
SPECTRAL THEORY. I

CONVERGENCE TO PROJECTIONS

BY

NELSON DUNFORD

Spectral theory has for its origin the classical canonical reduction of a

matrix, and it is this classical theory that provides the pattern for the de-

velopments presented in this paper. The finite dimensional linear vector space

of the classical theory is here replaced by a complex Banach space £ and

the matrix in that theory by a continuous linear operator T in the space £.

In this situation there are always three and sometimes four types of con-

vergence, namely, the uniform, the strong, the weak, and, in case H consists

of measurable functions, convergence almost everywhere. While our primary

aim is to give necessary and sufficient conditions for convergence (in each

of the four types) of a sequence Qn(T) of polynomials in T to a specified

kind of limit operator, we have, and not merely incidentally but of necessity

as well as for its own sake, developed a parallel to many of the algebraic

aspects of classical matrix theory. In fact the chief tools in the convergence

theory here presented are theorems corresponding to (a) the minimal equa-

tion theorem for matrices, (b) the theorem of Sylvester concerning the de-

terminant of a polynomial in a matrix, and (c) the various decompositions

of the whole space into a direct sum of its subspaces determined by the spec-

trum of a matrix. This analogue to classical matrix algebra plays its role

almost exclusively in the questions involving uniform convergence (which of

the four types seems to be the most difficult one to handle; especially in mak-

ing the proofs of necessity rather than those of sufficiency) and the reader

interested only in the other three types of convergence will find the last sec-

tion fairly complete in itself as far as these questions are concerned.

The type of limit operator £ = lim„ Qn(T) with which we shall be chiefly

concerned is a projection of the whole space X on the manifold ffi [P] consist-

ing of all where, for a specified polynomial P\ we have P(T)x = 0. In

seeking conditions for uniform convergence of a given sequence Qn(T) towards

such a limit, one is faced with two fairly obvious necessary conditions, one

of which is P(T)Qn(T)—>0, A third condition which will make the set of

three both necessary and sufficient may be any one of three types, namely,

(a) of spectral type and asserting that the roots of P(X)=0 be either in the

resolvent set of T or else poles of the resolvent, or (b) of algebraic type and

asserting that the manifold yi[P]=P(T)% is a closed complement of 9)J[P],

or (c) of topological type and asserting that for every root X of P(X)=0 of
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multiplicity v we have (X/— T)"+1% closed. One way of visualizing the differ-

ence between strong convergence and uniform is through the corresponding

algebraic condition for strong convergence which is 5Ji [P]       [P] = 36.

The ergodic theorem falls within the scope of this theory, for in the

ergodic theorem we are dealing with the case of a projection on the fixed

points of an operator, that is P(T)=I—T. As the general situation shows,

the conditions for convergence of the particular sequence n~l^^i10Tm of poly-

nomials are, if worded properly, equally valid for any sequence of poly-

nomials Qn(T) with 0/n(l)—>1, but for the particular sequence n~l^^~J0Tm

the condition P(T)Qn(T) = (I-T)n-lJ2nm-J0Tm=(I-T")/n-^0 takes the rela-

tively simple form of Tn/n^>0. It is the condition Tn/n—>0 and not the cus-

tomary one of I Tn\ gM which is essential in the ergodic theory.

Since an element of a normed ring (in the sense of Gelfand) when con-

sidered as a linear operator on that ring has its norm as an operator the same

as its norm in the ring, the purely algebraic results of §2 as well as those

results in §3 concerning uniform convergence may be thought of as results

concerning an element T of a normed ring.

The indigenous connection between the spectrum of an operator T and

questions of convergence of sequences of functions Qn(T) of T is most readily

seen (but not completely comprehended) by an examination of the spectrum

of a finite matrix. For this reason and also because the finite case furnishes

some insight into the puzzles of the infinite one we shall first present certain

aspects of classical matrix theory in a form roughly as they shall appear in

the general case.

1. Spectral theory in a finite dimensional space. We shall not discuss this

case as completely as we shall the infinite one but enough will be given to

indicate the general trend of ideas. In fact we shall merely derive a formula

(equivalent to the classical canonical reduction) which will serve as a basis

for an operational calculus and show how questions of convergence may be

settled by spectral considerations. Except for the first two definitions and

lemmas which are not concerned with the dimension or the topology in 36

(and which will be needed in the infinite case) we are concerned here with a

linear vector space 36 of dimension «>0 over the field of complex numbers

(or any algebraically closed field) and a linear operator T (that is an nXn

matrix) which maps 36 into all or part of itself.

1.1. Definition. Let P be a polynomial, X a complex number, and v a posi-

tive integer or 0. We define

<K[P] = P(T)X, Wl[P] = £ [P(T)x = 0],

w.I = (A/ - t)\ ml= e. [(xz - t)\ = o],

where I is the identity operator in 36.
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1.2. Definition. If W, 9J?i, • • • , 9K/t are linear manifolds in 36 we shall

write ÜK = 3Ki© • • • ©9JJ* */ and only if 9J?<C9J?, i = 1, • • • , k, and every
xGSTJJ has a unique representation x=Xi + ■ ■ • +Xk with x.GSfti, i'■ = 1,

WeiAo«wrtfeüß = 3»i+ ■ • • + 9J?* if and only if 9JJ,C9Jf, * = 1, ■ ■ ■ , k, and
every x^Wl can be represented as x=x\-\- • • • +xk with XiGSWi, * = 1,

1.3. Lemma. // P, 0; are polynomials with no common roots then

w[p-q] = m[p] © m[q].

Clearly Wl[p], Tl[Q]Cf0t[p■ Q]. Since P and Q have no common factors

there are polynomials r, s with

R(\)p(\) + s(\)q(\) =- I,

R{t)p(t) + s{t)q(t) = I,

r(t)p*(t) + s(t)p(t)q(t) = p(t).

Thus if P(T)Q(T)x = 0, that is, if *GSD?[P-Q], then P(T)(x-y) = 0 where
y = P(P)P(P)#G9)? [Q]. This decomposition is unique, for the second of the

above identities shows that w = 0 if »GSR[P] -3W[Q]

1.4. Lemma. Z,e£ P(X) =LT*-i(Xi — X)"f &e a polynomial whose distinct roots

areXi, ■ • • , X*. Let P<(X) = P(X)/(X<-X)'i. PAera

50?[P] = 2fix"! © • • • © 9C

36 = 91 [Pi] + • • • +9t[P*].

The first conclusion is proved by a repeated application of Lemma 1.1

and the second by observing that since Pi(X), • • • , P*(X) have no common

factor there are polynomials Ru ■ ■ ■ , Rk with

Pi(X)Pi(X) + • • • + Ä*(X)P*(X) - 1,

Pi(r)Pi(r) + • • • + Rk(t)pk(t) = i.

1.5. Definition. The index v of a complex number X is the smallest positive

integer or zero such that (T—X/)'+1x = 0 implies (T—\I)'x = 0.

Thus the index v of X is positive if and only if X is a characteristic number

of the matrix T. In what follows we use the symbols Xi, ■ • • , X* for the dis-

tinct characteristic numbers of T and vu • • • , vt for their indices.

1.6. Lemma. If P(X) =IT?-iO< — >-)''< then P(P)=0 and hence

36 = 2Wx" © • • ■ © &C

To see that P(T) = 0 let x be an arbitrary vector in 36. Since the dimension
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of £ is n there are constants a<>, • • • , otn with a0x-\-a>iTx-\- ■ ■ • -\-anTnx = 0,

that is, Q(T)x = 0 for some polynomial Q. If Q is written in factored form

then Yiifiil— T)mix = 0 and it is clear that this equation remains valid if all

factors with /*< not a characteristic number are removed, and from the defini-

tion of Vi we see that the other factors may be changed to have the desired

exponents. Thus P(T)x = 0, P(T)=0. The second conclusion follows from

Lemma 1.4.

1.7. Definition. Let E\it i = 1, • • • , k, be the projections which, inview

of Lemma 1.6, exist and satisfy J = £xi+ • ■ • +-Ex*> 25,«■■22*0 E\iX = Wl'xi,

-Ex.£xy = 0, hf*j.

Note that since TW^CW^ we have ExiTx = EK^iTE^x = TE>.ix, that

is TEK = EXiT.

1.8. Definition. Let J(T) be the class of all complex functions of a complex

variable which are regular at every point of an open set {not necessarily con-

nected) containing the characteristic numbers Xi, • • • , X» of T. (The open set

upon which f(E:J(T) is regular may vary withf.) For fG.J(T) we define

k      -£-1 (71 _ \.J)m

(*) f(T) = E  E-^/<»>(Xf)£x,
<=i m~o       m!

1.9. Theorem. ///, g(E.J(T) and a, ß are complex numbers then

(a) af+ßgE7(T) and (af+ßg)(T)=af(T)+ßg(T),
(b) f gej(T) and (f-g)(T)=f(T)-g(T),
(c) »//(X) =Z:-o«nX" thenf{T) =j::=0anT".

Statements (a) and the first part of (b) are obvious. To prove that

(f-g)(T)=f(T)-g(T) let us write, for hEJ(T),

Dx,(h, T) = E-— h^(\t).
m=o nil

Then since (T—\iI)'1E)Li = 0 for q^Vi we have

r)23x,(f, T)EXi =2£2 £ (r~X<7)J/(n)(X,)g^-)(X0£xi
p_o »-o n\(p — n)\

irt—s (t — \ i)pr p i
= E-E pCn/'-'Cxj-g^-HX,) £x,.

p=0 />! L n=0 J

(T - Xi/)"
E-^(/-^'"'(x,)^
p=0 pi

= DK(f-g, T).
Hence
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t-i

= jllhM-g, T)EX{ = (f-g)(T),
t-i

which proves (b). In view of (a) and (b) statement (c) need only be verified

for the special cases of /(X) = 1, /(X) =X and (c) for these polynomials is an

immediate consequence of Definition 1.7.

1.10. Theorem. Iff,gej(T) thenf{T) =g(T) ifandonlyiff^(\i)=gM(\i),
i = l, • • • , k; « = 0, • ■ • , Vi—I. Thus for a polynomial P we have P(T)=0 if

and only if P(X) contains H*=i(Xj — X)'* as a factor.

The sufficiency of the condition is obvious from (*) and its necessity

follows from the definition of Vi as follows. In view of part (a) of Theorem 1.9

we may and shall assume that/(P)=0. Let x?±0, (T—X,/)x = 0 so that by

(*) and 1.7 we have 0=f(T)x=f(\i)x, /(X<) = 0. Next, in case r<>l, pick

x so that (T-\iI)2x = 0, (T-Xil)x^O then as before 0=f(T)x=f(\i)x

+ (T-\iI)f^(\i)x=P"(Ki)(T-\iI)x, and so/<»(X,) = 0. A repetition of this

argument clearly yields /(n)(Xi) =0, w = 0, 1, • • • , vi — 1.

1.11. Theorem. Let fn(EJ(T), then fn(T) converges if and only i//r(X<)

converges for eachi = \, ■ ■ • , k, andj = 0, • ■ ■ , Vi — 1.

The sufficiency of the conditions is clear from (*) while their necessity

follows from the argument used in the proof of the preceding theorem.

The next theorem is proved in the same way.

1.12. Theorem. Letf,fnGJ(T) then fn(T)^>f(T) if and only if lim /^(X<)
=/<fl(X,),* = l, • • • ,k;j = 0, • • • , Vi-1.

1.13. An illustration. If/„(X) = «~Zm=oX"1 we have/„(X) converging if and

only if |X| 2J1, while/0)(X) converges for all _/ = 1, 2, • • • providing |X| <1

but the first derivative/(1,(X) fails to converge if |x| =1. Hence (1.11) shows

that »"'Züi-\Tm converges if and only if all roots X,- of T have |Xi| ^1 and

if in addition Vi = l for every root X,- with |X<| =1. Next consider the state-

ment Tn/n—>0. An application of (1.12) to the functions /„(X) =X"/w shows

us that T"/n—yQ if and only if the roots X; of T satisfy the same conditions

required in the preceding example. Hence w-1^,""\Tm converges if and only if

Tn/n—>0. It is not pure coincidence that these two statements concerning con-

vergence have precisely the same spectral interpretation. It is a consequence

of the fact that the statement Tn/n—>0 is equivalent to (I— r)K~Zm-o^m
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= (I—ÜH")/«—>0 and is a special case of a general principle which will be

developed more completely in §3.

1.14. Concluding remarks. The formula

*   n-i (T — X7V"
(i) AT) = E £ "-^-ptfrdBn

1 = 1    m=0 W!

of 1.8 becomes

(ü) /(r) = £/tW&i
.=i

for a matrix T whose characteristic numbers X< all have index 1. In particular

(ii) holds if T is an Hermitian matrix. This case has been generalized in an

extensive literature to the concept of a self-adjoint operator in Hilbert space

where (ii) takes the well known form off(T) = JtZfO^)dE\, and in recent years

has been given, by M. H. Stone(1) and I. Gelfand(2), an algebraic topological

form. One difference between the ring of polynomials in a general matrix T

and the ring of polynomials in an Hermitian matrix T is that (as formulas

(i) and (ii) show) the former ring is isomorphic with a direct sum of reduced

polynomial rings while the latter is isomorphic with a direct sum of identical

fields, that is, isomorphic with a linear space of scalar functions.

If the projections E\i in (i) are eliminated from (i) by using the Hermite

interpolation formula then (i) takes the very natural form

1   C /O)
(in) AT) =- —-d\,

2wi J c \I — T

where C is the boundary of a set of small circles containing Xi, • • • , X*. If C,-

is a small circle about X, then (iii) gives

2iri J c.

d\
(iv)

2iri J a X/

Formula (iii) was suggested by E. Cartan(3) as a possible basis for an opera-

tional calculus for infinite matrices and was used (only in an incidental way)

by Gelfand. Formulas (iii) and (iv) were discovered by Fantappie(4) who

was working with finite matrices, and recently (iv) has been extended to the

infinite case by Lorch (6), who proved that an operator E defined by the equa-

t1) M. H. Stone, A general theory of spectra. I, Proc. Nat. Acad. Sei. U. S. A. vol. 26 (1940)

pp. 280-283.
(2) I. Gelfand, Normierte Ringe, Ree. Math. (Mat. Sbornik) N. S. vol. 51 (1941) pp. 3-24.
(3) The Suggestion was made in a letter to G. Giorgi. For this reference as well as for others

pertaining to an operational calculus see C. C. MacDuffee, The theory of matrices, Berlin, 1933.

(4) L. Fantappie, La calcul des matrices, C. R. Acad. Sei. Paris vol. 186 (1928) pp. 619-621.

(5) E. R. Lorch, The spectrum of linear transformations, Trans. Amer. Math. Soc. vol. 52

(1942) pp. 238-248.
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tion E = {2wi)~'LfcQiI—T)-ldh is a projection, and that the algebra of such

projections is isomorphic with the Boolean algebra of all open and closed sub-

sets of the spectrum of T.

2. An operational calculus and some algebraic properties of linear opera-

tors. The procedure of §2 used to discuss the general linear operator T differs

only slightly from that of §1. We first define the class J(T) and the operator

f{T) for/G7(r) and then define the projections corresponding to the E\i

of §1. The fundamental algebraic theorems (Theorems 2.12 through 2.29)

may then be formulated in terms of these concepts.

2.1. Preliminary concepts and definitions. From now on the symbol T will

stand for a bounded linear operator on a complex Banach space £. By the

resolvent set p{T) will be meant the set of all complex numbers X such that

(X7—r)_1 exists as an everywhere defined (and hence continuous) linear

operator. For XGp(P) we shall write R\(T) for (KI—T)-1. The set p(T) is

an open set containing all X with |Xj >| T\ . By the spectrum o-(T) of T is

meant all complex numbers\Qp(T). The spectrum <r(T) is a closed point set

contained in the circle |X| ^ | T \. If the space £ contains more than one point

(and this we assume) the spectrum a(T) is not empty (see Taylor(6)) and we

write |c(2")| for l.u.b. |X| where X varies over a{T). The point spectrum <rp(T)

consists of all X such that (\I—T)~l does not exist, the continuous spectrum

o~c(T) of those X for which (XI— T)~l exists as an unbounded operator with

domain dense in 3£, and the residual spectrum <rr(T) of those X for which

(KI — T)"1 exists with domain nondense in £. It is readily shown that if

(X7— T)~l exists as a bounded operator with domain dense in X then XGp(P),

so that the point sets p{T), aP{T), <rc(T), ar(T) are disjoint and their union

is the whole complex plane. The function R\(T) satisfies the resolvent equation

Ry.{T)-Rlt{T) = {p.-\)Rß{T)R^(T), X, ß<EP(T), and is regular, that is,
dR\(T)/d\ exists, at every point XGp(P). If /(X) is any vector (or operator)

valued function, regular and single-valued at every point of a closed domain

D whose boundary C is a finite number of rectifiable Jordan curves then

(1) /c/(X)dX = 0, (2) /(X) = (2«)-1 /c/aXS-X)-1^, for X in the interior of D,
(3) /(X) has derivatives of all orders at every point of D, (4) /<n)(X)

= (27ri)-%!j"c/(£)(£-X)-n-1ü'£, for X in the interior of D, (5) the Taylor ex-

pansion E"-o(X — £)n/(n)(£)/w! converges uniformly to/(X) for X in any circle

|X — ij| %.r contained in the interior of D. If/(X) is regular and single-valued

at each point of an annulus enclosed by two concentric circles C\ and d with

center X0 and if C is any circle between G and d, then for every X in this

annulus

l r /(x)dx
/(X) -  E an(\ - X„)»,  an = —-——,     n = 0, ± 1, ± 2, • • • .

„=-«. 2« J c (X — X0)n+l

(6) A. E. Taylor, The resolvent of a closed transformation, Bull. Amer. Math. Soc. vol. 44

(1938) pp. 70-74.
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The above Statements concerning regular functions may be proved as fol-

lows. For a linear functional over £, that is a point we have

x*fcf(^)d\ = fcx*f(h)dk and thus by Cauchy's theorem x*fcf(K)d\ = 0. Hence
by the Hahn-Banach extension theorem (which was proved for complex linear

functionals over a complex Banach space by Bohnenblust and Sobczyk(7))

we have fcf(S-)dk = 0. This proves (1) and (2) is proved in the same way while

the rest of the statements follow in the usual manner.

Many standard theorems in the theory of linear operators on a Banach

space are readily seen to hold in a complex Banach space and these will be

used when needed. In particular the various corollaries of the Hahn-Banach

extension theorem including the principle of uniform boundedness will be used.

Also the interior mapping theorem or, more specifically, its corollary which

asserts that a closed everywhere defined linear operator is continuous will be

used. This shows that the projections E, E' = I—E determined by closed com-

plementary linear manifolds in I are continuous.

2.2. Definition. By a T-admissible domain is meant an open set D of com-

plex numbers having the following properties:

(1) D is a finite sum of connected open sets Dt with Z>,Z>y= 0, i^j.

(2) The boundary C of D consists of a finite number of disjoint closed recti-

fiable Jordan curves contained in the resolvent set p(T) of T. We shall sometimes

write D=D{T) to mean that D is a T-admissible domain.

2.3. Definition. The class J(T) is the class of all complex functions each

of which is regular and single-valued at each point of the closure of some D=D(T)

which contains the spectrum cr{T) of T.

2.4. Lemma. Let D, D* be T-admissible domains with <r(T)(ZD*QD*QD.

Let 0(X) be regular and single-valued on D. Then

where C, C* are the boundaries of D, D* respectively.

The domain D is made up of a finite sum of disjoint sets and taking the

integral around C is the same as taking the integral around each connected

component and adding. Thus, without loss of generality, we may and shall

confine our attention to the case where D is connected. Suppose first that D

is simply connected and that D* is connected. Since cr(T)(ZD* none of the

inside boundaries of D* can surround a part of <r(2") and hence the integral

around every inside boundary of D* vanishes. Thus the integral Jc* reduces

(7) H. F. Bohnenblust and A. Sobczyk, Extensions of functionals on complex linear spaces,

Bull. Amer. Math. Soc. vol. 44 (1938) pp. 91-93.

An operational calculus
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to the integral around the outside boundary of D* which may be joined by

a cut to the boundary of D to prove the lemma in this case. Next suppose

only that D is simply connected. This case reduces to the first case by making

cuts joining up the various parts of D*. Now suppose the lemma has been

proved for the case where D is (n — l)-tuply connected. We now take D to

be w-tuply connected. If at least one of the inside boundaries of D lies out-

side of all the outside boundaries of the various parts of D* it may be joined

by a cut to the outside boundary of D, thus reducing D to a (n —l)-tuply

connected domain^ If every inside boundary C, of D lies in one of the holes

of some part of D* and is thus surrounded by some uniquely determined

nearest part C? of the boundary C* then Jd= fc*. Also any inside boundary

Ci* of D* which does not surround such a d nor any portion of D* has the prop-

erty that /c* = 0 and this type of C* may be dropped..These observations

reduce the problem to the case where (i) every inside boundary C, of C is

contained in at least one of the holes in some part of D* and (ii) every inside

boundary of D* surrounds either (a) an inside boundary of D or (ß) one or

more parts of D*. Here parts (a) and (ß) are not mutually exclusive. Now

consider an inside boundary Cj* of D* which comes under (ii)(/3). The various

portions of D* within Cf may be joined by cuts and one of them to C?.

This process reduces the problem to the case where every inside C» is in one

and only one inside C? and every inside C? contains one C<. Now it is clear

that the integral around the remaining (uncut) outside boundaries of D* is

equal to the integral around the outside boundary of D and the integral

around such inside boundary of D* is equal to the integral around the corre-

sponding boundary of D and thus fc = fc*.

2.5. Lemma. Let D, D* be T-admissible domains with a(T)(ZDD*. Then

there is a T-admissible domain D\ with o(T)CLDiCLDD*. If <p is regular and

single-valued at each point of D and at each point of D* then

where C, C* are the boundaries of D, D* respectively.

The first part of this lemma follows from the Heine-Borel Theorem and

the second part then follows from the preceding lemma.

2.6. Definition. Letf^J(T), D=D{T), DZ)o-(T) and let f be regular and

single-valued on D. Let C be the boundary of D. We define

AT) = — A\)R*(T)d\.
l r

2vi J c

The preceding lemma shows thatf(T) is independent of D.
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2.7. Theorem. ///, g<EJ(T) then

(1) f+gej(T)andf(T)+g(T) = (f+g)(T),
(2) f-gej(T) andf(T)-g(T) = (J-g)(T).

Statement (1) as well as the first part of (2) is obvious. To see that

f{T)-g{T) = (j-g)(T) let Cbe the boundary of a domain D =D(T) such that

a(T)<ZD and such that / and g are both regular and single-valued on D.

Let Cj be the boundaries of the component parts of D. Then

f(T) ~ t—:]£ f f(\)Rx(T)d\,      g(T) =~i( g(\)R,(T)d\,

- i^f(T)-g(T) = £ Z{ Je f(X)Rx(T)dxj(^j^ g(\)Rx(T)d\j.(*)

Now

( £ f(\)R,(T)d\)(f^ g(ß)Rß(T)dß^ = £ £ f(\)g(ß)R^T)R„(T)dXdß

= - f   f /M«G0
2?x(D - A(30

dKdß

«^c„ LV c„     A — f J c„ K — ti J

Hence if and ß(E.Cm we have fCnf(K)(\—ß)~1dX = 0 and

(J f(\)Rx(T)d\)(f g(ß)Rß(T)dß^

= - f f{\)R^T)d\ f dß = 0,
v c. J c„ X — u

and thus (*) becomes

-4x2/(r)-g(D = £ f f(\)R>(T)d\ f g(ß)R^T)dß

. _ t r r
n=l •/ C„      Cn A — ß

Now using each point of C„ as a center construct a circle of radius so small

that/, g are both regular in the closed circle and also such that the radius is

less than half the distance from the point on Cn to the remaining contours
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bounding D. A finite number of these circles cover the boundary C» of the

component Dn of D. Let £„ be the sum of the interiors of this finite number

of circles and let .D„* = £„+■£>„. Let C* be the boundary of £>„*. Clearly we

have <r(T)DnCD*, DnCD*. Then

Rx(T) - R„(T) n      C   _ Äx(D - R,(T)
- ah■/M—H-—d\= /(X)

J c„ x     p J c'n

-L
x - p

f(\)Rx(T)d\
- 2rif{ß)Rß{T)

and (**) may be written as

4**/(Z>g(D = Z[2^J'/c f(ß)g(ß)R»(T)dp

For XGG* we have /c„£(m)(X— = 0 and so

f{T)-g{T) - — £ f f(ß)g(ß)R,(T)dp
Irl n=i ./ c„

f f(ß)g(ß)R,(T)dß = (f-g)(T).
1-Kl J c

2.8. Theorem. // /(X) is a polynomial in X or, wore generally, if /(X)

=En-oa»An is a series convergent in a circle  |X| ^p wi£& p>|j'| i/zew

/(r)=E;=o«n7x

Let C be the circle | X | = p so that

f(D - — f f(Wx(T)d\ - -i- f/(x)f: r»x—»dx

„=o      2™JC„  X"+1 n_0

2.9. Theorem. Iffej(T) then/(<r(D) -<rCf(r)).

Let XGc(r) and let g(£) be defined for £ in the domain of definition of/

by the formula g(£) = (/(X) -/(£))(X-^)-1 so that gG7(D and, by 2.7 and

2.8, we have/(X)/-/(D = (KI-T)g(T) which shows that/(X)Ger(/(P)). Con-

versely let ß(E<r(f(T)) and suppose that p£/(<r(r)). Then the function

M£) = (/(£)-p.)-1 belongs to J(D and, by 2.7 and 2.8, h(T)(f(T) -pi) = 1,
which contradicts the fact that p(E(r(f(T)).
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2.10. Theorem. Let fGj(T), g<EJ(f(T)) and let F(£) = g(f(0). Then
Fej(T)and F(T)=g(f(T)).

Suppose g is regular and single-valued on D* where <r(J(T)) =f(cr(T))(ZD*

and let C* be the boundaryof D*. Pick D=D{T) such that a(T)CD, f is

regular and single-valued on D and f(D) (ZD*. Then if Cis the boundary of D

we have from 2.7

1 r Jt«(xj
*(/<!■))-ttJ ;—x^c*

and

= T~ f g(\)Rx(j(T))d\
2m J c*

\2ri/ JrcJ<fh-M)

-TT-.f g(m))MT)dZ = F(D.

The elementary algebraic rules of operation given by 2.7, • • • , 2.10 in-

clusive will be used from this point on without explicit reference to the theo-

rem in question.

2.11. Definition. By a spectral set of T will be meant any subset a of <r{T)

which is both open and closed in a{T). If a is a spectral set of T the symbol a'

will be used for the complement of a in a (T) so that a' is also a spectral set of T.

It is readily seen that a set cr of complex numbers is a spectral set of

T if and only if it is of the form o=a(T)D where D = D(T), and that for any

spectral set a of T there are P-admissible domains D, D' with

o- = <i(T)D,      a' = a(T)D',      DD' = 0.

Such domains are said to be complementary domains and D' will be called a

complement of D. If C, C are the boundaries of D, D' respectively and we

define

E.[T] = —f Rx(T)d\,      Er.[T] = — f Rx(T)d\,
2iriJ,c. 2m J c'

then it is seen from 2.7 and 2.8 that Er> [T] are projections reducing T

and that
/ = E.[T] + E..[T],      E.[T]-E..[T] = Ö.

With every spectral set a of T is associated the closed linear manifold

&-[r]C£ and defined as %<,[T\ =E,[T\£. Thus if ai, • • • , o-k are disjoint

spectral sets of T and o~ = a\-\- ■ ■ ■ -\-ak we have
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E.[T] = Eri[T] + ■■■ +E.k[T],..    Eai[T}-E,s[T] = 0,

When there is no chance of confusion we shall sometimes write Ec and in

place of -Eff[r] and X„[r] respectively. If the spectral set a reduces to a single

point X we shall write E\, 3£x for E„, HL„ respectively.

2.12. Theorem. Let a be a spectral set of T. Then when T is considered as

an operator in the space X„ it has a for its spectrum. Furthermore for X£<r any

one of the following statements is true if and only if it is valid when T is re-

garded as an operator in £„ : X is in the point spectrum of T, X is in the residual

spectrum of T, X is in the continuous spectrum of T, X is a pole of order v for

R((T), X is an essential singularity for R((T), X is an isolated point of the spec-

trum.

Let X(£<r. We shall first show that (kl—T) is a 1-1 bicontinuous map

of J, into all of itself. Let D=D(T) be such that <r = <r(T)D, X£5, and let D'

be a complement to D. Define f£.J(T) so that/(£) = (X — £)_1 for £ in a neigh-

borhood of D and/(£)=0 for £ in a neighborhood of D'. Then

Hence if we have y=f(T)x(E.%<r and (kI—T)y = x, and if (\I—T)u = x

with tt£3E„ we have y = f{T)x=f{T){\I—T)u — E„u = u, so that (Kl — T)
is a 1-1 map of 3£„ into all of itself. Thus when T is considered as an

operator in its spectrum is contained in <r. Now if X£<r then X€£V

and by what has just been proved we have (XI—2") a 1-1 map of TL,- into all

of itself. If (kl — T) were also a 1-1 map of into all of itself we see from the

equation £ = £„©£„' that (KI—T) would be a 1-1 map of 3E into all of itself,

which is impossible since X£cr. Thus when T is considered as an operator in

X„ it has <r for its spectrum. Next let X£<r be in the point spectrum of T.

Letx^Obe such that (Kl-T)x = 0so that (KI-T)Ecx = 0, (kl-T)E^x = Q.
Since (KI—T) is 1-1 on X„> we have E,-x = 0, and hence x = Ecx and X is in

the point spectrum of T when T is considered as operating in X,. The con-

verse is obvious. Now for any X£cr we have

and so (X7— T) is dense in but not equal to £ if and only if (X/— T)%<, is dense

in but not equal to Thus for X£cr either of the following statements is true

if and only if it is true when T is regarded as operating in £„: X is in the con-

tinuous spectrum of T, X is in the residual spectrum of T. Finally let X be an

isolated point in a. The Laurent expansion of R((T) about the point X is

&[r] = i„[r] © • • ■ © 3U„[t].

(X/ - 20/(2-) - E„ f(T)E. = }(T).

(X/ - T)3£ = (X7 - T)% © (X/ - T)H.. = (X/ - T)TU ® %.
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where C is a small circle about X. Thus

(A/ - r)*E* - — f (X - OkRi(T)dt = - a_(t+i>.
2««/ c

and hence X is a pole of order v if and only if

(A/ - T)'Mx = 0,      (A/ - Ty-^EX 76 0.

Thus X will be a pole of order v when T is regarded as operating in "$.„ if and

only if
(X7 - TYExE, = 0,      (A/ - T)'~lE\E, ^ 0,

but since X£(T we have E\E, = E\ and hence the two conditions are equiva-

lent. This completes the proof of the theorem.

The following corollaries will be used frequently.

2.13. Theorem. If a is a spectral set of T and X££<r then (KI—T) is a 1-1

bicontinuous map of    into all of itself.

2.14. Theorem. If a is a spectral set of T then EC[T] = I if and only if

a = cr(T), and Ec [T] = 0 if and only if <r is empty.

This is an immediate consequence of 2.13.

2.15. Theorem. If X is an isolated point in the spectrum of T then X is a

pole of order v if and only if

(X/ - T)'Ex = 0,     (X7 - ry-'Ex * 0.

This was established in the proof of 2.12.

2.16. Definition. -4s in the finite case we say that a complex number X has

index v {a positive integer or zero) in case (X7 — T)"+1x = 0 implies (KI —T)"x = 0

and there is an x£I with (\I—Tyx = 0, (X7-Ty^x^O. If no such integer v

exists we say that X is of infinite index. For any complex number X and integer

w ̂  0 we define

9?r = (A/ - t)X    a»r = 6 [(X/ - T)\ = 0].

2.17. Theorem. 7/X is a pole of order v for R((T) then X has index v and

£x = 2JJx, £„' =9?x> where a' is the spectral set of T complementary to X. Further-

more %,=%^for n^v while for 1 ̂ n ^v,     is a proper subset o/9f"_1.

By 2.15 we have

(*) (A7 - D'Ex = 0,      (A/ - Ty-xEx 7* 0.

Thus there is an x with (X7-r)'£xx = 0, (kl-Ty^ExXf&O, and so the index

of X is at least v. Now suppose that for some n and x we have (X7— T)nx = 0.

Then since
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» (X/ - D»     .      . .

we see that the function

<Zi (xz - ry
Ri{T)x - -E--x

is regular over the entire plane except perhaps at the point £ = X. Thus if K

is any contour surrounding a(T) and C is a small circle about X we have

(**) x =       f ut(2># - -L f 2?t(rM* = £x*,

and hence (XZ — 7,)'x= (XZ — T)"E\x = 0, which proves that X has index at

most v. Thus X has index v. Equation (*) shows that 3ExC3J?x and (**), which

holds for xemi, shows that STCxCXx- Thus 2Kx = *x. Now

X = Xx © i+ = 9Wx © X.',

and by 2.13

I,' = (XZ - C (XZ - D'l = tij"

so that 3E = 9),Zx + 9cx. Since X has index v we have 9JJx-9ix = 0 and hence

X = SRJ © 9lx- Thus Xand 91J are both complements to SDK and I,. C9ix' which
proves that 9&«3U By 2.13 9Tx+i = (XJ-r)*9R= (X/-D*3£,» = X,< = 9K and
so 9^ = 9^ for n Stf. Since if, for some k, %+l=% we have 9K = SU for all

w to prove the final assertion of the theorem it will suffice to show

that 9ix is a proper subset of <Sl{~1. Since X has index v there is an x with

(\/_D'* = 0, 0^y=(XZ-r)-1xG9?r1. Since O^yGSKx and aßx9K = 0 we
have yGSftx"1 _9ix which completes the proof of the theorem.

There is a converse to Theorem 2.17. It states that if for some X and m

we have 9?x ©aflx" = * and ^x closed, then X is either in the resolvent set p{T)

or else a pole of order at most m for R((T). This result is a special case of

2.23 which will be proved later.

2.18. Theorem. Let X be either in p(T) or an isolated point of the spectrum.

Let 5 be the distance from X to the rest of the spectrum. Then the following state-

ments are equivalent:

(1) *GXx.
(2) limn (KI-T)ne-"x = 0for every e>0.

(3) For some positive e<8 the equation (2) is satisfied.

To see that (1) implies (2) let C be the circle |X— £| =p where 0<p<e.

Then
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(X/ - r)"e-"£x "—[fr- Öne-»/?{(7>£^0.
2iri Je

Conversely suppose (2) is satisfied for some positive e < 5. Let 0 < ei < e < €2 < «3,

and d (* = 1, 2, 3), the circle |X— £| = e„ be chosen so that the spectrum

<r(T) with the exception of the point ij=X is in the open annulus bounded by

d and Cz. Then the function/„(£) = [l -(X-Ö»«-*]"1 is in J(T) and

MX) =^-.\ f MS)Rt(T)dt- f MQRt(.T)di+ f MS)Ri(.T)di\,

/„(T) -h. E,.

Since we are assuming (2) to hold for e we have/„~1(7,)^ = ^ — (X/ — r)Me~"x—*x

and thus for arbitrary p>0, |jc-/„-'(7>| <p, |/„(7>-x| <p|/„(r)| for

all large n. Since fn(T)—*E\ we have |-E\x— x| <p|£x| and since p is arbi-

trary, E\x=x.

2.19. Theorem (The minimal equation theorem). If fGJ(T) then

f(T)=0 if and only if
(1) For every pole X of R((T) of order v

/<"(X) =0, j = 0, 1, 1,

(2) f(\) = 0in a neighborhood of the spectrum <r(T) excluding poles of R((T).

Suppose (1) and (2) are satisfied. Let D=Di+ ■ • • +Dk be a domain

upon which /is regular and single-valued and with DZ)o(T). Clearly, in view

of (2),

(*) AT) - — f A\)Rx(T)d\
2« J c*

where C* is the boundary of those D{ containing no singularities of R((T) ex-

cept a finite number of poles. Let Xi, • • • , \k be the poles contained within C*

and let vu ■ ■ ■ ,vk be their orders. Then from (1) we have/(X) = (X,—X)1,,'g<(X)

where g< is regular at X; and giEJ(T). Hence by 2.15, f(T)EXi

= g<(T) (X,7 —r)",'£xi = 0 and hence from (*) we have

AT) = E/(r)£x,. = 0.
«-i

Now conversely suppose/(F) =0. Then 0 = o-(f(T))=f(<r(T)) and so /(X) is

identically zero in any connected domain (upon which it is regular) contain-

ing infinitely many points of o(T). Hence equation (*) holds where C* is

now the boundary of a finite number of domains containing only a finite

number of singularities of R((T). Let Xi, • • • , X„ be the poles within C* and
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their orders. Let X„+i, • • • , X™ be the essential singularities within

C*. Now suppose that for some t^nwe have

/(4)(X<) 9* 0,     /(''(X<) = 0,       j = 0, 1,

where k<Vi. Define a function g€zJ(T) so that in a neighborhood of X< we

have /(X) = (X,— X)Ag(X) while g(X) = l in a neighborhood of the spectrum

a(T) excluding X*. Thus g, g~l are both in J(T). Since &0< we have by 2.17

a point xGXx, with (KiI—T)kxr£0, and thus since g(T) has an inverse

f{T)x = f{T)E^x = g(7)(X,7 - T)kE^x * 0,

which is a contradiction.

The coefficient a_„_i of (X, — in the Laurent expansion of 2?{(jT)

about the point £=X; is (as was shown in the proof of 2.12) — Q\iI—T)nE\i

and thus for i>n we have (X,7 —7,)n£xi5"£0 for all « = 1, 2, • • • . Just as

before suppose that for some i>n and some & = 1 we have /<4)(Xt)5^0,

/('''(Xi) =0,7 = 0, • • • , k-Land as before define gG7(P) so that g-^T) exists

and/(r)£xi= (X<7 — T)kg(T)E\i^0, which again is a contradiction.

An immediate corollary is

2.20. Theorem. Iff, gE7(T) thenf(T) =g(T) if and only if
(1) For every pole X of R^(T) of order v

/c?)(x) = if £>, y = o, l.

(2) /(X) =g(X) /or ei>ery X i« a neighborhood of the spectrum <r(T) excluding

poles.

2.21. Theorem. Let Xi, • • • , X* öe £o/es o/ i?{(7") of orders vi, • • ■ , vk re-

spectively. Let a' be the complement of the spectral set a=(\i, • ■ ■ , \k). Then for

every f(Ej(T) we have

f{T) = f(T)E.. + E  E "-—^/<»>(X<)£x4.
i=i  „=o n\

This is an immediate corollary of 2.20.

2.22. Definition. Let /G7(T), then as in 1.1 we define the manifolds

=Am,   m\j] = e [/(?> = o].

2.23. Theorem. Lei f€zJ(T) and suppose that /(X) is not identically zero

on any of the domains in which it is regular. Let Xi, • • • , X* be the roots o//(X)

and mi, • • • , mk their multiplicities. Then the following statements are equiva-

lent:

(1) Wl[f]®<Hl\f]=X, <3l[f] is closed.



202 NELSON DUNFORD [September

(2) For i==l, • • • , k,\, is either in the resolvent set p{T) or else a pole of

order v^nii of R^(T).

(3) The finite set a= (Xi, • • • , Xi)o'(P) is a spectral set of T and

X, = 3»[/],     x„< =%[/].

Assuming (1) we have continuous projections E, E' with El = W,\f],

£'x = 9c[/], EE' = 0, I = E+E', TE = ET. Also for any X we have (X/-P)
a 1-1 map of x into all of itself if and only if (\I—T) is a 1-1 map of EH into

all of itself and of P'x into all of itself. Thus the spectrum a{T) of T is <Ti+o{

where oi, a{ are the spectrums of T when it is considered as an operator in Ex,

E'H respectively. In £x we have/(P)=0 and so cri is contained in the point

set (Xi, • • • , Xi). Since /(P)£ = 0 we have /(P) =f(T)E' and hence

W[/] - /(DX = f(T)m = /(DSR[/] C f{T)H = W[f].

Therefore, since 9J?[f]=0,/(P) is a 1-1 map of 9c[f]=£'X into all of

itself. Hence when regarded as an operator in e'x, 0£p(/(P)) and hence

XiGp(£), *=1, • • • , k. Thus ff/ is a closed point set not containing

<r = o-(T)(ki, ■ • • ,Xfc). This shows thatc as well asX,G<r is a spectral set of T.

Now let x=Ex+E'xEXXi, then 2.18 gives

lim (\J - T)"t-»E'x = 0, e > 0,
n

and hence since (X.-jt— T) is a 1-1 bicontinuous map of E'x into all of itself

we have E'x = 0 and x = £xG9K[/]. Thus

x, = Xm e • • • © Xxtca»[/].

On the other hand if »€Ü|? we have (by 2.18) xGXxj and so by 1.4

m[p] = WZ1 © • • • © skT/c x„

where P(X) =ITf-i(Xi —X)"1*- If h(\) is defined on the same domain as /(X)

by the equation /(X) =P(X) • /z(X) we see that a(X) has no roots in tr(P) and

hence h~x{T) exists, which shows that 9JJ[P] =9D(j[/] and thus the above equa-

tions give SD?I/]=X„. Now since/(X)^0 and in X„ = 9ft[/] we have/(P)=0
we see from the minimal equation theorem that in x„ every spectral point X<

must be a pole of order Vi^nti. Thus (2) follows from 2.12. It has therefore

been proved that (1) implies (2). During the course of this proof all but the

last part of (3) has also been established. To see that x„' = 9i[/] note first

that since 0£/((r') we have (by 2.12)

x,. = f(T)%. c /(r)x - »1/J.
Next

x = x„ e x,- = my] © x„',
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and so 9l[r"] and X„> are both complements of 502 [/] and X<,'C9J[/]. This

clearly implies that X„' = 9?[/]. Thus (1) implies (3). Clearly (3) implies (1).

Now assume (2) and let »\ = 0 if Xi is in p(P), then if P(X) is the polynomial

defined above we have by 2.17 and 1.4

X, = Xxi © ■ ■ ■ © XXi = SDlx! © • • • © Httx*

= SKxT © ■ • • © SWx"* = 50J[P] = 3R[/].

Also by 2.17 and 1.4 we have, for every x such that P2(P)x = 0,

x G STCxT © • • • © S&C* = 502x1 © • • • © ÜKx'; = 50?[P]

and so P(7> = 0, that is 5K[P]-50i[P]=O. Thus since (using 2.12)

»[/•] = 5K[P] D P(P)X„< = X*<

we have

X = X„ 0 X,< = 501 [P] © 5«[P] = m[f] © 9t[f1

and X»' = 5R [f] is closed. This completes the proof of 2.23.

The formula <r(/(P)) =/(<r(P)) may be given a much sharper form. To

see this let us first examine the finite case of an wXw matrix T whose

distinct characteristic numbers are Xi, • • • , X*. The formula asserts that

/(Xi), • • • ,/(X*) are the characteristic numbers of/(P). However a theorem

due to Sylvester asserts more; namely, if Xi, • • • , X„ are the characteristic

numbers of T, each repeated according to its multiplicity, then/(Xi), • • ■ ,/(X„)

are the characteristic numbers of f(T), where the number of repetitions of a

given number in this array is its multiplicity. In the language of determi-

nants this theorem of Sylvester asserts that if Xi, • • • , X* are the distinct

characteristic numbers of T and if nii is the multiplicity of X< then

Det(/(P)-XP;=nf-i(/(XO-X)m<- Recalling that the multiplicity mQiit T)
of a root Xi of T of index Vi is the number of linearly independent solutions

of (X,P-P)"x = 0, that is mfX,-, T) is the dimension of 50?x7 = 50Jxi<1 it is seen

that the Sylvester theorem, that is the formula

(i) tn(ji, f(T)) =   £   w(X, T)

(where m(ju, /(P)) is the multiplicity of p. as a root of/(P) and the sum on

the right is taken over all X such that /(X) =p) is an immediate consequence of

(ü) xMrj(r)] = E Xx[r]
xG/ 1W

(where the sum is a vector sum). Formula (ii) which states that two mani-

folds are equal is for many purposes more desirable than (i) which merely

states that the dimensions of these manifolds are the same. On the other
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hand (ii) is readily derived from (i) as follows. Suppose (X7— T)'x = 0

(that is *e£x(r)), where /(X)=M, then (pI-f(T))'x = (fQi)I-f(T))'x
= QJ-T)'g>(T)x = 0 and so xCx,[f{T)]. Thus the left side of (ii) con-
tains the right but by (i) the dimension of the left side is the same as the

dimension of the right side and so the manifolds are the same. A form of

this theorem which is more desirable than (ii) is

(iü) E„[f(T)] =    E E,[T],
xG/ Hn)

which states the equality of two projections rather than (as (ii) does) the

equality of the manifolds upon which they project.

In Theorems 2.24 and 2.29 to follow we shall give two forms of (iii) ap-

plicable to a general linear operator T.

2.24. Theorem. Let fCJ(T) and let r be a spectral set of f(T). Then
a = a(T) -f~l{r) is a spectral set of T and

ET[J{T)] = E,[T).

Let t' be the complement of t in a(f(T)). Then since o-{f{T))=f{o{T))

we have tr+cr' = o(T) where a' = a(T) f~l(r). Since t, t' are closed and dis-

joint and /(X) is continuous we see that a, a' are closed and disjoint and

thus they are complementary spectral sets of T. Let D, D' be/(7')-admissible

domains with DD' = 0, t = o(f{T))-D, t'=a(f(T))D'. Then there are T-ad-

missible domains Di, D{ with D\D[ =0, a = a(T)Di, a' = o{T)D{ ,f is regular

on Di + Dl and f(Dx) CD, f(D{) CD'. Let g, h be two characteristic functions

with gCJ(f(T)), hCJ(T) and such that

n,acD, /Lieft*

andjet F(£) = g(/(£)). By 2.10 we have F(T) = g(f(T)). Since F(£) = A(£) for

£C-Di + D( we have F(T) = h(T) and

E,[f(T)] = g(f(T)) = F(f) = h{T) = E,[T].

2.25. Lemma. Let T be a set of complex numbers, and for each £GT let

£(£), An(t;), n= I, 2, ■ ■ ■ , be bounded linear operators which have inverses. Let

M, Mi, Mi, ■ ■ ■ be constants such that

I B~\$ I ̂  M,      I A~\Z) \ Jg; Jf« I G r.

Then i/lim„ An(£) = 73(£) uniformly for £GT we have also Iim„ An1(£) = -B-1(£)

uniformly for £GT.

The proof is the same as that given by Gelfand(8) for a special case.

(8) Loc. cit.
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We shall prove the lemma first for the case 73(£) = 7. In this case there is an

integer n0 such that |4n(£) —1\ <l/2 for ££T and w = w0. Thus for ra_w0

p—0

Hencel.u.b.ig„<00l.u.b.{er |^4^"1(?)|=2v<=o and

I i£lö - /1 = I A?(Q(1 - 4.(0) I g KI 7 - 4.(0 I,

which proves the special case of B(£) = /. Now in the general case we have

I AJ0B-K0 - 11 - I (4.(0 - BU))B-i(Ü) I = M I 4.(0 - 5(0 |,

and so by the first case we have

lim B(t)A~\& = 7
»

uniformly on I\ Thus

I AZ\Q - B~\& I = I B~\$(I - B®A~\&) I &M\ I - 11(04^01,

which proves the lemma.

2.26. Lemma. £e2 73, 4„, w= 1, 2, ■ • • , be bounded linear operators and

let r be a closed set of complex numbers with T(Zp(B)p(An)! n= 1, 2, • • • . Then

ifAn—*B we have 2??(4 „)—>2?{(5) uniformly on V.

Let 73(£)=£Z — 73, 4„(£)=£7 —4n. Since T is closed and in p(75) it must

be at positive distance from o(B). Since |7?$(73)| is continuous on T and

17?{(7J) I ->0 as £-» oo we see that l.u.b.{er 173-x(£) | < «>, similarly for 4„-l(£).

The lemma thus follows from the preceding one.

2.27. Definition. By ^(T) we shall mean the ring of all operators of the

formf{T) where fCJ{T), and by CR\\T) the ring of all operators which are limits

(in the uniform topology of operators) of elements in %{T).

2.28. Lemma. With every UQRfT) is associated a uniquely defined scalar

function f called the spectral function of U, such that:

(i) The domain of definition of f is <x(T) andf(\) is continuous for X£<r(P).

(ii) Iffnej(T) and MT)-*U then /.(X)-»/(X) uniformly for\G<r(T).
(iii) f(<x(T))C<r(U).

lif»Ej(T) and/„(r)->77 then for every XG<r(r) we have /„(X) -/„(X)

Gff(/,(r)-/«(r))atad so

Lu.b. I /„(X) - fm(\) I = I fn(T) - fm(T) I -» 0.

Thus/(X) = lim„/„(X) exists on cr(T) and is continuous there. If also gn(T)—>U
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then by the same argument |/n(X) — gn(X)| —»0 uniformly for X£<r(r), and

so/(X) is independent of the particular sequence fn(T)C^.(T) used to ap-

proach U. To prove (iii) let XGc(P), so that/„(X)G<r(/n(r)), and suppose

that/(X)£<r(Z7). Since fn(\)I-fn(T)-^f(\)I- U and [/(X)2- U]~l exists we

have, for all large n, [/„(X) — /„(T)]-1 existing, which contradicts the fact

that/„(X)G<r(/n(r)).
We are now prepared to give the general form of the Sylvester theorem.

2.29. Theorem. Let f be the spectral function of an operator UCRfT) and

let t be a spectral set of U. Then o=f~l(r) is a spectral set of T and

E.[T] = Er[U].

Let t' be the spectral set of U complementary to r and let o' =f~1(r').

By the preceding lemma/(ff(r))Cr+7-' and so <7+<r'=o{T), oo' = 0. Since

t, t' are both closed in a{U) and / is continuous we see that a, <r' are both

closed and hence are complementary spectral sets of T. Let D, D' be Z7-ad-

missible domains with t=D-<t{U), t' = D' a{U), DD' = 0 and let C be the

boundary of D. Let/„G7(P) ar>d fn(T)—>U. Since /n(X)—>/(X) uniformly on

a(T) and/(o-(r))CT+T' we have for all large n

(*) f»M C D,     /„(*') C D'.

Thus /n(<r) =fn(p)D is a spectral set of fn(T) and o-{T)fnl(fn{a))=a, and so,

by 2.24, E,[T] = Efni<r) [fn(T)]. Now (*) shows that CCp[fn(T)] and thus,

by 2.26, Rt(fn(T))^Rt(U) uniformly for £GC Hence

E.[T] = £,„<,)[/»CT)] = — f RiiMTm^^-. f Rt(U)dt -

which completes the proof of the theorem.

2.30. Theorem. Let juG<r(/(P)) where f£J(T) and suppose thatf(K)^p on

any of the domains in which it is regular. Let Xi, • • • ,\kbe those points X in

a(T) where /(X) = p. !TAe«

(1) If n is a pole of R^{f{T)) then\\, ■ • • ,\k are poles of R^{T).
(2) Conversely if Xi, • • • , X* are £o/es c/ R((T) then p is a pole of R((f(T)).

Since/(X) is not identically p on any of the domains in which it is regular

it is clear that there are only a finite number Xi, • • • , X* of roots of/(X) —p = 0

which lie in the spectrum <r(T).'Since f (a(T)) = a(f(T)) and p(E.o-(f(T)) there

is at least one root of /(X)— p = 0 in o-(T). Let mi, ■ • • , mk be the multiplici-

ties of Xi, • • • , Xt as roots of /(X) — p = 0 and let h£j(T) be defined on the

same domain as / by the equation

p - /(X) = (Xi - X)"» • • • (X* - X)-**(X)

so that h(K) has no roots in cr(T) and thus h~x{T) exists. To prove (1) we have,
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by 2.24, <r= (Xi, • • • , X*) a spectral set of T and

(*) EMT)] = EH[T] + • • • + B^lT}.

Now for any integer n we have

kl - f{T)]»Eß[f(T)]
= (xv7 - d -i» ■ • • (x*7 - r)"*»A-(r)(£x,[r] + • • • + £x»[r]).

If w —1 is the order of ß as a pole of R^(f(T)) we have, by 2.15, the left side

of (**) vanishing, and upon operating with E^^T] we get

(Xi/ - T)"** • • ■ (x*7 - r)",*"A"(r).Exi[r] = o.

Since h~l(T) exists and since, by 2.13, (X,-/— T) for j9*4 is a 1-1 map of 36x,-

into all of itself we have

(X.-7 - t)^Ext[T] = 0,

which, since X< is isolated in <r(T), proves (by 2.15) that X,- is a pole of R((T).

Now conversely suppose that X,-, i = l, ■ • • , k, is a pole of order Vi for R((T)

and let w be an integer with » = »>,•, * = • • • , Jfe. Since/(X) is continuous on

o-(T) it is seen that ju is isolated in <x[f(T)] and thus (*) and hence (**) are

valid. Since, by 2.15, (X,7— r)m<nEx,[r] =0 this same theorem shows in view

of (**) that m is a pole of R((f(T)).

2.31. Definition. Let S be the unit sphere in X. An operator U in H is

said to be compact in case US is compact in 36 and it is said to be weakly compact

in case US is weakly (sequentially) compact in 3E.

We prefer the terminology of 2.31 to the usual terms, that is, completely

continuous and weakly completely continuous.

2.32. Theorem. Let f€J{T) be such that f(T) is compact. Then every

\£<r(r) zvith f(\) 7*0 is a pole of Rt(T) and the corresponding manifold 3Ex[r]

has finite dimension.

By a well known result of F. Riesz(9) m=/(X) is isolated in the spectrum

ff(U) of the compact operator U—f(T). Thus if a = a(T)f~l{p) we have, by

2.24, a a spectral set of T and

3E„[7/] = *.[T],

Now by 2.13 we see that U is a 1-1 map of 3£„[J7] into all of itself and hence the

unit sphere in 3E„[i7] is compact and 3£M[C/], therefore, has finite dimension.

Thus the spectrum of T where it is considered as operating in 3E„[2"] is finite

and by 2.12, therefore, a is finite, which shows that X is a spectral set of T.

Hence 3tx[r]C3E„[r] has finite dimension and, in 3£x[P], (XJ— T) has the

(8) F. Riesz, Über lineare Funktionalgleichungen, Acta Math. vol. 41 (1918) pp. 71-98.
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single point 0 for its spectrum. Thus in l*x[P] the matrix (KI—T) is nilpoterit,

that is, for some n, (X7 — T)nE\ [T\ = 0 which proves that X is a pole of T^fT"].

2.33. Theorem. Let fn£J(T) and let U = lim„/„(T) be a compact operator.

Then every XGf(P) for which /„(X) does not approach 0 is a pole of R((T) and

the corresponding manifold X\[T] has finite dimension.

Let/(X) be the spectral function of U so that/(X) =lim„/„(X) for every

XG<r(r). Thus if M=/(X)^0 we have, by 2.28, txGo(U) and by Riesz's result

ix is isolated in <r(Z7). The proof now proceeds as it did in the preceding theo-

rem except that we use 2.29 instead of 2.24.

2.34. Theorem. If T" is compact then every spectral point fi^O of T is a

pole of R((T).

This is an immediate corollary of 2.32.

2.35. The Fredholm theory. If U=f(T) is compact, where/(X) is regular

in the circle |X| ^ | T\ and has no roots other than X = 0 in this circle, then

2.32 shows that all points li^O in cr(T) are isolated in cr(7") and are poles of

Ri(T). In view of 2.17 it is seen that all of the principal results of the Fred-

holm theory are valid for the operator T. In particular if T is a weakly com-

pact operator in a Lebesgue space L it is known (Dunford and Pettis(10)

and Phillips(n)) that T2 is compact and so the Fredholm theory is valid for

weakly compact operators in L.

3. Convergence to projections.

3.1. Theorem. Every projection ECR(T) is in <RJT) andE = Ea[T], where

a is a spectral set of T and consists of all XG<r(7") where the spectral function

/(X) of E has the value 1. Thus E = 0if and only if there are no such X. ,

The proof will require the following lemma.

3.2. Lemma. Every X^O, 1 is in the resolvent set p(E) of a continuous projec-

tion E and ....

Rs(E) = El(i - 1) + (7 - E)ft '    <f fi 0, 1.

Thus Ei\E] = E, E<s[E] =I — E, o(E) =0 if and only if E = 0; <r(£) = 1 if and
only if E = I, and cr(E) =crp(E).

The formula for R((E) is verified by multiplying by i-I—E and the re-

maining conclusions follow immediately.

(10) N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Ämer.

Math. Soc. vol. 47 (1940) pp. 323-392. . ,
(") R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. vol. 48 (1940) pp.

516-541.
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Theorem 3.1 now follows from 2.29. If we take er of that theorem to be

the point 1 then E=Ei[E]=E,[T] where cr consists of all X£«r(p) with

/(X) = l-

3.3. Lemma. If fn&J(T) and if X is a pole of order v for Pj(p) then the
weak convergence of fn(T) implies the existence of the limits

lim /„ (X), j = 0, • • • , v - 1.
n

Furthermore if fn(T)—*f(T) weakly where f(EJ(T) then

lim fj\\) - /%), j m 0, • v , * - 1.
n

By 2.17, X has index v and so the lemma follows from 2.21 by the same

argument used to derive 1.11 and 1.12 from the formula in 1.8.

3.4. Theorem. Let P be a polynomial not identically zero and let /„£7(p),

n = \, 2, • • • . If fn(T) converges to a projection E with Ex(Z^ft[P] then either

there are no XGff(7) where/„(X)—>1, in which case E = 0, or else:

(1) The set a of points X£<r(p) where /n(X)—»1 consists of a finite number

of poles Xi, • • • , Xfc of Rt(T).
(2) If v\, • • - , vk are the orders of the poles Xi, • • • , Xi then

/.(Xi) -» 1,     'f?Q$ -»0, j = 1, • • • , vt - 1; i = 1, • • • , *.

(3) For t = l, • • • , k,\i is a root of P(X) and its multiplicity is at least

(4) nti (X./- D"£=o.

If there are no X£<r(p) where/„(X)—>1 then £ = 0 by 3.1. Now suppose

the set a of all X£<r(p) where /„(X)—»1 is not empty. We have, by 3.1, a a

spectral set of T and E = EC[T]. Since EjEC9K[P] we have P(p)£„(p)=0

and so (1), (3) and (4) follow from 2.19. Statement (2) follows from the pre-

ceding lemma.

3.5. Lemma. Let f„GJ(T), n = 1, 2, • • ■ , and let P(X) =IIf-i(X<-X)'< be
a polynomial whose distinct roots are Xi, • • • , X*. Then if /„(p)P(p)—>0 weakly

and lim„/„(Xi) =      0, i — 1, • • • , k, we have

a»x! = mt(,   Ml = fK„   * = 1, •••,*;» ^ *.
If X,Gp(p) the conclusion is obvious. If XiE<r(p) then /„(X) is regular

at Xi and we may expand P(X)/„(X) about X = Xi,

*i   /a _     x ) ™
p(x)/„(x) = £--i- [p(x)-/„(x)]n; + (x - x<)"+ fB><(x).

m-0 ttt!

If the function g„,, which is regular in a neighborhood of X,- is defined by the
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above formula on the whole of the P-admissible domain Dn upon which /„

is defined and regular, then gn,iCJ{T). Now since P(r)(X.) =0, r<vit and

P("rf(x.)^0 we have

Z mCrfT '  (XOP"  (Xi) = 0, m < Vi,
r=0

/«(X^P<'0(X<), « = Hf
and so

(*)     P(r)/.(D =      ,   'fnO^P^Oi) + (r - Xi/^Wtfc

Since P(P)/„(P)—>0 weakly, this equation shows that for xG9D(cx'i+1 we have

ctiP^^x*^ - \ jy<x = o, x* g **,

and since a,P™(X<) ^0 we have *E9Jcx'. Thus = 9Jcxf1 = SD^, n = j><. Since

P(P)/„(P)^0 weakly, (*) gives

- Xjyi+lgn,i(T) -* - ctiP(^(\d(T - \iiy< weakly,

and since a.P^fX.O^O we see that every is the weak limit of a se-

quence xne^+1. Thus 9^.C9c£+1 and hence

k?1 c c c fer. ic'-Ä
Now since (X,7— T)P(T)fn(T)—»0 weakly we conclude, by what has just been

proved, that fRx**s»ftx»+1. A repetition of this argument shows that 9^ = 9^'.

for all n = »»<.

3.6. Theorem. Let P(X) =LTf=i(X<— X)"' be a polynomial whose distinct
roots are Xi, • ■ • , X*. Let /n£7(P) satisfy

(1) /.(X<)-^l,/?)(X<)-»0,i-l, • • - ,k;j=\, ■ ■ ■ ,Vi-\,

(2) P(P)/„(P)^0.
Then the following statements are equivalent.

(3) /„(P)->P, £2=£, £X = 5W[P].
(4) PacÄ X,-, i=»l, • • • , k, is either in p(P) or e/se a £oZe o/ P{(P).

(5) Por t=l, • • • , A, X,- is ci^Aer i« p(P) or else a pole of Pj(P) of order

at most Vi.

(6) 9?[P]©9Jc[P]=X, 9c [P] is c/oseo!.
(7) 9fxfl,        •♦•,*» is closed.

Furthermore when the limit E exists the set er= (Xi, • • • ,'X*)<r(P) is a spectral

set of T and

E = E.[T],      Sm[P] = x„      91 [P] = JU

In view of 3.4 statement (3) implies (4) and (4) in view of 3.5 and 2.17

implies (5). From 2.23 it is seen that (5) and (6) are equivalent. Also 2.17
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shows that (5) implies (7). Now assume (7). Lemma 3.5 gives

so that 9^ = 9^ for w = jv Since 5R^' = 3fCx* we have for every a z£%*

such that (\iI-Tyix = (\J-T)"% that is x-z€.Wf{ and so

(*) x = W£ + fSJ and «JJ is closed.

Now if X(Gff(7),/„ is regular at X< and so for X near X<

/«(X) = e (X - W + (A - X<)"g„.,(X).
j-o 7!

If gn,<(X) is defined by the above equation for all X in the domain Dn where

/„ is defined and regular then g„,<G7(P) and

n-i fa>(\,)
U(T) = e -^-rr1 (T -      + (r - x.^'^.Kr).

j-o     31

Thus for xGSJcx, we have, using (1),

MT)x = e ^-r^ (r - xj)**-*.*.

Now if P<(X) =P(X)/(X-Xi)"' we see from Lemma 1.4 that P,(P)x^0 provid-

ing O^xGWr Thus if x = (Ki-Ty<y(=W?i we have fn(T)x-*x, Pi(T)fn{T)x
= P(T)fn(T)y->0 (by (2)) and so P,(P)x = 0 and hence x = 0. This shows that

9cx: -9Jcx' = 0. Thus (*) gives

* = 9Jcx'; © nZ, 9lx! is closed.

Thus 2.23 applied to the function/(X) = (X.—X)"' shows us that X< is a pole

of order at most vt for P{(P). Hence (7) implies (5). We have now shown the

equivalence of (4), (5), (6), (7) and also the fact that (3) implies any one of

them. We shall now show that these conditions imply (3). Assuming (5) we

have by 2.21

+ E e' (r~, /^(xjExJr],

where <r=(Xi, • • • , Xi)cr(P) and m,- is the order of X,G<r as a pole of P{(P).

Now in £„' the spectrum of T is cr' (2.12) and hence since OEP(ff') we see

that P(P) is a 1-1 bicontinuous map of %*> into all of itself. Thus fn(T)Et>

=/„(P)P(P)P-1(r)P<r'-»0 (by (2)). The above formula for /„(P) now shows

(using (1)) that/„(P)-^Ex,e<'-E^[r]=-E'[r]-The final statements of the

theorem follow from 2.23.
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3.7. Theorem. Let P(X), /«(X) be as in the preceding theorem and satisfy

(1) and (2) of that theorem. For i = \, ■ ■ ■ , k let (X<7— T) take bounded closed

sets into closed sets. Then statements (3), • • • , (7) of the preceding theorem are

all true.

Since (Xil—T) takes bounded closed sets into closed sets it may be proved

(see Banach(12) where the corresponding statement is proved for a compact T)

that (\iI—T)x is closed. Since (Xf7—P)2rtC(X,7—P)£ a repetition of this

principle gives the fact that (X,Z — T)2x is closed, and so on, that is, 92"; is

closed for all « = 1, 2, • • • , and thus (7) of 3.6 is satisfied.

3.8. Theorem. Let P(X),/„(X) be as in 3.6 and satisfy (1), (2) of that theo-

rem. Suppose that 0 is not a root of P(X) and that T" is compact for some-integer n.

Then (3), ■ • • , (7) of 3.6 are all true.

By 2.34 all spectral points X^O of T are poles of R((T) and so 3.8 follows

from 3.6. Theorem 3.8 is also an immediate corollary of 3.7.

3.9. Theorem. Let P(X) =JJ*=1(X,—X)"*' be a polynomial whose distinct

roots are Xi, • • ■ , X*. Let fn£J(T) satisfy the following:

(1) /•(X<)-*i,/?)(Xi)-*o,     • •, fei-it • v,, f.-i-
(2) P(P)/„(P)^0 strongly.

Then the following conditions are equivalent.

(3) fn(T)-^E strongly, E2 = E, EX = W[P].
(4) fn(T)x is weakly compact, x£36.

(5) 92[P]©9J2[P]=£, \fn(T)\ =M.

As in the proof of 3.6 we have for yGDJc^

, ,■<'), .

UT)y = £ (T - Ijyy -» y,
i=o     J!

and so 1.4 gives the fact that fn{T)y-*y for yG^l[P]- Also (2) shows that

MT)y-*0 for ;yG92[P]._Now if we assume (4) we see that /„(P)| ^M and

hence fn(T)y-+0 for yGft[P}. Thus 92[P]• 9J2[P] =0. Since /„(P)| =Mit is
seen that/„(P)x converges for every x in the closure of 92 [P] + 9J2 [P]. It will

now be shown that

(*) 92 [P] © 9J2[P] = x.

If this is not true there is an x^X and an with x*x = l, x*9J2[P]=0

= x*92[P]. By 1.4 there are points x,£9D2[Pi] with x = xx-\- ■ ■ ■ -\-xk and,

since x*x = l, not all x*Xi are zero. Suppose x*Xi^0 and pick a sequence »i

of integers so that fni{T)xx—>yi weakly. Since .ri£92[Pi] it is of the form

*1=Pi(r)2i and (\1I-T)'iXl = P(T)z1. Thus (XJ-T)'fn(T)x1=fn{T)P{T)z1

(l2) S. Banach, Theorie des operations lineaires, Warsaw, 1932; in particular Theoreme 11,

p. 151.
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->0 which shows that (KJ-T)^yi = 0, that is, yiGW.CTl[P]. Since

x*5ft[P] =0 we have therefore

(**) x*fni(T)Xl^0.

Now it is clear that it is no loss of generality to assume that Xi£cr(P), for if

XiGp(P) hypothesis (2) remains valid if P(P) is replaced by Pi(P) and also

[-P] = 9ft[Pi]. Thus we shall assume XiGc(P) and hence/»(X) is regular at

X =Xi. As in the proof of 3.5 we have

MT) = Z-A (Xx) + (T- \J) '^(T)
J-0 J I

and hence, since (P—XiPj">xi = ( — l)"iP(P)3i and x*92[P]=0, we have from

(1),

x*MT)xi = x* Z -—- (r - Xi/)'*i ->     ^ o.
3=0 /I

The fact contradicts (**) and proves (*). Thus on the basis of (4) we have

shown that
Ex = lim fn(T)x, x £ £,

n

exists. Statement (2) shows that P(P)£ = 0 and hence EEC9ft[P]. But, as

was shown above,/„(P)x—=>x for x£9ft[P] and hence E2x = \imnfn(T)Ex = Ex

so that E2 = E, P£ = 9ft[P]. Thus we have shown that (4) implies (3) and (5).

It remains to be shown that (5) implies (3). But, as was shown at the begin-

ning of the proof, (1), (2) and |/»(P)| S=Af imply the convergence of fn(T)x

for every x£92 [P] +9ft[P] and hence Ex = limnfn(T)x exists for every

The above argument shows that £ is a projection of the whole space onto the

manifold 9)2 [P]. This completes the proof of the theorem.

As Theorem 3.4 shows, the condition (1) of 3.6, that is, /„(X,-)—»1,

il;)(Xi)—>0, liSjSsJV— 1, is a necessary condition for the uniform convergence

/»(P)—>P, E2 = E, P£ = 9ft[P] providing P(X) is the polynomial of smallest

degree for which P(P)/B(P)—»0. As the following theorem shows, a completely

analogous situation holds in the case of strong convergence.

3.10. Theorem. Let P(X) be a polynomial and /B(E7(P) be such that

(1) fn(T)-*E strongly, E2 = E, £* = 9ft[P].
Let P'(X) be the polynomial of smallest degree such that 9ft [P] =9ft[P']. Let

P"(X) be the polynomial of smallest degree such that P"(P)/B(P)—>0 strongly.

Then

(2) P'(X)=P"(X).
(3) If X is a root of P'(X) of multiplicity v then X is iw the point spectrum of T

and has index v and

/n(X)->l,  '   /^(X)-> 0, j = 1, 1.
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Let P(X)=nf=i(X.-X)--, P'(X)=IIf-ifX*-X)*{. ^'W-IIJLi^i-X)'*'.
Clearly 0_j\' =>i and since (1) implies P(P)/„(P)—»0 strongly we see that

0 ^ p/' ^ Pi- Also since, in the sense of strong convergence, we have P'(P)/„(P)

->P'(P)E = 0 we see that O^f/' Let ju< be the index of X<. By 1.4

we have SD^ffi • ■ • ©SB^-SW^© • ' ' ©W* from which it is clear that
every root X< of P'(X) has index pi^vj and hence every root of P'(X) is in

the point spectrum. Since /„ is regular at such a root we may write

MT) = £        (r - x,/)'- + (r -\jy<gnAT).

If x-^0 and (X,P-P)x = 0 we have fn(T)x=fn(ki)x and since *e9ft£C2R[P]
we have fn{T)x^x, that is /n(X,)—>1. If f< >1 then there is an x with

(P-X,7)x^0, (P-X,P)2x = 0sothatxG2)?[P] and

f„(T)X = fn(\i)X + fn\\i)(T - \J)x,

which shows that/^'(X,)—»0. This argument may be repeated to give

/f(X.-)-»0, 1,... ,p't- 1.

Since ()=><' £W we see therefore that (1), (2), and (4) of Theorem 3.9 are

satisfied with P(X) replaced by P"(X) and hence, by that theorem,/„(P) con-

verges strongly to a projection of £ on 9Jc[P"]. This shows that 93?[P"]

= 2fl[P], which proves that v£ and hence P'(X)=P"(X). It remains to

be shown that the index pi of a root X< of P' is equal to its multiplicity vl.

We have already seen that p^vl, and 3.5 applied to the polynomial

P"(X)=P'(X) gives ßi^Vi. This completes the proof of the theorem.

The discussion of weak convergence is almost identical with strong con-

vergence, and so we shall not discuss it in full but merely state the following

two theorems. These theorems may be proved by using the methods of proof

employed in 3.9 and 3.10.

3.11. Theorem. Let P(X) =XTt-i(X.» — X)"* be a polynomial whose distinct

roots are Xi, • • • , X*. Let /»EJ(P) satisfy

(1) /n(XO->l,/^(X,)->0, i = l, • • • , k;j=\, • ... »
(2) P(P)/„(P)->0 weakly.

Then the following assertions are equivalent.

(3) fn(T)^E weakly, E~ = E, EX = $Dc[P].
(4) fn(T)x is weakly compact, #££.

(5) M[P]@Wl[P]=x, |/„(P)| £M.

3.12. Theorem. Let P(X) be a polynomial and /„E7(P) be such that

(1) fn(T)^E weakly, E2 = E, Ex = m[P].
Let P'(X) be the polynomial of smallest degree such that M[P] = Tl[P']. Let
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P"(X) be the polynomial of smallest degree such that P"(T)fn(T)—*0 weakly.

Then

(2) P'(X)»P"(X).
(3) If\isa root of P'(X) of multiplicity v then X is in the point spectrum of T

and has index v and

/.(X) ̂  1,     /f (X)    0, j = 1, 1.

3.13. Theorem. Le/ P(X) =LTf=i(Xi— X)vi be a polynomial whose distinct
roots are Xi, • • • , X*. Let /nG7(P) be such that

(1) /.<XO-»i,/P(X<)-»o.«-i. • • 1, • ■ •. v<—1-
(2) fn(T)^E weakly, E* = E, P3t = 9Jc[P].

PAew

(3) /„(P)—>E strongly if and only if P(P)/„(P)—>0 strongly.

(4) fn(T)—*E uniformly if and only if P(T)fn(T)—>0 uniformly and 92 [P]
is closed.

This is an immediate consequence of Theorems 3.6, 3.9 and 3.11.

In the following discussion of almost everywhere convergence we suppose

that 36 is composed of measurable scalar functions x{t) defined for / in a set 5.

The functions #E3E are measurable with respect to a completely additive

non-negative set function $ which is defined on a Borel field containing 5.

We suppose also that S is a denumerable union of sets of finite measure and

that x = 0 if and only if x(t) = 0 almost everywhere. Addition and scalar multi-

plication of the functions x(t) correspond to the similar operations in 36. It

is also assumed that if xn—>x in 36 and xn(t)—>y(t) almost everywhere then

x(t)=y(t) almost everywhere. For a linear operator U in 36 we shall write

U(x, t) for the value of the function Ux at the point t.

The following theorem of Banach(13) is fundamental.

3.14. Theorem. Let U„ be a sequence of linear operators in 36 satisfying

(1) For every lim sup„ | Un(x, t)\ < <x> almost everywhere,

(2) For every x in a fundamental set in 36 the lim Un(x, i) exists almost every-

where.

Then

(3) For every xG3£ the Iim„ U„(x, i) exists almost everywhere.

3.15. Theorem. Let P, /„, E be as in 3.9 and satisfy (1), (2), (4) of that
theorem. Then

(1) for every xG3E, \imnfn(T)(x, t)=E(x, t) almost everywhere

if and only if

(13) S. Banach, Sur la convergence presque partout des fonclionelles Uneaires, Bull. Sei. Math.

(2) vol. 50 (1926) pp. 36-43. This theorem of Banach has also been used by Yosida in generaliz-

ing the ergodic theorem of G. D. Birkhoff, see K. Yosida, Ergodic theorems of the Birkhoff-

Khintchine's type, Jap. J. Math. vol. 17 (1940) pp. 31-36.
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(2) for every xG%, lim sup„ \fn(T)(x, t) | < oo almost everywhere,

and

(3) for every x£X, limn P(T)fn(T)(x, t) exists almost everywhere.

Statements (2) and (3) are clearly necessary for (1). Now conversely (3)

shows that fn(T){x, t) converges almost everywhere for acG?l[P], and for

x G Sftx'i we have

f"V)
fn(T)x - £ (T - \jyX,

t-t     J!

and sofn{T)(x,t) converges almost everywhere for xE9D2[P] =Ef-i3Jcxj- Thus

3.9(5) and 3.14 give the desired conclusion.

The ergodic theorem

The following theorems are obtained from the preceding ones by taking

the polynomial P{T) to hel — T, that is, we are here concerned with conver-

gence to a projection of the whole space on the fixed points of T. For brevity

we shall write 9J2, 92 in place of Wl[P], 92[P] so that SO? is the manifold of

fixed points and 92 = (7 — T)X. While the ergodic theorem is concerned with

the convergence o{f„(T) where/„(X) =n~1^"Zoh" we shall word the theorems

for any sequence of functions/„E7(7") with/„(l)—»1. It should be noted that

the condition (I—T)fn(T)—+0 in any of the various meanings of convergence

reduces, for the particular sequence of averages mentioned above, to the con-

dition Tn/n—>0.

3.16. Theorem. Let fnGJ{T) satisfy /„(1)->1 and (I-T)fn(T)->0. Then
the following statements are equivalent.

(1) fn{T)^E, E* = E, £3£ = 9J2.
(2) The point X = 1 is either in p(T) or else a pole of i?{(T).

(3) The point X = 1 is either in p(T) or else a simple pole of R^(T).

(4) 92090? = *, 9c is closed.
(5) (I-Tym is closed.

This(14) is a corollary of 3.6.

3.17. Theorem. Let f„GJ(T) satisfy (I-T)fn(T)->0, and let
I—T take bounded closed sets into closed sets. Then statements (1), ■ • ■ , (5)

of 3.16 are all true.

This is a corollary of 3.7.

3.18. Theorem. LetfnGJ(T) satisfy/n(l)->l, (I —T)fn(T)—>0 and let T"

(u) In the original statement of this theorem the assertion was made that if \=1 is iso-

lated in a(T) and if | T"\ ^Jf then X = l is necessarily a simple pole of R^(T). We are indebted

to Professor Einar Hille for detecting an error in the attempted proof of this statement.
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be compact for some integer n. Then the statements (1), • • • , (5) of 3.16 are all

true.

This is a corollary of 3.8.

3.19. Theorem. LetfnE:J(T) satisfy/„(I)—>1 and (I— T)fn(T)-+0 strongly.
Then the following conditions are equivalent.

(1) strongly, E~ = E, £* = 9Jf.

(2) fn(T)x is weekly compact,

(3) 9t©ü» = I, \fn(T)\ gm.

This follows from 3.9.

Similar theorems concerning weak convergence and almost everywhere

convergence may be obtained from 3.10, ■ • • , 3.15, and these are left to the

reader.

It should be mentioned however in connection with the ergodic theorem

of G. D. Birkhoff (I6), which is concerned with the almost everywhere conver-

gence of n^^2^Zlx{4>"t), that the condition (3) of 3.15 is redundant. That is,

even with no assumption concerning the measure preserving character of the

point map qb other than the assertion that the strong (that is mean) theorem

holds, we can say that «_i£"=0x(c/>7) converges almost everywhere if and

only if

1 n—1 I

(*) lim sup — £ x(<p"t)   < =o almost everywhere.
n n  ,.„0 I

To see this note that (*) implies

(**) lim sup I x((p"t)/n \ < °° almost everywhere.
n

Clearly x{<j>nt)/n—>0 for a bounded function x(t) and hence 3.14 shows

that x(4>"(t))/n—>0 almost everywhere for every summable function x{t). Thus

3.15 shows that (*) is necessary and sufficient for

(***) lim — £ x{<i>vt) = E(x, t) almost everywhere.
n     11 v=o

Hence, one important problem remaining is to determine the conditions

on the point map c/> which are necessary and sufficient for (*) and hence for

(***). This problem will be discussed elsewhere.

(I6) G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sei. U. S. A. vol. 17

(1931) pp. 656-660.
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