
SOME EINSTEIN SPACES WITH CONFORMALLY
SEPARABLE FUNDAMENTAL TENSORS

BY

YUNG-CHOW WONG(l)

1. Introduction. When the fundamental tensor(2) of a Riemannian m-

space(3) Vm is of the form (4)

_2 oc, ß, y, S, e = 1, • • • , m,

(1-1) *gaß = \     ■ '     ,      , i,j,k,l=l,---,n,
L  0 c-2gptJ

p, q, r, s = n + 1, • ■ • , m,

where

(1 2) p = pO")> * = •"(*").
gii = gii(xk),        gpt = gPq(xr),

it is said to be conformally separable of the type (n, m — n); the tensors

*gn=P~2gij and *gpq = o-~2gpt, with xr and respectively, as parameters, are

called its component tensors. We shall say that the tensor (1.1) is properly or

improperly conformally separable according as dpp^0, 3i<r?^0(s) are satisfied

or not satisfied.

The tensor (1.1) as a generalization of the ordinarily separable tensor

[l, p. 124](6) was recently introduced by Yano [14], where he proved that

in a Vm with fundamental tensor

= [*gii    ° 1
= L o *gpqy

Presented to the Society, October 31, 1942; received by the editors November 24, 1941.

(1) Most of the results in this paper were obtained while I was a Chinese Ying-Keng

Funds Student visiting Princeton University, for the courtesy of whose authorities, especially

Professor L. P. Eisenhart, I wish to express my most sincere thanks. I wish also to thank Profes-

sor D. J. Struik of Massachusetts Institute of Technology for the conversations we had from

time to time during the preparation of the manuscript.

(2) Fundamental tensors are always supposed to be nonsingular, though not necessarily

definite. All functions appearing in this paper are assumed to have differentiability properties

adequate to the part they play in the discussion.

(3) We denote by V, S, E a Riemannian space, a space of constant curvature, and an Ein-

stein space, respectively. The dimensionality is denoted, if necessary, by an index at the lower

right-hand corner.

(*) An index has the same range throughout this paper. An index which appears twice in

an expression is to be summed over the appropriate range. A free index of a tensor equation

assumes each value of its range. A numerical index at the upper right-hand corner of a letter

means an exponential, except in the case of the coordinates of, & or xf.

(s) We use the notation da^d/dx".

(*) Such a reference is made to the literatures listed at the end of this paper.
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n> 1, the subspaces xr = const, are totally umbilical, if and only if *g,y is of the

form [p(xa)]~2 ga(xk). He also proved that if a conformally separable tensor

represents(7) an Sm (that is, an w-space of constant curvature), then each of

its component tensors, if it is of dimension greater than 2, represents S's.

By definition, an Einstein space E is a V whose Ricci and fundamental

tensors differ only by a scalar factor(8). The result mentioned at the end of the

last paragraph no longer holds if S is replaced by E, although an 5 is a special

E. In this paper we present a complete study of the conformally separable

tensor which represents an Em and each of whose component tensors either is

of dimension less than 3 or represents E's. It is found that the construction

of such a conformally separable tensor is invariably reduced to that of the

fundamental tensor g<;- of an En or a Vi for which the following equation

admits a solution (9) for y:

(1.3) y.a = - ha,

where the comma denotes covariant differentiation with respect to gij, and

/ is an unspecified scalar. We shall be content with this result, because the

latter problem has already been considered in detail by Brinkmann [2, 3] in

his study of E's which are conformal to each other.

In §2, some results concerning the differential equation (1.3) are given.

In §3, we find the expressions for the Riemann and Ricci tensors of the tensor

(1.1) in terms of those for the same-named tensors of its component tensors.

Concerning a properly conformally separable tensor of the type (w>l,

m — n = 1), which we consider in §4, we prove (1) that if an Em admits a one-

parameter family of totally umbilical hy persurf aces, then they are conformal to

one another and each of them has constant scalar curvature (Theorem 4.1); and

(2) that a one-parameter family of conformal En's with fundamental tensors

[p(xk, xm) ]~2ga(xk) can in general be imbedded isometrically in an En+i as totally

umbilical hypersurfaces (Theorem 4.2). §§5 and 6 are devoted to the study of

a properly conformally separable tensor *ga$ of the type (w>l, m — n>l)

which represents an Em and each of whose component tensors is either of di-

mension 2 or represents E's. By means of Theorem 5.1 on a certain system of

differential equations, we show that *gaß is conformal to an ordinarily separable

tensor of the type (n, m—n) (Theorem 5.2). This result enables us to prove

that the component tensors of *gaß have the property that, either each of them

represents E's or Si's, or n = m — n = 2 and neither of them represents Si's

(Theorem 6.2). Characteristic properties of *gaß are then derived (Theorems

6.3 and 6.4), showing how the construction of *ga$ depends on that of the

(7) We sometimes find it convenient to express the fact that ga is the fundamental tensor

of an 5 (or E) by saying that ga represents an 5 (or E).

(8) A Va is always an £2, and an £3 is identical with an Sa [13J. For convenience, we agree

that whenever we speak of an E, it is understood that E is of dimension greater than 2.

(9) By "solution" we always mean non-constant solution.
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fundamental tensor of an En or a F2 which admits a solution of (1.3).

The discussion of improperly conformally separable tensors is much easier

and is carried out in §§7 and 8. In §9, the theorem of Yano concerning an Sm

with conformally separable fundamental tensor is extended, and the paper

ends at §10 with some canonical forms for the conformally separable tensors

of the type (2,2) which represents Et's.

We conclude this introduction with the following remarks. Since the

component tensor *£,-,• of the tensor (1.1) can be written as

-p(x*, *')T*,rP(x\ g)T-t     * 2

where xT0 are certain fixed values of xr, there is no loss of generality in assum-

ing that the function p is such that

(1.4) p{x, *'») = 1;

in particular, if dj,p = 0, we may assume that p = l. This assumption will be

made whenever it is desirable. A similar remark holds for the function <r.

Finally, the fundamental tensor of every F2 referred to orthogonal coordinate

curves is conformally separable, and for this reason we shall always suppose

that m>2.

I. Preliminaries

2. The equation y,„ = — Iga- In what follows we have frequent occasions

to meet the following differential equation in the unknown scalar y:

(2.1) y.ij = - Iga, f,h,i, J,h, I - 1, • • • , n (> 1),

where / is an unspecified scalar and the comma denotes covariant differentia-

tion with respect to the fundamental tensor g,-,-. This equation has been con-

sidered by several authors for different purposes (Brinkmann [3, pp. 121—

124]; Fialkow [7, pp. 426-427; 8, pp. 471-473]; Yano [16]; Delgleize [4]).
Here we confine ourselves to the case when the Ricci tensor Ri} of the F„

with fundamental tensor g,y satisfies

(2.2) Rti =>» — (« — l)agi„ a = a scalar,

that is, when F„ is a F2(a) or an £„(a)(l°). In the latter case, (2.2) implies

that a = const. [5, p. 93, Exercise 5].

We first find a geometric meaning of (2.1). The Ricci tensors R^ and

OI g<y and gn = y~2gij are connected by [5, p. 90, (28.6)]

(2.3) %, - Rn - („ - 2,2£ + 4_ £*ü + <„ _ o £a*if|.
y L      y y2 J

(io) we denote an £ or 5 of scalar curvature a by E(a) or 5(a), respectively.
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From this it follows at once that

Theorem 2.1. Given an En (n>2) with fundamental tensor the Vn with

fundamental tensor y~2gij is also an En, if and only if y satisfies (2.1).

By definition, a F„ is an Sn if the Riemann tensor of V„ is of the form

(2.4) R\jk = a{oljgih — olgi,), a = const.

A consequence of this is that an Sn is necessarily an En. The Riemann

tensors R\^ and R'vt of gij and |,v = y-2g.-yare connected by [5, p. 90, (28.10)]

(2.5) Rlijk = Rli,k + (o'jy.ik — sly.idy1 + gU(y.*Mt» ~ y.hkgu)y 1

fh I 1-2
- g y.fyAojgik - skgii)y ■

From (2.4), (2.5) and Theorem 2.1 it can easily be proved that

Theorem 2.2. Theorem 2.1 remains true when En is replaced by Sn.

We now suppose that (2.1) has a solution y. The integrability condition of

(2.1) is

(2.6) Riiky.i = y,ijk — y,iki = — gal.k + giJ.j.

Transvecting this by the contravariant components g'1' of gij, we have

(2.7) Rlky,i= ~ [n- \)I,k,

where Rt = ghlRhk. When (2.2) is satisfied, (2.7) becomes

(2-8) ay,k =

from which it follows that

(2.9) I = I(y),      a = a{y) = dl/dy.

By differentiating g^y.iyj and then making use of (2.1) and (2.9), we obtain

(g^y.iy.d.k = - 2/(y)y,*,
so that

(2 • 10) g^y.ty.i = - 2 f I(y)dy m - 2J(y).

If Vn is an En or S2, o = const. For this case, it follows from (2.9) and

(2.10) that

(2.11) I(y) = ay + f,      ry.iy.i = - (ay2 + 2fy + ä),

where / and ä are two constants. Summing up the preceding results we have

Theorem 2.3. Let a V„ admit a solution y of (2.1). Then equations (2.9) and
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(2.10) hold if Vn is an V2; and equations (2.9), (2.10) and (2.11) hold if Vn is
an En («>2) or S2-

To find a meaning of the constant ä appearing in (2.11), we use (2.1), (2.2)

and (2.11)2 in (2.3), and obtain

(2.12) Ha - - (»$sr*#*

This shows that gn = y~2gn is the fundamental tensor of an En(a) or S2(ä).

Hence we have

Theorem 2.4. If gtj is the fundamental tensor of an E„(a) or Sz(a) and y

is a solution of (2.1), then y~2ga is the fundamental tensor of an En(a) or Si(a),

where ä is determined from (2.11)2.

We can also prove that

Theorem 2.5. Ifga = y2gijis the fundamental tensor of an S2 and y satisfies

the equation

(;)«--¥•

where the solidus denotes covariant differentiation with respect to f ,7 and I is an

unspecified scalar, then g,y is also the fundamental tensor of an S2.

Proof. On account of the preceding theorem, we need show only that (2.1)

is satisfied. Now it can be easily verified that if Wi is any vector, then its

covariant derivatives wqt and w,-,y taken with respect to g,j and gij = y2gij,

respectively, are related by

(2.13)        Wi/, = Wi,, 4- tw,0,i + w,jy,dy~l — iaihky.hy,k-

Therefore we have, from hypothesis and by (2.13),

2y/«y/,--ri„-(I) =_^+
\ y I m y2 f

1 / 2y,iy,j \
=--2\y.u H-iiiihky.hy,k J +

2y,iy,i

y \ y / y3

y.a , _ ghky,hy,k

+

which shows that y satisfies an equation of the form (2.1), as was to be proved.

Canonical forms for the fundamental tensor of an E„ which admits a

solution y of equation (2.1) have been given by Brinkmann [3]. We shall not

enter into the detail of his results, but merely mention the main fact that the

construction of such a canonical form depends, according as g'» y,i y.j^O or

= 0, on the fundamental tensor of an arbitrary £„_i or on the fundamental



162 Y. C. WONG [March

tensor of an -En_2 which contains a parameter and satisfies certain differential

equations.

If a Vn with nonzero scalar curvature a, which may or may not be con-

stant, admits a solution y of (2.1), then it follows from (2.9) and (2.10) that

t**y,0,il*Q. Consequently, we can show, by following Brinkmann's method,

that the fundamental form of Vi can be reduced to

(dx1)2
(2 .14) - —-— + 2e/(s1)(rf*2)2.

2J(xl)

where e= +1 and J (#') is defined by (2.10). Conversely, if the fundamental

form of a F2 is of the form (2.14), where J(x*) is any function of x1, then y = xl

is a solution of (2.1).

Finally, we remark that for any F„ the following particular case of equa-

tion (2.1):

(2.15) y.,, = 0

admits a solution, if and only if F„ has a family of parallel totally geodesic

hypersurfaces, or what amounts to the same thing, a field of parallel vectors.

3. Fundamental relations. From (1.1), it is evident that the components

of the conformally separable tensor *gaß and those of its component tensors

*gij and *gvq are connected by

*gip = *g     =0, *g   *gik = Sk, *g    *gpr = 8r,

(3-1) *gij = P    gii, *g     = Pg    , g   gik = 5*:,

gpi = «   gp«> g     m 9 %    , g   gpr =

where 6* and 5? are Kronecker deltas. Denoting by *Tyaß,'!%, T^the Christoffel

symbols of the second kind for the fundamental tensors *ga&, *ga, *gP9. re-

spectively, we have [14, (3.3)]

*r*-='r*-      *rp-=*? ■/       *r* =-05*1ti — 'in '»j — gtiP j '■pi Ppvn

*r  = 'r        *r  = *f a       *r  = — a-sL pq 1 pqf X pq Spq°   J 1 tq V l"qi

where

pp = dp log p, <r< = di log cr,
(3.3)

The Riemann tensor of *gaß is defined by

4 C £ 5 < 8 e

*Raßy = ^*raT — dT*ra/3 4- *ra7*rj3 — *r«s*räT.
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If the values of *TZß given by (3.2) are used, then with some calculation we

find

*Rlijk = 'Rlijk — pPpp(8)*gik — sl*ga),

i it       it i
*Rijp = (Sj&i - *g *gid(dkpp + ppak) = — *Ripj,

*Rpik = o,(dkpp + ppck) — 8k(djPp + Ppffj),

(3.4) = 0,

* i
pkgi

Rlpqk = 8lkP(—\   4- *gp,*g'°{—) =-

\ P /\pq \ <r / ;kj

*Rpqr  = *ghl[*grP(d<,Crh + PqCfh) ~ *gpq{drOh 4" Pr^h) ],

where, as well as in what follows, the semi-colon denotes covariant differen-

tiation with respect to *gtJ- or *gpq, and 'RliJt is the Riemann tensor of *gij. In

deriving (3.4) use has been made of the following formulae:

iii        i ik . i

Tu = Ta - 8iPj - 8jPi -f gag Pk       15, p. 89 (28.3)],

(3.5) dk(*gpqcl) m *gpq{- 2cka - *gU'V,kiaj - tV 4" *g V/),

dqpp —    TpqPr — ppPq —   ~ P\~ ]

where T'a denotes the Christoffel symbols of the second kind for gi, .The ex-

pressions for the remaining components of *R'aßy are obtained from (3.4) by

interchanging the two sets of indices k, I) and (p, q, r, s). We remark

that (3.4) can be shown to be identical with the Gauss-Codazzi-Ricci equa-

tions [5, pp. 162-163, (47.11), (47.12), (47.14)] for the subspaces xr = const,

in the Vm with fundamental tensor *gaß.

The components of the Ricci tensor *Raß = *R1ßy of *gaß are readily found

from (3.4) by contraction; they are

— *Rip = (n — \)diPp + (m — n — \)bvOi + (m — 2)ppOi,

*Ra = 'Ru + im - n)a(^

(3.6)

*RPq = 'RPq -\- np

+ giigp"\p(-) +(«-l)p2(-) (—) 1
L   \p/;Pq \p/;p\p/;jj

(7)\ P /\Pq

+'"«"['(t)„(+(— -^(tUtU
where '2?<y {'Rpq) is zero or is the Ricci tensor of *g</ (*gpq) according as

*gn (*gpq) is of dimension 1 or greater than 1.
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II. CONFORMALLY SEPARABLE TENSOR OF THE TYPE (w>.l, m — W = l)(n)

4.1. Scalar curvatures of totally umbilical hypersurfaces in an Em. A

conformally separable tensor of the type (w>l, m — n=l) may be taken as

,        VP'ha   0"1 , ,     «. ß, 7, S = 1, • • • , m (= n 4- 1),
(4.1) *ga# = I I, e = + 1,

L   0    e<r_2J »,J, k, I -« 1, • • • , «,

for, we may suppose that + gmm has been absorbed in a-2. From (3.6) it follows

that the condition

(4.2) *Raß = - (m - l)c*ga(J, c = const.,

for the tensor (4.1) to represent an Em(c) is

dip™ 4" Pm<r,- - 0,

'Rii + J—) +*gii*r,"\p(-)   +(^-2)p2(-) (—)
\<r/;ii L   \p/;mm \ P / ;m\ P / ;mJ

(4.3)
= - (m - l)c*gu,

(m - l)p( —)     4- *gmm*giia(—)   = - (m - l)c*gmm,

where, we repeat, *gm™ = l/*gmm = ea2,       is the Ricci tensor of *gijt and the

semi-colon denotes covariant differentiation with respect to      or *gmm.

If we write

(4.4) *gu'Rn =- (#»- l)(m - 2)*a{xk, xm),

then, by definition, *a(xh, xm) is the scalar curvature of *ga=P~2gij- We shall

now prove that *a(xk, xm) is independent of xk.

Transvecting (4.3)2 and (4.3)s by *gij and *gmm respectively, and taking

account of (4.4), we obtain

\* / Hi

— {m — l)(m — 2)*a(xk, xm) + *g{

+ («- V*gmm\l>(—)    +(™-2)p2(-) (—)
(4.5) L    \p/;mm \p/;m\p/;mJ

= - (m - l)2c,

(m - p( —)     + *gii<r(—)    = - (» - l)c.

When the latter equation is subtracted from the former, and ea2 is used in

place of *gmm, the result is

C1) In §§4.1 and 4.2 we do not confine ourselves to properly conformally separable tensors,

but ä complete discussion of improperly conformally separable tensors is reserved for §§7 and
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(4.6) *a(xk, xm) - e(cPmy = c.

If dmp = 0, this reduces to

(4.6') *a{xk, *«*) = c.

If dmp7*0, then equation (4.3)i can be written

dip.<m

4- at = 0,   that is,   di log (apm) = 0,

which gives

(4.7) = z(xm),

where z is a function of xm alone. Therefore equation (4.6) becomes

(4.8) *a{xk, xm) - e[z(xm)]2 = c.

This equation and (4.6') show that *a(xh, xm) does not depend on xk, as was

to be proved. Hence

Theorem 4.1. If a conformally separable tensor of the type (n>l,m — » = 1)

represents an Em, then its first component tensor represents Vn's of constant

scalar curvatures.

' And geometrically (12),

Theorem 4.1'. If in an Em there exists a one-parameter family of totally

umbilical hyper surf aces, then these hypersurfaces are conformal to one another

and each of them has constant scalar curvature. If, in particular, the family

consists of totally geodesic hypersurfaces, then they are isometric to one another

and their constant scalar curvatures are all equal to the scalar curvature of Em.

The latter part of this theorem follows from (4.6').

4.2. An imbedding theorem. Continuing our discussion, we now write

*a(xm) = *a(xk, xm), and proceed to prove the following

Theorem 4.2. In order that the conformally separable tensor (4.1) with

dmp?£0 may represent an Em(c) and its first component tensor *gij=p~2gij E„'s

or Si's of scalar curvatures *a(xm), it is necessary and sufficient that when

is assumed, the equations

(,2) A more general result can be obtained by using the Gauss-Codazzi equations of a Fnin

an En+i. Indeed we can prove that if an En+i has a totally umbilical hypersurface V„, then the

scalar curvature of V„ is constant. But we shall not go farther with this result, because Theorem

4.1' serves only as a preliminary to the imbedding Theorem 4.2'.

(4.9)
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(4.10)

(4.11)

Rii = — (« — l)agi

p.a ~ gu,

a — const.,

(4.12)
(p»)2

*a(xm) — c

be satisfied.

Here we write (4.11) to mean the equation p,a = —osga, where u is an un-

specified scalar. This notation will be used whenever desirable; it enables us

to avoid the unnecessary introduction of many symbols to represent scalar

factors of proportionality.

We know that in a Vm the hypersurfaces xm = const., whose (first) funda-

mental tensors are nonsingular, are totally umbilical if and only if the funda-

mental tensor of Vm can be reduced to the form (4.1) [5, pp. 144, 182]. We

also know from Theorem 2.1 that when n>2 and (4.9^,is satisfied, equations

(4.10), (4.11) are the conditions that

that is that *g<j=p~2gn represents En's. Accordingly Theorem 4.2 may be

stated geometrically as follows.

Theorem 4.2'. Let c be any constant and let *g,y= \p(xk, xm) \~2ga{xk) with

xm as parameter and dmp^0 represent oo1 Vn's whose scalar curvatures are not

all equal to c. If the Vn's are En's (»>2), there exists an En+i(c) in which they

are imbedded isometrically as totally umbilical hypersurfaces. If the V„'s are Si's,

a necessary and sufficient condition that they may be imbedded isometrically in an

Ss(c) as totally umbilical surfaces is that, when p(xk, x0n) = l is assumed, the

tensor p,,-, differ from g,j by a scalar factor. The fundamental tensor of the im-

bedding En+i(c) or 53(c), if it exists, is

where *a(xm) denotes the scalar curvatures of the given En's or Si's.

We shall now prove Theorem 4.2. Since by hypothesis dmp^0, equations

(4.6), (4.7) and (4.8) are consequences of (4.3), as we have seen in §4.1. If

we solve (4.6) for ea~2, the result is (4.12). Hence Theorem 4.2 will be proved

if we can show that in consequence of(u) (4.7), (4.8), (4.9) and (4.13), equa-

tions (4.3) reduce to (4.11).

|$f. Now equation (4.3)i is satisfied because of (4.7). When (4.13) is used,

equation (4.3)2 becomes

(4.13) 'Rh = - (» - l)*a(**)**.7.

(1S) We observe that equations (4.6)-(4.8) and (4.12) are unaffected by the supposition (4.9).
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)   = j- (m - l)c + in - l)*a(x"')

_ *ff mm

which is evidently equivalent to (4.5)i and

(4.14)

But equation (4.5)i is a consequence of (4.7), (4.8) and (4.3)3, as is evident

from the way in which (4.7) and (4.8) were derived. Thus, because of (4.7),

(4.8) and (4.13), equations (4.3) are equivalent to (4.14) and (4.3)j. In what

follows we shall reduce the latter two equations successively to (4.16), then

to (4.20), and finally to (4.11).

Comparing (4.14) and (4.13) with (2.1) and (2.2), it follows from (2.11),

that equation (4.14) can be written

(4.14') )   = - [*a(xm) y + »(*")]**«,

where w(xm) is a function of xm alone. In virtue of this, equation (4.3)3 be-

comes

(4.15) e<r2p(—)     + c - *a(xm) - <rw(xm) = 0.
\ P /\mm

Now
Pm

Pa-
a.„--(-7)-'-(-7)

= — (- a. log — 4- (i/2)am log *gmn\
p \ p /

r _
L       z{xm) J

P« P PmT Z'(xm)-
— dm log-= —-
P O-pm P

by (4.7), where and in what follows, the prime denotes differentiation. Sub-

stituting the above expression in (4.15) and then using (4.7), (4.8) and the

equation obtained by differentiating (4.8), we find

*a'(xm) *a'(xm)
(4.15') w(xm) -  - ez'(xm) = —

2z(xm) 2ap„
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Because of this, equation (4.14') becomes

/ 1 \           1 r             *a'(xm) 1
(4.16) (_)=-_ *fl(*~)-^—~ hi,-

This is an equation which, because of (4.7) and (4.8), is equivalent to (4.14)

and (4.3)3.

We now express (4.16) directly in terms of p and gij. To do this we make

use of (4.7) and the following formula, which can easily be proved by means

of (3.5)i:

<«.»)      (i) -±(4.) --_s..(±),,s,
\o-/;ii      p \<r / ,a       a \o-/,h

where as usual the comma denotes covariant differentiation with respect to

gij. Equation (4.16) then becomes

[- *a(x™)Pm + (1/2)V(*») 4- p*"(p«).«>.»]*/

(4 • 18) / p., A
= P(dmp),ij — (dmp)p,ij = p23m^-J,

because (dmp),ij = dm(p,ij). On account of (4.9), the scalar curvatures a = *a(x0>)

and *a{xm) of gij and p_2g»/ are connected by [5, p. 90, (28.7)]

2
(4.19) *a(xm) = ap2 4-PghkP,hk - ghkP,hP.k.

n

By use of this equation and its partial derivative with respect to xm, we can

easily verify that the coefficient of g.yin (4.18) is

1
-ghk[p(dmP).hk — (dmp)p,hk\.
n

This shows that, when (4.9) is supposed, equation (4.18), and hence also

(4.16), are equivalent to

(4.20)

Finally, to reduce this to (4.11), we integrate it with respect to xm and

obtain

(4.21) —+Tii~gij,
P

where Tu is an integration tensor independent of xm. Now it follows from

the very definition of partial differentiation that for any function <p{xk, xm)

of xk and xm,
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Therefore, in consequence of (4.9), we have (p,,-)»"»-^ = 0, (p,u)*«>-zS = 0, and

whence, if we put xm = x™ in (4.21), the result is 7\/~g,-3-. This shows that (4.21)

and hence also (4.20) are equivalent to (4.11). The proof of our theorem has

thus been completed.

Added in proof. In connection with Theorem 4.2' I may mention that in

a forthcoming paper of mine [17] a necessary and sufficient condition is ob-

tained for a Vn to be imbeddable in an En+i as a member of »1 totally umbili-

cal hypersurfaces. There Theorem 4.2' appears as a corollary to a more

general result, and all the confqrmal-Euclidean V„'s which satisfy this con-

dition of imbeddability are determined.

III. Properly conformally separable tensors

of the type (»>1, m — w>l)

5.1. An auxiliary theorem. In this section we shall consider the con-

formally separable tensor

rp-2g,7    0 "I
(5.1) *gaß =\    n       .     \, i,j,k,l=l,---,n,

L  0 <r*g„J
p, q, r, s = n + 1, • - • , m,

where

git ** ««(**)• gvi '= gpt(xT)\ p = p{xa), o- = <r(xa), dpp^0, dta^O.

For (5.1), we have (cf. (3.6))

— *Rip = (n — l)dipp + (m — n — l)dpo-< + (m — 2)ppait

+ ̂v{K7l/(w-1)K7l(7)J'(5.2)

*Rpt = 'Rpl + np(—)
\ p/;Pq

where the signs (.) (') indicate, respectively, the covariant differentiation and

the Ricci tensor referred to *g,-y or *gPt. We suppose as usual that

(5.3) p(*\ xT) = 1,      a(xt, /) = 1.
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To establish our main result, Theorem 5.2, in the latter part of this section,

we need the following auxiliary

Theorem 5.1. For the properly conformally separable tensor (5.1) of the

type («>1, m— «>1) with (5.3) satisfied:

(i) The system of equations

(5.4) — *Rip = (n — \)dipp 4- (f» — n — l)dp<7,- + (m — 2)pP<n = 0

is equivalent to

P = P(y, 2),       <r = <r(y, z),

(5.4') p(y, z0) = 1,     <r(y0, z) = 1,

(« — l)d„p* + {m — n — \)d,ay + (m — 2)pz<rv = 0(u),

where y = y(xk), z = z(xr) are any functions of the arguments indicated, and

yo = y(*S). Zo = z(xq).
(ii) If the tensors gij and gPQ are considered as given, the following system of

equations in the unknown functions p(x") and cr(x"):

(5.5) ! *Rip = 0,

(5.5) 2 ~ 'Rti ~ *RPq ~ 'Rp, ~ *gp,

is equivalent to the system of equations consisting of (5.4') and

tm (7)Ww.
y.a ~ z.p? ~ gp<,>

in the unknown functions y=y(xk), z=z(xr), p = p(y, z), <r=a(y, z), wAcre J

ömJ Q are any functions of the arguments indicated.

5.2. Proof of Theorem 5.1 (i). Equation (5.4) can be written

— (m — 2)ppOi = dpdi[(n — 1) log p 4- (m — n — 1) log a].

Differentiating this partially with respect to x" and then taking the alterna-

tion in the indices p and q, we get(16)

— (m — 2)(ffidlqpp] + PiPd9i<Ti) = 0,

that is,

(5.6) a Pipdrffi — 0.

When the value of d9o\ from (5.4) is substituted (which is possible because

m—n>l), this becomes

(") Here we write dv = d/dy, d, = d/dz, p, = d, log p, <rv = dy log a.

(u) We write, for example, 3[,pp) =d5Pj> —drps.
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— P[j>[0 — l)d«]P< + (m — 2)pt]a-i] = 0,

which, since »>1, reduces to

P{pdq]Pi = 0.

This shows that a function 9(xk, xT) exists such that

dipp = dpPi = (di log 0)pp,

and hence

Pp - e(x", *rw*r).

where wP(xr) are w — n functions of xT alone. Now from the very definition of

partial derivative, we have that for any fixed values x" of x",

dP log p(x\, *") = [dp log p{x , /)]x*-x».

Therefore, if we write z=p{x\, xr) and remember that pP = dp log p, then it

follows from the two preceding equations that

a„ log z =        »        ) = ———- pp,
6(xk, xr)

that is,
6{xk, xr)

i(*f, *r)

which shows that p can be expressed in terms of xk and z alone; thus,

(5.7)„ p = p(xk, z).

Since (5.4) as well as the hypothesis following (5.1) remain the same when

p, a; n, m—n; i, p are interchanged, we have, by symmetry,

(5.7)b o- = o-(y,x'),

where y is defined by y=a(xk, x[).

From (5.7) we have

Pp = PzdpZ,   diPp = (dipz)dpz;       a = <rvdiy,   dp<n = (öp<rv)ö,y,

where pt=dz log p, <ry = dv log a. Using these in

(5 .6)b <r[iö)]Pp = 0,

which is the symmetric expression of (5.6) a, we find

<Tv(dpZ)(dliy)dnplt = 0.

Since by hypothesis 9pp^0, 3,<r?^0, so that o-^dpZ^O, the above equations

are equivalent to
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{d,iy)dnPz = 0.

From this it follows that p2 can be expressed in terms of xr and y alone. But

on the other hand, (5.7)a shows that pz can be expressed in terms of xk and z

alone. Therefore pz is a function of y and z alone, and hence p must be of the

form
p = F(x*)4(y, z).

Taking (5.3) into account, we have

p(xk, xr)     F(xk)<b(y, z)

P     p(xk, x$     F(x")4(y, z„)'

where za = z{xrQ). Thus

(5.8), p = p(y, z),     p(y, z0) = 1

and by symmetry,

(5.8)b o- = <r(y, z),      a(y0, z) = 1.

Now for p and a of the form (5.8), equations (5.4) become, after omitting

the non-vanishing factor (6\y)(dpz),

(5 .9) (» — l)dvp* + (m — n — l)dzay + (m — 2)pzay = 0.

Equations (5.8) and (5.9) are identical with (5.4'), and therefore Theorem

5.1 (i) is proved.

Remark. For any Vm with fundamental tensor (5.1), *Rip = 0 is the con-

dition that there be n independent congruences of Ricci curves of Vm lying

in the subspaces xT = const. Hence from (5.8) we have incidentally:

If, in a Vm with a properly conformally separable fundamental tensor of the

type (w>l, m — n>l), the subspaces xr —const, contain n independent congru-

ences of Ricci curves of Vm, then the oo m~n subspaces xr = const, and the oo n

subspaces xk = const, consist of oo1 families of oo"1-"-1 isometric Vn's and oo1

families of » n_l isometric Vm-„'s, respectively.

5.3. Proof of Theorem 5.1 (ii). By Theorem 5.1 (i), equation (5.5)!,

which is identical with (5.4), is equivalent to (5.4'). If

y = y('y)i    z = z('z)

is any nonsingular transformation from y, z to 'y, 'z, then (5.4') become

p = p[y('y), z('z)],      a = <r[y('y), z('z)],

(5.4") P[y('y), z(%)] = 1,      <r[y('y„), z('z)] = 1,

(n — l)d'yp'Z 4- (m — n — l)d'Zcy -\- (m — 2)p>z<7>y = 0,

where 'yo, 'zo are any roots of the equations y('y)=yo, z('z)=z0. Hence
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Theorem 5.1(h) is true if a suitable nonsingular transformation y=y('y),

z — z{'z) exists such that equations (5.5)2 reduce to

(5.5")
(7)*.» = '<#'*).   {^jd'-p = rw*

We now proceed to prove that this is the case.

By (5.2)2, equation (5.5)2a is equivalent to

(5.5'")2a

When the covariant derivative (1/V);iy taken with respect to *ga=p~2gij is

expressed in terms of the covariant derivative (l/<r),<j taken with respect to

gn, equation (5.5"')2a becomes (cf. (2.13))

(5.5«')». (-)   + Pi(-) +Pi(-) ~gi,.
\cr/,ij        \o-/,j \o-/,i

By (5.4')i, p and a are functions of y and s, and therefore

(1 \             dvc               (dva)2 dydyC

—) = —r   +2 —r~ y**y.<-r*y«y.h
tr / ,a          <r2                  a3 <t

dyp
Pi = — y,i-

p

When these are used in (5.5iv)2a, the latter becomes

QyO        ,  |~„ (<V)2      dydyff d„o- dypl

- y.H +   2-2 —-y,{y,f ~ gij,
a2 L     <r3 a2 a2    p J

which, because dya^O by hypothesis, can be written

/ P2<V\
(5 .10) y.a + \ dy log —— j y,,y,,- ~ gii.

A consequence of this equation is

p2dyO-
(5.11) By log-= a function of y alone.

a2

For, if we write (5.10) as

y.a + My, z)y,iy,j~ gtj,
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and eliminate y,,,- from it and

y,a + My, *i)y.&i ~ gu,

where Zi is a constant, we find

[X(y, z) - X(y, zi)]y,iy,i ~ g4i.

Since ga is of rank greater than 1, the coefficient of y,,- y,y in the above equa-

tion must be zero; thus X(y, z) =X(y, zi), which proves (5.11).

This being the case, we have by integration of (5.11) that

(s.12). —~ - /(joeoo.

In like manner we derive from (5.5)2b that

(5.12) b —r--J(y)P(*).

Here /, 7, P, Q are some functions of the arguments indicated.

Now consider the functions 'y, 'z introduced (to within integration con-

stants) by

(5.13) 'y = fl(y)dy, j P(z)dz.

Since djp^O, d^ff^O by hypothesis, it follows from (5.12) that neither I(y)

nor P(z) can be identically zero. Consequently, (5.13) define a nonsingular

transformation, which evidently carries (5.12) into

p2d'„<r cr2d>zp

(5.14) ! ~~ « '<?('*),   , —-^='J('y).

Finally, if we recall the way in which (5.10) was derived from (5.5)2a, it will

at once become obvious that the expression for (5.5)2a in terms of 'y and 'z is

obtained by replacing y by 'y in (5.10); that is, (5.13) transforms (5.5)2a into

/ p26V\
y.U + [d'v log —— \ 'y,i'y,i ~ gu.

In consequence of (5.14)ia, this becomes

(5.14)2a 'y.a~gij-

Similarly, in terms of 'y and 'z, equation (5.5)2b becomes

(5.14)2b 'z,Pi~gv<r

Equations (5.14) are identical with (5.5")2, which proves our theorem.
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Remark. From the above proof, it is easily seen that equations (5.5)i,

(5.5)2a, by themselves, are equivalent to (5.4'), (5.5')i», (5.5')2a; and equa-

tions (5.5)i, (5.5)2b, by themselves, to (5.4'), (5.5')ib, (5.5')2b.

5.4 An important property. We are now ready to prove the following

Theorem 5.2. // a properly conformally separable tensor *gaß of the type

(n,m — n) represents an Em and each of its component tensors either is of dimen-

sion 2 or represents En's, then *gaß is conformal to a separable tensor of the type

(n, m — n).

Proof. By supposition, we have

(5.15) *Rap - — {m — \)c *gaß, c - const.,

(5.16) . 'Ri, = - (n - \)*a{xk, x')*gij,

(5.16) b 'Rp, = - (m-n - l)*b(xk, xr)*g„.

As a consequence of these equations, equations (5.5) are true. Thus by Theo-

rem 5.1 (ii), two functions y=y(xk), z = z(xr) exist such that the following

equations are satisfied:

{p = p(y, z),      a = c(y, z),

p(y, zo) = 1,      o-(y0, z) = 1,

(n — l)dypz 4- (pi — n — l)dz<Ty 4- (w — 2)pzay — 0.

(7) d'p = J{y)'

Z.pq ~ gpQ-

Our theorem will be proved if we can show that as a result of (5.16),

(5.17) and (5.18), the function p/a is of the form 'p(y)/V(z). We treat the

two cases n>2, m — n>\ and n =m — n = 2 separately.

Case 1. w>2, m — n>\.

Since w>2, we have by supposition that p~2gu represents En's. Therefore

it follows from (5.16). and (5.17)i. that *a(xk, xr) =*a(z). On account of

(5.17)2., gn is the fundamental tensor of an £„, whose scalar curvature is

a = *a(z0). Thus, by Theorem 2.1, equation (5.16). implies that

(5.19) p,,-,- ~ gii.

In virtue of (5.17)i., this can be written

(d»p)y,a + (dydsp)y,iy,i ~ gii,

which becomes, because of (5.18)2a,

(dydyp)y,iy,j~ gij.
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Since gi} is of rank greater than 1, it follows from this that dydvp = 0, whence

(5.20) p = U(z)y + V(z).

Using this in (5.18)i» we have

{-QV-* if U = 0,

dy[-)=-Q(Uy + V)-*={Q
av(Uy + V) 1 if U y£ 0.

Integrating these with respect to y and then making use of (5.20), we find

that for both cases p/V is of the form

(5.21) — =W(z)y+Z(z).

The U, V in (5.20) and W, Z in (5.21) are all functions of z alone.

If either Wor Z is identically zero, p/a will be of the form 'p(y)/'a(z), and

our theorem is proved.

Now suppose that neither IT nor Z is identically zero. When (5.20), (5.21)

are used in (5.17)3, the latter reduces to

(5 22) {m ~ 2)(u'z ~ V'w^wy+Z^

+ (m-n- 1)(WZ' - W'Z)(Uy + V) = 0,

where the prime denotes differentiation. From this it can be proved that

(5.23) WZ' - W'Z = 0.

Assume that this is not true. Then since W^0, Z^O, we have from (5.22)

that

U/W = V/Z = X(z),

where X^Q, otherwise, p = 0 by (5.20). Now it is easily verified that in con-

sequence of the above equations, (5.22) becomes (» — \)(WZ'— W'Z)X = 0,

which cannot be satisfied. Thus (5.23) is true, and consequently W and Z

differ by a constant factor. Hence it follows from (5.21) that p/a is the form

'p(y)/'a(z), and the proof of Theorem 5.2 for the case w>2, m— n>\ is

completed.

Remark. We observe that in the above proof we made use only of equa-

tions (5.16)a, (5.17), (5.18)ia, (5.18)2a, but not of (5.15), (5.16)b, (5.18)ib,
(5.18)2b- Now by the remark at the end of §5.3, equations (5.17), (5.18)ia,

(5.18)2aare equivalent to (5.5)i, (5.5)2a, namely,

*Rip = 0,      *Rit- - 'Ra ~ *gij.

Thus our conclusion that p/a is of the form 'p{y)/'a{z) is in fact a conse-



1943] SOME EINSTEIN SPACES 177

quence of the following equations:

*Rip = 0,      'Ru ~ *gih      *Rii ~ *gii.
Hence:

If, at each point P, coordinates x", of a Vm with properly conformally sepa-

rable fundamental tensor *gaß of the type («>2, w — w > 1), every direction in the

Vn: xT = xT1 is a Ricci direction both of Vm and of V„, then *gap is conformal to a

separable tensor of the type (n,m — n).

Case 2. n = m — n = 2.

In this case, equation (5.19) is in general not true, and we shall base our

proof of Theorem 5.2 on (5.17) and (5.18) alone. Equation (5.17)3 is now

equivalent to

(5.24) dypz + pz<ry = to,      d,<7y 4- Pzo-y = — oi,

where w=w(y, z). If w = 0, then since Pi^O, (5.24)a can be written

d„ log (<rpz) = 0,

which gives us, on integration,

1 <r 1
ap, =->     that is,    — dzp =

V(z) p V(z)

Comparison of the last equation with (5.18)«, shows that o-/p = 'a(z)J{y),

which proves our theorem.

We now suppose that w^Oand always bear in mind that/ = J(y),Q = Q(z).

Then on account of (5.18)i, equation (5.24)a can be written

that is,

/ 1 \     /'     Q<r 6)<r2

In like manner, (5.24)b can be reduced to

.. Qd** _    Q'<r , JQ
(5.25)b —— =-ri-«>•

p1 pz pa

We now find the integrability condition d,dy(l/p) = dydz(l/p) for (5.18)ib

and (5.25)a. Differentiate (5.25)a with respect to z and we have

(5.26)
1 r<r2 2oio-dz<r     2oht2    / 1 \H
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On the other hand we have from (5.18)i

/IN J / 1 \ /' 6> J' 2JQ
(5.27) dJ—   =-,     dydJ — )=-1_2/—=-+—-•

\p/ a2 \p/ °2 cr3 <r2 pV

Using (5.27)i and (5.25)b in (5.26) and comparing the result with (5.27)2, we

find

J'    2JQ   J' (   J\   Q'a    /   Q'o-   JQ    u\   3Q<r ( J'

a2 p2

QtmJ_(_±\ Q° ( Q° JQ  «\ w ( J\
a     j\    <r2/     p3     \    p3     pV    p /     p2   \ <rV

1 rV f   &v    J    co\    2wa2/ J\l

which simplifies into

o>       1 /ff2 2coer20' 2o>2<r\
-(—0,0)---) = 0,

P      J\p2 pHJ Q J

that is,

Jp     d,u     20' 2up2
(5.28) —-+—+-= 0.

c2      w       Q cQ

This is the integrability condition we wished to establish. But because of

(5.18)i, (5.24)b, we have

Jp    d,p up2 u
— =-,        — = — = - d, log (pa,).
a2      p <jQ <r.

Therefore (5.28) becomes

\_03    \pO-y/ JypO-y/

which, by (5.18)i», can be written

(5.29)a a,log-^-=0.
ttfr

Following a procedure symmetric to the above one, we can prove that

<r3

(5.29)b avlog —= 0.

From (5.29) it follows at once that

wp2

(5.30) 5,5, log— = 0,
<r
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which show that p/cr is of the form 'p(y)/'a(z). Thus the proof of Theorem 5.2

is completed.

Remark. The above proof for the case n = m — n = 2 holds also for the

more general case n — m — »>1, but not for other cases. Indeed, when n>l,

m — n>l, equation (5.17)3 may be replaced by (cf. (5.24))

O) CO

dyPz 4" PiO~v =- >       dzov 4" Pz<r» — —
n — 1 m — n — 1

and if we carry out on these equations a procedure similar to that which we

did on (5.24) for the case w^O, then the final result corresponding to (5.30) is

KM - 1          \             (m - n - \      \ "I
-- + 4)logp - (-—+ 4)log<7   = 0.
m — » — 1      /            \   « — 1 / J

This reduces to (5.30) when and only when n = m — n, which proves our asser-

tion. Moreover, since our proof depends only on (5.17), (5.18), which are

equivalent to (5.5), we have

If the fundamental tensor *gaß of a V%n (»>1) is a properly conformally

separable tensor of the type (n, n) and the Ricci tensors *Raß, 'i?tJ, 'Rpq of Vzn

and its subspaces x' = const, and xh = const, satisfy the relations:

*Rtp = 0, - 'Ru ~ *gti,     *RP1 - 'RPt ~ *gpq,

then *gaß is conformal to a separable tensor of the type (n, n).

6.1. Main results. Theorem 5.2 enables us to bring to a satisfactory con-

clusion our study of a properly conformally separable tensor which repre-

sents an Em and each of whose component tensors either is of dimension 2 or

represents E's.

Consider the properly conformally separable tensor

<x, ß, 7, « = 1, • • ■ , m,

(6.1) *gaß = r-*"gaß m T~* P'      1 », j, k, I = 1, • • • , »,
L 0 gP9J

p, q, r, s = n + I, ■ • • , m,

where
ft > 1,      m — n ~> 1,

(6.2) r = r(*«),       ö,t ^ 0,       8pt 7* 0,

Let quantities referred to "gaß, |,/, or gpq and covariant differentiations taken

with respect to them be marked by the signs ("), (~); (•). (/)• Then we have

(cf. (3.2), (3.3))

»r* — Vk       "vT  — Yr        "ry — n
1 jj — X tj, a pq        i. pg, 1 aß <*

if a, ß, y are not all in the same range; and consequently,
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(6.3) T.ip = dpdiT, T:ij = T/ij, T-pq = T/pq,

(6.4) "RiP = 0, "Rij = Rfj,       "Rpq = Rpq.

Also from (6.1) we have [5, p. 90 (28.6) ]

(6.5) *Raß = "Raß - (m - 2) — + "gaß"gy \- — + (« - 1) -^1.
T L      t r2 J

Now suppose that (6.1) represents an Em(c), that is, that

(6.6) *R«ß = — (m — l)c*gaß, c = const.

In consequence of this and equations (6.1)-(6.4), equation (6.5) for (a, ß)

= (i, p) becomes dpdiT = 0, and therefore(16)

(6.7) t = y{xk) + z(xr),

where y^const., z^const. because of (6.2). Hence (6.1) may be written

(6.«  .«-(,+S)-p' °i.(,+S)-f!f n.
L0 gpqA L 0 z2gpqJ

If w>2 and the component tensor *gu= [(y+z)/y]_2g,y represents £„'s

(5„'s), then g<y represents an En (5„), because *gij becomes gtj for z = 0. Con-

sequently, we have by Theorem 2.1

(6.9) (c~y~) .~gih   ttatiS'   ("y") ~gH'

where, as usual, a comma denotes covariant differentiation with respect to

gij. Thus by Theorems 2.1 and 2.2, the tensor y2g,y=g,y is the fundamental

tensor of an En (Sn).

We now suppose, besides (6.7), also that each of the component tensors

of the tensor (6.8) either is of dimension 2 or represents E's. Then it follows

from the above observation that

(6.10) 8 Rh = - (« - l)ä(z*)g,7,

(6.10)b                      Rpq= - (m - n - l)5(Ogpa,

where ä(xk) is constant when n>2, and 5(xr) is constant when m — n>2. On

account of (6.3), (6.4), (6.6), (6.7), (6.9) and (6.10), equation (6.5) for (<x,ß)

= (i, j) and (p, q) become

11)    ~ (m~ 1)CT_2£*'>' = - (» - l)ä(xk)gij - (m - 2)T-lynj

+ iul- (ghky/hk + t'z/rjr-1 + (m - l)(ghky/hy/k + fr«z/rz/,)t-2],

(u) We note that these y, z are not identical with the y, z which appeared in §§5.1-5.4.
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*4s    ~ (m~ l)cr-2gP9 = - (m - n - l)h(xr)gpq - (m - 2)t~Hlpq
(O.lljb r

+ IpA- (ihky/hk + gr'zlr,)t-1 + (m - l)(g**y/*y/fc + gT,z/rz„)t-2\.

From these it follows at once that

(6-12) yia = — Lgu, zipq=—Sgpq,

which, because of (6.10), imply (cf. Theorems 2.3 and (2.9), (2.10)), respec-

tively.

(6.13). V'yuyii = - 2M(y),   L = L{y) = M'(y),  *(**) = ä(y) = M"(y),

(6.13) b g^zlpzlq = - 2r(z),    5 = S(z) = r(z),     5(*') = Hz) = T"(z),

where the prime denotes differentiation. In consequence of these, equations

(6.11) are equivalent to (6.12), (6.13) and

- (m - 1)ct-2 + (* - 1)M" - (m - 2)M't~1

(6.14) = - (m- i)ct-2 4~ {wi — ft — 1)T'f — {vfi — 2)Tt-1

= [nM' + (m- n)T']r-1 - 2{m - \)(M 4- T)t~2.

These last equations together with (6.7) can be solved for Af(y) and T(z).

Indeed, the first equation of (6.14) can be written

(6.15) (m - 2)(M' - T') - {y + z) [(n - 1)M" - (m - n - 1)T"] = 0.

Differentiating this partially with respect to y twice, we find

(m - 2n)M"' - (n - l)(y + z)M" = 0,

which, because M is a function of y alone, gives us Miv = Q. Hence

(6.16) . M(y) = a0 + axy 4- a2y2 + a3yz,

and by symmetry,

(6.16) b T(z) = h + blZ + b2z2 + b3z*,

where the a's and b's are constants. When these values of M and T are sub-

stituted in (6.15), the latter reduces to

(iä=s3 = 0   if 2n,
(6.17) bi = au      b2 = — a2, <

I03 = ü3 if  w = 2n.

Now in consequence of (6.16) and (6.17), equations (6.14) become

(6.18) c =2(a„ 4-&o),

(6.19) as = 0   if  m = 2n = 4 are not satisfied.

Thus, the solution of equations (6.14) is given by (6.16)-(6.19).

By Theorem 5.2, the preceding results prove the necessity of the condition

in the following
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Theorem 6.1. In order that a properly conformally separable tensor *gaß of

the type (n>l, m—n>\) may represent an Em and each of its component

tensors either be of dimension 2 or represent E's, it is necessary and sufficient

that *gaß be of the form (6.8) and equations (6.10), (6.12), (6.13), (6.16)-(6.19)
be satisfied.

The sufficiency of the condition in this theorem can be proved as follows.

If n>2, (6.10)ashows that f.-y represents an E„, and consequently by (6.12)a,

the tensor gij = y~2gij also represents an En (Theorem 2.1). Thus equations

(6.9) are satisfied, and accordingly the component tensor *ga= [(y+z)/y]-ig<j

represents En's. Similarly, it follows from (6.10)b and (6.12)b that if m — n>2,

the component tensor *gpq represents Em_n's. Finally, from the way in which

equations (6.10), (6.12), (6.13), (6.16)-(6.19) were derived, it is readily seen

that if these equations are satisfied, equation (6.6) must also be satisfied.

Hence *gaß represents an Em and our theorem is completely proved.

Now we are ready to establish the following three main results.

Theorem 6.2. If a properly conformally separable tensor represents an Em

and one of its component tensors represents E's or St's, then the other com-

ponent tensor, if it is of dimension 2, represents Si's.

Theorem 6.3. In order that a properly conformally separable tensor *gaß

may represent an Em and each of its component tensors E's or Si's it is necessary

and sufficient that the following conditions be fulfilled :

(1) *gaß is of the form

(2) The tensors gij, gpq each represent an E or Si with scalar curvatures

d, 5 connected by ä+5 = 0.

(3) The equations

are satisfied with a constant f.

If these conditions are fulfilled, the scalar curvature c of *gaß is equal to the

sum of the scalar curvatures of y~2ga and z~2gpq (each of which, as is implied by

(2) and (3), is the fundamental tensor of an E or Si).

Theorem 6.4. In order that a properly conformally separable tensor *gaß

of the type (2, 2), whose component tensors do not represent Si's, may be the

fundamental tensor of an Eif it is necessary and sufficient that (l) *ga$ be of the

form

y = y(xk),       z = z(x"),

la - Mx*)> fps = Ipi(xt)-

y/a = - (äy + f)gi. = ~ (iz + f)g

A = const.,
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and (2) the equations

ä,u - - (1/2)(ä2 + B)gi„ blpq = - (l/2)(52 + B)g

be satisfied with a constant B, where ä, I are the scalar curvatures of the funda-

mental tensors gij, gpq.

The proof of these theorems will be based on Theorem 6.1. For Theorem

6.2, we suppose for the moment that m — n = 2 and that if n = 2, *gi} repre-

sents S2's. Theorem 6.2 will be proved if we can show that in this case

a3 = 0. Indeed, if o3 = 0, then by (6.17), b3 = 0, and consequently, by (6.13)b

and (6.16)b, h(xr) = T"(z) = 2b2 = const. Therefore gpq represents an S2. Since

(6.12)b can be written as (y+z)fPq= —Sgpq, the component tensor *gPq

— (y+z)~2gpq represents S2's. It remains therefore to prove that a3 = 0.

If n>2, a3 = 0 is given by (6.19) without further proof. If w = 2, we have

by hypothesis that *gij=(y+z)~2ga represents S2s, which implies that the

tensor gn=y~2gn also represents an S2. Therefore, in consequence of (6.12)a,

l«'j' = y22»'j's tne fundamental tensor of an S2 (Theorem 2.5). Hence we have

from (6.13)» and (6.16)a that ä(xk) = M"(y) =2a2 + 6a3y = const. From this it

follows that a3 = 0, as was to be proved. Theorem 6.1 has thus been com-

pletely established.

As a consequence of Theorem 6.2, for a properly conformally separable

tensor which represents an Em and each of whose component tensors either

is of dimension 2 or represents E's, only two cases can happen: either (1) each

of its component tensors represents E's or S2's, or (2) m = 2n = 2 and neither

of them represents S2's. They are the two cases which we deal with in Theo-

rems 6.3 and 6.4. For them, we have, respectively,

Now for case (1), the scalar curvatures of the fundamental tensors £,-,-,

Spk ia=y~2ii}> gpq — z~2gpq are, respectively ä = 2o2, h = 2b2, 2o0, 2b0, as follows

from (6.13) and Theorem 2.4. Hence Theorem 6.3 is proved by (6.18) and the

equations obtained by using (6.20) in (6.12) and (6.13).

Finally, to prove Theorem 6.4, we use (6.21), (6.13) in (6.12) and get

(6.22)     y/a * — («i + 2a2y 4- 3a3y2)|,-,-,     z/pq = — («i — 2a2z + 2a3z2)gpq.

Since ä = 2(o24-3ß3y), 5 = 2( —a24-3a3z) by (6.13), and ö3^0, equations (6.7)

and (6.22) can be expressed in terms of ä, h. The result is readily found to be

(6.20)
M(y) = a0 + aiy -f a2y2,

ai = bu

T{z) = b0 + biz + b2z2,

a2 + b2 = 0;

(6.21)
M(y) = a0 4- aiy + a2y2 + a3yz,

a\ = bi,      a2 -f- b2 — 0,

r(z) = bo -f iis 4- b2z2 + b3z\

a3 = b3 7* 0.

(6.23) r = A(a+ I),
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(6.24)      ä,i, = - (l/2)(ä2 4- B)i{i,      h/pq = - (l/2)(52 + B)gpq,

where A = \/(6a3), B = 4(al — 3aias). This completes the proof of Theorems

6.2-6.4.

IV. Improperly conformally separable tensors

7.1. A preliminary theorem. The improperly conformally separable tensor

with p = 1 is

a, p, y, e = l, ■ • ■ , m,

(7.i) *g«ß = \x* ,   , hj.'ht-i, • •
LO er*gP9J

p, q, r, s = n 4- 1, • • ■ , m,

where

a = o(xa),      gu = gij(xk),      gpq = gPt(xr).

We suppose throughout this section that ö,o-^0, that is, that *gaß is not

separable in the ordinary sense. For the tensor (7.1) we have (cf. (3.6))

*Rip = — (m — n — l)dpait

(7.2)

*7?    = '7?   4- *vJVP9 JVP9   I SPQ

:"['(t).„.+ (--',-1,'*(7).,(t).,]-

where the comma denotes covariant differentiation with respect to g,,-. Let

(7.1) represent an Em(c), so that

(7.3) *Raß = — (m — l)c*gaß, c = const.

On account of this, (7.2)i becomes

(m — n — l)dp<rt = 0.

Hence

Theorem 7.1. // the improperly conformally separable tensor (7.1) repre-

sents an Em, then either m = n-\-l or <r is of the form z(x')/y(xk).

We discuss these two cases separately.

7.2. The case m = n-\-l. Since +gmm may be absorbed in cr-2, (7.1) may

be written

For this case 'Rmm = 0, and, in consequence of (7.2), equation (7.3) is equiva-

lent to
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Rh + <*(—)   ' - ncSi

(7.5) W*
■ I — I   = — nc.

If w = 2, we have shown (Theorem 4.1) that g,y represents an S%. We now

consider the more general case when n > 1 and the component tensor g,y is

such that

(7.6) Rij = — (n — \)agn, a = const.,

that is, that g,y represents an En or an S2. Because of (7.6), equation (7.5)i

becomes

(7.7) (—)   = - [nc- (n- l)a]-gii.
\<r /<r

Transvecting this by g*' and comparing the result with (7.5)2, we find that

(7.8) a = c.

On account of this, equation (7.7) becomes

(7.9)
\ <r /.*/ o-

Since (7.5)2 is evidently a consequence of (7.8) and (7.9), the latter equations,

because of (7.6), are equivalent to (7.5), and hence to (7.3). Thus we have

proved the following

Theorem 7.2 (i). Let g,y be the fundamental tensor of an En(a) or Sn(a).

Then in order that the improperly conformally separable tensor (7.4) of the type

(»>1, m — n = Y) may represent an Em, it is necessary and sufficient that g,y

and tr satisfy equation (7.9).

Since by supposition g,-,- represents an En(a) or ^2(0), it follows from (7.9)

that the tensor cr2g,-y represents En's or Si's (Theorem 2.1). If, in particular,

a = 0, then (7.9) reduces to (l/<r)„y=0, and therefore the £„(0) or 52(0) with

fundamental tensor gij has a parallel vector field. Hence

Theorem 7.2 (ii). If the improperly conformally separable tensor (7.4) and

its first component tensor g,y represent an Em(c) and an En(a) or S<i(a), respec-

tively, then the tensor a2ga represents En's or St's and c = a. If c = a = 0, then

the En(0) or 52(0) with fundamental tensor gty possesses a parallel vector field.

Conversely, let g.y be the fundamental tensor of an E„(a) which is con-

formal (17) to another En, then the equation

(w) An E„ with fundamental tensor g,,- is said to be conformal to another E„ if a non-

constant scalar y exists such that f*tM's the fundamental tensor of an En.
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y,U =-(ay+ fjga, f = const.

has a solution for y (cf. Theorems 2.1, 2.3 and (2.11)). Thus, if at*0, the func-

tion l/cr = y+//a evidently satisfies (7.9). Hence we have the following con-

verse to Theorem 7.2 (ii):

Theorem 7.2 (iii). Given an En whose scalar curvature is zero and which has

a parallel vector field, or one whose scalar curvature is not zero and which is con-

formal to another En, then the given En can be isometrically imbedded in an

E„+i as a member of isometric, non-parallel, and totally geodesic hypersur-

faces.

The present case has already been considered with a different method by

Fialkow [7, 7'], and the results stated in Theorems 7.2 (i), (ii) and (iii) are

due to him. However(18), he overlooked the exceptional case En(0), for which

the property of its being conformal to another En is not a sufficient condition

for it to be imbeddable in an En+i in the manner stated in Theorem 7.2 (iii).

7.3. The case m — n>l. By Theorem 7.1, in this case <r must be of the

form z{xT)/y{xk). Since z(xr) may be absorbed in gpq, there is no loss of gen-

erality in assuming that <7 = l/y(x*). Thus the conformally separable tensor

under consideration takes the form

(7.10) *^ = Pn    t XL 0   y2gp J

where y 5^const. On account of (7.3) and the fact that the fundamental tensors

gpq and *gPq = y2gpq have identical Ricci tensors, equation (7.2)3 for the tensor

(7.10) can be written

(7.11) Rpq = 'Rpq = - {(« - l)c + r^jy +(m-n-l) -^Jjff,,.

(») Equations (3.11) of Fialkow [7] represent a necessary and sufficient condition for an

En to be imbeddable in an E„+i as a member of =°1 isometric, non-parallel, totally geodesic hyper-

surfaces. In p. 427 (line 18) of the same paper, we find the sentence "According to Brinkmann

(3.11) is the necessary and sufficient condition that £nbe conformal to another Einstein space

by means of a transformation ds = <rds with Ai<r?*0, where Ai<r=/*'cr,,o-l,." This sentence is not

entirely correct; in fact, the condition is sufficient but not necessary. To explain, we use Fial-

kow's notation. Brinkmann's original necessary and sufficient condition referred to above is

[3, p. 125, Theorem II ] that a coordinate system exists in which the fundamental tensor of En

is of the form

/„» = (ex** + 2Ax" + d)~\

(A) /x„ = {cx* + 2Ax» + d)F^(?n,     /„x - 0,
A and d constant,

and the form F\» (x') dn^'dx1' is the fundamental form of an En-i. Equations (3.11) of Fialkow

[7] differ from (A) by the absence of the constant A, and, (A) can be reduced, by putting

£»=*xn+B, B = const., to (3.11) of Fialkow [7] when e^O but not when c = 0. This justifies our

statement.
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Hence

Theorem 7-3. If the improperly conformally separable tensor (7.10) of the

type (n, m — n>2) represents an Em, then its second component tensor *gVq = y2gPq

represents £m_„'s.

We shall now consider separately the following three subcases: (1) re = l;

(2) «>1 and g,y represents an En or S2; (3) n = 2.

Subcase 1. w = l, m — n>l.

The conformally separable tensor in question is

(7.12) *gaß = I y = y(a.i) ^ const.
L 0 y*gpJ

With re, x, gn, y2gP5 in place of m — n, xm, eo-~2, p~*gn, respectively, the case

considered in §4 reduces to the present subcase. Hence from Theorems 4.1

and 4.2, we have

Theorem 7.4. In order that the improperly conformally separable tensor

(7.12) with m>2 may represent an Em(c), it is necessary and sufficient that gPq

represent an Em_i(b) or S2(b) and

{y'Y
(7.13) gn

b — cy1

This result can also be proved directly from (7.2) and (7.3).

Subcase 2. n>l, m — n>l, and gn represents an En or St.

By hypothesis, we have, besides (7.2), (7.3), (7.11), also

(7.14) R{j = — (re — l)agij, a = const.

In consequence of this and (7.3), equation (7.2)2 becomes

(m - \)c - (re - l)a
(7.15) y,ii =-ygij.

. .   m — n

This equation is of the form (2.1). And since (7.14) is satisfied, it follows from

(2.11)! that (cf. Theorem 2.3)

(m — i)c — [n — l)a
-y = ay + f, f = const.,

m — n

which give/ = 0 and a = c. Therefore (7.15) is equivalent to

(7-16) y,n = - aygn,

(7.17) c-%

As a consequence of (7.14) and (7.16), gij = y~2gij is the fundamental tensor

of an En(ä) or S2(ä), where ä is determined from (cf. Theorem 2.4)
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(7.18) g'iy.iy.i = - (ay2 + ä).

When (7.16)-(7.18) are used in (7.11), the latter becomes

(7.19) Rpq = - (m - n - 1)(- a)gpq,

which shows that gpq represents an Em-n( — a) or S2( — a). Hence

Theorem 7.5 (i). If the improperly conformally separable tensor (7.10) of

the type (»>1, m — «>1) and its component tensor g,y represent, respectively,

an Em(c) and an En(a) or S2(a), then (1) gpq represents an Em_„(&) or S2(b),

(2) y~2ga represents an En(a) or S2(a), and (3) c = a, b= —a. If c=a = 0, the

-E„(0) or Si(0) with fundamental tensor g,-,- possesses a parallel vector field.

We observe that when (7.14) is supposed, equations (7.2), (7.3) are equiva-

lent to (7.16)—(7.19). Then, by a consideration similar to that leading to

Theorem 7.2 (iii), we can prove the following

Theorem 7.5 (ii). Given an En whose scalar curvature is zero and which

possesses a parallel vector field or one whose scalar curvature is not zero and

which is conformal to another En, then the given En can be isometrically im-

bedded in an Em of any dimension m greater than w-fl as a member of oom_n

isometric and totally geodesic subspaces En's which are orthogonal to »*» totally

umbilical subspaces Em_n's or Si's.

Subcase 3. n = 2, m — n>l.

For this case we have

(7.20) Rn = - a(x")gij.

In consequence of this and (7.3), equation (7.2)2 becomes

(m — l)c — a(xh)

(7.21) y.ti = - - ~ yga-
m — 2

This is of the form (2.1), and consequently, it follows from (2.9) that (cf.

Theorem 2.3)

i *    c \   dV(m - !)c - <y) 1
a{xk) = a(y) = —-y ,

dyL       m — 2 J

that is,

a'{y)y + (m ~ l)a(y) = (m — l)c.

Multiplying this by ym~2 and then integrating, we have

(7.22) a{y) = c - (m - 2)/y1~m, / = const.

Here it is evident that a(y) is constant or not according as / is or is not zero.

With this value of a{y), equation (7.21) becomes
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(7.23) y.a = - (cy + fy2-m)gij.

From this and (2.10), which holds by Theorem 2.3, it follows that

(7.24) gijy.iy.i = - (cy2 4- „ 2f   y3"" - A, b
3 — m

b = const.

When (7.23) and (7.24) are substituted in (7.11) for n = 2, the result is

which is the condition for gpq to represent an Em^2(b) or S2(b). Hence

Theorem 7.6. In order that the improperly conformally separable tensor

(7.10) of the type (n = 2, m — n>l) may represent an Em(c), it is necessary and

sufficient that (1) g,-y and y be such that equation (7.23) is satisfied with a con-

stant f, and (2) gpq represent an Em^2 or S2 of scalar curvature b given by (7.24).

As a verification we observe that the result for subcase 2 with n = 2 is

identical with the result for subcase 3 with a = const, (that is,/ = 0).

Finally, it follows from the last but one paragraph of §2 that a 2-dimen-

sional fundamental tensor g,y actually exists whose scalar curvature is not

constant and for which equation (7.23) admits a solution for y. Thus the

existence of an improperly conformally separable tensor which represents an

Em and whose component tensors gt;- and *gpq are such that, the first represents

a F2 which is not an S2, while the second represents Em-2's or S2's. This fact

is in contrast with Theorem 6.2 of the preceding section and Theorem 8.1 of

the following section.

8. Separable tensors. In this section we reproduce some results of Fialkow

concerning a separable tensor, thus completing our discussion of the con-

formally separable tensor which represents an Em and each of whose com-

ponent tensors either is of dimension less than 3 or represents E's.

For the separable tensor

(7.25) Rpq =—(»»— 3)bg

(8.1)

equations (3.6) reduce to

(8.2) *Rip = 0,      *R<j=Rii,      *Rpq = RPq.

Suppose that (8.1) represents an Em(c), that is, that

(8.3) *Raß = - (» - l)c*gaß, . i

Then according as »> 1, »i — »>l,or«>l,w — »= 1, (8.2) become

(8.4) 0 = 0,      Ru = - (m - Degiji      Rvq = - f> - l)cgpq;

c = const.

or
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(8.5)      0 = 0,      Rij = - (m - l)cgih 0 = - (m - l)cgmm.

From these we have at once the following results due to Fialkow [7 ]:

Theorem 8.1. A separable tensor of the type (w > 1, m — n>\) represents an

Em(c), if and only if its component tensors g.y and gvq represent, respectively,

an En(a) or S2(a) andanEm-n(b) or S2{b),and (m — Y)c=(n — \)a=(m — n — \)b.

Theorem 8.2. A separable tensor of the type (»>1, m — n = \) represents

an Em(c), if and only if its component tensor g{j represents an £„(0) or ^(O).

Then c = 0.

V. Particular cases

9. Sm with conformally separable fundamental tensor. It is well known

that the fundamental form of an Sm(c) can always be reduced to the Riemann

form [5, p. 85]

ei(dxiy + ■ ■ ■ 4- eUdx"')2

\l + (c/4) [*!(*>)*+ • • • 4-em(x-)2]}2

where each e is +1. The form (9.1) is evidently properly conformally sepa-

rable^9) of the type (n, m — n), where n maybe any integer from 1 to m — \.

In what follows we give a few theorems concerning a conformally separable

tensor which represents an Sm. Throughout this section all the symbols and

indices have the same usual meaning.

From (3.4) it follows that the condition

(9.2) *R'aßy = c(8'ß*gay - t>'y*gaß)

for the conformally separable tensor (1.1) to represent an Sm becomes

'Rliik = (c + pPpP)(81j*ga - Slk*gi,),

'Rpqr = (c + oo-t){b'q*gpT - 8'*gpq),

(n — l)(d,-pp 4- OpO-,) = 0,       (m — n — l)(dp<Ji + ppc,) = 0,

p(-)    -~\c + - *g'i*(-)  ] *gPQ,
\p/;pq L        n \V/;ifJ

*(—) + —*— *Sp9p (—)  1 U*h
\o-/;ij L      m — n \p/;pqJ

For p=cr = l, we have immediately [9, p. 896]:

Theorem 9.1. A separable tensor cannot represent an Sm of nonzero scalar

curvature.

(") The fundamental form *gaßdx^dxP is said to be conformally separable, if the tensor

gaß is conformally separable, and vice versa.
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From (9.3)i and (9.3)2 we have the following theorem [14]:

Theorem 9.2. // a conformally separable tensor represents an Sm, then each

of its component tensors, if it is of dimension greater than 2, represents S's.

Since an 5 is necessarily an E, it follows from this theorem that all prop-

erties of the conformally separable tensor which represents an Em and each of

whose component tensors either is of dimension less than 3 or represents E's

must also be shared by the conformally separable tensor which represents an

Sm. This observation together with what we have obtained in §§4-7 enables

us to prove the following extension of Theorem 9.2:

Theorem 9.3. If a conformally separable tensor *gaß which is not an

ordinarily separable tensor represents an Sm, then each of its component tensors

either is of dimension 1 or represents S's. Conversely, if *gaß represents an Em

and each of its component tensors either is of dimension 1 or represents S's, then

the Em is an Sm.

Proof. The proof of this theorem has to be carried out separately for

several cases. Consider first the case of the properly conformally separable

tensor, which we subdivide into the following three types: (1) w = 2, m — n = 1,

(2) n>2, m — n=\, (3) n>\, m — n>\.

For the type (« = 2, m—n = l), Theorem 9.3 reduces to Theorem 4.1 for

m = 2, because an E3 is an S3.

For the type («>2, m — n = l), equations (9.3) become

The first part of the theorem follows at once from (9.4)i. To prove the con-

verse part, we suppose that *gaß and its component tensor *ga=p~igij repre-

sent, respectively, an Em and 5„'s, and show that (9.4) are satisfied. From this

supposition it follows that all the equations appearing in §4 (with the excep-

tion of (4.6')) and the equation

'R
P  Pm)(0j*gik ~ 0k*gil),

dipm 4" PmOi = 0,

(9.4)

(9.5) 'Rliilc = *a(xm)(8lj*gik — Slk*gij)

are true. Now equations (9.4)2 and (9.4)3 are satisfied because of (4.2)i, (4.2)2

and (4.3). And on account of (9.5), equation (9.4)i becomes
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c = *a(*m) - *gmm(pm)\

which, by Theorem 4.1, is identical with (4.6). Finally, by virtue of (4.15),

equation (9.4)4 becomes (4.14'). Thus equations (9.4) are satisfied, as was to

be proved.

We can now come to the properly conformally separable tensor of the type

(»>1, m — n>\). As a consequence of Theorems 9.2 and 5.2, a properly con-

formally separable tensor of this type which represents an Sm must be of the

form

(9.6) ♦^ = r-*ri; °1
L 0 gpqA

The Riemann tensors *Raßy; and "Rapy of the tensors *gaß and

(9.7) "^=P; °1
L 0 gpqJ

are connected by (cf. (2.5))

*Raßy = "Raßy + {8ßT, ay — 8yt: aß)r     + "g   'fa; ,ß"gay ~ t:cy"gaß)t

(9-8) ,x t < -2
-    g   r:kt:)i(Sß"gay - 8y"gaß)t ,

where the colon denotes covariant differentiation with respect to "gaß', the

indices a, ß, y, e, k, X have the range 1, • • • , m; and the components

of "R'^y are (cf. (9.7), (3.4))

// r>'    _ ii r>* _ "5*
g-^ J*-i]k       -tvijfcj &-pqr — -«Vjjgri

"Raßy = 0 if a, ß, y, e are not all in the same range.

From Theorem 9.2 and the remark below it and also the equations in §6, it

follows that if the tensor *gaß defined by (9.6) represents an Sm(c), then we

have
t = y(xk) 4" z(xT),

M = a-o 4- öiy 4- a2y2 4- a^y3, T = b0 -\- a\z — a2z2 + a&3,

y/n = - M'gij, z/PQ = - T'gp
(9.10)

_I i j _8 Ä g

Ri]k = M"(8jgik — 8kgij), Rpqr = T"(8qgpT - 8rgpq),

where as = 0 unless m = 2n = 4. It can now be readily verified that in conse-

quence of (9.8)-(9.10), equation (9.2) becomes c3 = 0. On account of this, it

follows easily from (9.10) that if any of the component tensors T~2gij and

T_2f j>9 is of dimension 2, then it represents S2's. The first part of Theorem 9.3

for the present case is thus proved. We now suppose that *gaß represents an

E and its component tensors S's. Then (9.10) are satisfied with «3 = 0, and
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consequently, equation (9.2) is satisfied, as follows from the sentence below

(9.10). Hence the £m in question is an Sm, and the proof of our theorem for

the case of a properly conformally separable tensor is completed.

Finally, for an improperly conformally separable tensor with p = 1, 9,cr 5^0,

equations (9.3) become

If we compare these equations with those appearing in §7, we shall see easily

that Theorem 9.3 is true. Theorem 9.3 has thus been completely proved.

10. £4 with conformally separable fundamental tensor of the type (2, 2).

Let us review the cases we have considered for a conformally separable tensor

which represents an £4.

The type (3, 1). We have considered only the particular case when the

first component tensor gij represents £3's, that is, S3's. By Theorem 9.3, an

£4 with such a conformally separable fundamental tensor is an Si.

The type (2, 2). If *gap is a properly conformally separable tensor, then

either its component tensors both represent Si's or neither of them does

(cf. Theorem 6.2); for the respective cases, the £4 is an St or not an Si (cf.

Theorem 9.3). If *gaß is an improperly conformally separable tensor with

p = l, dicr^O, the component tensor *gpq necessarily represents .SVs, while

the other, gij, may or may not (cf. Theorem 7.6); for the respective cases,

the £4 is an Si or not an .S4. Finally, if *gap is a separable tensor, its two

component tensors each represent an S2 of equal nonzero scalar curvature

(cf. Theorems 8.1 and 9.1).

Hence we have three and only three cases in which the £4 is not an Si',

they are the cases of Theorem 6.4, Theorem 7.6 for m — 4 and f^O, and

Theorem 8.1 for m = 2«=4 and a^O. From these theorems and (2.14), (9.1)

we have at once the following

Theorem 10.1. A conformally separable fundamental form of the type (2, 2)

represents an £4 which is not an S4, if and only if it can be reduced to one of the

following forms (in which each e is ± 1; A, B, C, D are constants, and A 5^0):

(9.11)

Rijk = c(bjgik — dkgij),

'Rpqr = (c 4- o<rl)(oq*gpr — 8

(m — n — l)dpo-i = 0,

ol*gPq),

(dx1)2
4- e2[(l/3)(x1)3 + Bx1 + C\(dx2)2

(1)

+

(l/3)(x1)3 + Bxl + C

(dx3)2
+ ei[(l/3)(x3y + Bx3 + D](dx')2

(l/3)(x3)3 + Bx3 + D
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(dx1)2
4- et[C(x1)* + A(xl)~l + B]{dx2)2

Cix1)2 + Aix1)-1 + B
(2)

(xl)2[e3(dx3)2 + ei(dx*y]

(3)

[l + iBßKetixiy + etix*)*)]*

e^dx1)2 + e2(dx2)2 e3(dx3)2 + e^dx*)2

[1 4- (A/4r)(ei(x1)* + e2(x2)2)]2     [l 4- (A/4)(e3(x3)2 + e^x*)2)]2

Form (3) has been obtained by Kasner [ll ], and a form which is essen-

tially the same as (2) for B = 1 by Kottler [12, p. 443]. Form (1) however

seems to be introduced here for the first time.
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