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1. It has been shown by S. Bernstein that if a function which is defined

in an open interval is infinitely often differentiable (belongs to C°°) and each

of its derivatives is of constant sign then the function is analytic in the inter-

val^). As a possible generalization of this result Polya raised the following

question (2): If in an open interval a function is infinitely often differentiable

and no derivative changes sign more than a given number of times is the function

analytic in the interval} The present paper contains an answer to this question

and to several related questions. These results are consequences of an in-

equality (Theorem I of the present paper) which relates the magnitude of the

first derivative of a function to the number of times some higher derivative

changes sign. All functions considered in this paper will be supposed real for

real values of the variable.

In the case in which f(x) is infinitely often differentiable over the interval

( — oo , cc) let A7* be the maximum number of sign changes of f(k)(x) over any

interval of length a, where a is some arbitrary but fixed positive number.

Polya and Wiener(3) made the additional hypothesis that f(x) is periodic

and found that if 7^ = 0(1) then f(x) is a trigonometric polynomial, while if

Nk = o(k112) then/(x) is an entire function. Szegö obtained a new proof of these

results and indeed obtained the sharper theorem(4) that if A7* < A/log k for

large k then/(x) is an entire function. Hille(5) has obtained analogous theo-

rems for a very general class of differential operators and functions which

satisfy appropriate conditions.

Let us consider for the moment functions which are bounded and infinitely

often differentiable over (—«>, °°), but are otherwise completely general.

It is shown in the present paper that if 2V* = 0(1) then/(x) is an entire func-

tion of exponential type, and if Nk = 0(logyk), y<l, then/(x) is an entire

function(6). In the case in which TV* is bounded this is a generalization of
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one of the theorems of Polya and Wiener mentioned above, since an entire

function of exponential type which is periodic is a trigonometric polynomial.

In the case in which Nk can become infinite as k increases, the results of the

present paper overlap those of Polya and Wiener: we consider a more general

class of functions, but, as indicated above, we allow only a much slower rate

of growth of TV*.

2. The proofs are based on the following fundamental result.

Theorem I. In an interval a—L<x<a-\-L let /(x)GCn, «^2, and let

\m\gM.if
(1) I f'(a) I = (10«)2"M/Z,

then /(n)(x) changes sign at least n — 1 times in the interval.

Several inequalities are known for the derivatives of functions which

satisfy the conditions of Theorem I and have non-negative wth derivatives (7).

We show by an example that there is no constant A—A(n) such that

the inequality |/'(a)| }zAM/L will imply that/(B)(x) has n (or more) varia-

tions in sign. For, with 0<a<l, let

f(l/«)(l - x2/«2)". l*] iS «,
/ (#) = \lo, l*l>«-

Then if we set/(0)=0 it follows from simple calculations that, over the en-

tire real axis, /(x) £C", |/(x)| gl, and/(n)(x) has n — 1 changes in sign. But

/'(0) = 1/a, which is unbounded as a approaches zero.

The following lemma will be sufficient for our purpose, although a more

precise formulation is known(8).

Lemma I (S. Bernstein). If in a closed interval of length 2L, /(jc)GC" and

|/(x)| gl then there is at least one point in the interior of the interval for which

|/(n)(*) I S (2/I.)*»!,

One proof, which is undoubtedly known to many, is as follows. Let the

interval be [l, l] and let
n+l

g(%) = /(*) - 2/(*>•)7\>+i(*)/((* - x,)T'n+x{x,))

where   Tn+i{x) = cos ((« + 1) arc cos x) = 2"(x — Xi) ■ ■ ■ (x — xn+i),

(') E. Landau, Über einen Satz von Herrn Esclangon, Math. Ann. vol. 102 (1930) pp. 177—

188. R. P. Boas, Functions with positive derivatives, Duke Math. J. vol. 8 (1941) pp. 163-172.

R. P. Boas and G. P61ya, Influence of the signs of the derivatives of a function on its analytic

character, Duke Math. J. vol. 9 (1942) pp. 406-424.
(8) S. Bernstein, loc. cit. p. 10. J. Shohat, A simple proof of a formula of Tchebycheff,

Töhoku Math. J. vol. 36 (1932-1933) pp. 230-235. R. P. Boas and G. P61ya, loc. cit. pp. 413-
414. With more detail the proof in the text can be made to yield more information.
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xv = cos ((v — l/2)7r/(« + l)), is the (« + l)st Tchebycheff polynomial. Then

g(x) vanishes at « + l or more points, so repeated use of Rolle's Theorem

shows that its nth derivative has at least one zero, g(n)(a)=0. Since

Tn+1(x)/(x — xr) is a polynomial of degree n with leading coefficient 2", we

obtain
n+l

0 = /<">(«) - 2"»!£/(*,)/r.+1(*,).
r—1

The summation is bounded by 1 since | Tn+i(xr)\ = (« + l)(l — x2)~1/2^w + l,

and the lemma follows.

Proof of Theorem I. It is sufficient to consider the case in which M=\

and the interval is ( — 1, 1). We suppose that /'(0) = — (10«)2" and prove

that/(n)(*) must change sign at least n — \ times in ( — 1, 1). According to

Lemma I, each closed interval of length 1/(5«) lying in ( — 1, 1) must contain

at least one point in its interior where

(2) I /<*>(*) I g (20n)kk[ < (20»)"«"; k = 0, 1, 2, • • • , «.

The point x in this inequality depends on k and on the interval.

Let
<b(x) = /(*)(20«)-"«-».

Then

(3) 4>'(0) g - 102"20-» = - 5»

and from inequality (2) it follows that each closed interval of length l/(5n)

contains at least one point in its interior where

(4) I ♦<»>(») I <1{ k = 0, 1, 2, • • • , «.

It is to be shown that for k = 1, 2, • • • , « there are points xo, xi, ■ ■ ■ , xt+u

depending on k, such that

— k/(5n) < x0 < Xi < ■ ■ ■ < Xk+i < k/(5n),

(5) (- WKx,) > 3, v = 1, 2, • • • , k,

1 *<*>(*,) I < l,     I #<*)(*»+0 I < L

In the case k = n these relations will imply that/<"'(*) changes sign at least

« — 1 times, so the theorem will follow. In the case k = l these relations are a

consequence of inequalities (3) and (4) where we have *i = 0. We now suppose

that (5) is true for some k, 1 =^^« — 1, and proceed by induction.

Relations (5) imply that 0<*„+1—x,<2k/(5n) <2/5. The mean value

theorem shows that there is a point yi such that

*(t)(*i) - 4>w(xo) - im - *o)*(M-"(yi), *o < yi < *.

The left-hand side is less than —3 + 1 = —2 so
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*<*+»(yt) < - 2/(2/5) < - 3.

Again using the mean value theorem we have (if k>l)

6 < <p<-k)(xi) - <t>lk)(xi) = (*s - xd*lMY(.yt),        *i < yi < **>

from which we conclude that 0(*+1)(y2) >3, and so on. Thus there are points

- k/(5n) < yi < yi < ■ ■ ■ < yk+1 < k/(5n)

such that

(_ l)'*<*+i>(y,) > 3. „ m t, 2, ■ • • i k +1.

Then each of the intervals \y\ — 1/(5«), yi] and [yk+i, yn-i + l/(5«) ] contains

at least one interior point where < 1. We call these points yo and yk+2

respectively and (5) is true with k replaced by & + 1, which completes the

induction.

3. Theorem II. ///(*) GC°° in an open interval and there exists an integer p

such that no derivative of f(x) changes sign more than p times then the function

is analytic in the interval.

Proof. It is sufficient to show that the function is analytic in the interior

of every closed interval in the given interval. (In this way we avoid consider-

ing the possibility of the function becoming infinite near the end points.) Also,

by a simple transformation the problem is reduced to the case in which the

interval is (-1, 1) and |/(*)| gl, -Kx<l.

We show by induction that

(6) |/<*>(*) I ^ a*£!(l - I *| )-', - 1 < x < 1,

for k = 0, 1, 2, • • • where ö = 3{l0(p+2)}2("+2). This inequality is true for •

& = 0.  If it is true for some £ = 0 and if |*o| <1, then in the interval

I x— x<\ < (1 — \ xo I )/(k + l) we have

(1-|*| )-* < (1 - I *„| )-*Ü - 1/(4 + I))"* < 3(1 - I *„| )-*,

so, by (6),

I/<*>(*) I < 3**41(1 - I x0| )-*•

Theorem I with L = (1 — |*o | )/(k + l) and n = p-\-2 implies that

! f(h+l)(x0) I < {10(p + 2)} 2<»+2>3afc£!(l - | x01 )"*(4 + 1)/(1 -\ X»\)

or

I /ci+1,(x0) I < a*+»(4 + 1) 1(1 -\xo\ )-k-K

Thus (6) is true for all k; and Taylor's expansion of f(x) about any point in

the interior of (—1, 1) converges to the function in an entire neighborhood

of the point.
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Theorem III. Letf(x)GC° (— «>, °°) and let the number of variations in

sign of fw(x) in every interval of length a be less than ß. If

(7) Hm  I * I"1 log I f(x) I < co

then f(x) is an entire function of exponential type. Here a and ß are arbitrary

but fixed positive numbers.

Proof. From (7) we conclude that there are constants A and B such that

<AeBM for all real x. There is an integer p such that no derivative of

f(x) changes sign more than p times in any interval of length 2.

We suppose that for some k

(8) I /<*>(*) I < A\heB^\ -oo<*<oo,

where

(9) X = eB{W{p + 2)}2<H-2\

and use induction. Now in an interval of length 2 with center at xo, inequality

(8) shows that

|/<*>(*) I < AeB\keB**°K

Then Theorem I shows immediately that (8) is true for the next higher in-

teger. Since (8) is true for k = 0 it is true for all k.

Taylor's expansion of f(x) about the origin then shows that it is an entire

function of exponential type X,

00

I/GO I = ^I>*| z\k/k\ - .4exl'l,
o

which proves the theorem.

4. The constant X determines the rate of growth of /(z), and in relation

(9) we have an explicit expression for X in terms of the frequency of the varia-

tion in sign of f{k)(x). This expression is not the "best possible," but, at least

in the case in which/(z) is bounded on the real axis, a "best possible" inequal-

ity for the rate of growth of/(z) can be obtained by use of function theory.

Theorem IV. Letf(x)£-C°° ( — «>, 00) and let it be bounded. If no derivative

of f(x) changes sign more than p times in any interval of length it then f(x) is

an entire function of exponential type p,

\f(z) I g Me"i»K

We prove the theorem with p an integer, it will then follow for non-

integer p. The proof will depend on two lemmas.
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Lemma II (P61ya-Szegö)(9). Let f(z) be an entire function which satisfies

/(z) = 0(««i*i), \f{x)\=M,

then
|/(3) I g Me"M.

Lemma III (S. Bernstein) (10). Under the conditions of the previous lemma

I /'(*) I = Ma, — 00 < x < =0,

and the equality holds only if

/(z) m sin (az + ß).

Note that if /(z) satisfies the conditions of Lemma II then its derivative

is also an entire function of exponential type a. Hence if to /(z) we apply

Lemma III and then Lemma II we obtain |/'(z)| gMaea]^ which is appar-

ently a stronger statement than Lemma III.

Proof of Theorem IV. A function which satisfies the conditions of Theo-

rem IV is, according to Theorem III, an entire function of exponential type.

Let it be of precise type a, that is let

a = lim r_1 max log | /(re'9) |.
r-»» e

Then/(z)=0(e("+t)|z|) if e>0, and so by Lemma II |/(z)| gMe^+'^l, where

M is the upper bound of f(x). Then letting e approach zero, we find that

|/(z)| =Me"M. Let

Mk =    sup |/Cfc)(x)|

and

r = lim Mk+i/Mk.

We first show that

(10) r = a.

Now/(*'(z) is an entire function of exponential type since /(z) is, and/w(z)

is bounded by Mk on the real axis. Then, from Lemma III we find that

Mk+\gctMk and so rga. On the other hand, if r<a there is a constant p

(9) G. P61ya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1925, vol. 2,

pp. 35-36 and 218-219 (Problems 201, 202). R. Duffin and A. C. Schaeffer, Some properties of
functions of exponential type, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 236-240, where a more

precise formulation is given (for functions which are real on the real axis).

(10) S. Bernstein, loc.cit. pp. 97-102. G.Pölya and G. Szegö, loc.cit. vol.2 pp. 35 and 218-

219 (Problem 201). R. Dufnn and A. C. Schaeffer, loc. cit. p. 239. In the discussion of the case

of equality it is essential that the functions be real on the real axis.
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such that Mk+i/Mk<p<a, k^h. This clearly implies that Mk<Apk,

k = 0, 1, 2, • • • , for some constant A. Then using Taylor's expansion of

/(z) about the origin, we have

g A2Zf>k\ « 17*! = Ae"\'\
o

which implies that/(z) is of exponential type p<a. This proves (10).

Let k\<ki< ■ • ■ be a sequence of positive integers such that

MK+i/Mkv > a(l - 1/Jj.

Then at some point /<*»+" (x) will be near its upper bound. Let

\f^+1\xr)\ > (1 - \/v)MK+u

and let

4>.(z) = /<V(«, + p)/Jtfv

Then 0,.(z) is an entire function of exponential type a and it is bounded by 1

on the real axis, so by Lemma II

(11) I <t>,(z) I = #»kri.

Also, according to the construction,

I 0/(0) I = I f^+"(xr) I /Mky >(1 - 1/,)M,V+1/Miv > «(1 - \/v)\

Inequality (11) together with Vitali's convergence theorem implies that

there is a subsequence of the functions </>„(z) which converges to an entire

function <f>(z) with the properties that

I 0(z) I g e"^1

and

k'(0)| = a.

The case of equality in Lemma III then shows that

0(z) ■ + sin az.

If a>p then <j>(x) would change sign at least £4-1 times in an interval

( —e, iv —t) where € is some sufficiently small positive number, and then

/(*»'(x) would change sign at least p+1 times in an interval of length it if k,

is large. This is impossible, so ctgp and the theorem follows.

5. In the following let A7* be such that/(t)(x) does not change sign more

than Nk times in any interval of length a, where a is an arbitrary but fixed

positive number.

Theorem V. Let/(jc)6C"(- *, ») and let Nk = 0(log-< k), y<l. If
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lim   | x |-1 log | /(x) | < oo
X—>± oo

thenf(x) is an entire function of order not exceeding one.

It is sufficient to consider the case in which a = 2. There are constants Mo

and B such that

|/0)| < M0cs|11, - 00  < * < 00.

If xo is any real number then f(x) is bounded by MoeBeBix°\ in the interval

\x — xB\ <J. Then in virtue of the conditions of this theorem there is an in-

teger k such that Nk<k — 2, and so Theorem I gives a dominant for/'(x)

of the form |/'(x)| <M\eBMy — » <x< oo. Repetition of this argument shows

that for k = 0, 1, 2, • • •

(12) |'/**(*) i < MkeBixK - oo < x < oo,

and the object is to prove that the Mk can be chosen to increase at a suffi-

ciently slow rate so that/(x) is an entire function of order no larger than one.

If 7</x<l then for large k,

Nk < log" k.

Also, if fj. <X < 1 and we define n by

(13) n = [logx k]

then for large k,

Ni+n < log" (k + logx k) < n - 2.

If k is large (12) shows that/(A:)(x) is bounded by MkeBeB^ in the interval

|x—xo| <1, so, applying Theorem I to the function/(i)(x) with n defined by

(13), we have

|/(i+1)Oo)| < (10n)s»Af*eV»1*»l.

Thus
Mk+l g eB(l0n)2"Mk,

and after some simplification this becomes

Mk+1 g k'Mk, € > 0,

for large k. Finally,

Mk = 0((*!)«j

for every e>0, and this shows that/(x) is an entire function of order no

greater than one.
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