. Herzberger, Theory of transversal curves and the

connections between the calculus of variations and the theory of partial differential equations,

Proc. Nat. Acad. Sei. U.S.A. vol. 24 (1938) pp. 466-473.
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where

I = AC2 + DAi - CA2 - BCi + 2ux(Axd - Aid)

+ u2(AxDi - 4töi+ B1C2 ~ Bid) + 2u3(BxD2 - B2DX),

II = ACt + DBi -CA3- BDi + 2ux(AxC3 - A ad)
(7)

+ u2(AxD3 -AsDt-h BtCt - Bgd) + 2u3(BxD3 - B^),

III = AD3 + DB2 - CB3 - BD2 + 2ux(AiC3 - A£i)

+ Ut(A2D.3 - A3D2 + BiC3 - B3d) + 2u3(B2D3 - B3Di).

Equations (6) can be satisfied for all rays only if

/ = // = /// = 0;
(8)

AD - BC = 1.

The fulfillment of the four equations (8) is necessary and sufficient to

guarantee that equation (1) determines an optical image formation. We can

of course eliminate one of the functions, for example, D, and have three func-

tions A, B, and C, and three differential equations connecting them. We find

that
1 + BC

D =-,
A

(9)
C B 1 4- BC

D, = — B, -I-C,-A,.
A A A2

Inserting this in (7), we obtain these equations:

B Ax / B \
(Ad - CAi) + — (CAl- Ad) + — + (Ayd - Aid) ( 2ux + — u2)

A A \ A /

(C 1 + BC\
+ (AxBx ~ AiBx) I — m + 2u3 J

+ (Bxd - BiCx)(ui + 2u*-^J " °.

B2 BAX + ABX
(AC3 - CA3) + — (CAX - ACX) +-

A A2

(10) + (AXC3 - A3CX) (^2ux + j

/ C 14- BC\
+ (AXB3 - A3BX) ( — m + 2u3    ^ j

+ (BXC3 - B£x) (ui + 2u3^j = 0,
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B B2 BA, + AB, As— (AC, -CA,} + — (CA2 - AC,) +--
A A2 A2 A

(10)

+ (A£, - AsCi) ^2Ml + j «2)

/ C 1 + BC
+ (A2B3 - A3B2) ( — «2 + 2u3-

\.4 a1

+ (BiC3 - Bad) (u2 + 2«3-A = 0.

)

Let us multiply these equations by A 3, —A2,Ai\Bz, —B2,Bi,C3, re-

spectively, and add. We thus obtain three new equations, which can replace

equations (10) if
Ai  A2 A3

(11) B\ B2 B3

Ci   C2 C3

= A 96 0;

that is, A, B, and C are three independent functions. (In this case we can

construct their inverse functions, that is, we can calculate u\, u2, and u3 as

functions of A, B, and C. We shall make use of this later.) In either case, we

obtain from (10) three equations:

A(C2A3 - C3A2) + B(ArC, - CxAi) + — (dA, - C2A1)
A

+ — (BiAi - BiA2) + (u2 + 2u3 j^A = 0,

A(C2B3 - C3B2) + B(B1C3 - dB,) + C(A3B2 - A2B3)

1 + BC
+ (A,B3 - BiA3)

(12)

+

+

B /l + BC\

TV    A )

^2«i + —u^A = 0,

B2
(A2B, - AtB,) + — (CiB, - dB,)

A

1 + BC
C(dA3 - CiAt) +-(A,C3 - dA3)

B /l + BC\ 1
+ — (A2C1-A1C2)[-) + — (B,d - BjC,

A \    A    / A

/ C              1 + BC\
+ { — «*+ 2«s-IA = 0.

\A A2 )
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These equations are equivalent to:

A (Aid - Aid) + B(A2C1 - Aid) + C(A2Bx - AxB2)

+ A (Bid - Bid) + 2u3A = 0,

1 + BC
A(A3C2- Aid) H-(AtBi -AiBi) - B(B2C1 - Bid) + u2A = 0,

(13) A
A(B3C2 - C3B2) + B(BiC3 - CiB3) + C(A3B2 - A2B3)

1 + BC
- B(A£2 - CzA2) -\-(AiBz - BiA3)

A

+ 2«iA = 0.

If A is not identically equal to zero, we now get very simple equations for

the inverse functions, if we insert

dui BiC3 — .BjCs dui    AsC2 — AiC3 dui    A2B3 — A3B2

dA A        ' dB A        ' dC A

du2 B1C3 — B3Ci du2    AiC3 — Azd du2    A3Bi — AiB3

dA ' A dB ~        A dC ~ A

du3 BiC2—B2Ci du3    A2Ci — AiC2 du2    AiB2 — A2Bi

dA A dB A dC A

Thus, equations (13) give finally

ö«2        du3        du3 du3
A-+ B-C-A-+2u3 = 0,

dB        dB        dC dA

du\     1 + BC dtl3 dw3
(15) A-h B-h  m2 = 0,

dB A      dC dA

dui du2 dui dui     1 + BC du2
A-B--\-C-h B-1-— - 2«! = 0,

dA        dA        dC        dB         A dC

as fundamental equations for optical image formation.

II. A SPECIAL KIND OF OPTICAL IMAGE FORMATION

As an example, let us consider a special case in which AsO. Let us assume

B=Q; then

x'= Ax,      f - C* + (1/4)1,
(16)

/ - Ay,      v'm Cy + (l/A)v.

This kind of image formation is of great importance in optics. A single
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sphere produces this type of image; so does a system of concentric surfaces,

a so-called concentric lens system. On the other hand, the attempt to realize

the dream of an optical designer, a system which gives a sharp image of one

plane 2 = 0 upon another (s' = 0), leads to an image formation given by

formula (16) with the special condition that A is a constant.

In general, A must be different from 0 and, inserting B=Bi = B2 = B3 = Q,

equations (10) give

(Ad -CA2) + (A,/A) + (AA - ^2^)2«! = 0,

(17) (AC3-CA3) + (AxC, - AiC^m = 0,

- (A3/A) + (A2C3- A3C2)2Ul = 0,

as differential equations for the two functions. Equations (12) give

1
(18) A(CiA3 - CVt2) = 0   and   C(C2A3 - C^2) + — {A£3 - dA,) = 0,

A

or

(19) C2A3 - CiA2 = A£3 r Aid = 0.

Inserting (19) in (17), we find that •

(20) A' = C" »
(Ad - CA2) + (Ax/A) + (AxCt - AiC^lux = 0.

We see that in this case A and C are functions of u\ and u2 alone. We in-

troduce D = l/A and find, as differential equations for C and D,

D.-C-0.

Dd + CD2 - DDt + (dD2 - £»1C2)2m1 = 0.

In the special case of D =const., C2 = 0. That means Cis a function of u\ alone.

We have

x' = Aox, r = C(Ul)x + (l/.4o)£,

y' = ^oy,      v' = C(Wl)y+ (l/Ao)v.

Equation (22) is a generalization of the well known sine condition of

Abbe; A0 is the magnification of the image and (22)2 can be written in the

familiar form

(23) Ao? - £ = CMx,      Aov' -v = C(«0y,

where the right sides of equations (23) are independent of £ and rj.

Let us now investigate the general case, in which C and D are independent

functions of u\ and u2, such that
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(24) dDi - CJ)! y* 0.

Here we may again construct the inverse functions, and consider u\ and m2

as functions of C and D. Then we have

du,           D2 dui — C2

dC C1D2 - C2I>i' dD C1D2 - C2Ö1'
(25)

ÖU2                — Dl ÖU2 C\

dC     dDi - CiD1        3D    dD2 - dDi

Inserting (25) in (21) gives

dui        dui du2
(26) C-D-\-D-b2% = 0.

dC        dD dC

The solution of this differential equation would solve our problem.

III. The single spherical surface

Again we attack a special case of the aforesaid problem, namely, the single

refracting spherical surface. The coordinate origins in the object and image

spaces are placed at the center of the sphere, the x- and x'-, y- and y'-axes

coinciding. Let cC {a'"*) be the vector (x, y, 0) (x', y', 0), respectively, to the

intersection point of the ray with the coordinate plane z(z') = 0; let s~~*(!;, rj, f),

s'~*(¥> v'> ?')> respectively, be the vectors of length n (n') along the object

and image rays.

Let r be the radius of the refracting surface, positive if the surface is con-

vex with respect to the direction of the light ray, and negative if the surface is

concave. Let r~* be the vector of length r along the incidence normal. The re-

fraction law can then be written

(27) rXr*" 1'- X r~,  or s'- - r* = Cr-*.

The coordinates are then given by equations (2):

ui = (** 4- y2)/2 =

U2 = x I -)- yt) = a-* • *-*.

Two values, X and X', exist such that

(29) a— 4- X*^ - r~- a'-* 4- XV-,

and a'~* and a-* must have the same direction, since they both lie in the inter-

section line of the incidence plane with the plane z = 0. From (29) and (27)

we find that

(30) a'- X s'- = r- X s'- = rr* X *- -» r* X r?.
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This gives finally

(31) W 1
j'- = Ca- + Ds-,

where C is given by equation (27)2; a~*X^ is an invariant vector for refrac-

tion. Its direction is perpendicular to the incident plane; its length p is the

length of the perpendicular dropped from the center to the incident (re-

fracted) ray, multiplied by the corresponding refractive index.

We have

(32) / = (a- X s-)2 = a-V-*2 - (a—s-)2 = 2«2Ml - u\.

Equation (31) now gives

X 5- = C(a- X si),
(33)

S ~*-s~* = Ca-'-s-' + Ds~*2.

If 5 is the angle between 5 and s' (the angle of deviation), equations (33)

are equivalent to

nn' sin 8 = Cp,      nn' cos 8 = Cu, + Dn2,

or

nn' sin 5 1   ( nn' sin 5
(34) C =

1   f ««' sin 8 1
Z) = — < nn' cos 5-w2 > .

«2 I P)

Our remaining problem is to express 8 as a function of p, and then, by

using (32), as a function of U\ and «2- Equation (27)2 gives

(35) Cr-2 = j'--r-> - f-»-rt,

or, because of (30),

(36) C = (1/0 {(«'2 - {p/r)2)"2 - («2 - 6>/r),)1,*}<

sin 8 = (#/»»V) {(»'* - (p/r)2)1'2 - (n2 - (p/r)2)"2),

cos 5 = (p2/nn'r2) + — ([n'2 - (p/r)2][n2 - (p/r)2])1'2.
nn'

Inserting (37) in (34) gives C and D as functions of p and «2, and there-

fore, because of (32), as functions of u\ and ui.

To solve the reverse problem, that is, to calculate u\ and ui as functions

of C and D, we proceed as follows:

Equation (37) gives

(38a) (cos 5 - p2/nn'r2)2 = (l/nn')2(n'2 - p2/r2)(n2 - p2/r2),
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(38b) (tin' sin 8)2 + (p2/r2)(2nn' cos 5 - w2 + n'2) = 0;

or, considering (34) i

(39) 2»»' cos 8 = «2 4- w'2 - C2r2.

Inserting this in (34)2, we obtain

«2 4- nn - C2r2 D

(40) «2 =-»2.
2C C

Equation (34) gives

(41)

/nn' sin 5\2   «V2    (n2 + n'2 - C2r2\2       , 2
^ * = ~CT ~ V-*-j = 2W Ml " M2

(n2 4- «'2 - C2r2    D \2

= 2"*»'-(-i5-c")<

which gives

1 - D
M, = - Z?r2/2 4-(«'2 - w2£>),

2C2
(42)

w2(l - D) 4- («'2 - »2Z»
«j« - Cr2/2 + —- •

2C

We see that u\ and m2 are rational functions of C and D, fulfilling equation

(26).
Equations (42) are very valuable for calculating the coefficients of Cand

D, written as a series in u\ and ui.

IV. The plane surface

The equations for refracting a ray at a plane surface are very simple.

We let the z- and z'-axes coincide with the axis of the system, and place the

origins at the intersection point of the axis with the plane surface. Applying

the refraction law here gives

d m x,      £' = g,
(43)

r = y<    w m v-

This means that the transformation is the identical transformation.

V. Transition formulae

To obtain the formulae for tracing a system of rays through a system of

centered lenses, we must also know how to find, from the coordinates of the

intersection point of the image ray with the reference plane through the



1943] GEOMETRICAL OPTICS 227

center of one surface, the coordinates of the ray intersection in the refer-

ence plane through the center of the succeeding surface. We call the distance

between the two centers m. From analytical geometry, we get

m
x' = x h-s,   r = £,

(l-2«3/«2)
(44)

m
y = y h-v,    v' — v-

(1 - 2m3/«2)1/2

In tracing rays, we can use the formulae described in the preceding sec-

tion. We can simplify the calculation since, instead of tracing x, x', y' and y,

it proves to be sufficient to trace u\, ut, and u$, because the functions depend

only upon these variables. Moreover, for any optical image formation, we

have the relation

.... / /       /s      . / /       r.\t     , j
(45) Mitt3 — «2 = (* v — y K ) = (%v — yf) = «i"3 — «2.

which follows directly from (1). The actual ray tracing formulae will be pub-

lished later.

VI. Image error theory

Finally, let us sketch briefly how the image error theory can be derived,

using this new method of approach.

Let us develop A, B, C, and D as functions of uu «2, and w3, into a series

and inspect the equations for small values of Mi, u^, and w3.

If we assume ui, «2, and m3 to be negligible, we obtain Gaussian optics,

within the realm of which A, B, C, and D can be regarded as constant values.

We have

*' = A0x 4- B£,      r = Cox 4- D&,
(46)

f = A0y 4- Bon,     v' = C0y 4- D0v,

with (8)2

AoDo - B0C0 = t.

The special case, that object and image are in optically conjugated points,

is indicated by

(47) Bo = 0.

Then D0=l/Ao, and

x'= Aox,      r - Ctx + (l/Atä,

y' = A0y,      v'= Coy + (l/Ao)v-

From (48) and (46) can be derived all the laws of Gaussian optics.
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Let us now consider the linear members of A, B, C, and D, but neglect

all higher orders. This leads to the so-called Seidel theory of aberrations. We

have again

1 + BC
(49) D =-,

A

but the nine first-order derivatives of A, B, and C are not independent. Equa-

tions (9) show that between these derivatives at u\ = tt2 = w3 = 0 there exist the

three equations

Bo Ai
— (A oCi — CoA i) — (A 0C2 — CV41) = — >
Ao A0

b\ BoAi + BtAo
(50) — (Aod - CoAx) - (AoCs - CVt3) = ->

Ao A%

Bo Bo BoAi — B2A0 A3
— {AoCt - CoAi)-(A0C3 - CoA3) =-
Al Ao A\ Ao

From these equations, we get

Bo(Bx - A2) = A0(B2 - A3),

Bo Ai
(51) Aod - C0Ai = — (AoCi - C0A1)-,

Ao Ao

2

Bo B0A1 — B1A0
Aod - CoA3 = —{A0C1 -C0A1)-

A0 Al

Let us now put the origin at the Gaussian image point, so that B0 = 0,

and equations (51) simplify to

Bi = A3,

A!
AoCt — C0A2 —-—,

(52) Ao

Bi
AoC3 — CoA3 — — — •

Ao

Substituting this in the first equation of (1), we find, after rearranging,

that

x' — A0x = (A1U1 + -42m2 4- A3u3)x 4- (-b1w1 4" B2ut + B3u3)£,

y' — Aoy = {A1U1 4- AiUi 4- A3u3)y + {Bxui 4- B2u2 + B3u3)i}.
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Geometrical inspection will show that the five quantities Ai, A2, A3 = B2,

Bi, and Bs correspond to the five image errors:

B3 represents the spherical aberration;

A3 = B2 represents the coma error;

A2 and Bi represent the field errors;

A1 represents the distortion.

In (53) the coordinates x', y' of the intersections of the image ray with

the image plane are given as functions of x, y, £, 77. x=y = 0 characterizes

the axis point of the object, £ = ti = 0 characterizes the infinite point. We can

say, therefore, that Ai, A2, A,, Bi, B2, B3 give us the image errors of our

object for a stop at infinity. To obtain the image errors for a finite stop, we

have to replace £, 77, by the coordinates, xp, yp, of the intersection point of

our ray with the plane of the diaphragm. Within the region of validity of the

Seidel theory, we get a simple linear transformation. If k is the distance be-

tween object and stop, we have

xp — x
Xp       X "T" k£ , £ — ,

(54) or
yp — y

yP = y+ kr,,       7) =-■-
k

Inserting (54) into (53) we find x' and y' as functions of x, y, xp, yp, the

coefficients being the image errors for finite stop.

The method developed in this paper allows one to obtain the image co-

ordinates in a rotation symmetric optical system as functions of the object

coordinates by a series of substitutions. The only other general method having

Hamilton's characteristic function leads to an elimination problem, hitherto

unsolved.

Hamilton's method is more elegant since it uses only a single function to

describe an optical instrument; the method of this paper leads to four func-

tions connected by three differential equations. However, an explicit way was

found to construct our function for any given system of centered lenses,

whereas the characteristic function of Hamilton is explicitly known only for

a single refracting surface or a plane parallel plate. Thus, the new method

seems to be more adaptable to practical problems.

The last paragraph tries to show that the access to the image theory by

the direct method is as simple as it is by using Hamilton's characteristic

function.

Rochester, N. Y.


