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Introduction

1. A continuous curve C in xyz-space may be denned by

C:   x = x(u),   y = y(w),      z = z{u),      a ^ u ?S b,

where each of the functions x(u), y{u), z(u) is continuous on the closed interval

[a, b]. The following facts are known(1) (see Rado [3, chap. I]; Saks [l,

chap. IV]).
(1) A necessary and sufficient condition that the length L(C) of C be

finite is that each of the functions x{u), y(«), z{u) be of bounded variation on

M].
• (2) If the length L{C) is finite, then each of the derivatives x'(u), y'{u),

z''{u) exists almost everywhere in [a, b], is summable on [a, b], and

L(C) ^ f   [x'(uY + y'iuY + z'(uY\l'2du.

(3) A necessary and sufficient condition that the sign of equality hold in

this relation is that each of the functions x(u), y(u), z(u) be absolutely con-

tinuous on [a, b],

2. A continuous surface 5 in xyz-space may be defined by

5:   x = x(u, v),   y = y(u, v),   z = z(m, v),   a g u ^ b,   c g v ^ d,

where each of the functions x(u, v), y(u, v), z(u, v), is continuous on the closed

(two-dimensional) interval [a, b; c, d]. How may the concepts for the area

of the surface S and for bounded variation and absolute continuity of the

representation of 5 be defined so that theorems analogous to those for con-

tinuous curves cited in(2) 1 hold? For the special case in which 5 may be

given by relations of the form

S:   x = u,      y = v,      z = f(u, v),      a ?k u tk b,      c ?S v ^ d,

Presented to the Society, April 17, 1942; received by the editors June 11, 1942.

(}) Numbers in square brackets refer to papers listed in the bibliography at the end of this

paper.

(2) The notation I, 6, 2, for example, refers to chapter I, section 6, relation 2 in this paper

When no chapter reference is given, the introduction is meant.
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Geöcze and Tonelli have shown a complete answer to this question (see Geöcze

[lj, Tonelli [l]). But for the general case, no satisfactory answer seems to

be known.

3. It is the chief purpose of this paper to give an answer to the question

just raised. In so doing, interesting generalizations and extensions of results

in the literature will be obtained. Briefly, the program for procedure is the

following. First, a definition for a continuous surface is made precise (see I,

1). Now concepts for bounded variation and absolute continuity of a repre-

sentation for a curve are phrased in terms of the corresponding representa-

tions for the projections of this curve upon each of the coordinate axes. Here

the definitions for bounded variation and absolute continuity of a representa-

tion for a surface will be made in terms of the corresponding representations

for the projections of this surface upon each of the coordinate planes. For

representations of the latter type, a hierarchy of definitions for bounded

variation and absolute continuity is extant(3) (see R2 [l]). It will be desir-

able for the purpose of this paper to review these definitions, and to make

certain additions to the theory developed in the work just cited (see II, III).

Next, a definition for the area of a continuous surface will be given (see IV).

This definition will be compared with that of the Geöcze area as defined by

Rado (see IV, 17-20), and the Lebesgue area (see IV, 14-15); the latter area

has been most frequently used in the literature. For the special case considered

by Geöcze and Tonelli, it will be shown that the definitions advanced here

are equivalent to those which they used (see IV, 16). With the definitions

for the area of a surface, and for bounded variation and absolute continuity

of its representations, thus formulated, it will be shown that theorems hold

for continuous surfaces which are analogous to those cited in 1 for curves

(see IV, 4, 6-13; V, 9-15). As an application of this theory, some of the results

of Rado and Reichelderfer on convergence in area for surfaces (see R2 [2])

will be generalized (see V).

4. For brevity, the following notations and conventions are adopted. The

wV-plane will serve as a parameter plane; a point (w1,«2) in it is denoted

simply by u. The surfaces will be in x'xV-space; a point (x1, x2, x3) in this

space is denoted simply by x. With each point x, there is associated its projec-

tions on the respective coordinate planes given by

** = (0, x2, x3),      2x = (x1, 0, Xs),      3x = (**, x2, 0).

The planar exterior measure of any set E in the w-plane is denoted by | E \.

The set of interior points in the set E is denoted by E".

If a = (a1, a2, a3) be any triple of real numbers, set

I a I = ( I a11, I a21, | a31 ), = [(a1)2 + (a2)2 4- (a3)2]1'2.

A triple of real, finite, single-valued functions x'(tt), i = 1, 2, 3, each defined

(3) The symbol R2 in this note is to be read "Rado and Reichelderfer."
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on a set E in the w-plane is denoted by [x(u), E], where x(u) — (xl(u), x2(u),

x3(w)) for u = (w1, u2) in E. With each triple [x(u), E] there are associated

three triples [*x(u), E] defined by

lx(u) = (0, x2(u), x\u)),  2x(u) = (xl(u), 0, x3(w)),   zx(u) = (**(«), .r2(«), 0),

u in £.

A triple [x(m), E] is said to possess any property which is possessed by each

of the xi(u) for * = 1, 2, 3 on the set E.

A two-dimensional interval in the «-plane is denoted generically by

I, 3, [a, ß], or [a1, ß1; a2, ß2]; it consists of all points u satisfying al = ul ^ßl,

ct2 = u2 — ß2 where a1 <ß1, a2 <82. A connected open set in the w-plane is termed

a domain, is denoted generically by O or 3); if the boundary of a domain con-

sists of a Jordan curve, then the closed connected set of points in the domain

and on its boundary is termed a simple Jordan region, is denoted generically

by ß, 73 or 93. If the boundary of a domain consists of a finite number of

Jordan curves, then the closed connected set of points in the domain and on

its boundary is termed a Jordan region, is denoted generically by SR. A se-

quence of domains 3D„ is said to fill up a domain O from the interior if each

domain £>„ is contained in D, but for every closed set F in D there exists an

n{F) such that F is in Dn for every choice of n exceeding n(F). A sequence of

Jordan regions 9i„ fill up a Jordan region dt from the interior if their in-

teriors 9t° fill up 9?° from the interior.

If 33 is any simple Jordan region in the w-plane, then a finite system of

nonoverlapping simple Jordan regions B lying in S3 is denoted generically

by 5(33). The maximum of the diameters of the domains B in 5(33) is de-

noted by 115(93)11. If 93 =][> for B in 5(33), then 5(33) is termed a subdivision
of 33. In particular, if each of the simple Jordan regions B in 5(33) is an

interval, then 5(33) is termed a finite interval system; if, moreover, 33 is an

interval and 5(33) is a subdivision of 33, then 5(33) is termed an interval

subdivision.

A ö-function defined in 93 is a law which associates with every simple

Jordan region 73 in 33 a finite, real number <p(B); this function is denoted by

[<p, 93]. This Z>-function is non-negative if 4>{B) is non-negative for every B in

(33). For a finite system 5(73), where 73 is any simple Jordan region in 93, set

0(5(73)) = £ 9(ß)   for   ß in 5(73);

U(B; [<j>, 93]) = l.u.b. 4>(5(73))   for all finite systems S(B).

Evidently <b(B) = £7(73; [<j>, 93]) = £7(93; [<p, 93]) for every choice of 73 in 33.
Hence if Z7(33; [<p, 33]) is finite, then [£7, 93] is a b-iunction, and [<p, 93] is said

to possess a £7-function. If 5(93) is any finite system, then clearly Z7(5(33);

[<P, 93]) i££7(33; [<p, 33]).
5. If ['<p, 93], i = 1,2, 3, is a triple of b-functions having a common range

of definition, set
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<*>(73) - (V(73), *<HB), 3<p(B)),      $(73) = for   B in 93.

If [<f>, 93] is a triple of non-negative b-{unctions, then clearly

3

^(73) £ 9(B) ^ £ 14>{B)   for   B in 93.
t=i

Hence a necessary and sufficient condition that [$, 93] have a JJ-function is

that each member of the non-negative triple [<j>, 93] have a ZT-function, and

3

1.        17(73; [V>,93]) ̂ U(B; [$,93]) S £ £7(73; ['<*>, 93])   for   73 in 93.
»—i

Elementary considerations lead to the following

Lemma. Let [<p„, 93], » = 0, 1, 2, • • • , be a sequence of triples of non-

negative b-functions for which lim inf '<p„(73) 3:^0(73) for B in 93, i = 1, 2, 3.

TAew lim inf $„(73) = $0(73); lim inf U(B; |>„, 93]) ?! U(B; [tyo, 93]); lim
inf [7(73; [*„, 93] ̂ £7(73; [#,, 93])/or 73*« 93.

Chapter I

On continuous surfaces

1. A definition for a continuous surface will now be recalled; since this

definition is in the literature (see Rado [2, 3]), it will be merely sketched here

for the convenience of the reader, and for the purpose of fixing notation in

the sequel. Consider the class of all continuous triples [x(w), 93], where 93

is a simple Jordan region in the w-plane. Let [xi(u), 93i], [x2(w), 932] be any

two of these triples. Since 931 and 932 are simple Jordan regions, there exist

topological maps of 931 onto 932 given by single-valued continuous pairs

[ü(u), 93i] having single-valued continuous inverses on 932- Let d(u) denote

the maximum of ||xi(w) — x2(w(m))|| for u in 93i. Put d( [x%, 93i], [x2, 932]) equal

to the greatest lower bound of d{u) for all topological maps [ü(u), 93i] of 93i

onto 932- It is easily verified that the binary relation d thus defined in the

class of all continuous triples has all the properties of a distance except one:

the fact that d([xi, 93i], [x2, 932]) is zero does not imply that 93i and 932 are

identical and Xi(u) =x2(u) for u in 93r 932. In order to remedy this defect,

one agrees that two of these triples [xi, 93i], [x2, Sß2] are in the ~ relation

provided d([xi, 93i], [x2, 932])=0. It is readily verified that the binary rela-

tion ~ is an equivalence relation; hence it partitions the class of all continu-

ous triples into mutually exclusive sets of triples mutually in the ~ relation;

denote these sets generically by S. It follows that if Si and 52 are any two of

these sets, then d([xi, 93i], [x2, 932]) has a value dn which is independent of

the choice of [Xi, 93i] in 5i and [*2, 932] in 52. Set d(Si, Si)=dn. Then

d(Si, 52) has all the properties of a distance in the class of sets 5. Each of the

sets 5 is termed a continuous surface of the type of the circular disc. Any one
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of the continuous triples [x{u), 93] in 5 is termed a (parametric) representa-

tion for the surface 5. The distance d(Sx, Si) is known as the Frechet distance

of the surfaces Si and Si. A sequence of surfaces S„ is said to converge to the

surface So if d(S„, S0) converges to zero. If Sn converges to So, and if [x0(«),

93o] be any representation for So, then there exist representations [xn(u), 93„]

for Sn such that 93„ is identical with 93o for every n and xn(u) converges on 93o

uniformly to x0(m).

2. Amongst the representations for a surface S, there may occur one

[x(u), 93] of the form

1. x(u) = («l, u2, x3(ul, m2)), u = (w1, u2) in 93.

Denote by 393 the image of 93 in the 3x-plane under the topological map

x1 = u2, x2 = ul for (m1, u2) in 93. Then

x3 = x3(x\ x2),      (*»; x2) in 393.

denotes what is commonly called a non-parajnetric representation for S. For

this reason, the representation [x(w), 93] in 1 will be termed a representation

of non-parametric origin for 5. By symmetry, one should also term any repre-

sentation for S having one of the forms

(u2, u\ *«(«*, u2)),      (if1, x2(u\ u2), u2),      (u2, x2(u\ u2), ul),

(x^tt1, m2), u1, u2), (x\ul, u2), u2, u1),

a representation of non-parametric origin for 5. But this is unnecessary, since

any of these forms may be brought into form 1 by a suitable change of nota-

tion. A surface need not have a representation of non-parametric origin, but

if it does, that representation is unique.

3. Amongst the representations for a surface S, there may occur one

[x(u), 93] of the form

1. x(u) = {xl{u\ u2), x2(u\ u2), 0),       h = (#, u2) in 93.

Geometrically speaking, such a surface lies entirely in the 3x-plane. It is

easily verified that any other representation for S must have the form \.

Such a surface is sometimes called a flat surface. The representation for 5 de-

fines a continuous transformation from the simple Jordan region 93 in the u-

plane to a bounded portion of the 3x-plane.

4. Let S be any continuous surface in x-space. If [x(w), 93] be any

representation for S, then (see 4) [3x(u), 93] is a representation for a flat

surface 3S in the 3x-plane, which is the projection of 5 on that plane. It fol-

lows at once (see 1,1) that if \x(u), 93] is any other representation for 5 then

[3x(u), 93] is another representation for 3S—that is, the surface 3S is uniquely

determined by S. Thus a continuous surface 5 in x-space determines uniquely

three flat projection surfaces lS, 2S, 3S on the coordinate planes 'x, 2x, 3x,

respectively.
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5. A real, finite-valued function f(u) =f(ul, u2) defined on a simple polyg-

onal region 93 in the M-plane is termed quasi-linear if f(u) is continuous in 93,

and if there exists a triangulation of 93 such that/(«) is a linear function of

u1 and u2 on each triangle of the triangulation. A continuous surface is termed

a polyhedron, and denoted by P, if it possesses a representation [x(u), 93]

such that 93 is a simple polygonal region and each x'(u) is quasi-linear on 93.

Then there exists a triangulation of 93 such that each of the functions x'(w)

for i = l, 2, 3 is linear on every triangle in the triangulation. The image of

each triangle in this triangulation is a (possibly degenerate) triangle; the

sum of the areas of these image triangles is termed the elementary area of

P—denote it by a(P) Elementary considerations show that a{P) depends

only on the polyhedron P.

6. Let 5 be any continuous surface. Then there always exist sequences

of polyhedra Pn such that Pn converges to S; lim inf a(P„) is an upper bound

for the Lebesgue area A (S) of the surface; A (S) is the greatest lower bound of

all the upper bounds derived in this way. The Lebesgue area possesses the

following important properties (see Rado [2, 3]).

1. If P be any polyhedron, then A(P) =a(P).

2. There exists a sequence of polyhedra Pn such that Pn converges to 5

and A (Pn) converges to A (S).

3. The Lebesgue area A(S) is a lower semi-continuous functional of 5.

7. Much of the literature on continuous surfaces restricts its considera-

tions to surfaces having representations of non-parametric origin (see I, 2);

in defining the "Lebesgue area" for such surfaces, it has been convenient to

restrict the class of approximating polyhedra Pn to have representations of

non-parametric origin also. Let A*(S) denote the area of a surface 5 having

a representation of non-parametric origin when the class of approximating

polyhedra is so restricted. Then clearly A(S) —A*(S), and it is important in

comparing the literature to know that the sign of equality always holds.

This fact is implicit in the work of Rado (see Rado [l ]), but no explicit proof

seems to be in the literature. Such a proof will be a corollary to one of the

results in this paper (see IV, 15).

8. Let 5 be any continuous surface. The following principle has been

advanced by Rado and Reichelderfer to direct their work in the theory of

continuous surfaces (see R2 [2]). Assume that some sort of area—denote it by

o/f(S)—is defined for 5 and that, for each representation [x(«), 93] of S,

some sort of Jacobians are defined for each of the projection representations

[xx, 93], [2x, 93], [3x, 93] on the coordinate planes (see 4)—denote these by

1 J(w) > 27(«) > 37(«). respectively, wherever they exist. Then a representation

\x{u), 93] for 5 is said to be absolutely continuous (?A, J) provided that each

of the Jacobians lJ{u), 2J{u), 3J(u) exists almost everywhere in the interior

93° of 93, is summable on 93°, and
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[ij(u)* + 2?(m)2 + *J{uY\li*du.
330

Chapter II

On continuous transformations in the plane

In sections 1-9, 13, the salient features of the theory of bounded variation

and absolute continuity for continuous transformations in the plane de-

veloped by Rado and Reichelderfer (see R2 [l]) are summarized. For all

details, the reader is referred to the cited paper(4). Minor notational changes

have been made to place the results in a form more convenient for the pur-

poses of this paper. In sections 10-12, 14—22 extensions of this theory are dis-

cussed.

1. Let £ be any plane in x-space; on £ choose a rectangular coordinate

system £\ £2, and adopt notations similar to those introduced in 4 for the

m-plane. Let 2) be any bounded domain in the m-plane. If £(u) = (!;1(u1, m2),

£2(m\ u2)) be a pair of real, single-valued functions defined, continuous, and

bounded in 2), then [£(m), 2)] defines a bounded continuous transformation T,

which associates with every point u in 3) a point £ = £(m) in a bounded portion

of the £-plane. If E be any set in the m-plane, let T(E) denote the set of all

points §o in the £-plane for which there exists a point uo in E such that

£(«o) = £o- If E be any set in the £-plane, let T~1(E) denote the set of all points

m0 in 2) such that £(m0) is in E. If Fi:[£i(m), 2)i]; F2: [&(«)> 2)2] are two

bounded continuous transformations, then their distance p(Fi, F2; E) on any

set £ in both t>i and ©a is the least upper bound of ||£i(m) — £2(m)|| for u in £.

For any set E in the m-plane, and for any point £0 in the £-plane, Ar(£0, F, E)

is defined to be the number (possibly -h™) of points in the set F-1(£o)-.E.

For fixed £ and F, A(£, T, E) is a non-negative completely additive set func-

tion.

2. If 9i be any Jordan region in 2), and if k be any non-negative integer,

define $t(k, T, 9t) to be the set of those points £o in the £-plane for which

there exists a positive number e such that A(£0, F*, 9i) —k for every bounded

continuous transformation 7* satisfying p(F*, F; 9i) <e. Clearly $(&, F, 9?)

contains Ä(*4-1, F, 91) for k = 0, 1, 2, • • • . Define
00

i(oo, t, 9f) = ni(*. a*)-
i-0

A function K(£, F, 9?) is defined by the relations

(     k   on r,9t) - «(*+1, r.SR);

(4) The introduction of the R2 paper contains a summary of their results, together with

reference to the location of the proofs.
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Given a domain D in 2) let 9?„ be a sequence of Jordan regions whose interiors

fill up D from the interior (see 4). For fixed £ and F, the sequence K(£, T, ?Hn)

has a limit (possibly 4- 00) which is independent of the choice of the sequence

of regions 9?„ whose interiors fill up D. This limit is denoted by K(£, F, D),

and is termed the essential multiplicity of £ under T with respect to D. It has

the following properties.

1. The essential multiplicity K(£, F, D), for fixed F and <D, is a lower semi-

continuous function of £.

2. If Dn is a sequence of domains filling up O from the interior, if F„: [£„(«),

D„] is a sequence of bounded continuous transformations such that for every

closed set F in D it is true that lim p(F„, F; F) =0, then for every £ one has

lim inf K(£, F„, D„) =K(£, F, 3D). In particular, if F„ is given by [£(w), On] then

limK(£, F„, D„)=K(£, F, £>).

3. For any Jordan region 9? in 2), it is true that K(£, F, 9t°) = K(£, F, 9?).

3. A set 43 in the w-plane is termed a öase je/ for the transformation F if it

is measurable, and for every closed oriented square s whose interior s" is in

T>, the set F(s°- 33) is measurable. Let 33 be any base set for F. Define, for

any closed oriented square s whose interior s° is in 2)

1. g(s, T, 33) = I F(j°-13) I .

The transformation F is said to be of bounded variation with respect to the

base set 33—briefly, BV 33—if there exists a finite positive constant M such

that for any finite system of nonoverlapping, closed, oriented squares s<

whose interiors are in 2), it is true that

Z St**. T, 43) < M.

The transformation F is said to be absolutely continuous with respect to the

base set 33—briefly, AC 33—if for every positive number «, there exists a

positive number rjt such that

Z gist, F, 33) < e

for every finite system of nonoverlapping, closed, oriented squares s, whose

interiors are in 2) and for which

ZI s<! < n-

If F is AC 33, then it follows that F is BV 33.

Lemma. If 33x and 332 are base sets for T, then 33 = 33i4-332 is a base set for

T. A necessary and sufficient condition that T be BV 33 is that T be both BV 33x

and BV 332. A necessary and sufficient condition that T be AC 33 is that T be

both AC 33i and AC 332.

4. A necessary and sufficient condition that a bounded continuous trans-
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formation F be BV 33 is that 7V(£, F, 35-33) be summable(s). If T is BV 33,
then A(£, T, E-CS) is measurable and summable for any open or closed set

E relative to 3). If T is BV 33, then the function of squares ^"(s, F, 33) defined

in II, 3, 1 possesses a derivative D(u, F, 33) almost everywhere in 35. This

derivative is summable in 3), and one has, on every open set O in 35(6)

If F is AC 33, then the sign of equality holds here. Conversely, if the sign of

equality holds here for 0 =35, then it holds for every open set 0 in 35, and T is

AC 33. If T is AC 33, and if E is any measurable set in 35, then A(£, F, £■ 33)

is measurable and summable; thus if i/(£) is a finite-valued, measurable

function, then H(l-) A(£, F, E ;33) is a measurable function. Under these condi-

tions, it is also true that i/(£(w)) D(u, T, 3?) is measurable in 35. Finally,

if the transformation F is AC 33; the function //(£) is finite-valued and

measurable; the set £ in 35 is measurable; one of iJ(£)A(£, F, E, 33),

H(Z(u))D(u, F, 33) is summable, then both of these functions are summable,

and

5. Rado and Reichelderfer studied closely the notions of BV 33 and AC 33

for a certain choice of the base set 33 which is now described. Let dt be any

Jordan region in 35 (see 4). Let £o be any point in the £-plane not on the

image under F of the boundary of 9x. If C be one of the curves bounding 3J,

then the image of C under F, taken as u traverses C in a positive sense rela-

tive to 9J, is a directed, closed continuous curve C not passing through £0;

consequently £0 has a well defined topological index with respect to C. The

sum of these indices taken over all the boundary curves of is denoted by

p.(£o. F, 9J). For points £* on the image under F of the boundary of 9t, one

puts        F, 9t)=0.
6. Let £o be any point in the £-plane. The set F_1(£0) is a closed set rela-

tive to 35, hence decomposes in a unique way into components which are

maximal connected closed sets relative to 35. If a component of F-1(£0) has

a positive distance from the boundary of 35, then it is a connected closed set

in the absolute sense—that is, a continuum; such a component is termed a

maximal model continuum for £0 under F in 35, and is denoted generically by

o-(£o, F). A <7(ifo, F) is termed essential if in every open neighborhood of

a-(£o, F), there is a Jordan region 9? containing <r(£0. T) in its interior and for

(6) Since all functions considered in the £-p)ane are zero outside a sufficiently large disc,

they are termed summable whenever they are summable on such a disc, and no range of integra-

tion will be explicitly indicated.

(6) See Footnote 5.

/
1. f H{i(u))D(u, T, <g)du = f B(®N(l T, E-<8)dt.
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which ju(£0, T, 9i) is not zero. If V be any subdomain in 35, then the number

of essential maximal model continua <r(£o, F) for £0 under F in D is equal to

the essential multiplicity K(£0, T,0) (see II, 2). If 9f be any Jordan region in

35 for which ju(£o, F, 9?) is not zero, then £0 has an essential maximal model

continuum under F in the interior of 9t.

7. If D be any domain in 35, then denote by E(T, D) the set of all points

w0 which belongs to some essential maximal model continuum for £(m0) under

F in D. Denote by £(F, O) that subset of E(T, D) which consists of all those

points M0 which themselves constitute essential maximal model continua for

£(m0) under T in V; evidently £(F, D)=£(F, 35)-D, but a similar formula

does not generally hold for E(T, D). If m0 be any point of £(F, 35) which has a

neighborhood free of points belonging to other essential maximal model

continua for £(mo) under T in 35, then it is true that ju(£(Mo), F, 9?) has a non-

zero value independent of the choice of a Jordan region 9? in this neighbor-

hood which contains.Mo in its interior and whose boundary contains no point

of F_1(£(m0)) ; denote this value by j(u0, F). For all points m* in 35 not having

the properties of m0, set j(M*, F) equal to zero. Then j(u, F) is a Baire func-

tion in 33 and | j(u, F) | does not exceed one, except possibly on a denumer-

able set of points in 35.

8. It is the set £(F, 35) which Rado and Reichelderfer employ for a base

set (see 11,3); it is the set E(T, 35) which plays a prominent role in the follow-

ing theory. Because the results for these two base sets are so closely related,

the results for the set £(F, 35) developed by Rado and Reichelderfer are now

summarized as a basis for stating and proving results for the set E(T, 35).

Let K~0 denote the class of all bounded continuous transformations F: [£(m),

35] which are BV £(F, 35). Let Kx denote that subclass of K0 (see 11,3) con-

sisting of all transformations F which are AC £(F, 35). Let K2 denote the

class of all transformations F in Ki for which the relation A(£, F, £(F, 35))

= K(£, F, 35) holds almost everywhere. Finally, let K3 denote the class of all

transformations F in K2 for which the ordinary Jacobian

exists almost everywhere in 35. If T is in K0, then D(u, T, £(F, 35)) exists

almost everywhere in 35 and is summable on 35 (see 11,3)—denote this deriva-

tive by D(m, F). Define

The function J(u, T) is termed the generalized Jacobian for the transforma-

tion F. From II, 7 it follows that | J(u, F)| =D(u, T) almost everywhere in

35, and J{u, T) is measurable in 35; hence J{u, T) is summable in 35. If T is in

the class K2, it follows that | J{u, T) \ =D(u, T) almost everywhere in 35. If

T is in the class K~z, it is true that J(u, T)=J(u, T) almost everywhere in 35.

/(«, T) = d(?, ?)/d(u\ M2), 11 = (m1, m2) in 35,

7(m, T)D(u, T)   wherever  D(u, T) exists;

0 otherwise.
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The class Ks contains all bounded continuous transformations T:[£(u), 35]

which satisfy a Lipschitz condition in the following restricted sense: there

exists a finite constant L such that if U\ and u2 are any two points of 35 for

which the line segment joining them is contained in 35, then || £(«i) — £(w2)||

2££||mi — «2||. If T is a bounded continuous transformation for which the

ordinary Jacobian exists almost everywhere in 35, and for which K(£, T, 35)

is summable, then D{u, T) — \ J(u, T) | almost everywhere in 35(7).

9. Combining results stated in II, 4, 8, one obtains the

1. Lemma. Let jT :[£(«), 35] be a bounded continuous transformation for

which K(£, T, 35) is summable. Then J(u, T) exists almost everywhere in 35,

is summable on 35, and

f K(f, T, V)d$ = j 7V(£, T, B(f, <D))d$ = f0D(u> T^du = T> I du

for every domain O in 35. A necessary and sufficient condition that all the signs

of equality hold here for <D = ^)is that T be in the class K2. When T is in K2, all

the signs of equality also hold for every domain £) in 35.

2. Lemma. Let T: [%(u), 35] be a bounded continuous transformation for

which K(£, T, 35) is summable, and for which the ordinary Jacobian J(u, T)

exists almost everywhere in 35. Then J(u, T) is summable on 35, and

J K(|, T, 0)4$ ̂ J N(l T, £(T, 0))<J| ̂ ffD^' T)du = f"'\ J(u> T) I du

for every domain G in 35. A necessary and sufficient condition that all the signs

of equality hold here for D = 35 is that T be in the class Kiy When T is in K3,

all the signs of equality also hold for every domain D in 35.

10. Lemma. If T: [£{u), 35] be any bounded continuous transformation, then

the set E(T, 35) (see II, 7) is a product of open sets, hence a Borel set.

Proof. Let n be any positive integer. Denote by En the set of points uo in

35 for each of which there exists a Jordan region 9t in 35 satisfying the

following conditions: Wo lies in the interior of 9t; 7\3{) lies in the open disc

— £(«o)|| <w_1; m(£(mo), T, 9t)?^0. Evidently each En is an open set. One

easily verifies that YLEn = E(T, 35), so the lemma is established.

Set e(T, 35) =E(T, 35) - £(T, 35)—that is, e(T, 35) is the set of those points

Mo belonging to some nondegenerate essential maximal model continuum for

£(wo) under T in 35. Rado and Reichelderfer have shown that £>(T, 35) is also

a product of open sets, hence a Borel set. Thus e(T, 35) is a Borel set. By a gen-

eral theorem (see Kuratowski [l, p. 249]) it follows that for every choice of

an open square s° in the «-plane, the sets T(s°-e(T, 35)), T(s°-E(T, 35)) are

(') The last result is established in §5.6 of the R2 paper.
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both measurable. Thus both the sets e(F, 35), £(7", 35) may serve as base sets

(see II, 3), and the general theory in II, 3, 4 is applicable.

11. Lemma. A necessary and sufficient condition that the set F(e(F, 35)) be

of measure zero is that T be BV e(T, 35). Whenever T is BV e(T, 35)), it is also

AC e(T, 35).

Proof. Observe that (see II, 1)

Thus a necessary and sufficient condition that A(£, T, e(T, 35)) be summable

is that I F(e(F, 35)) | =0; in view of the facts in II, 4, this establishes the first

part of the lemma. If T is BV e(T, 35)), it follows at once that

so that the sign of equality holds here, and F is AC e(T, 35).

From this lemma and the lemma in II, 3 follows the

Corollary. Let T be any bounded continuous transformation which is

BV e(F, 35). A necessary and sufficient condition that T be BV E(T, 35) is

that T be BV £(F, 35). A necessary and sufficient condition that T be AC E(T, 35)
isthat T be AC £(F, 35).

If T is BV e(F, 35) it is evident that (see II, 3, 7, 10) for every closed ori-

ented square 5 whose interior is in 35,

Thus whenever F is BV e(T, 35), it follows that D(u, T, E(T, 35)) =D{u, T,

£ (F, 35))=sD(«, F) almost everywhere in 35 (see II, 4, 8).

12. Let F: [£(«), 35] be a bounded continuous transformation. From the

definitions in II, 1, 2, 6, 7, it is clear that

and the sign of inequality holds between any two of these three functions if

and only if £ lies in the set F(e(F, 35)) and one of the functions involved is

finite. Since K(£, F, 35) is measurable (see II, 2, 1), it follows that a necessary

condition that K(£, F, 35) be summable is that T be BV £(F, 35), while a suffi-

cient condition that K(£, F, 35) be summable is that T be BV E(T, 35); in this

latter case, the signs of equality in relation 1 hold almost everywhere. Now

suppose that T is BV £(F, 35); then since A(£, F, £(F, 35)) is finite almost

everywhere, one concludes that a necessary and sufficient condition that

K(£, F, 35) = 7V(£, F, £(F, 35)) almost everywhere is that F be BV E(T, 35).

0 =

g(s, F,£(F,35)) = £(,s, T, £(F,35)).

1. 7V(£, T, £(F,35)) = K(f, F,35) = N((, T, £(F,35)),
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In view of the definition of the class K2 (see II, 8), the corollary in the pre-

ceding section, and these remarks, one obtains the

Lemma. A necessary and sufficient condition that a bounded continuous

transformation F: [£(&), 3)] be in the class Ki is that T be AC E(T, 3)).

13. The lemma in the preceding section gives a simple characterization of

transformations in the class K2 and makes available all the results established

by Rado and Reichelderfer for this class whenever T is AC E(T, 3)). For

example, they have the

Closure theorem. Let there be given bounded domains <D and D„ in the

u-plane and bounded continuous transformations T: [£(«), O] and F„: [£n(w),

D,], n = 1, 2, • • • , with the following properties: (i) the domains Onfill up D

from the interior (see 4); (ii) the generalized Jacobian J(u, T) exists almost

everywhere in <D and is summable on O (see II, 8); (iii) F„ is in K2 for n = \,

2, • • • ; (iv) for every closed set F contained in D, it is true that

lim p(Tn, F; F) = 0,       lim  T | J(u, F„) - J(u, T)\du = 0.
J F

Then T is in K2.

Using the preceding results, this theorem may be restated and improved

as follows.

14. Modified closure theorem. Let there be given bounded domains F>

and On in the u-plane and bounded continuous transformations T: [£(«), D]

and F„: [£„(«), €>„], « = 1, 2, • • • , with the following properties: (i) the

domains Onfill up D from the interior; (ii) the generalized Jacobian J(u, T)

exists almost everywhere in D and is summable on O; (iii) F„ is AC E(Tn, D„)

for n = 1, 2, • • • ; (iv7) there exists a sequence of Jordan regions 9tm in O whose

interiors     fill up D from the interior, and such that

lim p(Tn, T; 9?m) = 0,       lim  f   | J(u, Tn)\du= f   | J(u, T) | du,

m = 1, 2, • • ■ .

Then Tis AC E(T, £>).

Inspection of the proof of Rado and Reichelderfer for their closure theorem

reveals that property (iv'). which is a consequence of (iv), is all that is needed

for that proof.

Corollary. Condition (iv') of the above theorem may be replaced by the fol-

lowing condition: (iv") for every closed oriented square s contained in D, */ is

true that
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lim p{Tn, T; s) = 0,      lim ^ \ J(u, Tn) \du = Jj J(u, T) \ du.

Proof. Let R denote any Jordan region in O which may be expressed as a

sum of a finite number of nonoverlapping closed oriented squares s. From

(iv") it follows that

lim p(Fn, F; R) = 0,       lim f | J(u, Tn)\du= f | J(u, T) \ du.
JR J R

By a known theorem in topology (see Kerekjärto [l ]), there exists a sequence

of regions Rn whose interiors fill up O from the interior. Thus condition (iv")

implies (iv'), and the corollary is established.

15. In view of the lemma in II, 12, the class K, defined in II, 8 may be

characterized as the class of all transformations F: [£(m), 2)] which are

AC E(T, 3)) and for which the ordinary Jacobian J(u, T) exists almost every-

where in 35. For the class K~3 another closure theorem is given by Rado and

Reichelderfer, the proof of which is based upon the closure theorem for the

class R~z stated in II, 13. By using the modified closure theorem just given,

one may parallel their proof to establish the

Modified closure theorem. Let there be given bounded domains O and

On and bounded continuous transformations T: [£(«), O] and F„: [£n(«), On],

n = \, 2, • ; • , with the following properties: (i) the domains Onfill up O from

the interior; (ii) the ordinary Jacobian J(u, T) exists almost everywhere in O

and is summable on O; (iii) Fn is AC E(Tn, On) and the ordinary Jacobians

J(u, F„) exist almost everywhere in On for n = \, 2, • • • ; (iv') there exists a

sequence of Jordan regions 9tm in O whose interiors dim fill UP Ofrom the interior,

and such that

lim p(Fn, T; 9Jm) = 0,       lim  f   | J(u, Tn)\du= f   | J(u, T) \ du,

m = 1, 2, • • • .
Then T is AC E(T, O).

Corollary. Condition (iv') of the above theorem may be replaced by the

following condition: (iv") for every closed oriented square s contained in O, it is

true that

lim p(F„, F; s) = 0,       lim ^ \ J(u, F„) | du = ^ | J(u, T) | du.

If in these results, condition (ii) be weakened by dropping the requirement

that the ordinary Jacobians J(u, T„) exist almost everywhere in On for

» = 1,2, • • • , and if these Jacobians be replaced by the generalized Jacobians

J(u, Tn) for n=l, 2, • • • , then the conclusions remain the same.
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16. The results to be established in the following sections are necessary

for a comparison of certain notions in this paper with those in the literature.

In the theory of bounded continuous transformations just sketched, the

range of definition has been a bounded domain 35 (see I, 1). In applications,

one may have a continuous transformation given by [£(w), 93], where 93 is

a simple Jordan region (see 4) and £(«) is a pair of functions defined and con-

tinuous on the closed set 93. Evidently the transformation given by [£(«), 93°]

is then bounded and continuous. From work of Rado and Reichelderfer (see

II, 2, 6), it follows that the transformations [£(m)> 93] and [£(«), 93°] have

the same essential multiplicity functions and the same essential maximal

model continua. Since the essential multiplicity and the essential maximal

model continua play the basic role in this paper—that is, since the transfor-

mations behave essentially alike—there will be no confusion if one designates

either of them by .F. In the sequel this is done, but it is to be understood that

whenever preceding theory is applied, F is to be interpreted as the transforma-

tion [£(«), 93°].

17. Lemma. Let T: [£(«)> 35] be a bounded continuous transformation which

is BV 33, where 33 is an arbitrary base set (see II, 3). Given a positive number «,

it is true that the number of mutually exclusive sets E, each of which is either an

open set or a closed set relative to 35, for which the measure of T(E ■ 33) exceeds

e is finite.

Proof. Let E\, • • • , Em be any finite system of mutually exclusive sets

having the required properties. Since F is BV 33, it follows that Af(£, F, 35 ■ 33),

N(X, T, Er 33) are measurable and summable (see II, 4). The lemma follows

from the inequalities

N(i, T, 35-33)^ 5; r*2 I tftt. T> Ef<B)dt    r»£ I F(F,-33) | > m.
t-i J <=i

From this lemma comes the

Corollary. Let F:[£(w), 35] be a bounded continuous transformation which

is BV 33. Then the number of lines I in any family of parallel lines in the u-plane

for which T(l ■ 33) has positive measure is at most enumerable.

18. Let F: [£(«), 93] where 93 is a simple Jordan region in the w-plane, be

a continuous transformation. Let 93 be any other simple Jordan region in the

w-plane, and consider any topological map of 93 onto 93 given by [ü(u), 93].

Denote by T the continuous transformation [!(«), 93] where £(«)=§(£("))

for u in 93. Since the sets E(T, 93°) and E(T, 93°) are in biunique correspond-

ence under the map, it is true that iV(£, F, E(T, 93°))=iV(£, T, E(T, 93°)).

This implies (see II, 4) the

Lemma. If T is BV E(T, 93°), then T is BV E(T, 93°).
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19. Now let T0 [£(«), 93 ], where 93 is a simple Jordan region in the «-plane,

be a continuous transformation for which K(£, T, 93°) is summable (see II, 2).

If 5(93) be any finite system (see 4), denote by C the set of points in 93° but

not in the interior of any B belonging to 5(93). Then (see II, 6), wherever

K(£, T, 93°) is finite—hence almost everywhere,

1      K(* T 93») |= ^ m T' B°} f°r B ^ Sm H ? iS      ^ T(C'E(T'

> Z K(f, F, 5°) for B in 5(93) if f is in T{CE{T, 93°)).

Thus

2. J* K(£, F, 93°)^ = Z J       F. 73°)   for   B in 5(93),

and a necessary and sufficient condition that the sign of equality hold here

is that the sign of equality hold almost everywhere in relation 1 —that is,

that the set T(C• E(T, 93°)) be of measure zero. For brevity, any finite system

5(93) for which the sign of equality holds in relation 2 is termed a maximal

system for F.

20. Lemma. Given a continuous transformation F: [£(«), 93]. A necessary

and sufficient condition that, for any positive number S there exist maximal sys-

tems 5(93) for T such that ||5(93)|| is less than 5 is that T be BV E(T, 93°).

Proof. First, assume that there exists a sequence of finite systems 5„(93)

such that ||5„(93)|| converges to zero and

J* K(f, T, 93°)# = Z J K(f, T, B*)dt.   for   B in 5„(93),    n = 1, 2, ■ • • .

Denote C„ the set of points in 93° none of which is in the interior of a region B

belonging to 5„(93) for w=l, 2, • • • ; set T=ZC„. From the remark in II,

19, it follows that the set T(T E(T, 93°)) is of measure zero. On the other

hand, the set F(e(F, 93°)) (see II, 10) is clearly a subset of F(T-£(F, 93°)),

hence also of measure zero. By the lemma in II, 11, it is true that F is

BV e(F, 93°). Since K(£, T, 93°) is summable, it follows from II, 12 that T

is BV £(F, 93°). From the lemma in II, 3, it is clear that F is BV E(T, 93°).

This establishes the necessity of the condition. Next, assume that F is

BV E(T, 93°); then K(£, F, 93°) is summable (see II, 12). First, consider the

special case when the simple Jordan region 93 is an interval 3 (see 4). Given

a positive number 5, there exists, according to the corollary in II, 17, an

interval subdivision 5(3) such that ||5(S)|| is less than 5 and T(l-E(T, 3°))

is of measure zero for every line I forming the subdivision. Denote by C

the set of points in 3° belonging to the lines of subdivision forming 5(30-

Clearly T(C-E(T, Q0)) is of measure zero, so that 5(3) is a maximal sys-

tem for F with ||5(3)|| less than 5. Now consider the general case when
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93 is any simple Jordan region. Let 3 be any interval in the «-plane; then

there exists a topological map of 3 onto 93 given by [«(«), 3]- Denote by

T the transformation [£(«), 3] where £(«) = £(«(«)) for w in 3. Since T is

BV E(T, 3°) (see II, 18), it follows by the result just established that there

exist interval subdivisions 5(3) which are maximal with respect to T for

which || 5(3)|| is arbitrarily small. A maximal system 5(3) for F corresponds

under the map to a system 5(93) which is easily seen to be maximal for F.

In view of the uniform continuity of the topological map, ||5(93)|| will be less

than 8 provided ||5(3)|| is chosen sufficiently small. This establishes the

lemma.

21. The methods of proof for the preceding lemma yield the

Lemma. If T„: [£„(«), 93], n = l, 2, • • • , be a sequence of continuous trans-

formations each defined on the simple Jordan region 93, and each BV E(T„, 93),

then for every positive number 8 there exists a subdivision 5(93) having ||5(93)||

less than 8, such that 5(93) is maximal for each of the Tnfor w = l, 2, • • • . If

93 is an interval then 5(93) may be chosen to be an interval subdivision.

22. Again, let F: [£(«), 93] be a continuous transformation. For any

simple Jordan region B in 93, denote by e(3> F, B°) the characteristic func-

tion of the set of points £ where K(£, F, B°) is positive (see II, 2). Then

c(£, F, B°) is summable, and

J tit T, B»)dt = I T(E(T, BO)) I = I Ä(l, F, B) |        for B in 93.

Consider any sequence of finite systems 5„(93) for which ||5n('93)|| converges

to zero. Clearly

£    [K(l T, BO) - *<{, T, B0)]{~ K(*' T' ^ '•
sÄ»    V l->».-0   if   K(£, F, 93°) is finite.

Thus if K(£, F, 93°) is summable, it follows by a theorem of Lebesgue that

one may integrate this sequence termwise to obtain

lim      £      f* [K(£, F, B°) — c(£, F, B°)]d£ = 0.
n-><°     B in S„(9) «/

Combining this result with that in II, 21, one concludes the

Lemma. Let T: [£(«), 93] be a continuous transformation which is BV E(T,

93°). Then for any sequence of maximal systems 5„(93) for T such that ||5„(93)||

converges to zero, it is true that

f K(t T, 93°)# = lim      £      f t{l T, B*)dl.
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Chapter III

On flat continuous surfaces

1. Suppose that 5 is a flat continuous surface (see 1,3) lying in the £-plane.

Every representation [£(m), 23] for 5 determines a bounded continuous trans-

formation F from the simple Jordan region 93 to the {-plane (see II, 16). For

brevity, [£(w), 93] is termed BV E, AC E, and so on, whenever F is BV E(T,

93°), AC E(T, 93°), and so on.

Lemma. The essential multiplicity K(£, F, 93°) is independent of the choice

of the representation [£(«), 93 ] for S.

Proof. Let [£i(w), 93i], [£2(w), 932] be any two representations for S;

denote the corresponding transformations by T\, F2. From I, 1 it follows that

there exists a sequence of topological maps of 93i onto 932 given by [w„(m), 93i],

« = 3, 4, • • • , such that ||£i(«) — £2(wn(«))|| <»_1 for u in 93i. Let F„ denote

the transformation given by [&(«>»(«)), 93i] for n = 3, 4, • • • . From the

definition of the essential multiplicity (see II, 2, 6) and the nature of a topo-

logical map, it is clear that K(£, F2, 93°)=K(£, F„, 93?) for n = 3, 4, • • • .

Since (see II, 1) lim p(F„, Ti; 93i)=0, it follows from II, 2, 2 that lim inf K(£,

F„, 93?)^K(£, Fi, 93?). Combining these relations, one obtains K(£, F2, 932)

= K(£, Fi, 93?). By symmetry, the opposite inequality follows; thus the

lemma is established.

2. In view of the lemma above, one may define an essential multiplicity

for a flat continuous surface 5 lying in the {-plane by the relation K(£, S)

= K(£, F, 93°), where F is the transformation associated with any representa-

tion [£(«), 93] for S.

Lemma. The essential multiplicity K(£, S) is a lower semi-continuous func-

tional in each of its arguments £ and S.

Proof. The fact that K(£, S) is a lower semi-continuous function of £ fol-

lows from II, 2, 1. Next, suppose that the flat surfaces Sn in the £-plane con-

verge to the surface So. From I, 1 it follows that there exist representations

[£n(«). 93] for Sn, for « = 0,1, 2, • • • , such that the corresponding transforma-

tions F„ satisfy lim p(F„, F0; 93) =0. So from II, 2, 2 follows

lim inf K(£, Sn) = lim inf K(£, Tn, 93°) ̂  K(£, F0, 93°) = K(£, S0).

This establishes the lemma.

3. For any flat surface S in the £-plane, define (see 11,2)

otherwise.

K(£, S) is summable;

The quantity eV(S) is termed the essential variation for the surface 5. If
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eV(S) is finite, then 5 is said to be a surface of bounded essential variation—■

briefly, BEV. From the remarks in II, 12 follow the

1. Corollary. A sufficient condition that a flat surface be BEV is that it

possess a representation which is BV E. A necessary condition that a flat sur-

face be BEV is that each of its representations be BV £. Thus if one representa-

tion for the surface is BV E, then all representations are BV 6.

2. Corollary. The essential variation eV(S) is a lower semi-continuous

functional of S.

4. From the lemmas in II, 9, 12 one obtains the

1. Lemma. If S is a flat surface which is BEV, andif 93] is any repre-

sentation for S, then

where T is the corresponding transformation. A necessary and sufficient condi-

tion that the sign of equality hold here is that [£(«), 93] be AC E.

2. Lemma. If S is a flat surface which is BEV, and if [£(«), 93] is any
representation for S for which the ordinary Jacobian exists almost everywhere in

93°, then

where T is the corresponding transformation. A necessary and sufficient condition

that the sign of equality hold here is that [£(«), 93 ] be AC E.

5. For the purpose of comparing results with those in the literature for

surfaces given in non-parametric representation, it is necessary to recall the

concepts for bounded variation and absolute continuity used by Tonelli

(see Tonelli [l]). Let/(w) =f(u1, u2) be a real, single-valued function defined

and continuous on the interval 3= [a, ß] = [a1, ß1; a2, ß2] (see 4). For fixed

u2 in [a2, ß2], denote by Vui(f; u2) the total variation of /(ft1, u2) as a function

of m1 on [a1, ß1]. The function F«i(/; u2) is a lower semi-continuous function

of u2 on [a2, ß2], hence is measurable. Define F„s(/; u1) by interchanging the

roles of u1 and u2. If both F„i(/; u2), Fus(/; w1) are summable on their respec-

tive intervals of definition, then/(w) is said to be of bounded variation in the

sense of Tonelli on 3—briefly, BV F on 3—and the total u1- and w2-varia-

tions of f{u) on 3 are defined by
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If f(u) is BV F on 3. then it follows that the partial derivatives fui(u), /„s(w)

exist almost everywhere in 3 ,are summable on 3, and

1. Vyxif) ^ f I /*.(«) I du,      VAf) = f I /«•(«) I du-

6. Assume that/(w) is BV F on 3- If moreover, for almost every u2 in

[a2, ß2] it is true that f(ul, u2) is an absolutely continuous function of ul on

[a1, ß1], and if a similar relation holds with the roles of w1 and u2 reversed,

then /(«) is said to be absolutely continuous in the sense of Tonelli on 3—

briefly, AC F on 3- A necessary and sufficient condition that a function/(w)

which is BV T on 3 be AC F on 3 is that the sign of equality hold in both of

the relations III, 5, 1.

7. Let/(w) be a real, single-valued function defined and continuous on the

interval 3= [a> ß]- Consider the continuous transformation defined by

lT:   e = u2,      t,2 = /(#, u2),      («>, m2) in 3.

Notice that for a fixed u2 = y2 in [a2, ß2 ],1F gives a linear transformation from

the closed linear interval w2 = 72, a1 ^u1 ^ßl to a bounded portion of the line

£1 = 72. For this transformation it is known (see Rado [4]) that a necessary

and sufficient condition that /(»**, 72) be of bounded variation on [or*, ß1] is

that A((72, £2), 'F.S0) be summable as a function of £2 (see 4; II, 1), and that

if/(w, 72) is of bounded variation on [a1, ß1] then (see III, S)

1. f A((72, e), 1F, 30)^2 = Vul(J; 72), a2 ^ 72 ^ ß2-

Thus it follows that if Vui(J; u2) is summable on [a2, ß2], then fN((?, £2),

1T, 3°)^£2 1S a summable function of i;1 on [a2, ß2]. Now (see R2 [l], chap.

Ill]) N(l-, lT, 3°) is measurable in the {-plane. So if F„i(/; u2) is summable on

[a2, ß2], it follows from the theorem of Fubini that 2V(£, lT, 3°) is summable,

hence (see II, 4) lT is BV 3°, and (see III, 5)

f N(S, lT, 3°)^ = f d^ j N«?, £2), 1T, 3°)#2

Fu,(/; u2)du2 = F„,(/).

Conversely, suppose that 1T is BV 3°; then (see II, 4) it is true that A(£, 1F,

3°) is summable, so that by the theorem of Fubini, the function N((y2, £2),

lT, 3°) is summable for almost every choice of £1 = 72 in the interval [a2, ß2],

and

3. j iY(f, lF, 3°)^ = jd^j N((£\ f2), lF, 30)^2.



1943]     PARAMETRIC REPRESENTATION OF CONTINUOUS SURFACES 271

By the result cited above, it follows that/(«\ y2) is of bounded variation on

[a1, ß1] and relation 1 holds for almost every choice of u2 = y2 in [a2, ß2]. In

view of relation 3, it follows that F„i(/; u2) is a summable function of u2 on

[a2, ß2]. A similar reasoning applies to the continuous transformation defined

by

2T:   S1 = u\      e = f(u\ u2), (u\ u2) in 3.

These results are summarized in the

Lemma. Let f{u) =/(«', u2) be a real, single-valued function defined and con-

tinuous on the interval 3- Consider the two transformations

lT:   e = u2,      e = f(ul, u2), (u1, u2) in 3;

2T:   e = u\      e = f(u\ u2), (u\ u2) in 3.

A necessary and sufficient condition thatf(u) be BV T on 3 is that both 1T and

2T be BV 3°. If f(u) is BV T on 3, then

j .V({, T, 3°)^ = Vul(f) = J" I /„(«) I du;

j N(i, 2T, 3°)^ = Vj(f\ = ^ I /„(«) I du.

A necessary and sufficient condition that the sign of equality hold in both these

relations is that f(u) be AC T on 3-

8. Again let/(«) be a real, single-valued function defined and continuous

on the interval 3 = [«, ß]- Retain the notation of the preceding section. For

an interval 1= [*yl, 51; y2, 52] contained in 3 define

I        u2) - f(y\ u2) I du2.
•a7»

It will now be shown that for any interval system 5(3) (see 4),

1. V(^(3)) = f K(£, !F, 3°)^

provided that K({', F, 3 ) is summable. Evidently V(i) is the measure of the

set of points £2) which satisfy the inequalities

(f(8\ u2) - e)(f(y\ u2) - e) < o,   y2 < e = «2 < s\

Consider any point £o = (£o> £o) which satisfies these inequalities. Its inverse

lT~1(^B) evidently is contained on the line u2 = %l0. Since f(ul, £j) is continu-

ous on [yl, 8l] and has opposite signs at the points ul = yl, m2 = 61, it follows

that £o has a model in the interior of I, and that m(£o, lT, I) = ±1. From II, 6
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it follows that K(f0, T, P) ^1. Thus *fK(& T, P)d%. From II, 19, 2
it follows that

V(5(3)) ̂   I    f m, T, P)d$ ̂  f K(t T, 3°)dl
l in S(3) J J

Thus relation 1 is established. Now consider the sequence of subdivisions

Sm(S) of 3 into intervals y); a2, ß2],vfh.erey)=al + (ßi — a1)j/m,j = 0,

• • • , m. Evidently

V(&.(3)) - (    El /vYft u) - f{yU; u) I du
J a2 J'=l

and (see III, 5)

J5   i        1      2 1 2   I 2

limX, I /(7i. « ) - /(7j-i> «71 = Fui(/; « ).

From the lemma of Fatou it follows that F„i(/; u2) is summable on [a2, ß2]

whenever K(£, lT, 3°) is summable, and

V+(j) ^ j K(t lT, $*)dt

Since K(£, 1T, 3°) ;gi\7(£, XF, 3°), it is clear from III, 7 that a necessary and

sufficient condition that F„i(/; u2) be summable on [a2, ft] is that K(£, *F, 3°)

be summable. If K(£, *F, 3°) is summable, then

VAf) = j Kit lT, «fw is f31 fuAu) I du.

Similar statements are valid for the transformation 2T. Combining these facts

with those in III, 3, 4, 7, one obtains the

Lemma. Letf{u) =f(u1, u2) be a real, single-valued function defined and con-

tinuous on the interval 3- Consider the flat surfaces having the representations

*S:   [{u2,f{u\u2)), 3];         *S:   [(u\ f(u\ u2)), 3].

A necessary and sufficient condition thatf(u) be BV F on 3 is that both 1S and 2S

be BEV. Iffiu) is BV T on 3, then

eVPS) = V*(f) = f I /„i(w) I du;      eV(2S) = VJif) ̂  f | /«•(«) | du.

.4 necessary and sufficient condition that the sign of equality hold in both these

relations is that f(u) be AC F on 3- A necessary and sufficient condition that

f{u) be AC F on 3 is that both of the representations for 1S and 2S be AC E.
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Chapter IV

On the essential area

1. Let 5 be a continuous surface in x-space (see I, 1), and let [x(m), 93]

be any representation for 5. With 5 there is associated the three projection

surfaces '5 upon the coordinate planes lx having representations [*<*(«), 93],

which determine bounded continuous transformations *F for i = l, 2, 3 (see

4; 1,4). In this chapter, the theory of the preceding chapters is used when the

plane £ coincides in turn with the coordinate planes *x, i^l, 2, 3. The follow-

ing triple notation is useful (see III, 2)

K(*, 5) ^ (KO*, »5), K(2*, 2S), K(*x, »S));

J(u, [x, 93]) - (J(u, >F), J{u, 2F), J(u, *T))   for   u in 93»;

J(u, [x, 93]) ■ (/(«, xr), /(«, 2F), /(«, 3F))   for  « in 93°.

The triple \x{u), 93] is said to be BV E, AC Z£, and so on, when each of the

associated transformations *T is BV E('T, 93"), AC E('T, 93"), and so on, for

* = 1, 2, 3 (cf. III, 1).
2. Given a continuous surface 5 for which K(x, 5) is summable, that is,

for which each of the projection surfaces lS, 25, 35 is BEV (see III, 3). If

[#(k), 93] be any representation for 5, define, for any simple Jordan region B

in 93

WB) = J*K(% 'T, B^x, i = 1, 2, 3;

4{B) = (VCB), W), 3<j>(B)), HB) = \\<b(B)\\   for   B in 93.

It follows from II, 19 that, for any finite system 5(93) of nonoverlapping

simple Jordan regions in 93 (see 4), it is true that Vp(5(93)) S= ty(93) for

i = l, 2, 3. Thus one has (see III 1-3)

1. cF(<5) = ^(93) = 77(93; fa, 93]) for i = 1. 2, 3.

From a remark in 5 follows the fact that 77(93; [<f>, 93]) is finite; moreover,

one has the

Lemma. The quantity 77(93; [$, 93]) is independent of the choice of the repre-

sentation for S.

Proof. Let [*i(k)i 93i], [x2(u), 932] be any two representations for 5. From

I, 1 it follows that there exists a sequence of topological maps of 931 onto 932

given by [«„(«), 93i] for n = 3, 4, • • • such that ||xi(«) — x2(m„(m))|| <«-1 for

u in 93i. Denote by *Tn the transformations given by the triples [^(«„(m)),

93i] for « = 3, 4, • • • ; i = \, 2, 3. Put

<</>„(£) =     K(*x, <F„, 7i»)d% i = 1, 2, 3; n = 1, 2, 3, • • • ;
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<bn(B) = {^n(B), *4>n(B), ̂ n(B)), #„(5) = for   B in 33.

To any finite system 5(33) (see 4) there corresponds under the map [«„(«),

33i] a finite system 5„(332). Clearly (see III, 1)

77(332, [$2, 332]) ̂  $2(5,(332)) = *„(S(8i)) for n = 3, 4, • • • .

Since limp('Tn, 'Ti; 33i) = 0 for i = 1, 2,3, it follows from 11,2,2 and the lemma

of Fatou that lim inf $„(5(33i)) — $1(5(331)). From the preceding relations

and the definition of the 77-function (see 4), it follows that 77(332; [$2, 332])

— 77(33i; [$1, 33i]). The opposite inequality follows by symmetry, and the

lemma is established.

3. Let 5 be a continuous surface in x-space. In view of the preceding

lemma, one may define the essential area eA{S) for the surface as follows. If

[*(«), 33] be any representation for 5, set

I £7(33; [<f>, 33])   if   K(x, S) is summable;

4- 00 otherwise.
eA(S) = I

Clearly eA(S) is independent of the choice of the representation for 5, al-

though it is not clear as to whether it is also independent of the choice of a

coordinate system in x-space. If 5 is a flat surface in a coordinate plane (see

I, 3), then eA(S)=eV(S) (see III, 2; IV, 2, 1)(8).
4. From 5; IV, 2, 1 follows the

Theorem. A necessary and sufficient condition that the essential area eA (5)

of a surface 5 be finite is that each of the projection surfaces *5,25,35 be of bounded

essential variation. Between the essential area and the essential variations of the

projection surfaces, the following relation exists

3

eVi'S) = eA(S) g J] eF(j5).
•-1

Notice that this theorem is an analogue for continuous surfaces of the

result for continuous curves cited in 1, 1.

5. Lemma. The essential area eA (5) is a lower semi-continuous functional of

5.

Proof. Suppose the sequence of continuous surfaces 5„ converges to a

surface 5o; from I, 1 it follows that there exist representations [xn(u), 33] for

n = 0, 1, 2, • • • such thatx„(w) converges on 33 uniformly toxa(u). Adopt the

notation of IV, 2, using a subscript n to distinguish the functions belonging to

(8) Since e V('S) = eA ('S) for t = l, 2, 3, the notion of essential variation might very well

be discarded. However, it has not been the custom to speak of the length of a one-dimensional

curve, but rather to speak of the total variation of a function representing that curve. To pre-

serve this parallel between the theory of curves and the theory of surfaces, the concept of essen-

tial variation has been introduced here.



1943]     PARAMETRIC REPRESENTATION OF CONTINUOUS SURFACES 275

Sn- From II, 2, 2 and the lemma of Fatou, it follows that lim inf *<p„(-B)

— '<f>o(B) for B in 93, i = 1, 2, 3. From the lemma in 5 and the definition of the

essential area follows lim inf eA (5„) — eA (So), and the lemma is proved.

6. Theorem. If the essential area for a surface S is finite, and if [x(u), 93]

be any representation for S, then the triple J(u, [x, 93]) of generalized Jacobians

exists almost everywhere in 93°, is summable on 93°, and

1. eA(S) £ f [x,%])\\du.

A sufficient condition that the sign of equality hold here is that the triple [x(u), 93 ]

be AC E; a necessary condition that the sign of equality hold is that the triple be

ac e.

Proof. Since eA (S) is finite, it is true that each ''5 is BEV (see IV, 4), hence

K(% iF, 93°) is summable for i=l, 2, 3 (see III, 2-3). Thus(seeIV, 2; 11,9, 1)
each J(u, {T) exists almost everywhere in 93°, is summable on 93°, and

2. '<*>(£)= f   \j(u,iT)\du   for   7iin93, i» 1,2,3.
J B°

Define

V(B) = f   \7(u,<T)\du, i= 1,2,3;
3. J B«

HB) - (VCB), ¥(£), VCB)),      *(B) = ||*CB)||   for   7J in 93.

If 5(93) be any finite system, it follows by a known inequality (see Hardy,

Littlewood, Polya [l, chap. VI ]) that

Thus

*(sm) s f 1170. [*.

f7(93; [*,23]) g f ||70.
J s3»

On the other hand, let R be a simple Jordan region in93 which admits of an

interval subdivision. Then it is true (see R2 [2, chap. II, §10]) that there

exists a sequence of interval subdivisions SK(R) such that

lim nSn(R)) = f ||70. k93])||rf«.

Thus

5. ^(23; [*,93]) S? f |[7(«, k23])||d«.
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Since the open domain 930 may be filled up from the interior (see 4) by a se-

quence of simple regions of type R (see Kerekjarto [l]), one concludes from

relations 4 and 5 that

6. 7/(33; [*, 93]) = f ||7(«, [x, %])\\du.

Relations 2 and 3 imply

7. 7/(93; [$, 93]) 2? 7/(93; [*, 93]).

In view of IV, 3, the first statement in the theorem is established. Now (see

II, 9, 12) if [*(«), 93] is AC E, then the sign of equality holds in 2, hence in 7.

Thus a sufficient condition that the sign of equality hold in 1 is that [x(u), 93]

be AC E. Next, suppose the sign of equality holds in relation 1. Let I be any

interval in 93; extend the lines forming the boundary of I indefinitely. The

simple Jordan region 93 is thus divided into a possibly enumerable number of

simple Jordan regions I = B0, B%, 732, • • • . For any simple Jordan region B in

93, the reasoning leading to relation 6 gives

7/(73; [*, 93]) = f \\j(u, [x, Sb])\\du.

Since a bounded portion of a straight line is rectifiable, it follows that

£7(93; [*,93]) = E U(Bn; [% 93]).
It

From this relation and relations 2, 3, one finds

£7(93 ;[$,93]) ^ Z U(Bn; [$,93]) ^ £ £/(73„; [*, 93]) = £7(93; [% 93]).
n n

But since the sign of equality holds in 1 by hypothesis, it follows that the sign

of equality must hold at every step in the preceding inequalities. In particular,

then

£7(7; [$,93]) = £7(7; [*,»]) = J" ||7(«. k«J)|k«-

If i be any closed oriented square in 93, then obviously (see II, 3-8; IV, 1-3)

g(s, {T, £(<F, 93°)) ̂  j K(<*, 'T, s?)4*x S U(s; [$, 93])

= jp(u, [*, 93])||<7«.

Thus each *T is AC £(iF, 93°) for * = 1, 2, 3—that is, [*(»), 93] is AC 6. This
completes the proof.
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7. Corollary. If a surface S has a representation [x(u), 93 ] which is BV E,

then the essential area eA(S) is finite, the triple J{u, [x, 93]) of generalized

Jacobians exists almost everywhere in 93°, is summable on 93°, and

A necessary and sufficient condition that the sign of equality hold here is that

[*(»), 93] be AC E.

A proof follows from results in 11, 11; 111, 3,1; IV, 4, 6. This is an analogue

to the theorems in 1, 2, 3 for continuous curves; all representations for con-

tinuous curves automatically satisfy the analogue of BV E in one dimension

whenever the length of the curves is finite.

8. Corollary. Let Sn, n = 0, 1, 2, • • • , be a sequence of continuous sur-

faces satisfying the following conditions: the surfaces Sn converge to So (see 1,1);

each of the surfaces has a finite essential area eA(Sn) for n = 0, 1, 2, • • • (see

IV, 3, 4); the surface So has a representation [x(u), 93] for which the essential

areas eA(Sn) converge to f®o\\j(u, [x, 93])||d«. Then the representation [x(u), 93]

Thus the sign of equality holds throughout, and the conclusion now follows

from the last part of the theorem in IV, 6.

9. By the principle stated in 1,8, the theorem in IV, 6 may be given the

following variant form.

Theorem. A necessary condition that a representation [x(u), 93] for a surface

S be absolutely continuous (eA, J), where eA (S) is the essential area of S and

J(u, [x, 93]) is the triple of generalized Jacobians, is that [x(u), 93] be AC £.

A sufficient condition that this representation for S be absolutely continuous

(eA, J) is that it be AC E; then each of the corresponding representations for the

projection surfaces *S is also absolutely continuous (eA, J) for i = l, 2, 3.

10. The results in IV, 6-9 are paralleled by similar theorems involving

the essential area and the triple of ordinary Jacobians; one need but replace

II, 9, 1 by II, 9, 2 in making the proofs.

Theorem. If the essential area for a surface S is finite, and if [x(u), 93] be

any representation for Sfor which the triple J(u, [x, 93]) of ordinary Jacobians

exists almost everywhere in 93°, then the triple is summable on 93°, and

is AC 6.

Proof. From IV, 5, 6 and the assumptions, one obtains
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A sufficient condition that the sign of equality hold here is that the triple [x(u) 93]

be AC E; a necessary condition that the sign of equality hold is that the triple be

Ac e.

11. Corollary. If a surface S has a representation [x(u), 93] which is

BV E and for which the triple J(u, [x, 93]) of ordinary Jacobians exists almost

everywhere in 93°, then the essential area is finite, the triple J(u, [x, 93]) is

summable on 93°, and

eA(S) = f H-70, [*,8])||<*«.

A necessary and sufficient condition that the sign of equality hold here is that

[x(u), 93] be AC E.

12. Corollary. Let Sn, n = 0, 1, 2, • • • , be a sequence of continuous sur-

faces satisfying the following conditions: the surfaces S„ converge to Sq ; each of

the surfaces has a finite essential area eA (Sn) for n = 0, 1, 2, • • • ; the surface S.

has a representation \x(u), 93] for which the triple J(u, [x, 93]) of ordinary

Jacobians exists almost everywhere in 93° and the essential areas eA (S) converge

to/a3o||-70, [*> 23])||d«. Then the representation [x(u), 93] is AC £.

13. Here is a variant form for the theorem in IV, 10.

Theorem. A necessary condition that a representation [x(u), 93] for a sur-

face S, for which the triple J(u, [x, 93]) of ordinary Jacobians exists almost

everywhere in 93°, be absolutely continuous (eA, J) is that [x(u), 93] be AC £.

A sufficient condition that this representation for S be absolutely continuous

(eA, J) is that it be AC E; then each of the corresponding representations for the

projection surfaces iS is also absolutely continuous (eA, J) for *' = 1, 2, 3.

14. Rado (see Rado [2]) has shown that a representation [x(u), 93] for

a surface 5 which satisfies a Lipschitz condition of the form ||x(mi) — x02)||

iSjL||tti — W2II where L is a constant, is absolutely continuous (.4, /), where

A(S) is the Lebesgue area of 5 (see I, 6) and J(u, [x, 93]) is the triple of

ordinary Jacobians. Now the representation [x(m), 93] is also AC E (see II,

8). From the theorem in IV, 13 one concludes that the essential area and

the Lebesgue area of 5 are equal. In particular, eA(P)=A(P) for every

polyhedron P (see I, 5).

Given any continuous surface S, there exists a sequence of polyhedra P„

such that Pn converge to 5 and the Lebesgue areas A (Pn) converge to A (S)

(see I, 6, 2). Since eA(P) =A(Pn), one finds by using the lemma in IV, 5 the

Theorem. The essential area of a surface S does not exceed the Lebesgue area

—that is, eA(S) =A(S). A necessary and sufficient condition that the essential

area and the Lebesgue area of a surface S be equal is that there exists a sequence

of polyhedra Pn such that P„ converges to S and eA(Pn) converges to eA(S).
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This theorem and the theorem in IV, 10 have the

Corollary. A sufficient condition that the Lebesgue area and the essential

area of a surface S be equal is that S possess a representation \x(u), 93 ] which is

absolutely continuous (A, J), where A(S) is the Lebesgue area of S and J(u,

[x, 93]) is the triple of ordinary Jacobians.

15. In order to compare these results with those of Geöcze and Tonelli

(cf. 2), and to give a proof for the statement made in I, 7 the following re-

sult is needed.

Lemma. If a surface S has a representation [x(u), 3] of non-parametric

origin

S:   x(u) = (#\ u2; x3(ux, m2)),      u = (w1, u2) in 3,

then eA(S)=A*(S)=A(S).

Proof. Define, for any interval I— [y1, S1; y2, 82] in 3(9)-

4fä = (^j   I x3(y\ u2) - x3(8l, u2) I du2,

f  I x\u\ y2) - x3(u2, 52) I du1, I j|\      *(/) =

If iT, i=\, 2, 3, be the associated continuous transformations (see IV, 1),

then the reader will observe that the transformations lT and 2T bear the same

relation to the function x3(u) as those in III, 7, 8 bear to the function/(m)

therein considered; the transformation 3T is simply the identity mapping of

3 in the «-plane onto a congruent interval in the 3x-plane. Define a triple of

o-functions [<p, 3] as in IV, 2. The reasoning in III, 8 shows that \f/(I) ^<t>(I)

for 7" in 3- Now Rado has shown that (see Rado [l])

A^S) = l.u.b. *(S(3)) for interval subdivisions 5(3).

From these relations it is clear that

A*(S) = f/(3;[    3]) = eA(S).

In view of the relations established in I, 7 and IV, 14, the lemma is now

proved.

The reader will notice that attention is restricted here to surfaces having

a representation of non-parametric origin where the parameter range is an

interval. Further considerations would establish this result more generally,

but these are not necessary since it has been customary in the literature on

such surfaces to so restrict the range of the independent variables.

16. The lemmas in III, 7, 8; IV, 4, 10, 11, 15 imply all the results of

(9) These are the expressions of Geöcze (see Rado [l]).
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Geöcze and Tonelli for the non-parametric case which are analogous to those

for curves stated in 1. For if 5 be a surface having a representation [x(u), 3]

of non-parametric origin

I. x(u) = (u1, u2, x3(ul, u2)),      u = (w1, u2) in the interval 3,

then eA (S) =A (5) by the lemma in IV, 15. Thus from IV, 4 it follows that a

necessary and sufficient condition that the Lebesgue area of S be finite is that

each of the projection surfaces 1S, 2S, 3S be BEV. The projection surface 3S

is obviously BEV under any conditions, while it follows from the lemma in

III, 8 that a necessary and sufficient condition that lS and 2S be BEV is that

x3(u) be BV F on 3- Summarizing these facts, one obtains a known theorem

in the non-parametric case (see Tonelli [l ]): a necessary and sufficient condi-

tion that the Lebesgue area A (S) of a surface S having a representation 1

of non-parametric origin be finite is that x3{u) be BV T on 3-

If x3(u) is BV F on 3, it follows that the triple J(u, [x, 3]) of ordinary

Jacobians exists almost everywhere on 3—in fact,

J(u, [x, 3]) = (~ *ui(w), *»*(«), 1) almost everywhere on 3-

Hence from IV, 10 one concludes that this triple is summable on 3 and

A(S) = \   p(u, [x, = I   [xli(u)2 + xl^u)2 + l]U2du.

In view of the lemma in III, 7, it is clear that the representation [x(u), 3] is

BV 3°, hence BV E, when x3(u) is BV T on 3; from IV, 11 it follows that a

necessary and sufficient condition that the sign of equality hold above is that

[x(u), 3] be AC E. The representation [3x(m), 3] for 3S is clearly AC E under

any conditions, while it follows from the lemma in III, 8 that a necessary

and sufficient condition that the representations [1x(m), 3], [2x(m), 3] be

AC E is that x3(u) be AC T on 3- Thus other known theorems for the non-

parametric case are obtained (see Tonelli [l]): if the Lebesgue area A(S) is

finite, then each of the partial derivatives

x„i(«), x^u)

exists almost everywhere in 3. is summable on 3 and

A{S) = f [xl(uf + x'Au)' + l]U2du;

a necessary and sufficient condition that the sign of equality hold here is

that x3(u) be AC F on 3-
17. The next sections are devoted to a comparison of the essential area

defined in IV, 3 with the Geöcze area as defined by Rado (see Rado [2, part

II, §l]). Given a continuous surface S, let [x(u), 93] be any representation

for it. Define (see II, 2, 22), for any simple Jordan region B in 93,



1943]     PARAMETRIC REPRESENTATION OF CONTINUOUS SURFACES 281

V(5) = I (Äl, {T, 73) I = I 'TiEi'T, BO)) I = J c(%, »T, ß0)^*, f = 1, 2, 3;

^(73) = M(B), V(-B), *(73) =

The quantity £7(93; 93]) is independent of the choice of a representation

for 5 (see Rado [2]). It is this quantity which Rado terms the Geöcze area of

5—denote it by <7(5). Since *(t, *T, B) is the set of points where K(% 'T,

73°) >0, it follows'at once that (see IV, 2, 3) ip(B) ^<p(B), hence ^(73) ^$(73)

for 73 in 93, and £7(93, [% 93]) ̂  £7(93, [$, 93]). Therefore one has the

Lemma. F/ze Geöcze area does not exceed the essential area—that is, (j(S)

^eA(S).

18. Retain the notation of the preceding section. Notice that (see II, 3, 6,

7) for any closed oriented square s in 93, it is so that

Hs) = SK*) = I       t$('r, 93°)) I = g(s, *t, £(% 93°)),     i = 1, 2, 3.

Thus a necessary condition that the Geöcze area Q(S) be finite is that each

of the representations ['x(u), 93] for the projection surfaces '5 be BV £ for

* = 1, 2, 3. This result implies the

Lemma. If a surface S possesses a representation [x(u), 93] which is not

BV £—that is, for which at least one of the representations [sx(w), 93] is not

BV 6—then $(S) = e.4 (5) = + <*>.

19. Lemma. If a surface 5 possesses a representation \x(u), 93] which is

BV E, then $(S) =eA(S)< + °o.

Proof. From III, 3; IV, 4 it follows that eA(S) is finite. In view of the

lemma in IV, 17 it is sufficient to show that£r(5) ^eA(S). Given a positive

number t, there exists a finite system 5(93) such that $(5(93)) >eA(S) — e.

Since [x(w), 93] is BV E, one concludes from the lemma in II, 20 (see IV, 1)

that there exists a sequence of subdivisions S„(B) for each 73 in 93 such that

||5„(73)|| is less than n~l and each 5„(73) is maximal for each of the transforma-

tions ['xn(u), 73] for i=l, 2, 3. From the lemma in II, 22 (see IV, 2, 17), it

follows that ^(73) =lim ^(Sn(B)) for i= 1, 2, 3; 73 in 5(93). Denote by 5„(93)
the finite system consisting of all simple Jordan regions belonging to an 5„(73)

for some 73 in 5(93). From the triangle inequality one finds that

g(S) = *(S„(93)) ̂   E   [" Z SK5„(7J))*T'2        $(5(93)) > eA(S) - «.
B in S(«3) L i=.l J

Thus g(S)>eA(S) — e, and since e is arbitrary, the lemma follows.

20. Summarizing the lemmas in IV, 18, 19, one concludes that the essen-

tial area and the Geöcze area of a surface are equal if the surface either has

a representation which is not BV £, or has a representation which is BV E.
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This leaves open the question of whether these areas are equal if all the repre-

sentations of a surface are BV 6, but none is BV E. Indeed, a first question

might be whether such surfaces exist. A negative answer to this question

would enable one to close the gap between necessary conditions and sufficient

conditions in the results in IV, 6, 10.

21. For applications in the next chapter, the following result will be use-

ful. Assume that a surface 5 has a representation which is BV E; in view of

the lemma in II, 18, one may assume that this representation has the form

[x(u), 3] where 3 is an interval. Now the essential area eA(S) is finite (see

IV, 4). It follows from the lemma in II, 20 that there exist interval subdivi-

sions 5„(3) such that ||5„(3)|| converges to zero and each 5„(3) is maximal

for each of the transformations ['x(w),3] for t = 1, 2,3; for brevity, 5„(3) is

said to be maximal for [x(w), 3]- Given a positive number e, let 5(3) be a

finite system of nonoverlapping Jordan regions such that $(5(3)) >eA(S) — e.

For each B in 5(3), denote by u(B) an arbitrary point in the interior of B.

For each integer n and each B in 5(3) > denote by Sn(B) the maximal collec-

tion of those intervals in 5„(3) whose point set sum ßn is a simple Jordan

region containing u(B) and lying in the interior of B. It follows (see Kerek-

järto [l]) that the ß„ fill up B from the interior (see 4). Consequently one

obtains (see II, 2, 2; IV,.2)

V(S,CB)) = W«) -^~=o %(B) for i = 1, 2, 3; B in 5(3),

tA(S)       *(5.(3)) Ü    £      $(5„(/i)) =    Z      $(/3«Wn-oo $(5(3))
B in S(3) B In s(3)

> eA{S) - €.

In view of IV, 3, this implies the

Lemma. Let S be a surface having a representation which is BV E. Then

there are representations [x{u), 3 ] for S which are BV E, and for every sequence

of interval subdivisions 5„(3) such that ||5„(3)|| converges to zero and each

5„(3) ** maximal with respect to \x(u), 93], it is true that lim $(5„(3)) =eA(S).

Chapter V

Applications

1. In a study of convergence in area, Rado and Reichelderfer (see R2 [2])

obtained the following results. Let 5„, w = 0, 1, 2, • • • , be a sequence of

continuous surfaces having representations [x„(j<), 3] of non-parametric

origin (see I, 2), where

12     3     12 12.
x„(u) = («,«, xn(u , u ))   for   w = (w , m ) in 3»      « = 0, 1, 2, • • • .

Make the following assumptions: the functions x\(u) converge on 3 uni-

formly to Xo(m) ; each of the functions xn(u) for « = 0, 1, 2, ■ • • is BV F on 3



1943]     PARAMETRIC REPRESENTATION OF CONTINUOUS SURFACES 283

(see III, 5); and the Lebesgue areas A (Sn) converge to A (So) (see I, 6). Then

the total variations Vui(x„), Vui{xn) converge to Fui(xo), Vui(xl), respectively

(see R2 [2, chap. I, §19]). Observe that the first assumption implies that 5„

converges to S0 (see I, 1).

2. Suppose that 5 is a continuous surface having a representation

[x(m), 3] for which the triple of ordinary Jacobians Jiu; [x, 3]) exists almost

everywhere in 3 (see IV, 1) and the Lebesgue area A(S) is finite; then the

triple J(u, [x, 3]) is summable on 3 (see IV, 10, 14). Assume that S„, n = l,

2, • • • , is a sequence of continuous surfaces having representations [x„(w),3]

satisfying the following conditions: the functions x*n(u) converge on 3 uni-

formly to xl(u) for t = l, 2, 3; each of the representations [x„(u), 3] for

» = 1, 2, • • • , is absolutely continuous (A, J) (see I, 8); and the Lebesgue

areas A(Sn) converge to fa\\j(u, [x, !$])\\du. Then Rado and Reichelderfer

(see R2 [2, chap. I, §§25-27]) show that

lim  I  I J(u,        3]) I du = II J{u, [fit, 3]) I du        for i = 1, 2, 3.
J3 Ja

Since sequences of surfaces Sn having the properties just described exist if

and only if the representation [x(w), 3] for 5 is absolutely continuous (A, J),

they show that if [x(u), 3] is absolutely continuous {A, J), then each of the

representations ['x(m), 3] for the projection surfaces 'S for i = l, 2, 3 is also

absolutely continuous (A, J), and each of the transformations ['*(«), 3°]

fori = l, 2, 3 belongs to the class described in II, 8. Observe that the first

condition on the \xniu), 3] implies that Sn converges to So- These results of

Rado and Reichelderfer will appear as corollaries to more general theorems

whch are presented in the wake of certain preliminary notions (see V, 8, 15).

3. Let 3 be any interval in the w-plane. A class JF of intervals 7 in 3 is

termed closed if it possesses the following properties.

1. The interval 3 is in JF.

2 If 7i and 72 are in £F, and if 7i/2 is an interval, then is in SF.

3. If I is any interval in SF, then there exists an interval subdivision

5(3) in $ which contains I as an element.

A particular type of closed class is important for the sequel. Let / be a

class containing an at most enumerable number of lines(10), each of which is

parallel to one of the coordinate axes in the w-plane, and none of which forms

a side of the interval 3- Denote by ?(.£) the class of all intervals I in 3, each

of whose four sides is formed by a segment of a line not in j(\ It is readily

verified that 3(jQ is a closed class. If -£2, ■ • • be a finite or enumerably

infinite set of classes of lines each of type J^, then the class JF of all the intervals

found in every one of the classes SF(^i), • • • is again a closed class

having the same structure as SF(-£). A closed class of type 5(jQ is termed

c-closed.

(I0) The class ^ may be empty.



284 P. V. REICHELDERFER [March

Let SF be any closed class. Assume that to every interval 7 in SF there is

associated a finite real number 0(7); this function is termed an interval

function of SF, and denoted by [<p, SF]. For every interval I in SF, define (cf. 4)

u(I; [<p, SF]) = l.u.b. 4>{S(I)) for finite interval systems 5(7) in SF.

Evidently <p(I)=u{I; [(?,?]) ^w(3; [<p,SF]) for I in SF. A necessary and suffi-

cient condition that [u, SF] be an interval function on SF is that w(3; [<b, SF])

be finite; if [u, SF] is an interval function, then [<p, SF] is said to possess a

w-function.

4. Let 5 be a continuous surface having a representation which is BV E\

as noted in IV, 21, one may without loss of generality assume this representa-

tion to be of the form [x(w), 3]> where 3 is an interval. Let SF([x, 3]) denote

the class of all intervals I in 3 having the following property: for each of the

four lines /, a segment of which forms the boundary of I, it is true that (cf.

IV, 1) {'Til-E^T, 3°))I =0 for i = l, 2, 3 where *T is the transformation

['x(w), 3°]- From the corollary in II, 17, it is clear that SF( [x, 3]) is a c-closed

class. Let I be any interval in SF([x, 3]) and let 5(7) be any interval sub-

division in SF([x, 3])- Then (see II, 19; IV, 2, 21) 5(7) is a maximal system

for [x(u), 3], so that

1. WSCO) = for   * = 1, 2, 3;      #(£(/)) ^ *(/).

Let SF be any c-closed subset of SF([x, 3])- Then for every interval I in SF,

there necessarily exists a sequence of interval subdivisions 5„(7) in CF such

that ||5„(7)|| converges to zero. From IV, 2, 21, one finds (see 4; V,'3), for I

in ff,

■ £7(7; fa, 3]) - «(7; fa, SF]) = for f = 1, 2, 3;

£7(7; [$, 3]) = <7; [*, SF]).

5. General lemma. Lei [<p„, SF] wÄere 0„(7) = (Vn(7), 2<p„(7), 3<pn(I)) for

I in SF, n = 0, 1, 2, • • • , oe ö sequence of triples of interval functions defined on

a closed class SF. 5e/ <I>„(7) = ||<p„(7)|| /or 7 iw SF. Make the following assumptions.

1. £acÄ fan, SF] is non-negative for i = l, 2, 3; n = 0, 1, 2, ■ • • .

2. TJacfe fa„, SF] Aas a u-function for i=l, 2, 3; « = 0, 1, 2, • • • .
3. If I be any interval in SF, if 5(7) öe any interval subdivision in SF, then

i<pn{S(I))^i<?n{I)fori = l, 2, 3;» = 0, 1, 2, • • • .
4. lim inf vpB(F) ̂ ^0(7) for I in SF; i = 1, 2, 3.

5. lim «(3; [#„, SF])=M(3; [$o, SF]).

FAew lim «(7, fa„, SF])=w(7; fa0, ^]) for I in SF, i = l, 2, 3.

For the special case when SF consists of all the intervals in 3. this lemma

is stated and proved by Rado and Reichelderfer (see R2 [2, chap. II, §§1-8]).

A proof for this slightly more general lemma may be made by using the prop-

erties of a closed class (see V, 3), and following step by step their proof.
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6. A central result in this chapter may now be stated and proved.

Theorem. Let Sn, w = 0, 1, 2, • • • , be a sequence of continuous surfaces

satisfying the following conditions.

1. The surfaces Sn converge to So (see 1,1).

2. Each of the surfaces Snfor w = 0, 1, 2, • - • has a representation which is

BV E (see IV, 1).

3. The essential areas eA (S„) converge to eA (S0).

Then the essential variations eV({Sn) for the projection surfaces {Sn converge

toeV(iS0)fori = l,2,3.

Proof. From conditions 1,2; IV, 21; I, 1, it follows that there exist repre-

sentations [xn(u), 3] for Sn each having the same interval of definition 3, and

each BV E, such that x„(u) converges uniformly on 3 to x0(u). Let JF denote

the class of all intervals belonging to every one of the c-closed classes,

«*([*»> 3]) for « = 0, 1, 2, • • • (see V, 4); then IF is a c-closed class. Define

triples of ^-functions [<p„, 3] as in IV, 2 for » = 0, 1, 2, • • • . From V, 4, 2,

one obtains, for I in IF (see III, 3; IV, 3), n = 0, 1, 2, • • • ,

U(T, [%» 3]) = u(I; fan, SF]) = for i = 1, 2, 3;

U(I; [*„, 8J) = «(/; K.lFj);

eV^Sn) = «(3; N., SF]) = <&.($)      for * = 1, 2, 3;

e4(5„) = «(3, [#„ SF]).

Thus conditions V, 5, 1, 2 are satisfied. From V, 4, 1, it is clear that V, 5, 3

is fulfilled. Condition V, 5, 4 follows at once from II, 2, 2 and the lemma of

Fatou, since xn(u) converges on 3 uniformly to x0(u). Finally, from relation

4 and condition 3 follows condition V, 5, 5. The conclusion of this theorem

thus follows at once from the lemma in V, 5 and relation 4.

7. Corollary. Let S be a continuous,surf ace having a representation which

is BV E. If the Lebesgue area A (S) equals the essential area eA (S), then the

Lebesgue areas A (*S) of the projection surfaces *S equal the essential areas eA ({S)

fori = l, 2, 3.

Proof. LetP„, n = l, 2, • • ■ , be a sequence of polyhedra such that P„ con-

verges to S and ^4(P„) converges to A(S) (see I, 6, 2). Since -4(P„) =eA(Pn)

and each P„ has a representation which is AC E (see IV, 14) for n = 1, 2 • • • ,

it follows that the hypotheses of the theorem in V, 6 are fulfilled by P„ and 5.

Thus eF('P„) converges to eV({S) for 2, 3. But since VP,, is a flat poly-

hedron, it is true that cF('Pn) =eA(iP„) =A(iPn) for * = 1, 2, 3; n= 1, 2, • • •

(see IV, 3, 14); also eV(*S) =eA({S) for i = l, 2, 3. Since <Pn converges to *S,

it follows that (see I, 6, 3)

A(*S) g lim inf A({Pn) = lim inf eF('P„) = eA(*S)        for i = 1, 2, 3.

The conclusion of the corollary follows from this inequality and IV, 14.
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8. Let 5„, w = 0, 1, 2, • • • , be a sequence of continuous surfaces each

possessing a representation [xn(u), 3„] of non-parametric origin (see I, 2),

where

12      3     12 12
1.     xn(u) = («,«, xn(u , u ))   for   u = (u , u) in » = 0, 1, 2, • ■ • .

Then (see IV, 15) the essential area eA(Sn) equals the Lebesgue area A(Sn)

for « = 0, 1, 2, • • • . Suppose that 5„ converges to S0; it follows then that

3n converges to 3o, and x„(u) converges uniformly on every closed set in the

interior of 3o to x%(u). Now assume that each of the Lebesgue areas A(Sn) is

finite for « = 0,1, 2, • • • ; this implies (see II, 7; IV, 16) that each of the repre-

sentations [xn(u), 3n] is BV E. Thus to the theorem in V, 6 there follows the

Corollary. Let Sn, « = 0, 1, 2, • • • , be a sequence of continuous surfaces,

each possessing a representation 1 of non-parametric origin and a finite Lebesgue

area A (Sn). If the surfaces Sn converge to S0, if the areas A (Sn) converge to A (So),

then the variations eV^Sn) for the projection surfaces iSn converge to eV^So) for

i = l, 2, 3.

In view of the lemma in 111,8 (see IV, 16), this result is clearly a generaliza-

tion of that of Rado and Reichelderfer cited in V, 1.

9. A second important result in this chapter is contained in the

Theorem. Let Sn, n = 0, 1, 2, ■ • • , be a sequence of continuous surfaces

satisfying the following conditions:

1. the surfaces Sn converge to So {see I, 1);

2. the surface So has a representation [x0(u), 93o] for which the triple

J(u, [xo, 93o]) of generalized Jacobians exists almost everywhere in 93o, is sum-

mable on 93o (see IV, 1);

3. the surfaces Snfor « = 1,2, • • • have representations which are AC E;

4. the essential areas eA(S„) converge to f^\\j(u, [x0, Sß0])\\du.

Then

5. the representation [x0(u), 33o] is AC E;

6. the representation [x0(u), SBo] is absolutely continuous (eA, J) (see I, 8);

7. the essential variations eV('Sn) for the projection surfaces iSn converge to

eV(fS0)for i = l,2,3.

In view of the theorem in IV, 9, it is clear that conclusion 5 implies con-

clusion 6; if conclusions 5, 6 are true, then the hypotheses of the theorem in

V, 6 are fulfilled, so conclusion 7 follows. It suffices therefore to prove 5. This

proof is divided into two parts: an "assume without loss of generality" sec-

tion (V. 10), and the proof itself (V, 11).

10. No loss of generality is imposed in the preceding theorem if the fol-

lowing additional assumptions are made:

1. the simple Jordan regions 93„ fill up 930 from the interior (see 4);
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2. on every closed set in the interior of 93o, xn(u) converges uniformly to

Xo{u).

In proving this, a theorem of Franklin and Wiener is useful (see Franklin

and Wiener [l]). Given a topological map [ü(u), 93] of a Jordan region 93 in

the w-plane onto a Jordan region 93 and a positive constant e, there exists a

pair of analytic functions [üe(u), 9f ] defining a topological map of some Jordan

region 5R in the w-plane containing 93 in its interior onto a Jordan region 9?

containing 93 in its interior, and such that ||we(«) — «(«)|| <e for u in 93 and

ll^r'W-m_1(m)|| <« for u in 93, where [ü^(u), 93], [ü~l(u), 9i] are the in-
verse maps of [ü(u), 93], [üt (u), 9i ], respectively. Let 33« denote the correspond

to 93 under the map [u~1(u), 9?]. Then [w-1(me(w)), 93e] is a topological map

of 93. onto 93 such that ||«-1(«€(«)) — u\\ <« for u in 93e. Suppose that S is a

surface having a representation [x(u), 93] which is AC E; consider the repre-

sentation [x(ü,(u)), 33e] for 5. Denote by M the maximum of the absolute

value of the ordinary Jacobian J(u, [«e, 93e]). Then a simple Jordan region B

in 93 which is the image of a square s in 93« under [«,(«), 93e ] has an area not ex-

ceeding M- \s\. Let iT, ^denote transformations ['*(»), 93], [**(#,(»)), 93e]

respectively, for * = 1, 2, 3. Then (see II, 1-9), since [x(u), 93] is AC E,

Q(s, iT, E{lT, 93°)) = I iF(.s»-£(iF, 93°) | = | iF(7i0-£(ir, 93°) |

^ J* K('x, % B°)d lx - J_ £>(«, ^(7«  for i = 1,2, 3.

Thus [x(i*e(w)), 93e] is also ACE. Now the representation [x(ü(u)), 33] need

not be AC E. And if [x(m), 33] is an arbitrary preassigned representation for

S, and f is any positive number, then \ü(u), 93] may be so chosen that

||x(m(m)) —x(m)|| <f for u in 93 (see I, 1). These results are summarized in the

Lemma. Let S be a continuous surface possessing a representation which is

AC E. If [x(u), 93] is an arbitrary representation for S, and if e and f are any

positive numbers, then there exists a simple Jordan region 93e, a topological map

[ut(u), 93e] of 93e onto 33 such that \\uf(u) — u\\ <efor u in 93e, and an AC E

representation [xt(u), 33e] such that \\xe(u) — x(ue(u))\\     for u in 33e.

Choose positive numbers e„ such that \\xa(u')—Xo(u")\\ <n~l for any

points u', u" in 330 satisfying \\u' — u"\\ <e„. Let Bn be a Jordan region in the

interior of 93o for which there exists a topological map [«„(«), 73,,] of Bn onto

93osuchthat||tt„(m)— u\\ <«„for win73n,w = l, 2, • • ■ .Then\\x0(un(u))—xo(u)\\

<n~l. Thus the simple Jordan regions Bn fill up 930 from the interior (see 4),

the surfaces So« having representations [x0(w), Bn] satisfy d(S0, Son) < n~l,

and since clearly eA (50„) ^ eA (S0), it follows that eA(Son) converges to

eA{So) (see IV, S). Now d(Sn, S0n) <d(Sn, So)+n~1 and so the surfaces Sn

admit representations [tXn{u),Bn] for which []#«»(«) — x0(w)|| <d(S„, S0)+n~1

for u in B„, n = l, 2, • ■ ■ (see 1, 1). Since the surfaces Sn have representations
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which are AC E for « = 1,2, • • • (see V, 9, 3), and since Bn is in the interior

of 23o, it follows by the preceding lemma that there exist simple Jordan regions

*23» in 93o, topological maps [*«„(«), *53„] of *23n onto B„ such that ||*m„(m)

— «||<«B for u in *23„ and AC E representations [*x„(w), *23»] such that

||*x„(«) — fx„(*un(u))\\ <«-1 for u in *23„. Since ||xo(*«n(w)) — #o(m)|| <w-1 for

ii in *23n, it follows that ||*x„(m) — *»(»)|| <d(Sn, So) +3«-1 for win *23„. The

representations [*!„(«<), *23n] thus satisfy the hypotheses of the theorem in

V, 9 and the additional assumptions in this section.

11. A proof for the theorem in V, 9 is now made, using the additional con-

ditions, V, 10, 1, 2. First, observe that V, 9 imply (see IV, 5, 6) that eV(S0)

is finite, and

lim «4(SO = eA(S0) = f \\j(u, [*„, ®o])\\du.
JsSo

This verifies V, 9, 6 directly (see 1,8). Let I be any interval in the interior of

23o; in view of V, 10,1, there exists an n(I) such that I is in the interior of 23„

for «>«(/). Define (see IV, 1), for I in SB?.

¥„(/) = J I J(u, *TK) I dm for i = 1, 2, 3;

*„(/) = (¥(/). V(/j, ¥(/)),    *.(/) = \\in(D\\    for« = o, « > «(/).

From V, 9, 3, it is seen that (see II, 9; 1, IV, 3)

V>*{I) = J* K(«*, <Fn, /•)<* <*  for i = 1, 2, 3, « > «(/).

Since e^4(S0) is finite, it follows (see IV, 4) that K(4x, 'Fn, 1°) is summable,

and (see V, 10, 2; II, 2, 2; II, 9, 1)

lim inf J K(*x, T», 7°)<i '* = f K(**. To, 7°)d ^ tyo(Fj for t = 1, 2, 3.

These relations give

1. lim inf '#»(/) = Vo(/)       for i = 1, 2, 3, 7 in 93°.

By a known result (see R2 [2, chap. II, §10]), it follows that for I in 23J5,

«(/; [ty* Jj) = <*»(/) for i = 1, 2, 3,

«(/; [*„, /]) = J|j7(«, [*», for « = 0, « > «(/).

A direct reasoning using relation 1 shows that

3. lim inf u(I;       /]) ^ «(/;       /]) for / in 23°,.
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For n = 0, n>n(I), the interval I lies in the interior of 93«; extend the sides

of / until they meet the boundary of 93„ thus dividing 93„ into nine simple

Jordan regions I = oBn, iBn, • • • , $Bn. Clearly the nBn fill up „/30 from the

interior for h = 0, ■ • • , 8 (see IV, 10, 1). Denote by hS„ the surface having

the representation \xn{u), „/j„] for h = 0, • • • , 8, n = 0, n>n(I). Since the

representations [xn(u), \Bn\ for n>n(I) are AC E and the essential areas

eA(hSo) are finite for h = 0, ■ ■ • , 8, it follows that (see IV, 6)

4.

«*1(A) = f   \\j(u, [xn,%n])\\du for «>«(/);

*i(*So) = f   \\j(u, [x„, %o])\\du      for A = 0, • • • , 8.
Abs

From V, 10, 2 it follows that nSn converges to nSo for A = 0, ■ • • , 8, so that

(see IV, 5)

lim inf eA(hSn) — eA(hSo) for h = 0, • • • , 8.

Since straight line segments form the subdivision of 93„ just introduced, one

obtains

eA(Sn) = f \\7(u, [«., ».DU*« - Zc4(Ä)    for« > «(/).

Using the preceding relations and V, 9, 4, one finds

lim sup eA(tSn) = lim sup [eA(Sn) - £ ^1(*S„)J ̂  J ||7(«, [x0, %o])\\du.

In view of relations 2, 3, 4, this implies that

5. lim «(/; [*n, /]) = u(I;       /]) for I in So-

Thus, if 3 be any fixed interval in 93° and SF be the class of all intervals I in

3, it is clear from relations 1, 5 that the [ipn, ff] for « = 0, »>w(3) satisfy

the hypotheses of the general lemma in V, 5. In view of relation 2, therefore,

lim j I J{u, %Tn) \du = J I J(u, *F0) | du for / in 93o, i = 1, 2, 3.

This relation, together with the conditions in V, 10, makes it clear that the

hypotheses of the modified closure theorem in II, 14 are fulfilled, for the three

sequences of transformations *F„: [%,(«), 53°], « = 0, 1, 2, • • • , where **«*!,

2, 3. So <Fo is AC .EO'Fo, 93?) for f = 1, 2, 3—that is, [x0(u), 930] is AC £ (see
IV, 1), and the theorem is established.

12. The theorem just proved permits the following addition to the results

in IV, 6-9.
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Theorem. Assume that for a continuous surface So there exists a sequence of

surfaces Sn such that Sn converges to So, eA (S„) converges to eA (So) which is

finite, and each Snfor n = 1, 2, • • • has an AC E representation. Then a neces-

sary and sufficient condition that a representation [x0(u), 93o]/or S0 be absolutely

continuous (eA, J) is that [x0(u), 23o] be AC E.

Proof. That the condition is sufficient is already established (see IV, 9).

So suppose that [#o(w), 33o] is absolutely continuous (eA, J); then (see I, 8)

The Sn for « = 0, 1, 2, • • • thus satisfy the hypotheses of the theorem in V,

9, whence it follows that [#o(«), 23o] is AC E]

13. If in the theorem in V, 9, the generalized Jacobians are replaced by

the ordinary Jacobians, there results the

Theorem. Let Sn, n = 0, 1, 2, ■ • • be a sequence of continuous surfaces satis-

fying the following conditions:

1. the surfaces Sn converge to So (see 1,1);

2. the surface So has a representation [x0(u), 23o] for which the triple

J(u, [xo, 23o]) of ordinary Jacobians exists almost everywhere in 23°>> and is

summable on 23°, (see IV, 1);

3. the surfaces Sn for n = l, 2, • • • have representations which are AC E;

4. the essential areas eA(S„) converge to f%$\\j(u, [xq, 23o])||dw.

Then

5. the representation [x0(u), 230] is AC E;

6. the representation [x0(u), 23o] is absolutely continuous (eA, J);

7. the essential variations eV({Sn) for the projection surfaces {Sn converge to

eVCSo) for i = l, 2, 3.

A proof may be made by paralleling the proof for the theorem in V, 9, us-

ing the modified closure theorem in II, 15.

14. The preceding theorem permits the following addition to the results

in IV, 10-13. A proof is similar to that in V, 12.

Theorem. Assume that for a continuous surface So there exists a sequence of

surfaces Sn such that Sn converges to S0, eA (Sn) converges to eA (So) which is

finite, and each S„ for n = 1, 2, • • • has an AC E representation. Then a neces-

sary and sufficient condition that a representation [x0(u), 23o] for So, for which

the triple S(u, [x0, 23o]) of ordinary Jacobians exists almost everywhere in 23°,,

be absolutely continuous (eA, J) is that [xo(u), 23o] be AC E.

15. Corollary. A necessary condition that a representation [x(u), 23]/or

a continuous surface S be absolutely continuous (A, J), where A(S) is the

Lebesgue area of S and J(u, [x, 23]) is the triple of ordinary Jacobians is that
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[x(u), 33] be AC E; if [x(u), 33] is absolutely continuous (A, J), then the

Lebesgue area A (S) equals the essential area eA (S). A sufficient condition that a

representation \x(u), 33] for S be absolutely continuous {A, J) is that \x{u), 33]

be AC E and eA(S) =A(S).

Proof. The second assertion in this corollary has been established in IV,

14. According to I, 6, 2, there exists a sequence of polyhedra Pn which con-

verge to 5 and for which A (P„) converges to A (S). Now (see IV, 14) each of

the Pn has an AC E representation, and eA (Pn) = A (Pn) for » = 1, 2, ■ • • .

The remainder of the corollary now follows at once from the theorem in V,

14.

The results of Rado and Reichelderfer cited in V, 2 are seen to be a special

case of this corollary and of the theorem in V, 9 (see II, 15; III, 4, 2; V, 7).
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