ON THE OSCILLATION OF DIFFERENTIAL TRANSFORMS. IV JACOBI POLYNOMIALS(${ }^{1}$)

BY
G. SZEGÖ

1. Introduction. In a paper in the Trans. Amer. Math. Soc. ${ }^{(2}$), E. Hille proved the following

Theorem A. Let $\alpha \geqq 0, \beta \geqq 0, c \geqq 0$. The differential operation

$$
\begin{equation*}
\vartheta-c=\left(1-x^{2}\right) D^{2}+[\beta-\alpha-(\alpha+\beta+2) x] D-c, \quad D=d / d x, \tag{1.1}
\end{equation*}
$$ does not diminish the number of the sign changes in the interval $-1<x<+1$.

More exactly, let $y=y(x)$ be a real-valued non-constant function of x, $-1 \leqq x \leqq+1$, with a continuous second derivative (with one-sided derivatives at the end points $\pm 1)$. Then the number of the sign changes of $Y=(\vartheta-c) y$ in $-1,+1$ is not less than that of y in the same interval ${ }^{3}$).

First let us observe that under the conditions mentioned Y cannot vanish identically-this being true even for $\alpha>-1, \beta>-1$. More precisely, the solutions of the differential equation $(\vartheta-c) y=0$ which are not identically zero cannot have a continuous second derivative in the closed interval $-1 \leqq x \leqq+1$, provided $c>0$; in the case $c=0$ the solution $y=$ const. is the only one of the kind mentioned (${ }^{4}$). Indeed, let us assume that $c>0$, and let $u(x)$ and $v(x)$ be the solutions of the differential equation mentioned regular at $x=+1$ and $x=-1$, respectively, and satisfying the condition $u(+1)$ $=v(-1)=1$ [see (2.1)]. Then by means of the table in §2 below we conclude that $u(x)$ and $v(x)$ are linearly independent $\left[u^{\prime}(x) \rightarrow \infty, v^{\prime}(x)=O(1)\right.$ as $x \rightarrow-1+0$ and $u^{\prime}(x)=O(1), v^{\prime}(x) \rightarrow \infty$ as $\left.x \rightarrow 1-0\right]$. Moreover $\left\{c_{1} u(x)\right.$ $\left.+c_{2} v(x)\right\}^{\prime} \rightarrow \infty$ either for $x \rightarrow-1+0$ or for $x \rightarrow 1-0$ (or in both cases) unless $c_{1}=c_{2}=0$.

In the same paper E. Hille proved by means of Theorem A the special case $c=0$ of the following

Theorem B. Let $\alpha \geqq 0, \beta \geqq 0, c \geqq 0$ and let ϑ have the same meaning as in
Presented to the Society, February 27, 1943; received by the editors October 17, 1942.
${ }^{(1)}$ See the previous papers of this series by G. Szegö, E. Hille and A. C. Schaeffer, in the Trans. Amer. Math. Soc. vols. 52, 53 (1942-1943). (Cf. below, loc. cit. footnotes 2 and 6.)
$\left.{ }^{(2}\right)$ E. Hille, On the oscillation of differential transforms. II. Characteristic series of boundary value problems, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 463-497; see §2.8.
$\left.{ }^{(3}\right)$ Regarding the definition of the number of sign changes see, G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, 1925, p. 40.
${ }^{(4)}$ G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, vol. 23, 1939; see p. 61, (4.2.6).

Theorem A. We denote by $f(x)$ a real-valued function possessing derivatives of all orders in $-1 \leqq x \leqq+1$. If the number of the sign changes of the functions $(\vartheta-c)^{k} f(x), k=1,2,3, \cdots$, is bounded, say at most N, then $f(x)$ is a polynomial of degree at most N.

The purpose of the present note is to prove
Theorem A'. Theorem A remains true under the more general condition $\alpha>-1, \beta>-1, c \geqq 0$.

Theorem B^{\prime}. Let α and β be arbitrary real, $c \geqq 0$. If $f(x)$ satisfies the conditions of Theorem $\mathrm{B}, f(x)$ must be a polynomial of degree at most $N+\gamma$. Here the constant $\gamma=\gamma(\alpha, \beta, c)$ depends only on α, β and c.

Assuming $\alpha>-1, \beta>-1$, Theorem B^{\prime} (with $\gamma=0$) can be derived from Theorem A^{\prime} in a manner used first by G. Pólya and N. Wiener in case of Fourier series ${ }^{5}$) and applied later to numerous other instances by E. Hille (loc. cit.). We prefer however a direct proof of Theorem B^{\prime} based on an idea which was used in the first paper of the present series $\left({ }^{6}\right)$.
2. Proof of Theorem A^{\prime}. First we assume $c>0$. Let $u(x)$ be the uniquely determined solution of $(\vartheta-c) y=0$ which is regular at $x=+1$ and for which $u(+1)=1$ holds; we have as well known

$$
\begin{align*}
u(x) & =F\left(k, k^{\prime} ; l ;(1-x) / 2\right) \\
& =\sum_{n=0}^{\infty} \frac{k(k+1) \cdots(k+n-1) k^{\prime}\left(k^{\prime}+1\right) \cdots\left(k^{\prime}+n-1\right)}{l(l+1) \cdots(l+n-1) \cdot 1 \cdot 2 \cdots n}((1-x) / 2)^{n} \tag{2.1}
\end{align*}
$$

where k and k^{\prime} are the roots of the quadratic equation $k(-k+\alpha+\beta+1)=c$ and $l=\alpha+1$. Since $(k+\nu)\left(k^{\prime}+\nu\right)=\nu(\nu+\alpha+\beta+1)+c>0, \nu=0,1,2, \cdots$, we have $u(x)>0$ and $u^{\prime}(x)<0$ in $-1<x \leqq+1$. Incidentally, k and k^{\prime} are different from $0,-1,-2, \cdots ; l>0$.

Let us investigate the behavior of $u(x)$ and $u^{\prime}(x)$ as $x \rightarrow-1+0$. Since

$$
\begin{align*}
\frac{k(k+1) \cdots(k+n-1) k^{\prime}\left(k^{\prime}+1\right) \cdots\left(k^{\prime}+n-1\right)}{l(l+1) \cdots(l+n-1) \cdot 1 \cdot 2 \cdots n} & \cong \frac{\Gamma(l)}{\Gamma(k) \Gamma\left(k^{\prime}\right)} n^{k+k^{\prime}-l-1} \tag{2.2}\\
& =\frac{\Gamma(l)}{\Gamma(k) \Gamma\left(k^{\prime}\right)} n^{\beta-1}, n \rightarrow \infty,
\end{align*}
$$

Cesàro's theorem(${ }^{7}$) can be applied to $u(x)$ provided $\beta \geqq 0$ and to $u^{\prime}(x)$ provided $\beta>-1$. We obtain the following table:

[^0]| | $u(x) \sim$ | $-u^{\prime}(x) \sim$ |
| :---: | :---: | :---: |
| $\beta>0$ | $(1+x)^{-\beta}$ | $(1+x)^{-\beta-1}$ |
| $\beta=0$ | $-\log (1+x)$ | $(1+x)^{-1}$ |
| $-1<\beta<0$ | 1 | $(1+x)^{-\beta-1}$ |

The symbol $f(x) \sim g(x)$ means that $f(x) / g(x)$ approaches a positive limit as $x \rightarrow-1+0$.

We also note the identity

$$
\left\{\begin{array}{l}
Y=(\vartheta-c) y=(1-x)^{-\alpha}(1+x)^{-\beta}\{u(x)\}^{-1} t^{\prime}(x) \tag{2.4}\\
t(x)=H(x)\left(y^{\prime} u-y u^{\prime}\right), \quad H(x)=(1-x)^{\alpha+1}(1+x)^{\beta+1} .
\end{array}\right.
$$

Now let y have N sign changes in $-1<x<+1, N>0$; then N abscissae α_{ν} exist, $\alpha_{0}=1>\alpha_{1}>\alpha_{2}>\cdots>\alpha_{N}>\alpha_{N+1}=-1$, such that y is alternately less than or equal to 0 and greater than or equal to 0 in the intervals $\alpha_{\nu+1}, \alpha_{\nu}$ without being identically zero in these intervals. We may assume that in an arbitrary small left-hand neighborhood of α_{ν} there are abscissae for which $y \neq 0,1 \leqq \nu \leqq N$. (By this condition the α_{ν} are uniquely determined.) Obviously $y\left(\alpha_{\nu}\right)=0,1 \leqq \nu \leqq N$. Then by Rolle's theorem we conclude the existence of at least $N-1$ zeros for $u^{2}(y / u)^{\prime}=y^{\prime} u-y u^{\prime}$ hence also for $t(x)$ between α_{1} and α_{N} separating the abscissae α_{ν}; in addition $\lim t(x)=0$ as $x \rightarrow 1-0$.

But $t(x)$ must have also a zero in $-1<x<\alpha_{N}$. Assume the contrary, for instance $t(x)<0$ or $(y / u)^{\prime}<0$ in $-1<x<\alpha_{N}$. Then y / u is decreasing in this interval and since $y\left(\alpha_{N}\right)=0$ we must have $y>0$ in $-1<x<\alpha_{N}$ and $y>h u$ in $-1<x \leqq \alpha_{N}-\epsilon\left[0<\epsilon<\alpha_{N}+1, h=h(\epsilon)>0\right]$.

In case $\beta \geqq 0$ we conclude that $y \rightarrow+\infty$ as $x \rightarrow-1+0$ [see table (2.3)] which is a contradiction.

In case $-1<\beta<0$ we obtain $y>h^{\prime}\left(h^{\prime}>0\right)$ for $-1<x \leqq \alpha_{N}-\epsilon$. But in this case $-u / u^{\prime} \sim(1+x)^{\beta+1} \rightarrow 0$ as $x \rightarrow-1+0$ so that

$$
\begin{equation*}
\frac{t(x)}{-(1+x)^{\beta+1} y u^{\prime}}=\frac{(1-x)^{\alpha+1}(1+x)^{\beta+1}\left(y^{\prime} u-y u^{\prime}\right)}{-(1+x)^{\beta+1} y u^{\prime}} \rightarrow 2^{\alpha+1} \tag{2.5}
\end{equation*}
$$

hence $t(x)>0$ when x is sufficiently near -1 . This is again a contradiction.
Recapitulating, we have found certain zeros $\beta_{0}, \beta_{1}, \cdots, \beta_{N}$ of $t(x)$ satisfying the inequalities $\beta_{0}=1>\beta_{1}>\cdots>\beta_{N-1}>\beta_{N}>-1$ and $\alpha_{\nu+1}<\beta_{\nu}<\alpha_{\nu}$, $1 \leqq \nu \leqq N$. Repeated application of Rolle's theorem furnishes at least N sign changes of Y. Note that $t(x)$ cannot be identically 0 in $\beta_{\nu+1}, \beta_{\nu}$ since this would imply $y / u \equiv$ const., hence $y \equiv 0$ on account of $y\left(\alpha_{\nu+1}\right)=0$. But $y \neq 0$ at suitable points to the left from $\alpha_{\nu+1}$.

The remaining case $c=0$ can easily be settled. The identity (2.4) holds then with $u(x)=1$, that is, $t(x)=H(x) y^{\prime}$. In this case $t(x)$ has at least $N-1$ zeros in the interior of $-1,+1$ and in addition the zeros $x= \pm 1$.
3. Proof of Theorem B^{\prime}. Let us start with certain preliminary remarks on Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$. For arbitrary real values of α and β we use the definition [see Szegö, loc. cit.(4) p. 61, (4.21.2)]

$$
\left\{\begin{align*}
& P_{0}^{(\alpha, \beta)}(x)=1 ; \tag{3.1}\\
& P_{n}^{(\alpha, \beta)}(x)= C_{n+\alpha, n} F(-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2) \\
&=(n!)^{-1} \sum_{\nu=0}^{n} C_{n, \nu}(n+\alpha+\beta+1) \cdots(n+\alpha+\beta+\nu)(\alpha+\nu+1) \\
& \cdots(\alpha+n)((x-1) / 2)^{\nu}, \quad n \geqq 1 .
\end{align*}\right.
$$

Then $y=P_{n}^{(\alpha, \beta)}(x)$ satisfies the differential equation $(\vartheta+n(n+\alpha+\beta+1)) y=0$ [Szegö, loc. cit. p. 59, (4.2.1)]. Furthermore, except for an additive constant [loc. cit. p. 62, (4.21.7)]

$$
\begin{equation*}
\int P_{n}^{(\alpha, \beta)}(x) d x=2(n+\alpha+\beta)^{-1} P_{n+1}^{(\alpha-1, \beta-1)}(x) \tag{3.2}
\end{equation*}
$$

We also note Rodrigues' formula [loc. cit. p. 66, (4.3.1)]

$$
\begin{align*}
& (1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x) \\
& \quad=(-1)^{n}\left(2^{n} n!\right)^{-1}(d / d x)^{n}\left\{(1-x)^{n+\alpha}(1+x)^{n+\beta}\right\} \tag{3.3}
\end{align*}
$$

From (3.1) we see that $P_{n}^{(\alpha, \beta)}(x), n \geqq 1$, is of the precise degree n provided $\alpha+\beta \neq-2,-3,-4, \cdots$. If $\alpha+\beta=-l-1, l$ positive integer, $P_{n}^{(\alpha, \beta)}(x)$ is still of the precise degree n provided $n>l$.

In case $\alpha>-1, \beta>-1$ we conclude from (3.3) in the familiar manner the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{+1}(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x) q(x) d x=0 \tag{3.4}
\end{equation*}
$$

where $q(x)$ is an arbitrary polynomial of degree $n-1$. Now let α and β be arbitrary real and let m be the smallest non-negative integer such that $\alpha+m>-1, \beta+m>-1$. Taking $n \geqq 2 m+1$ and $q(x)=\left(1-x^{2}\right)^{m_{r}} r(x)$ where $r(x)$ is an arbitrary polynomial of degree $n-2 m-1$ we find that for this particular type of polynomials $q(x)$ the orthogonality relation (3.4) still holds.

Under the same condition we have [loc. cit. p. 62, (4.21.6), p. 67, (4.3.3)]

$$
\begin{align*}
& \int_{-1}^{+1}(1-x)^{\alpha+m}(1+x)^{\beta+m} P_{n}^{(\alpha, \beta)}(x) x^{n-2 m} d x \\
&=(-1)^{m} 2^{n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{\Gamma(2 n+\alpha+\beta+2)} \neq 0 . \tag{3.5}
\end{align*}
$$

After these preliminaries we proceed to the proof of Theorem B'. First let us exclude the case $\alpha+\beta=-l-1, l$ positive integer. We expand $f^{(m)}(x)$ in a series of Jacobi polynomials $P_{n}^{(\alpha+m, \beta+m)}(x)$:

$$
\begin{equation*}
f^{(m)}(x)=\sum_{n=0}^{\infty} f_{n} P_{n}^{(\alpha+m, \beta+m)}(x) . \tag{3.6}
\end{equation*}
$$

Term-by-term integration and use of (3.2) furnishes

$$
\begin{align*}
& f(x)=\phi(x)+\sum_{n=0}^{\infty} 2^{m}\{(n+\alpha+\beta+2 m)(n+\alpha+\beta+2 m-1) \tag{3.7}\\
&\cdots(n+\alpha+\beta+m+1)\}^{-1} f_{n} P_{n+m}^{(\alpha, \beta)}(x)
\end{align*}
$$

where $\phi(x)$ is a polynomial of degree $m-1$ [for $m=0$ we have $\phi(x)=0$]. Since in this case $P_{n}^{(\alpha, \beta)}(x)$ is of the precise degree n we can write

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \phi_{n} P_{n}^{(\alpha, \beta)}(x) . \tag{3.8}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
(\vartheta-c)^{k} f(x)=\sum_{n=0}^{\infty}(-1)^{k}[c+n(n+\alpha+\beta+1)]^{k} \phi_{n} P_{n}^{(\alpha, \beta)}(x) . \tag{3.9}
\end{equation*}
$$

Now let k belong to a certain infinite sequence such that the corresponding functions $(\vartheta-c)^{k} f(x)$ have a fixed number, M say, sign changes; $M \leqq N\left({ }^{8}\right)$. We denote the abscissae at which these sign changes take place by $x_{1}, x_{2}, \cdots, x_{M}$; $x_{\nu}=x_{\nu}(k)$. Then if $\delta=+1$ or -1 is properly chosen,

$$
\begin{align*}
& \delta \int_{-1}^{+1}(1-x)^{\alpha+m}(1+x)^{\beta+m}\left\{(\vartheta-c)^{k} f(x)\right\}\left(x-x_{1}\right) \tag{3.10}\\
& \cdots\left(x-x_{M}\right)\left(1 \pm x^{\rho}\right) d x>0 .
\end{align*}
$$

Here ρ is an arbitrary non-negative integer and δ does not depend on ρ. Substituting for $(\vartheta-c)^{k} f(x)$ its expansion (3.9) the arising integrals will all vanish provided $n>2 m+M+\rho$. However for $n=n^{\prime}=2 m+M+\rho$ we obtain

$$
\pm \delta(-1)^{k}\left[c+n^{\prime}\left(n^{\prime}+\alpha+\beta+1\right)\right]^{k}
$$

$$
\cdot \phi_{n} \int_{-1}^{+1}(1-x)^{\alpha+m}(1+x)^{\beta+m} P_{n^{\prime}}^{(\alpha, \beta)}(x) x^{M+\rho} d x,
$$

and the last integral is different from 0 because of (3.5). Hence if $\phi_{n^{\prime}} \neq 0$ we find for $k \rightarrow \infty$

$$
\left[c+n^{\prime}\left(n^{\prime}+\alpha+\beta+1\right)\right]^{k}=O(1) \max _{0 \leqq \nu \leqq n^{\prime}-1}|c+\nu(\nu+\alpha+\beta+1)|^{k}
$$

[^1]which is impossible provided
$$
\left|c+n^{\prime}\left(n^{\prime}+\alpha+\beta+1\right)\right|>\max _{0 \leqq \nu \leqq n^{\prime}-1}|c+\nu(\nu+\alpha+\beta+1)| .
$$

This is the case if $n^{\prime} \geqq n_{0}=n_{0}(\alpha, \beta, c)$.
The previous argument furnishes $\phi_{n}=0$ for $n \geqq 2 m+M, n \geqq n_{0}$, which is equivalent to the assertion of Theorem B^{\prime}.

In case $\alpha+\beta=-l-1, l$ positive integer, this proof needs a slight modification. We integrate then only the terms $n \geqq m+1$ in (3.6) and conclude (3.7) with the modification that the summation is now extended over the range $n \geqq m+1$ and $\phi(x)$ is a polynomial of degree $2 m$. [The expression in the braces of (3.7) is then positive since $2 m+\alpha+\beta+2>0$.] As a further addition to the previous argument we have to show that

$$
(\vartheta-c)^{k} \phi(x)=O(1)\left|c+n^{\prime}\left(n^{\prime}+\alpha+\beta+1\right)\right|^{k}, \quad k \rightarrow \infty
$$

uniformly for $-1 \leqq x \leqq+1$ provided n^{\prime} is sufficiently large, $n^{\prime} \geqq n_{1}=n_{1}(\alpha, \beta, c)$. But $(\vartheta-c)^{k} \phi(x)$ is a polynomial of degree $2 m$ and the last assertion follows if we can show that the coefficients of this polynomial have moduli at most $R S^{k}$; here $R>0$ depends on $f(x), \alpha, \beta, c$ and $S>0$ depends only on α, β, c. Now

$$
\begin{align*}
(\vartheta-c) x^{h}= & h(h-1)\left(1-x^{2}\right) x^{h-2} \\
& +h[\beta-\alpha-(\alpha+\beta+2) x] x^{h-1}-c x^{h} \tag{3.11}
\end{align*}
$$

hence with arbitrary constants λ_{h}

$$
\begin{equation*}
(\vartheta-c) \sum_{h=0}^{2 m} \lambda_{h} x^{h} \ll S \cdot \max \left|\lambda_{h}\right| \cdot \sum_{h=0}^{2 m} x^{h} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
S=2 \cdot 2 m(2 m-1)+2 m|\beta-\alpha|+2 m|\alpha+\beta+2|+|c| \tag{3.13}
\end{equation*}
$$

This furnishes the statement by taking for R the maximum modulus of the coefficients of $\phi(x)$ and choosing S according to (3.13).

篤
Theorems B and B^{\prime} remain of course true if the condition regarding $(\vartheta-c)^{k} f(x)$ is satisfied only for an infinite number of values of k.

Stanford University,
Stanford University, Calif.

[^0]: ${ }^{(5)}$ G. Pblya and N. Wiener, On the oscillation of the derivatives of a periodic function, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 249-256.
 ${ }^{(6)}$ G. Szegö, On the oscillation of differential transforms. I, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 450-462.
 $\left.{ }^{(}{ }^{7}\right)$ See, for instance, G. Pblya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 1, 1925, p. 14, Problem 85.

[^1]: ${ }^{(8)}$ From here on we use the argument of the paper cited in footnote 6.

