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1. Introduction. In a paper in the Trans. Amer. Math. Soc.(2), E. Hille

proved the following

Theorem A. Let a = 0, /3§:0, c = 0. The differential operation

(1.1)     # - C = (1 - x2)ZJ>2 + [ß - a - (a + ß + 2)x]D - c,      D = d/dx,

does not diminish the number of the sign changes in the interval — 1 <x < +1.

More exactly, let y=y(x) be a real-valued non-constant function of x,

— 1 x i= +1, with a continuous second derivative (with one-sided derivatives

at the end points +1). Then the number of the sign changes of Y=(&— c)y

in —1, +1 is not less than that of y in the same interval(3).

First let us observe that under the conditions mentioned Y cannot vanish

identically—this being true even for a>—1, ß> — 1. More precisely, the

solutions of the differential equation (#— c)y = 0 which are not identically

zero cannot have a continuous second derivative in the closed interval

—1=£=+1, provided c>0; in the case c = 0 the solution y = const, is the

only one of the kind mentioned(4). Indeed, let us assume that c>0, and let

u(x) and v(x) be the solutions of the differential equation mentioned regular

at x=+l and x= — 1, respectively, and satisfying the condition w( + l)

=»( —1) = 1 [see (2.1)]. Then by means of the table in §2 below we con-

clude that u(x) and v(x) are linearly independent [«'.(*)—»», z/'(x)=0(l) as

x—> —1+0 and m'(x)=0(1), v'(x)—»°° as x—>1 — 0]. Moreover \ciu{x)

+c2f(x) J '—»oo either for x—-> —1+0 or for x—»1 —0 (or in both cases) unless

C\ = Ci = 0.

In the same paper E. Hille proved by means of Theorem A the special

case c = 0 of the following

Theorem B. Let aStO, /8 —0, c^0 and let& have the same meaning as in
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Theorem A. We denote by f(x) a real-valued function possessing derivatives of all

orders in — 1^x^+1. // the number of the sign changes of the functions

(d — c)kf(x), k = 1, 2, 3, • • • , is bounded, say at most N, then fix) is a polynomial

of degree at most N.

The purpose of the present note is to prove

Theorem A'. Theorem A remains true under the more general condition

«>-l, ß>-l, c^O.

Theorem B'. Let a and ß be arbitrary real, c§:0. If f(x) satisfies the condi-

tions of Theorem B,f(x) must be a polynomial of degree at most N-\-y. Here the

constant y=y(a, ß, c) depends only on a, ß and c.

Assuming a> — 1, ß> — 1, Theorem B' (with 7 = 0) can be derived from

Theorem A' in a manner used first by G. Polya and N. Wiener in case of

Fourier series(6) and applied later to numerous other instances by E. Hille

(loc. cit.). We prefer however a direct proof of Theorem B' based on an

idea which was used in the first paper of the present series(6).

2. Proof of Theorem A'. First we assume c>0. Let u(x) be the uniquely

determined solution of (t>— c)y — 0 which is regular at x= 4-1 and for which

u( + l) = l holds; we have as well known

u(x)=F(k, k'; I; (l-x)/2)

(2.1) -   k(k+l) ■ ■ ■ (k+n-l)k'(k'+l) ■ ■ ■ (k'+n-l)
m V -((1 — x)/2)n

«To 1(1+1) ■ ■ ■ (/+»—l)-l-2 • • • n

where k and k' are the roots of the quadratic equation k( — k+a+ß + 1) =c

and l = a + l. Since (k+v)(k'+v) =v(v +a+ß + 1) +c>0, v = 0, 1, 2, • • • , we

have u(x) >0 and u'(x) <0 in —1 <x^ +1. Incidentally, k and k' are differ-

ent from 0, -1, -2, • • • ; />0.

Let us investigate the behavior of u(x) and u'(x) as x—1 +0. Since

k(k+l) ■ ■ ■ (k+n-l)k'(k'+\) ■ ■ ■ (k'+n-l) T(l)

1(1+1) ■ ■ • (H-w-l)-l-2 ■ ■ ■ n ~Y(k)Y(k')

(2'2) Y(l)
- -nrl, n—> oo

r(*)r(*')

Cesäro's theorem(7) can be applied to u(x) provided ß^Q and to u'(x) pro-

vided |ö > — 1. We obtain the following table:

(6) G. P61ya and N. Wiener, On the oscillation of the derivatives of a periodic function, Trans.

Amer. Math. Soc. vol. 52 (1942) pp. 249-256.
(6) G. Szegö, On the oscillation of differential transforms. I, Trans. Amer. Math. Soc. vol. 52

(1942) pp. 450-462.
(7) See, for instance, G. P61ya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis,

vol. 1, 1925, p. 14, Problem 85.
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(2.3) ß>0

ß = 0

-i<ß<o

(1+*)
-ß

-log (! + «)

1

— m'(x)~

(! + «)->*-»

(1 + x)-1

(l + x)-»-1

The symbol /(x)~g(x) means that /(x)/g(x) approaches a positive limit as

x-*-l+0.

We also note the identity

(Y = (# - c)y = (1 - *)—(l + *)-*{«(*)

\t(x) = H(x)(y'u - yu'),      H(x) = (1 - x)a+1(l +
(2.4)

Now let y have N sign changes in —1 <x< +1, N>0; then iV abscissae

a, exist, «o = 1 >«i >«2 > ' ■ ■ ><xn >ajv+i =— 1, such that y is alternately less

than or equal to 0 and greater than or equal to 0 in the intervals a„+i, a„

without being identically zero in these intervals. We may assume that in an

arbitrary small left-hand neighborhood of a„ there are abscissae for which

y^O, l^v^N. (By this condition the a, are uniquely determined.) Obvi-

ously yiciy) =0, 1 ̂ v^N. Then by Rolle's theorem we conclude the existence

of at least TV—1 zeros for u2(y/u)' = y'u—yu' hence also for t(x) between cti

and ajv separating the abscissae a„; in addition lim t(x) =0 as x—»1 —0.

But t(x) must have also a zero in — Kx<cttf. Assume the contrary, for

instance /(x)<0 or (y/u)'<0 in — l<x<a;v. Then y/u is decreasing in this

interval and since y(ajf) =0 we must have y >0 in —1 <x<<xn and y>hu in

-Kx^aN-e[0<e<aN + l, A = A(e)>0].

In case ß^0 we conclude that y—»+<» as x—*—1+0 [see table (2.3)]

which is a contradiction.

In case —1 <ß<0 we obtain y>h' (h'>0) for —1 <x^ajv — e. But in this

case — m/m'~(1 +x)ß+1—»0 as x—> —1+0 so that

(2.5)
t(x)

- (1 + Xy+1yu'

(1 - + - yu')

- (1 + x)^+lyw'

hence /(x)>0 when x is sufficiently near —1. This is again a contradiction.

Recapitulating, we have found certain zeros ß0, ßi, • • • , ßtr of t{x) satis-

fying the inequalities 0o = l>j3i> • • • >ßN-i>ßN> — 1 and a,+1<ßr<a„

lrgesSA7'. Repeated application of Rolle's theorem furnishes at least N sign

changes of Y. Note that t(x) cannot be identically 0 in ßy+\, ßy since this

would imply y/« = const., hence y = 0 on account of y(ay+i) =0. But y^0 at

suitable points to the left from a,+i.

The remaining case c = 0 can easily be settled. The identity (2.4) holds

then with u(x) =1, that is, t(x) =H(x)y'. In this case t(x) has at least N— 1

zeros in the interior of —1, +1 and in addition the zeros x= ±1.
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3. Proof of Theorem B'. Let us start with certain preliminary remarks on

Jacobi polynomials P„a'ß)(x). For arbitrary real values of a and ß we use the

definition [see Szegö, loc. cit.(4) p. 61, (4.21.2)]

(3.1)

Pn",ß\x)=Cn+a,nF(-n, n+a+ß+U a+lj (l-*)/2)

n

-(*0_lZ Cu.,(n+a+ß+l) ■ ■ ■ (n+a+ß+vKa+v+l)

(«+»)((*-1)/2)', n^l.

Then y = Pna'ß)(x) satisfies the differential equation ({r+n(n+a+ß + l))y = 0

[Szegö, loc. cit. p. 59, (4.2.1)]. Furthermore, except for an additive constant

[loc. cit. p. 62, (4.21.7)]

(3.2) J Pn"'\x)dx = 2(« + a 4- /8)~1PB+T1,""l)(x).

We also note Rodrigues' formula [loc. cit. p. 66, (4.3.1)]

(1 - *)"(1 + x)ßPna,ß\x)

(3.3) = (- l)\2nn\)-\d/dx)»{(l - x)n+\l + x)n+*}.

From (3.1) we see that P„a-ß)(x), «äl, is of the precise degree n provided

a+ßi* -2, -3, -4, • • • . If a+ß= -/ —1, / positive integer, P„°Ä(x) is still

of the precise degree n provided n>l.

In case a> — 1, ß> — 1 we conclude from (3.3) in the familiar manner the

orthogonality relation

(3.4) J+1 (1 - *)°(1 + xfplam(x)q(x)dx = 0

where g(x) is an arbitrary polynomial of degree n — 1. Now let a and ß be

arbitrary real and let m be the smallest non-negative integer such that

a+m > — 1, ß+m > — 1. Taking n 5:2m+ 1 and q(x) = (1 — x2)mr(x) where r(x)

is an arbitrary polynomial of degree n — 2m — 1 we find that for this particular

type of polynomials q(x) the orthogonality relation (3.4) still holds.

Under the same condition we have [loc. cit. p. 62, (4.21.6), p. 67, (4.3.3)]

•+•»,.    ,        /3+m    (a,/3)     . n-2m
(1 - x)     (1 + x)    Pn ' {x)x dx

(3.5)
r(» + a + l)T(n + ß + 1)

T(2w 4- a 4- ß + 2)
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After these preliminaries we proceed to the proof of Theorem B'. First

let us exclude the case a+/3= — I— 1, / positive integer. We expand(x) in

a series of Jacobi polynomials Pna+m'ß+m)(x):

(3.6) /      (*)  =  ZsfnPn (x).
71=0

Term-by-term integration and use of (3.2) furnishes

„ „,     /<*) =<b(x) + 2Z2m{(n + a + ß + 2m)(n + a + ß + 2m - 1)
(3.7) „_o

•■■(n + a + ß + m+ Vf'fnPlli'ix)

where </>(x) is a polynomial of degree m — 1 [for m — 0 we have <p(x) =0]. Since

in this case PB™'w(3c) is of the precise degree « we can write

(3.8) /(*) = Z *nPna'S)(x).
71=0

Obviously

(3.9) (* - C)*/(*) = Z (- D*l< + «(» + a + ß + l)]k<t>nPn"-ß\x).
71—0

Now let k belong to a certain infinite sequence such that the corresponding

functions (&—c)kf(x) have a fixed number, M say, sign changes; M^N(*). We

denote the abscissae at which these sign changes take place by Xi, x%, • • • , Xm',

xv = xe{k). Then if 5= +1 or —1 is properly chosen,

(3 10)   5111 (1 ~ X)a+m(1 + ^ ^~C) kf{x)){X " Xl)

• • • (x — xm)(1 + x")dx > 0.

Here p is an arbitrary non-negative integer and 5 does not depend on p.

Substituting for (t>— c)kf(x) its expansion (3.9) the arising integrals will all

vanish provided « >2w + AT+p. However for w = ra' = 2w-r-.M'+p we obtain

+ 5(- l)*[c + »V + a + /3 + 1)]*

i +i
(1 - + xf+mpl:*\x)xM+'dx,

and the last integral is different from 0 because of (3.5). Hence if <pn<^0 we

find for k—

[c + »'(«' + « + j8 + 1)]* = 0(1)   max    | c + »f> + a + ß + 1) |*
0S»S7l'-l

(8) From here on we use the argument of the paper cited in footnote 6.



468 G. SZEGÖ

which is impossible provided

I c + n'{n' + a + ß + 1) I >    max    | c + v(y + a 4- ß + 1) |.
OgvSn'-l

This is the case if n' gzno = n0(a, ß, c).

The previous argument furnishes <p„ = 0 for n^.2m-\-M, n^n0, which is

equivalent to the assertion of Theorem B'.

In case a+ß = — I — 1, I positive integer, this proof needs a slight modifica-

tion. We integrate then only the terms n^m + l in (3.6) and conclude (3.7)

with the modification that the summation is now extended over the range

n^m+ 1 and 4>(x) is a polynomial of degree 2m. [The expression in the braces

of (3.7) is then positive since 2m +a4-/34-2 >0.] As a further addition to the

previous argument we have to show that

(# - c) k<i>(x) = 0(1) I c + n'(n' + a + ß + 1) |*, &—>«>,

uniformly for — 1 +1 provided n' is sufficiently large, n' ^ni = tii(a, ß, c).

But (»? — c)k4>(x) is a polynomial of degree 2m and the last assertion follows

if we can show that the coefficients of this polynomial have moduli at most

RSk; here R>0 depends onf(x), a, ß, c and .S>0 depends only on a, ß, c.

Now

(0 - c)xh = k(h - 1)(1 - x*)xh~2

(3.H)
+ h[ß - ex - (a + ß + 2)x}xh~1 - cxh;

hence with arbitrary constants \h

2m 2m

(3.12) (# - c)Z XÄXA«^ max | \h\ ■ zZ **

where

(3.13) S = 2-2m(2m -l) + 2fw|p,-a|+2w|a + jS + 2|+|c|.

This furnishes the statement by taking for R the maximum modulus of the

coefficients of <p(x) and choosing 5 according to (3.13). fe?

Theorems B and B' remain of course true if the condition regarding

(#— c)kf(x) is satisfied only for an infinite number of values of k.

Stanford University,
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