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The purpose of this paper is to find and to study topological invariants

which connect the homological properties of a space K with those of its closed

subset A and of the open complement G = K\A, and thus help to characterize

from the homological point of view the situation of A in K.

In the case when K is simply connected (that is when the Betti groups of

K are zero) the problem is solved by the duality theorems of Alexander,

Pontrjagin, and Kolmogoroff, which determine the Betti groups of G through

the Betti groups of A. In the other special case when K is a manifold the first

duality theorems have been obtained by Pontrjagin and Lefschetz [9]

in 1927-1928. All these results are special cases of the general theory to which

the present paper is devoted and which gives the very elementary construc-

tion (of the so-called extension- and intersection-homomorphisms, section 11)

dominating the whole variety of duality and other situation properties.

The complete combinatorial theory is given in Chapter I for an arbitrary

cell complex K and its closed subcomplex A. In Chapter III the same theory

is generalized for locally bicompact normal spaces K and their closed sets A;

this generalization is based on an approximation process developed in Chap-

ter II. Chapter IV deals with manifolds and gives an elementary proof (com-

binatorial in character) of the Alexander-Pontrjagin duality in its most

general form.

All main results obtained are completely formulated in the first four sections

of Chapter I (sections 11-14). Numerical consequences are given in section 16.

Section 18 deals with the Phragmen-Brouwer problem, while in section 19

some quite elementary examples are given as illustration.

The elementary known facts and notations used throughout this paper

are systematized in the Introduction; its first part contains the group theo-

retical material, the second the needed information on complexes. Thus the

present paper is practically independent of the previous literature on related

subjects. There are only few references to my paper [l], and each of them

may be read without reading the rest of that paper.

Introduction

§1. Groups and their character groups

1. Groups, homomorphisms, duality. All groups considered are commuta-
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(') Numbers in brackets refer to the bibliography at the end of the paper.
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tive and written additively. In topological groups only closed subgroups and

continuous homomorphisms are allowed. The difference- (or factor-) group

of a group X over its subgroup X0 is denoted by X—Xo-

Let <t be a homomorphism of the group X into the group F; let Yi=<rX

be the image of X under a and X0 = o--10 (or <r_10y) be the kernel of the homo-

morphism <r, that is, the subgroup of all elements of X mapped by a on the

zero element Oy of F. Then we often use the picture

F 2 Fi

We denote by I the additive group of all integers, by I the additive con-

tinuous (bicompact) group of all real numbers reduced modulo 1.

If B is the character group of the group A in the sense of Pontrjagin [lO]

then A is the character group of 75, and we write

(1.1) A I 75.

The groups A and 75 are called in this case dual and the relation (1.1) is called

a duality.

2. Scalar products. If A | 75, a£A, o£j3, then the character b of the

group A and the character a of the group 75 map respectively the elements

a£4 and 6£75 on the same element

ba = ab G I

called the product of a and b.

Other cases in which products are defined are:

1. When a and b are elements of the same (commutative) ring.

2. When a is an element of an arbitrary group A, while 6 is an integer.

Then for ö>0

ab = ba = a + a + • • • + a (b times),

a(- b) = (- b)a = - (ab),

and ab = ba=0 for 6 = 0.

The scalar product

(x-y) = 2~1 aibi

of two linear forms x =2a>^» anc^ V is defined if the products aj>i are

defined.

3. Annihilators. Let X\ F; let A QX and 75C F be subgroups of X and F
respectively. If 75 is the annihilator of A (in F), that is, the subgroup of all

elements y of F satisfying the relation xy = Q whenever «£4, then A is the

annihilator of 75 in X and we write

X 2 A i. 75 C F,
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this relation being called an annihilation.

A fundamental theorem of the character theory is:

Theorem 3. The annihilation X~DA 1.BC1Y implies the dualities

(X-A)\B, .   (y -B)\A.

4. Conjugate homomorphisms. The fundamental lemma. Let

x\x, y\y.

The homomorphisms

a of X into F;      ä of F into X

are called conjugate if (ax-y) = (x-äy), whenever x(E.X, yGY. In this case we

write

X X\

Y Y

or—if the images Y\=aX, Xi = äY and the kernels X0 = o-_10y, Y0 = ö~l0x are

given—

(4.1)

13 1« XiQX
ti 1-

F 2 Fi    F0 C F

Most of this paper is based on the

Fundamental lemma 4. From (4.1) follows

(4.2)
i   s i_

[y 2 ys*-   Fo C F

(where the diagonal line means the duality Xi\ Fi) a«d

X0\(X- Zi)

(F - Fi) I F0.
(4.3)

The dualities (4.3) follow from Theorem 3 and the annihilations in (4.2),

while the duality X\ | Fi follows from Theorem 3 by means of the isomorphism

Yi^X — Xo- Thus we need to prove only the annihilations in (4.2). It is suffi-

cient to prove the first annihilation

To this end let xCX0, yG F. Then

(x-iy) = (<yx-y) = 0.
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On the other hand, if <rx9*0, then there exists ayGF with

(x-äy) = («•}') 7* 0.

Lemma 4 is proved.

.5. Remark concerning the rational case. Let 3f be the field of all rational

numbers, 9tn the corresponding w-dimensional linear space, that is, the group

of all linear forms with n variables and rational coefficients; the group 9i" is

considered as a group with operators, the latter being rational numbers. Thus

only linear subspaces are allowed as subgroups. If we understand now by a

character of 5Rn a homomorphism of 3in into SR, the "character group" of 3?"

is again 9Jn, as follows from the definition y(x) =x(y) = (x y) for any x£3tn,

y&R", the scalar product being understood in the most elementary sense.

Thus the duality relation | turns in this case into the identity and Lemma 4

still holds but now becomes trivial.

§2. Concerning cell complexes

6. Cell spaces and their subspaces. A cell space (Tucker [14], Kol-

mogoroff [8]) is a finite set of elements, called cells, satisfying the following

conditions:

1. To any cell corresponds a non-negative integer, the dimension of the

cell (denoted by a superscript: V is an r-dimensional cell or an r-cell).

2. To any cell V corresponds a well defined cell — f of the same dimen-

sion r, and we have — (— tr) =tT\ the cells t' and — f are called opposite (to each

other).

3. To any two cells tr and tr~l of dimensions r and r— 1, respectively,

corresponds an integer (tT:tr~l), the incidence coefficient of tr and P~\ under

the conditions:

(- r-.f-1) = (r: - r-1) = - (r-.r-1).

It is convenient to suppose that in any pair of opposite cells of the cell

space K a definite cell is denoted by t\ and the other by —ft. Then we put

r r r-l

e,-,- m {ti'.tj ).

Let ftGK and tstEK be two cells, and s<r. We write ft>%% or tl<t\ if

cells fj~lGK, ■ ■ • , fc^GK can be found so that

(ti-.i'1) 9* o, C£T*:C*)       '    (C-i^l) i* o.

If g <t\ we say that tst is a face of ft.

A cell space Q is called a subspace of the cell space IsT if Q is a subset of K

and
(a) two cells are opposite in Q if and only if they are opposite in K;
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(b) the dimension of a cell and the incidence coefficient of two cells in Q

are the same as in K.

A subspace Q of the cell space K is called: closed, if ICQ, t' <t (in K) im-

plies t'EQ; open, if /££>, t'>t (in K) implies t'GQ.
7. Chains and boundaries. An r-dimensional chain (or an r-chain) on a

cell space K with respect to the group X (the "coefficient-group") is a function

xr with values in X defined on the set of all r-dimensional cells of K,

taking opposite values on opposite cells. The additive group of all r-dimen-

sional chains on K with respect to X is denoted by LTK(X) or by L\. Chains

with respect to the group I of all integers are called integer chains.

The chain taking the value a£X on the cell V £7C and the value zero on

all cells different from ±tr is denoted by atr (in particular, the integer chain

taking the value 1 on tr, the value —1 on — V and the value 0 elsewhere is

identified with the cell V). This convention allows one to set for any chain

x   = 2-, a<ti

where a, is the value taken by xr on /[.

The scalar product

(x'-y) = £ a.bi

is defined for two chains xr - y~W< and yr = 2ZW under the hypotheses for

coefficient-groups mentioned in section 2. In particular the scalar product

(xr-t[) is always defined and equal to the value of the chain xT on the cell t\.

Let xr be any chain of the cell space K. The (r — l)-chain taking the value

2^i«5/(*r ■ on any ^-1£7£ is denoted by Ax' and called the A-boundary (or

the lower boundary) of xr (on K). The (r + 1)-chain taking the value

2~li^ml(xr-fi) on f„+1GK is denoted by VxT and called the V- (or upper)

boundary of xr on K; sometimes we write AKxT, Vkx* instead of AxT, Vxr to

show the cell space on which A, V operate.

Obviously
,    r   r+1 r+1    r r+1

tVU ts ) = (AI*    U) = eAi ,

and thus for any two chains xr and yr+1

(7.1) (Vxr-yr+1) m (xr-Ayr+1)

provided that these scalar products have a sense (section 2).

Let X\X, UK=UK(X), LTK = UK(X). Denote by

r r-l —t —r+1

77x = vLK ;      HK = ALK

the images; by Z^, ZrK the kernels of the homomorphisms

V(of     1 into iJk) ;      A(of I-k 1 into Lk).
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The elements of Z^ (of ZTK) are called r-dimensional V-cycles (A-cycles);

among all elements xr of L~K (of LTK) they are characterized by the condition

Vx' = 0; Axr 0.

(7.2)

From (7.1) and the Fundamental Lemma 4 follows

1

I
_ r-l    — r-1

,77iC    £T Lk

77x± ^ £74

A,

(7.3) (£jc — 77x) I ZÄ.

8. Cell complexes. A cell space is called a cell complex if for each of its

cells AA/r = 0, that is^Zi^* 1 = 0 for every r, *, k. On a cell complex AAxr = 0,

VVxr = 0 for every chain xr and therefore H^QZ^, HkQZr. The elements of

TTJr. H'K are called bounding cycles (V- and A-, respectively).

9. Betti groups. These are the groups

Vx = Wk(X) = Z'K - HK-      AK = Ak(X) = Zk - 77K;

the first is called the r-dimensional V- (or upper) group and the second is

called the r-dimensional A- (or lower) group of K with respect to the given

coefficient-group (X for V and X for A). The elements of Vx (of ArK) are called

r-dimensional V-classes (A-classes) of K. Two V-cycles (A-cycles) z\ and z\ are

called homologous to each other on K if they belong to the same V-class

(A-class); we write in this case z\~zT2 on K.

Let us prove the duality

(9) Vk I ArK.

We recall from the character theory that from ^4|^4, C\C, C = A—B fol-

lows 751 A — C. Apply this to the Emmy Noether isomorphism

(Lk — Hk) — (Zk ~ Hk) ~ Lk Zk

and take from (7.3), (7.2) (with r+1 instead of r)

(Lk — Hk) \ Zk,     Lk ~ Zk     Hk \ 77k-
We get

(Zk — Hk) \ (Zk — Hk),

q.e.d.
10. Closed and open subcomplexes. Let Q be a closed subspace of the cell

complex K and t'GQ. Then AQtr = AKP and AQAQtT = AKAKtT = 0; thus Q is a

cell complex.

Let Q be an open subspace of the cell complex K. Take any chain xr on Q

and define the chain E%xr, called the trivial extension of xr over K, by setting



292 P. ALEXANDROFF [September

EKxr = xr on Q, EKxT = 0 on K\Q. Then since Q is open on K, we have for

any t^EQ

It follows that

(AQx ■*   ) = (AKEKx t ).

(AqAq/7 2) = (bKiKE%xr-i 2) = 0

for any /r-2£(2, and () 1S again a cell complex.

Thus closed as well as open subspaces of a cell complex are cell complexes.

Chapter I. Complexes

§3. The general theory

11. The extension- and the intersection-homomorphisms. Let Q be a sub-

complex of the cell complex K and xq a chain on Q. Any chain on K taking

on the cells of Q the same values as the chain Xq is called an extension of Q

(over K). Among these extensions the trivial extension E%xtq takes the value

zero on K\Q.
If we assign to any chain on Q its trivial extension E%xq, we get the ex-

tension-isomorphism of Lq into Ltk-

Remark. If there is no possibility of confusion, we shall identify chains

with their trivial extensions and thus consider the extension-isomorphism as

the identical isomorphism of Lq into Lk=\Ltq:

Now, let xK be any chain on K. We denote by JqXK the chain on Q taking

on the cells of Q the same values as the chain xrK. If we assign to any chain

x' on K the chain JqXk, we get a homomorphism Jq of UK into Lq called

the intersection-homomorphism.

Obviously, if X\X, UK=LK(X), LTK = UK(X), then

(11.1) Jq
Lk. Lk

r —r

Lq Lq
El.

From now to the end of this chapter K is a fixed cell complex, A is a fixed

closed subcomplex of K and G = K\A is the complementary open subcomplex.

It is easily seen that for any chains x\ on A, x0 on G,     on K:

Ar A      r g   r ^g r

(11.2) AEKxA = EKAxA;      VEkXg = EKVxG,

K  t K     r K  t K r

(11.3) VJa xk = JaVxk;      AJgxk = JgAxk-

11.4. Therefore, the extension isomorphism maps identically

A-cycles of A V-cycles of G

on A-cycles of K on V-cycles of K

while bounding cycles are mapped on bounding cycles. Thus the extension-
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isomorphism generates a homomorphism called the extension-homomorphism:

Ar r Or r

Ek of AA into AK;      Ek of Vo into Vk-

11.5. The intersection-homomorphism maps V-cycles of K on V-cycles

of A; A-cycles of K on A-cycles of G (while bounding cycles are mapped on

bounding cycles) and thus generates a homomorphism, also called the inter-

section-homomorphism :

k r    . r k r    . r

Ja of Vk into VA;      Ja of AK into AG.

12. The groups Alb, VKG; ArA..K, t&jti Vak, AT0K. We write 0K for the zero

element of both A^ and VJc, and use 0.4, Oo in an analogous sense. Now we

define

(12.1) AKA = EKAA C AK;    .        Vkg = EkVg q vk (images),

(12.2) AA:k= {EK)~lQK £ AA;       v'g-.k = (Ek^Ok q vg (kernels),

(12.3) Yak = Javk Cvü; AaK =,JaAK C A0 (images),

and pnwe for the kernels of the intersection-homomorphism:

(12.4) {JaT^Oa = Vkö; (/g)_10g - ArKA.

We prove only the left-hand formula (writing J for j\ and E for £#).

1. If z'EZk, zr = zrG+hr with zGGZff, hr(E.hk, then Jz'= Jhr£irA.

2. If zr£ZÄ, Jz'<GHA, then zr = zG+^ with zGGZrG, fcrG#x.

Let us prove 2. We have Jzr = AxA~1, xrA1(E.LrA1. For any tAG.A

((zr - vEx7l)-iA) = (/•&) - (VExT1-^).

Now

(/•£) = (//•&) = (Vau-1-^),

(vExa l-tA) = (JvExa 1-tA) = {vJEx'a 1 -tA) = (Vau •&)•
Hence

((zr - V£xl_1) • C) = 0 for U G <4

so that the cycle zT — ̂ ExTAl is on G. As VEa^GHJj tne assertion 2 and thus

the formula (12.4) are proved.

13. The geometrical meaning of the groups ATKA, Vkg\&a-.k, VG:k ; Vak, ArGK.

13.1. The subgroup

Aka of Ax!      Vkg of Vx

defined as the image of AA (of VG) under the extension-homomorphism has

for its elements those A-classes (V-classes) of K which contain A-cycles on A

(V-cycles on G).
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13.2. Take all those

r

A-classes \a V-classes jG G Vo

whose elements bound on K. The resulting subgroup of AA (of Vg) is the group

^'a-.k (the group Vg-.k), defined as the kernel of the extension-homomorphism.

Definition 13.3. A V-cycle on A (a A-cycle on G) is called extensible

{over K) if among its extensions over K there are V-cycles {A-cycles) on K.

13.4. Then the group Vak (the group A0K) defined as the image of Vk

(of ArK) under the intersection-homomorphism is the difference-group of the

group of all r-dimensional extensible V-cycles on A (A-cycles on G) over the

subgroup of cycles bounding on A (on G).

14. The results. From the definition of the groups involved, from (11.1)

and (12.4) follows by the Fundamental Lemma 4:

(14.1)

and

(14.2)

AA 2 Aa-k _L   Vak Q Va

1_

t_
2 A0K -L   Vg:x£ Vg

Aa-k   (Vt - \ak)\      Vg:x (Ag

Ii

El

*gk)

The picture (14.1) contains

1. two pairs of isomorphisms: the first pair

AA — Aa;k ~ Aka',      Vg — Vg-.k ~ Vkg',

the second pair

r r r r r r

Ax — Axa ~ Agx;      Vx — Vxo ~ Vak,

2. the pair of dualities

Aka I Vak', Vxg|Agx;

3. three annihilations: the central annihilation

Ax 2 Aka IVseC Vx

and the pair of annihilations

AA 2 Aa:k -L Vak £ Va,      Vg 2 Vg:k L Agx q A0,

In each pair of relations (isomorphisms, dualities, annihilations) the one rela-

tion is obtained from the other by interchanging A and V, A and G.
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From these relations the first pair of isomorphisms is a triviality, being

contained in the very definition of the groups involved.

The dualities in (14.1) and (14.2) are algebraic consequences of the an-

nihilations and the latter follow from the fact that the extension- and inter-

section-homomorphisms are conjugate.

The central annihilation may be brought obviously into the form of the

following

Removing theorem. In order that an r-dimensional \1-cycle (A-cycle) on K

be homologous on K to a

V'-cycle on G, A-cycle on A

it is necessary and sufficient that its scalar product with each r-dimensional

A-cycle on A; r-dimensional V-cycle on G be equal to zero(2).

In addition to (14.1) and (14.2) we have

The main duality theorem.

(14.3) Aa:k\vTk.

We give to this fundamental duality the form of a pair of isomorphisms

by means of the following definitions:

Va-.k = Va — Vak;      Aq-.k = Ac — AGK.

Remark. The groups Va-.k, ^g-.k can also be defined as the difference

groups of the groups of all r-dimensional V-cycles of A (A-cycIes of G) over

the subgroups of all extensible cycles.

With these definitions we deduce from (14.2) the dualities

(14.2') AA:K I Va-.k;    Vg-.k I Arg-.k

and transform the duality (14.3) into the third pair of isomorphisms:

r r+l r r+1

(14.3') AA:K ~ Ag-.k\      Va-.k ~ vg:k.

The groups ATKA, VKa; ArA:K, Vg-.k, Vak, Akg; Vax, &g:K are called the

groups of the figure K, A, G. It follows from (14.1)-(14.3) that they are all

completely determined if we know for instance the groups ATK, AA, A'KA (for all r).

In Chapters II and III the definitions of the extension- and of the inter-

section-homomorphisms as well as the definitions of the groups of the figure

K, A, G are generalized to the case of an arbitrary locally bicompact normal

space K and its subsets: the closed set AC.K and its open complement

G = K\A. We show in these chapters that all relations (14.1)—(14.3') hold in

that general set theoretical case.

(s) I am indebted to L. Pontrjagin who first formulated the Removing Theorem and many

times pointed out to me (as did also L. Lusternik) the desirability of proving it under the mosjt

general conditions.
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In particular, the duality theorem (14.3) (or the equivalent pair of iso-

morphisms (14.3')) is the definitive generalization of the duality theorem of

Alexander-Kolmogoroff: If the space K is simply connected in the dimen-

sion r (that is, if one and therefore both of the equivalent conditions AK=0,

Vk = 0 hold), then obviously ATA,K = ATA, Vg:K = Vg- Hence, */ K is simply con-

nected in the dimensions r and r + 1 then (14.3') turns into the Alexander-

Kolmogoroff isomorphisms

r r+1 r r+1

A.4 ~ A0 ,      VA » Vo •

Let us return to the combinatorial case, that is, let K be a cell complex,

A a closed subcomplex of K. Taking as coefficient-group the group Im of all

integers reduced modulo m and denoting by ATK(m), AA(m), ArA.K(m), Vkg(w)

and so on the corresponding groups (of K, of A, of G, of K, A, G) we see

by the first pair of isomorphisms that the order of the group ArA(m) is equal

to the product of the orders of ArKA(m) and ArA.K(m) and thus is completely

determined by the last two groups. Now by a theorem of M. Bockstein [6,

p. 373] all Betti groups of a complex K are completely determined by the

orders of the groups ATK(m) taken for all m and all r. Thus the groups ATA

are determined by the groups ATKA(m) and ArA.K(m) (taken for all m and all r).

An analogous result holds for Vg> while ArK is determined by the ATKA(m)

and V5cg(w).

14.4. Hence if K is a cell complex, A a closed subcomplex of K and G = K\A,

then the groups AA and ArG (and all groups of the figure K,<A, G) for any r and

any coefficient-group are completely determined by the groups ArK(m), ArKA(m)

and AA.K(m) taken for all m and all r (while the groups ArK are determined by

Aa-a(wj) and Vkg(w) taken also for all m and all r).

In Chapter III, section 40, we prove that Theorem 14.4 still holds if we

understand by K and A topological images of (finite) polyhedrons (in the

terminology of [4, p. 128]). Thus for topological images of finite polyhedrons

the homological situation-problem may be considered as being completely solved.

Remark. The third pair of isomorphisms is given for the first time in

my notes [2.].

15. The operator VEK and the proof of the third pair of isomorphisms.

To any V-cycle zA on A corresponds the V-cycle VEKzTA on G which by its

very definition bounds on K. Let us prove: If zA is extensible, then VT^z^

bounds on G. By supposition there exists a V-cycle zr on K such that zrA =JAzT

and therefore (we write E instead of £$)

z = a.zA -+- jqz ,

r r K r

0 = vz = VEzA + VJaZ ,
_ r K r

VEza = — VJgz .
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As J(jzr is a chain on G, VEzA bounds on G and our assertion is proved.

Thus the operator VE produces a homomorphism of Va-.k into Votx- We call

this homomorphism again VE and prove that it is an isomorphism of Va-.k

onto Vg-k-

To prove that VE maps Va-.k °n the whole Vg-k take arbitrarily

r+1 r+1 r+1

zg   t Je   G Vg-.k-

We have to find such a V-cycle z*A on A that zra+1 — VEzrA bounds on G.

By supposition there exists a chain x' on K bounded by Zg+1 and conse-

quently
k  r K     r K r+1

VaJa x = JaVx = JAzG =0;

hence zA= JAxr is a V-cycle on A and xe=xr —£/fxr is a chain on G with

(15.1) Vxg = V* — VEJaxt = zc+1 — v£z^.

It remains to be proved that V7i maps Va-.k on Vg!k isomorphically. To

this end we show that if for a certain

r r r

Za ElIa G Va :k

the V-cycle VTJz^ bounds on G then there exists such a V-cycle zr on K that

By supposition
r r r r

VEzA = Vxg,      xg G Eg.

Therefore

V(EzA — xa) = 0,

so that zr = EzA—xrg is a V-cycle on K with

X r i     r X r r

Ja Z   = /a £z.i — Ja Xö = Zyl,

q.e.d.
Remark. In an analogous way to any A-cycle Zg+1 on G corresponds the

A-cycle AE%zg+1 on A bounding on K, and the operator AE% produces an iso-

morphism of the group ArGtK onto the group ArA:K.

§4. Special cases

16. Numerical relations. In this section the coefficient-group is either the

field Im, m being a prime, or the field 9i of the rational numbers, the latter

being treated according to the remark of section 5. Now all dualities turn

into isomorphisms. *

Let p denote the rank of a group of linear forms with respect to the given

coefficient-field. We put 7rK=pAK=pVx (Betti numbers) and



298 p. alexandroff [September

r r r r r r

TTKA    '    PVAK   — P&KA', TifC   = P&OK   = pV KG,

rrr rrr

TTA-.K = P&A-.K — PVa:K', TTG: K = pvG: K = P&G:K-

Then by the first pair of isomorphisms

rrr rrr

(16. 1) TTA = ta:K + TTKA', TC = TG:K + 1TKG,

while by the second pair of isomorphisms

rrr

(16.2) TTK = tka + TV KG

or

T T T TT

tk = (iTA — ITA-.k) + (TG — TG-.k).

Using the third pair of isomorphisms and changing r into r + 1 we get

. . r+l r r+1        . r+1 r+1

(16.3) TTG     = TA:K + KK    ~ (jA     ~ TTA:k),

or

tit.   *\ r+1 ** i    /   H-l r+1
(16.4) 7TG     = 7r,l:K + (7TX    — 1TäA;-

In the special case when K is an w-dimensional (orientable) manifold an

equivalent formula has been given by Pontrjagin; in this case by the Poincare

duality (see section 42 below) we have irG+1 = 7rG_r_1 and (16.4) can be written

as

n—r—l r r+1 r+1

ire      — ta-.k + (tk   — to),

which is the Pontrjagin formula [ll, p. 449, Theorem II].

17. Application to regular components. Now suppose that K is a homo-

geneously n-dimensional cell complex (that is, there are in K no cells of a

dimension greater than n while each cell of a dimension less than n is a face

of an w-dimensional cell). An (w —l)-cell tn~l is called regular if there are in K

two cells /" and % such that /n_1 is a face of +t" and +% and of no more

cells of K. A (finite) sequence of M-cells is called an r-sequence if

in it any two subsequent cells have in K a common face of a dimension at

least r — 1. Two w-cells of K belong (with all their faces) to the same r-compo-

nent of K if they can be connected (in K) by an r-sequence. The cells common

to two different r-components of K are of dimension at most r —2. A complex

is called r-connected if it consists only of one r-component; an «-connected

complex K is called an w-dimensional pseudomanifold if all of its (n— l)-cells

are regular. There are orientable and non-orientable w-dimensional pseudo-

manifolds: the group VK7) of an w-dimensional pseudomanifold K is always

cyclic, infinite if K is orientable, and of order 2 if K is non-orientable. It

follows that if the w-dimensional cell complex K is in any way decomposed

into a certain number of w-dimensional pseudomanifolds no two of which
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have a cell of dimension at least re — 1 in common, then the group Vjt(-0

is the direct sum of as many infinite cyclic groups as there are orientable

pseudomanifolds and of as many groups of order 2 as there are non-orientable

pseudomanifolds in our decomposition.

Let K be again an arbitrary homogeneously re-dimensional complex; de-

note by An-\ the subcomplex of K consisting of all (re — l)-dimensional irregu-

lar cells and of all faces of these cells. The re-components of the open subcom-

plex G„_i = .KA/4„_i are called regular components of K (we slightly change

here the terminology of [4, p. 190]). The decomposition of G„_i into its re-com-

ponents (the regular components of K) is a decomposition of the kind just

mentioned and therefore the number q(K) of the regular components of K is

equal to the n-dimensional Betti number modulo 2 of G„_i, while the number

qa{K) of the orientable regular components of K is the ordinary n-dimensional

Betti number of G„_i. Denoting as usual by irr the ordinary Betti numbers

and by irT(2) the Betti numbers modulo 2 we get, using (16.4):

17.1. For any homogeneously re-dimensional complex K:

(17.1) q(K) - ta~\-.k{2) + tk(2);       q.(K) = ta~\-.k + r*

In particular, if all (re — l)-cells of K are regular, then

(17.11) q(K) = wx{2h      0,(70 m r*.

This is the case with the complex G = K\A if the closed subcomplex A C.K

contains all irregular (re —l)-cells of K. Therefore, applying again (16.4), we

get:

17.2. If the closed subcomplex A of the homogeneously re-dimensional

complex K contains all irregular (re — l)-cells of K, then

(17.2) q(G) = tta-.k(2) + irx(2) — ttka(2);       q0(G) = irA:K + *k — *ka-

If A is moreover (re —l)-dimensional, then

(17.3) «7(0 = ta:k(2) + xx(2);      q0{G) = ta~k + r*

Now we call awy cell of K regular if the w-dimensional V "-group of its

open star (with respect to the group 7) is infinite cyclic. This definition agrees

for (re —l)-cells with the previous one. If A contains all irregular cells of

dimensions at least r then the r-components of G are identical with the regular

components of G. Thus for r = 0, that is if A contains all irregular cells of K,

the ordinary components of G coincide with the regular ones and their number

is still given by (17.2) and, in the case of an (re— 1)-dimensional A, by (17.3).

Remark. If no special hypotheses on the closed subcomplex A are made,

then the number of components of the open subcomplex G = K\A depends

upon the homological properties of the mutual situation in K of two subcom-

plexes: the given subcomplex A and the subcomplex A0 of all irregular ele-
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merits of K. Even the most elementary examples show that the features of

this mutual situation may be very different.

18. The Phragmen-Brouwer theorem. Let A be as always a closed sub-

complex of the cell complex K, G = K\A and

Denote finally by E\.K, t = l, 2, the homomorphism of Vq,- into V'a-.k which

assigns to each element zr of Vq( the class irGVÜ;ic containing the element

EA'zr. We shall prove the isomorphism

Note that the elements of the group {E\.kVq)(~^{E2a.kVq^ can be defined as

being those classes j'GVa:* of V-cycles which contain both cycles on Qi and Q2;

the elements of VgiG^vg^ are V-classes of G whose elements bound both

on G\ and G2.

The isomorphism (18.1) is realized by the operator VEK: let tf0 G^a^Vq,)

r\(EA:KVTQ2). Take ZqGJo on Qi- Then EKzr0 is equal to zero on Au thus VEKzT0

bounds on Gu Consequently all elements of the V-class V-EjboGvg+1 bound

on Gi. Taking zJGjo on O2 we see in the same way that all elements of VEKg0

bound on G2. Hence the isomorphism V-Ek maps the left-hand member of

(18.1) into the right-hand one. To show that this mapping is on the right-

hand member of (18.1) let

As Zg+1 bounds on Gi, i = l, 2, it is ztq+1=Vxri with x\ on Gi. Therefore zA=JAx\

is a V-cycle on Qi and by (15.1) (with xG = xTi — Ejfxri) we have:

thus z*A Gjo, and Jq contains cycles on Qi as well as cycles on Q2, q.e.d.

Let K be simply connected with respect to r; then the isomorphism (18.1)

is replaced by

A = A1 \J A 2,   A1 and A 2 closed in A,

Qi = A\Ai,   Q2 = A\A*;     Gi = K\AU  G2 = K\A2,

A0 = AiC\ A2.

(18.1)
1        r 2        r r+1 r+1

(EA:KVQj) r\ (EA:kVq2) ~ Vg:Gi n Vg:G».

r+1 ^_  „Ar r+1 r+1 r+1

zg  G -ErSo = Je   G Va-.Gi 1» Vg:g2.

Ar r-|

VEKzA G 3g
r+1

(18.2) VaQ[ ^ Vaq2 ~
r r r+1 r+1

Vö:g! '   ' vg:g2-

Now
r r r r

i = 1, 2,

Aa 2 (Aaa, + Aaa2) i- (VaQ! H Vao2) C vi

(the sum at left may fail to be direct) and
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(18.3) (aa - (AiA, + aaa,)) I (Vaqi H Vaq2).

To any A-cycle zT on ^4 corresponds the A-cycle

AJ'qJ = — AJ^J on a0 = vli (~\ a2

(where A operates on A). This correspondence generates a homomorphism

(the "Naht-Homomorphismus" of [4, p. 292]) of AA onto A^^OA^, with

the kernel AAAl-\-AAAl (the proof is easy and is given in [4, pp. 289-293]).

Thus

(18.4) (Aa - (Aaai + AaaJ) m a70-Ai O a7„L.

From (18.2)-(18.4) follows a duality which we call

The Phragmen-Brouwer theorem.

(18.5) (a7Ja, H A^,) I (Vetoi P> Veto.)•

19. Examples.

1. The elements of the complex K are: a triangle, its edges and its ver-

tices, thus the cells + t2, +t\, ±$, i=l, 2, 3, with obvious incidence coeffi-

cients. The open subcomplex G consists only of + t2, the closed subcomplex A

of the remaining elements of K. The operator VEK assigns to the V-class

Z\EV\ consisting of the V-cycles t\, t\ on A the V-class zqEVg the only

element of which is t2. The groups VlA(I) and V<?(-<0 are both infinite cyclic

(duality theorem of Alexander-Kolmogoroff).

2. Consider the circular ring in the plane decomposed into the cell com-

plex if whose elements are: +t2, +t\, +./?, i=l, 2, 3, with the incidence

coefficients

,2    1, ,2    1, ,21 ,10, ,10.
(/ :h) = {t :h) = 1,     (/ :t3) = 0,     {h:h) = 1,     (t :t2) = - 1,

(/!:/■) = 0  if   i,j = 1, 2.

The open subcomplex G contains only the cells +t2 and A —K\G. All groups

of the figure K, A, G are determined by their ranks:

oo o o ooo
tk = tvka =1; tva = 2; 1ta:k =1; tvq = tv kg = tvg:k = 0,

11 1 1 11 1

tk = tv ka =  1; tva = 2; 7Ta:A: =1; 1tg = 7Tg:A' =  lj tv kg = 0,

2 2 2 2 2 2 2

ta' = TiTA — = 7Ta:.r; = xjcc = 0; tvg = 7tg:k = 1.

3. The elements of K are +/2, it1, + /° with the incidence coefficients

(i2:/1)=2, (/1:^°)=0; the elements of A are +11 and ±t° (the cell complex K

is a cell decomposition of the projective plane; then A is a line on this plane).

The group A\.K consists of all elements of the form + 2ntl with an arbitrary
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integer n, while the elements of AG:X = AG are of the form nt2; thus A\.K and

Ag.K are both infinite cyclic.

4. The cells of K are:        ±^; +t1; ±t° with the incidence coefficients

(h:t) = {h:t) = 2;      (t :t) = 0

(two projective planes intersecting in a line); let the cells of A be +

±2°. The coefficient-groups are I for V and 7 for A. Then Vjjr is the direct sum

of an infinite cyclic group (generated by ft) and of a group of order 2 (gener-

ated by /i —     Correspondingly AK «7+72 and

2 2 2 2 2

Vkg = Vg « 7,      Aka ~ 72,      Vak = Va ~ 72.

The geometric meaning of the annihilation AK^>A2KA J_ Vkg^vk is in this case

particularly simple.

Now let K be the same, while the cells of A are ±<l, ±2° (that is .4 is the

intersection line of the two planes). Then Va:K = Va~7, V|g = Vj?~7+72,

Vg~7+7, while VG:x (isomorphic with Va:k) is the infinite cyclic group gen-

erated by 2 (/?-/?.).

5. Let K be the three-dimensional (continuous) polyhedron composed by

the interior and the surface of an ordinary anchor ring. Let A be a ring-shaped

body (homeomorphic with K) lying in the interior of K and going twice around

K. We suppose moreover that A is decomposed into the simplices of a certain

closed subcomplex A of a simplicial decomposition K of K; then T = K\A is

decomposed into the simplices of the open subcomplex G = K\A of K. The

coefficient-groups are I for A and 7 for V- Then AKA = 2AK, Agk«=Vkg~72

(the equator of K generates the group AGK\ taken twice it bounds on G). The

group AKA is not a direct summand of the group AlK.

6. Let if be a complex which arises when we identify the two poles of an

ordinary two-dimensional sphere. A is composed of two parallel circles of

this sphere. It follows from (16.4):

2 12 2

tg = ira:k + ttk — tka = 2+1—0 = 3.

7. In addition to the well known elementary examples illustrating the

theorem of Phragmen-Brouwer we illustrate the formula (18.1) by a torus

surface K on which two meridians ^4i and ^42 form the complex A; the whole

figure is considered in a cell decomposition in which the two meridians

^4i and A%, oriented in opposite senses, are cells /} and t\. Then /} — 4 is a V-cycle

on A extensible over K; therefore t\ and 4 belong to the same class S1GVa:k;

the group (E\:KVq)r\(E2A.KVQ2) is generated by this j1 and is infinite cyclic.

The group (VG:GinVG:g2) ~ 7 is generated by % — %, where the cells t\ and 4

correspond to the two domains into which the ring surface is decomposed by

the meridians A \ and ^42. An open plane circular ring K and two radial seg-

ments ^4i and A2 on it could be treated in the same way.
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Chapter II. Spectra

§5. Cell spectra

20. Projections. Let Ka and Kß be two cell complexes. Let there be given

for each dimension r a homomorphism of of the group LTß(T) of all r-dimen-

sional integer chains of Kß into the group LTa(I) of all r-dimensional integer

chains of Ka. We suppose moreover that these homomorphisms commute

with the operator A, that is, that for any (integer) chain xTß on Kß

ß  r ß r

(20.1) AaaXß = aaAxß.

Under these conditions the system of the given homomorphisms of is called

a projection of the cell complex Kß into the cell complex Ka.

Let AaQKa, AßCKß be closed subcomplexes of Ka, Kß respectively. We

put Ga = Ka\Aa, Gß = Kß\Aß and write systematically Lra, LTaQ, Ual for

UKa, UAa, L\, • • • , and 7a°0, Fal, ■ ■ • for • • • .

Any chain on Aa, Aß being a chain on Ka, Kß, we say that the projection

of is cogredient (with Aß, Aa) if every (integer) chain of Aß is mapped by of

onto a chain on Aa. As for xTß on Aß, xTa on Aa, the boundaries Axß, AxTa are the

same^n Aß, Aa and on Kß, Ka, the projection of of Kß into Ka (cogredient

with Aß, Aa) generates a projection ofo of Aß into Aa.

Now define for any chain xßl on Gß:

ßl   r a    ß r

(20.11) täalXßl = JaiaaXßX.

Then whatever be the chain Xß on Kß, /"lofxu = J"iQaJßix»- We use this

remark in

A ßl    ' A       r"      ß    T t"   A       13    t z     ».       ' t"      ß tß   a t
t\<zl®alXßl = ZialJ a\QaXß\ = J a\AaaaXß\ = J a\U>aAßXß\ = J a \®aJ ß \&ßXß\

ßl   ß r ßl t

= tSS a\J ßlAßXßl = tta\AßlXß\,

where Aa, A3, A„i, Aßx operate on Ka, Kß, Ga, Gß.

20.2. Thus a projection of of Kß into Ka cogredient with Aß, Aa generates

a projection ofo of Aß into Aa (identical on Aß with of) and (by (20.11)) a

projection of} of Gß into Ga.

21. Conjugate homomorphisms. The projection of of Kß into Ka assigns

to each chain xTK = 'Y'la4Tfii on Kß (with respect to a given coefficient-group 21)

the chain o'fxTß ,-a.ofon K (with respect to the same coefficient-group

21) and thus produces for any r a homomorphism of of the group L'ß = Lß(H[)

into Z4 = Z/(2f) which will still be called a projection. The conjugate homo-

morphism irß of Ua = L{%) into Lß = Lß{lü), where 2l|2l, assigns to any chain

xra€zLa the chain TrßxaELTß defined by

(21.1) (rrßXa-tß) = (xTa-aJß)t

whatever fß(EKß. The homomorphisms irß commute with V as is seen by
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a  r    r+1 a  r       r+1 r      S     r+1 r 0 r+1

(ViTßXa-tß ) = (TßXa-Atß ) = (xa-BaAtß ) = (xa-Aoa2s )

r      3 r+1 a     r r+1

=  (VXa'ffia^    )  =  {VßVXa-tß ).

Moreover, if of is cogredient with Aß, Aa then for a chain xral on Ga and any

tßEAß,
a  r     r r       f r

(irßX„i-(!ß) = (»al'öaW = 0,

so that TTß maps Lrai into Lrßi and thus produces the homomorphism 7r^i of L'al

into Uß! identical with Trß on LralQLra and conjugate with of}.

On the other hand we have the homomorphism Trß° conjugate with of"

in the form
aOr Bar r    _ r

1TßO%aO = J ßoKßXaO lor any XaO t Laf>-

We collect all we have just said about the cogredient projections of in the

following formulas:

(21.2)

where

(21.3)

Tß

I

an La0

Lßa

La0
—r

Lßa

ßo
Oao;

ol

T/31

Lai Lai

i Lsi Lbi

si
Oal

00 ß
jOao = oa;

I   ßl _  r" "
VOal  — J alOa!

aO S»
TßO  — J ßOKß,

al a

Wßl ' TTß,

and of, ofo, ofj commute with A, while irß, w^, tt^\ commute with V. There-

fore the homomorphisms of, ofg, ofl map ATß, ATß0, Arßl respectively into

K, Ka, Ku while tt% nf0, iTßl map Ya, Va0- V„i into %, Vß0, V^:

(21.4) TTß

I Va A0

r

As

a0

T/30

.SO
OaOi

ol

ITßl

From the definition of ofo, ofj,

S    SO  r aO  SO r

Oc-Eß *S0 = La QaßXßo;

l VaO A„o

I Vso AßO

• follows furthermore:

a „al  r 01   al t

TTßEa Xal = Eß ITßlXal,

| Val

i Vsi

Aalt Sl
r O0i.

Aßl |

aO   a     r ß     a r

TßoJaOXa ~ JßoTTßXa',
01   S    r a     ß r

ttalJßlXß  = JalOaXß.

(21.5)

(21.6)

22. Cell spectra. Two projections of and a'aß of Kß into Ka are called

homologous to each other if they produce the same homomorphism of A'ß

into A;.

Now let there be given an unbounded partially ordered set of cell com-

plexes Ka; we write ß > a if in this set Kß follows Ka; "unbounded" means that

to each two elements of the set a third element of the same set can be found

which follows on each of the two given elements.

Suppose that for any ß>a a finite number of "allowed" projections of

of Kß into Ka is given in such a manner that:
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1. Any two allowed projections of Kß into ka are homologous.

2. If y>ß>a and a}, a£ are allowed projections then the projection

ol = aa.(a}) of ky into ka is allowed.

Under these hypotheses the partially ordered set of the cell complexes ka

with their allowed projections tof is called a cell spectrum and denoted by

(22) K = \Ka,aa\.

A cell spectrum (22) determines two group spectra [l, pp. 58-62] or

homomorphism systems [13, pp. 668-669]: the inverse group spectrum

(AQ, a£) and the direct group spectrum (V„, tt%), the homomorphisms of the

two spectra being conjugate. Therefore the limit groups (see section 23)

called the Betti groups of the cell spectrum k,

t t      ß t r a

Ax = lim inf (Aa, ©„);      vx = lim sup (V«, *ß),

are dual.

Now let the closed subcomplexes aaQKa be given in such a way that

1. each allowed projection at is cogredient with Aß, aa\

2.. each two projections ca^o, a„o° OI ^fl into aa; aa\, a^1 of Gß into ga, gen-

erated by allowed projections af, a'f of Kß into 7\"„, are homologous to each

other. Then the given cell spectrum (22) is called cogredient with the subcom-

plexes aa and ga; such a spectrum defines the cell spectra

a = {^O,a„o};     g= {ga, a«i}

with their Betti groups

Aa = lim inf (Aa0, oao),      Va = hm sup (V„o, Kß\)\

Ac, = lim inf (AaU aa\),      Va = lim sup (vli, ttJi)

and the dualities

Aa I Va ;     Ao | Vo-

§6. The extension and the intersection homomorphisms and

the groups of the figure k, a, g for cell spectra

23. Lemmas on group spectra. In this section "spectrum" means "group

spectrum." Let (£/„, ir%) be a direct spectrum with the limit group U. The set

theoretical sum of all groups Ua is decomposed into bundles or classes of

equivalent elements, where two elements uaEUa and UßEUß are called

equivalent if there exists a y>a, ß such that ir"ua=Tt^Uß. These bundles are

the elements of the limit group U. To get the sum of u = \ ua) EU and

«'= {u :}EU take uaEu, Uß £«' and any y>ct, ß. Then m+m' is defined

as the bundle containing ir"ua+ir^Uß (see [l, p. 59]). Let (£/«, af) be an in-
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verse spectrum. The elements of the limit group i/ = Iiminf (Ua, of) are

"threads," that is systems ü= {üa\ of elements üaE.Ua such that:

1. the thread ü contains one and only one element ua of each group t/„;

2. if ««Gm, üßEü and ß>a then «a = ofw0.

The sum of two threads u= {««) and «'= {««' } is the thread {m„+m„' }

(see [1, p. 58]).

Lemma 23.1 (obvious). If in an inverse spectrum (t/„, of) the subgroups

(7aoCi7„ are given in such a way that a^Ußo^Uaofor ß>a then the groups Uao

with their homomorphisms ofo = of form an inverse spectrum and Z7o = lim inf

(Ua0, ofo) is a subgroup of U = lim inf (t/„, of).

If in a direct spectrum (Ua, ir%) the subgroups UaoQUa are given in such

a way that TTßUaoQUßo, then the Uao with their homomorphisms n$l=ir%

form a direct spectrum (Uao, rfo)- Any bundle of this spectrum is contained

in a bundle of (Ua, 7^) and any bundle of (Ua, tt%) contains at most one

bundle of (Uao, 7r|S). Therefore the group £/0 = lim sup (Uao, tt%°) is mapped

isomorphically on a subgroup of Z7=lim sup (Ua, n%) and can be identified

with this subgroup(3).

Lemma 23.2. Under the previous hypotheses the group

Uß:ßo =   Uß —  Ußo', Ua:aa =   Ua —   U ad

is mapped by

ß _ _ _ a .

ffia  into t/a: a0 =  Ua ~ Ua<l\ Tß   into   Uß:ß0 =   Uß — UßO

and(3)

_ _ _ ß a

U — Uo = lim inf (C/„:„0, o«);      U — U0 = lim sup (<7„:„o, xg).

Let us sketch the proof of Lemma 23.2. To prove the left-hand as-

sertion we take any element of U—Uo, that is, any class of threads

ü={üa}(EU congruent with respect to the subgroup UoQU, and as-

sign to each thread ü = \ ua\ belonging to this class the thread {ua]

Glim inf (Ua— Uao, of) where maG5aG Ua— Uao- This correspondence is

easily seen to be an isomorphism between U — Uo and lim inf (Ua— Uao, of).

To prove the right-hand assertion define the group U' as follows. Call the

elements ua and Uß of the set theoretical sum of the groups Ua equivalent with

respect to Uo if a y>a, ß can be found such that -KyUa — T^UßEUyo- The set

theoretical sum of the groups Ua falls now into classes of elements equivalent

with respect to Uo and these classes form the group U' (we define the sum of

two classes u and u' as follows: take m0Gm, %$ Gm' and y>a, ß; define u-\-u'

(3) In cases when among all isomorphisms between two isomorphic groups a well denned

isomorphism is chosen in some "natural" way we often replace the sign of isomorphism by the

equality sign and consider the given groups as being identical.
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as the equivalence class containing ir"ua+TTyUß). The group V is easily seen

to be isomorphic with both U— Ua and lim sup (Ua — Uao, tt^).

Lemma 23.3. Let two direct spectra (Ua, pß) and (Va, a%) and two inverse

spectra (Ua, p£) ana" (Va, trf) be given [the elements Ua and Va (Ua and Va)

of these spectra correspond to each other in (1-1) manner]. For every a let a

homomorphism

fa Of Ua intO Va\ fa Of Va into Ua

be given in such a way that for every ß>a and ««G Ua (va€zVa) we have

a a ß j -z _ß

(23.31) CßfaUa  = fßPßUa', PafßVß = JaÖ aVß.

Then we obtain a homomorphism

ß . *
/ of U = lim sup (Ua, Pa) into V = lim sup (Va, o-ß);

f of V = lim inf (Va, öa) into U = lim inf (Ua, Pa)

by putting in correspondence to each

thread v= {va}

the thread u =fv = {fava} •

bundle u = {ua}

; the bundle v =fu

containing for a uaEu

the element faua.

The proof of Lemma 23.3 may be left to the reader as well as the proof of

the following

Lemma 23.4. Under the hypotheses of Lemma 23.3

(23 . 41) Caß(faUa) C fßUß) PadßVß) C faV a

and (taking into account Lemma 23.1)

(23.42) lim sup (faUa, 4) - fXJ\      lim inf (faVa, Pa) - fV.

The same is true for the kernels of the homomorphisms/a,/, /„, /:

(23.43) Pß (f'Oa) C f~\■      *a(jß~%) C f~\

(we write 0„, 0p> Öa, 0^ for the zero elements of Va, Vß, Ua, Uß), and

(23.44) lim sup (f?0a, Pß) = f\;      lim inf (Jä'öa, da) = f 05.

Finally we have

Lemma 23.5. If, still under the hypotheses of 23.3, we have for every a

Ua Va'
/a
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then

f
U U

iv V

The proof follows from the definition of the scalar product for limit groups

[13, p. 670, formula (6.2)], namely:

For any u= \ ua) E Hm sup (Ua, p|), ü = {üa} £ lim inf (77„, pf)

(23.51) (u-u) = (ua-ua),

where ua is chosen arbitrarily in u.

The formulae (23.51) and (23.41) lead to

(fu-v)  =  (faUa-Va)  =  (Ua-faVa)  = (u-fv),

which proves Lemma 23.5.

24. Simplified definitions of the V-groups of a cell spectrum. Lemma 23.2

allows the definition of the group Vk< where K is a cell spectrum K = {Ka, of},

to take the following simple form. Two V-cycles z'a and z*ß of Ka, Kß, respec-

tively, belong by definition to the same V-class of K if there exists a y>a, ß

such that tt^zTa—n?lz'ß bounds on Ky. These V-classes are the elements of V'r.

The sum of two V-classes zr and z'T is defined as follows: take z„£z'> zj£z'r

and y>a, ß. Then zr-f-z'r is defined as the V-class containing ir"za-T-ira,zfi.

25. The extension and the intersection homomorphisms. The groups of

the figure K, A, G. By the formulae (21.5) and (21.6) and the Lemmas 23.3

and 23.5 the homomorphisms E^, E£, JJ0> JZi generate the homomorphisms

EK, EK, Ja, Jq of the corresponding limit groups according to the figure:

(25.1)
k

Ja
vk

r

Va Aa
EK;

k I ak

J°Iag
Vk

Vg
El.

According to Lemma 23.4 (and Lemma 23.2 used in (25.3)) define:

(25.2)

(25.3)

r TtC   r r a0

Vak = JaVk = hm sup (Va„xo, 7rS0);

Aju = EkAa = lim inf (Akaaa,

Agk = JgAk = lim inf (AGaKa, o<.i);

Vkg = EkVg = lim sup (VKaaa, fß),

Aa-.k = (EK)  Ok = lim inf (Aaa-.ka, Oao);
r 5-1 r ol

Vg-.k = (EK)   0K = hm sup {Vaa:ka, irßi),

Va:k = Va — Vak = hm sup (AAa-Ka, irßa);

Ag-.k = AG — AGK = lim inf (AG :K, £»«i)

Then by Lemma 23.4 and the formula (12.4):
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(25.4)

From these formulae we get literally as in section 14 the relations (14.1)-

(14.2) for the spectra K, A, G.

26. A direct definition of the groups of the figure K, A, G. Since any

A-cycle (A-homology) on Aa is a A-cycle (a A-homology) on Ka, to any thread

zl= IBM £Aa corresponds the thread zTK = {3a} €z&k where ,3« is com-

pletely determined by £>rao^=3a- This thread zrK is the thread EKzA.

Since any V-cycle (V-homology) on Ga is a V-cycle (V-homology) on Ka,

any V-class (section 24) zGGVG is a subset of a well determined V-class

zKG Va', and this £K is the V-class EKza.

Let zK={3„}GAK. Then {J^iSa} is a thread and this thread is the

thread J§zTKGAa.

Let zTK = {za} GVk- Then all J"0z„ are elements of the same V-class zA(EVA

and this V-class is Ja^k-

Thus we get the following direct definitions of the groups of the figure

The elements of AXACIAK are threads zrK= GAK containing threads

zA— {Sao} GAA in the sense that each A-class 3a0is a subset of the corre-

sponding A-class 3a-

The elements of Vkg are V-classes zxGVjc containing as subsets V-classes

The elements of VAk^Va are V-classes z^GVi containing among their

elements extensible V-cycles, that is, V-cycles zTa0 on Aa of the form zTa0 = J"0zra

where z*a is a V-cycle on Ka. For any element zTa0 of z\ElVtak there is a ß>a

such that TTßoZ^o is extensible.

The elements of AGKc:AG are "extensible threads" zrG = £AG, that is,

threads whose elements are all extensible (that is of the form £1i = Ja*ilroc

where ärGA„.

The elements of ATA.KC.ATA are threads z'A = GArA bounding on K in

the sense that the elements of each A-class j„0 bound on Ka.

The elements of Vg-.kQVg are V-classes zGGvo bounding on K in the

sense that zG is a subset of the V-class z'K = 0 representing the zero of the group

V'k- In other words, for any z«iGzG there is a tt^z^ bounding on Kß.

Definition 26.1. The V-cycle zra0 on Aa and the V-cycle Zß0 on Aß belong

to the same extension class (with respect to the cell spectrum K) if there exists a

7 > a, ß such that 7r"oZa0 —7r^oZ^, is extensible.

Definition 26.2. The threads zG={3«i} and z5={Sa\} belong to the

same extension class if for each a the A-class ä„i 15 extensible (that is, is of

the form £, - & = J^Ta with z«GAa).

K, A, G:

zGGVe.
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Now the elements of Va-.k = Va~ V'ak can be identified with the extension

classes of V-cycles z^. To get the sum of two extension classes zr and z1' take

as always z^Gz', zJGz", choose any y> a, ß and define z'+z" as the exten-

sion class containing T^z^+ir^ZpQ; the group Vax can be defined as the

group of the extension classes of r-dimensional V-cycles on Aa (a variable)

with this addition.

The elements of the group Ara.K are extension classes of threads zjjGAJ?.

27. Proof of the third pair of isomorphisms. Let

zA = {za0 J G Va -k-

The V-cycle VE^z^ is on Ga and bounds on Ka.

21 A. If z^q and z^, belong to the same extension class, that is, if for a cer-

tain 7 > a, ß

aO r so r y r
(27.11) 7r7o3aO — TT-yoZ/JO = JyoZy,

where z^ is a V-cycle on Ky, then

/  -       n *      «0 r 0      SO r „'+1
(27.12) TyVEa za0 — 7r7v7i3 z?0 G 777i

(77^ is the group of all r-dimensional V-cycles on Gy bounding on Gy).

To prove (27.12) we first deduce from (27.11) and section 15:

70  aO r 7O  00 r r+1

(27.13) VEy TyoZao — VEy 7tt0zso G 777i .

On the other hand

ITyV&a ZoO — V-C"). 7TYoZaO = V^.ir7£.a z«0 ~ -ßy 7T0oZoOj

and <£„<,za<)-7i;07r^zl0 is on Gy. Thus

a      aO r 7O  aO r r+1

(27.14) 7rTV7£„ za0 — VE-7 f>0Zao G 77Ti

and in the same way

B      80 r 70 00 r -Jr+*

(27.15) ITyVEy ZßO  —  VEy TTyoZßB G 77Ti .

From (27.13)-(27.15) follows (27.12) and therefore (27.1).
Thus the operators VEf generate a homomorphism—we call it VE—of

Vax into Va+i-
27.2. The homomorphism V7£ maps Va-.k onto VgjJ. To prove this let

Zg+1GVg-k and zrJlGza+l. We are seeking a ß>a and a V-cycle z^, on Aß

such that

SO r ol r+l r+1

(27.21) VEß zßo    itßiZai G Hßl .

From 4t1 Gzo+1GV<j?k and the definition of Voti it follows that there exist

a ß > a and a chain x'ß on if s such that VxTß = -nß\zra\l. As Va£ is on Gß, the chain
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J|o^ = 4o is a V-cycIe on Aß, while Xß — Efj^0Xß is on G and

.  r        JO 8    r r JU   r »1 r+1 SO r

V(*ß — £s JsoW = Vxß — VEß JßoXß = iTßiZai — VEß Zßo

from which follows (27.21) and thus (27.2).

27.3. ve maps Va-.k °n Votx isomorphically. Suppose that the element

za EVa-.k is mapped by ve on the zero element of the group Vg!x- We shall

prove that the extension class £A is the zero element of the group V'a-.k- Take

z^qEza- ft follows from our hypotheses that there exists such a ß> a that

TßV&a Za0 G tlßl .

Since

ITßV&a Zao — VrLß ITßoZaO «Sl

(see (27.14)) and tt^Jz^Gza, we may suppose from the beginning (replacing

ß by a and ir^z^ by zTM) that for some z^Gz^

V£a Za0 G 77al .

To deduce from that the identity ^ = 0 we have only to prove that z^o is ex-

tensible. To this end take a chain xal on Ga bounded by V7i£0z„0. Then

zra=Efzra0—xraX is a V-cycle on Ka and -7«oZa = Zao- q.e.d.

§7. SlMPLICIAL SPECTRA

28. Nerves. We denote by TV, Na, Nß, ■ • • and call nerves the finite

complete simplicial complexes (complete means every face of an element of TV

is itself an element of TV). The oriented simplices of TV form a cell complex

denoted by TV too.

Let Na, Nß be nerves, Ca, Cß closed subcomplexes of Na, Nß, respectively,

and
K a = 7Va\Ca,      Kß = Nß\Cß.

Let of be a simplicial mapping of Nß into Na such that the image of Cß under

<rf is contained in Ca:

(28) caCß C Ca.

Then in a well known way of generates a projection denoted also by of of

the cell complex Nß into the cell complex TV,,; for any oriented simplex

tß= («o • - ■ «?) °f TV/j we put oitTß={piel • ■ ■ <rfe?) if the vertices crfe^, • • •, cfe?

are all different, and of^ = 0 if for some <rfej=trfef, whereupon for

any chain x^=^Oi^4, o-fa^ = ^flitrf/j,4. The projection trf of TVp into TVa

generates a projection of of Kß into 7sTa by setting

S   r ATa S   r r r r
o«x = JKjraXß for any % G 7« = 7,*-,,

(see section 20 where 7fa, G«, of, ofl are to be replaced by TV«, Ka, of, of, re-

spectively).
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A known fact is(4):

Lemma 28.1. Let of and a'ß be two simplicial mappings of Nß into Na both

satisfying the condition (28) and the condition:

(28.11) For every simplex TßENß there exists a simplex TaENa containing

among its vertices all vertices of both o^Tß and a'ßTß\ if in particular TßECß

then Ta can be chosen among the simplices of Ca.

Under these hypotheses the projections aß and a'ß of Kß into Ka generated by

of and a'a are homologous to each other.

The proof is as follows. Let d, e2, • ■ ■ , es be all vertices of Nß in a definite

order. Take a copy Nß of Nß with the vertices el, e{, ■ ■ ■ , e's and consider

all simplices of the form \e'h ■ ■ ■ e'tpeip • • ■ eir \, where p = 0, 1, • • • , r and

|e,0 • • • eir\ is any simplex of Nß. The simplices just defined and their faces

form a nerve Nß' called the prism over Nß. Now define for each oriented

simplex ^=(e,0 • • • e,r) of Nß the prism over tß as the chain

p=r

utß = 12 (- 1) (e'h ■ ■ ■ e'iT eiv ■ • ■ O
p— 0

while the prism over the chain s£^xZa^is by definition the chain

n*(3 = 2^ a^tßi

on Nß'. An easy calculation shows: If z]j is a A-cycle on Kß then

(28.12) AUzß = Zß - zß - UAzß,

where z'ßr is the copy of zrß on Nß' and A operates on Nß' at the left and on Nß

at the right (see [4, p. 199]).

Now map the vertices of Nß by erf and those of Nß' by aaa. By virtue of

(28.11) we get in this way a simplicial mapping a'a'ß of Nß' into A^. Denoting

by x*a+1 the chain cr'a'ßUZß (on Na), by xTa the chain a'a'ßIJAZß which is on Ca.

we get

.        r+l ß t tß r r

Aaaxa   = <raZß — aazß — xa

and, Ka being open on Na,

.       Tt?a  r+l Na r+l V„ ß r Na   ,ß r ß r ,ß r

AKaJ KaXa     = J Ka&NaXa     = J KjfaZß ~ J KjTaZß = tSaZß — Oa Zß

q.e.d.

In the next chapter (section 31) we need the following

Corollary 28.2. Let Aa, Aß be closed subcomplexes of Ka = Na\Ca,

Kß = Nß\Cß; let of, ffaß map Cß into Ca as well as Aß into Aa. Suppose the con-

(4) We write T'= \ e„ ■ ■ -er\ for non-oriented and tr= (c0 • ■ ■ er) for oriented simplices.
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dition (28.11) satisfied; suppose moreover that for TßEAß the simplex T„ of the

latter condition can always be chosen in Aa. Under these hypotheses not only the

projections of and a'ß of Kß into Ka generated by of, erjf are homologous but

the same is true for the corresponding projections rafo, a'aßo and tafj, a'fi of Aß

into A a and of Gß into Ga.

To prove the assertion concerning Aß, Aa replace in 28.1 Nß, Na by

AßKJCß, Aa\JCa and Kß, Ka by Aß, Aa. To prove the assertion concerning

Gß, Ga replace in 28.1 Cß, Ca by CßUAß, Ca^JAa and Kß, Ka by Gß, Ga.
29. Simplicial spectra. Let an unbounded partially ordered set of nerves

Na be given; we write ß>a if in this set Nß follows on Na. Let (for each a)

Ca be a fixed closed subcomplex of Na. We suppose that for each pair ß>a

a finite number of simplicial mappings of (called projections) of Nß into Na

is given and that the following conditions are satisfied:

1. of maps Cß into Ca;

2. for each pair ß>a the projections of satisfy the conditions (28.11);

3. if y>ß>a and oj, of are projections, then the simplicial mapping

aZ=af°% 01 TV7 into Na is a projection.

Under these hypotheses the partially ordered set of nerves Na, of their

subcomplexes Ca and of the projections of is called a simplicial spectrum

(29.1) N =   {Na,Ca, CT8a}.

A simplicial spectrum (29.1) generates according to section 28 the cell spec-

trum

(29.2) K = {Ka, aa\,

where by Ka is denoted the open subcomplex Na\Ca as well as the cell com-

plex of all oriented simplices of this open subcomplex; the projections rof are

(as defined in section 28):

ß   r TNa ß   r r r

aaXß = JKao-aXß for any Xß £ Lß = LKß.

Remark. The complexes Ca are called special subcomplexes of the spec-

trum N; if they vanish the spectrum is called bicompact.

Chapter III. Spaces

§8. The cell spectrum and the betti groups

of a locally bicompact space

30. The simplicial and the cell spectrum of a locally bicompact space.

The nerve N is called the nerve of the finite system

a = \Ai, ■ ■ • ,A.)

of subsets A, (of the given set R) if the vertices e\, ■ ■ ■ , e„ of A7are in (1-1)-
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correspondence with the elements A\, ■ ■ ■ , A, of the system a and any

e,0, • • • , ßir are vertices of a simplex of N if and only if the associate sets

Ai0, ■ ■ • , Air have a non-vacuous intersection(6).

Now let K be a locally bicompact Hausdorff space. We consider the set

of all finite coverings,

of K by open sets o„i, • ■ • , oat. The nerve of a is denoted by TV,,. We denote

by Ca the subcomplex of Na consisting of all simplices of Na whose vertices

correspond to sets 0ai£a having a non-bicompact closure öai in K. Thus the

open subcomplex Ka = Na\Ca is the subcomplex of all simplices of Na which

have among their vertices at least one corresponding to a set 0„,-£a with

bicompact closure. The set of all Na is partially ordered: we set ß>a if ß is

a refinement of a (that is if each element of ß is a subset of one or more ele-

ments of a) while a is not a refinement of ß.

Let ß>a. We get by definition a projection erf of Nß into Na if we

assign to each vertex eßj of Nß any vertex eai of Na satisfying the con-

dition that OßjC.Oai. It is easily seen that the nerves Na with their spe-

cial subcomplexes Ca and projections of constitute a simplicial spectrum

{Na, Ca, of} called the simplicial spectrum of the locally bicompact space K.

According to section 29 this simplicial spectrum generates the cell spectrum

called the cell spectrum of the locally bicompact space K. The Betti groups

of the cell spectrum K are called Betti groups of the space K and are denoted

correspondingly by AJj, Vr.
If the space K is bicompact, then so is its spectrum K and the previous

definitions are simplified by Co = 0, Ka = Na.

31. The figures K, A, T and K, A, G. Let the notations of the previous

section hold. Let A be a closed set in the locally bicompact normal space K;

the complement T = K\A is open.

Denote by AaQKa the closed subcomplex of all simplices TaEKa satisfy-

ing the condition: the associate set o„iG« of each vertex eai of Ta has points in

common with A. It is easy to see that the projections of of Nß into Na defined

in the last section satisfy the conditions of the Corollary 28.2 and thus define

in addition to the cell spectrum (30) the cell spectra

« =   i Oal, ■ • ■  , 0as] ,

(30) K =   { Ka, ©„}

r r p r r <x

AK = Hm inf (AKa, oa);      Vx = lim sup (Vx„, irß)

(31.1) A  =   {Aa, GSao},

(6) Our terminology is correct, each nerve being, for example, the nerve of the system of

the open stars of its own vertices.
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and

(31.2) G = {Ga, o«i}.

Now Aj£, Vjj are by definition identical with AK, Vk while, as we shall see

in the next paragraph, there exist certain'natural isomorphisms between the

groups

a!   and   Aa; vi   and va,
r r r r

Ag   and   Ar; Vg   and Vr.

These isomorphisms transform the homomorphisms Er, E%, j\, Jq into the

homomorphisms E^, E^, 7^, /pand thus lead to the definition of the groups

of the figure K, A, T.

§9. The natural isomorphisms, the groups and the

homomorphisms of the figure k, a, t

32. Special types of coverings. Throughout this chapter K means always

a normal locally bicompact space; by a covering (without any special at-

tribute) is always meant a finite covering by open sets (of the given space).

In any covering a= {oai, • ■ ■ , oaB} of K we denote by oa\, • • • , oap and

call elements of the first kind the elements meeting a; the remaining elements

0<r,p+i. ■ ■ • , oas have no points in common with a and are called elements of

the second kind. An element of the second kind is called a boundary or an

inner element according to whether its closure has or has not points in com-

mon with a.

A covering a = {oai, • • • , oap, ■ • • , oos) of k is called cogredient with a

if it satisfies the following conditions:

1. Any two among the point sets AHo,-, i^p, are different.

2. If i0, • ■ •, ir^p and o„,0A • • • r\oair9^Q, then kr\oailsC\ ■ ■ ■ f~\oa{r9*0.

3. The bicompactness of AC\oai, i^p, implies that of öa,-.

Let a= I Oai, ■ ■ ■ , oap, ■ ■ ■ , Oas i be a covering of K. Denote by <j> the

sum of all those sets öai which are bicompact and lie in T. The covering a

is called cogredient with T, if it satisfies the following conditions:

1. The elements of the second kind of a form a covering of T (denoted

by Ta).
2. No element of the first kind meets <p.

Remark. In my paper [l ] coverings cogredient with T were called "regu-

lar with respect to T."

The covering a = \oa\, • • • , oap, • • • , o„„} is called regular ("regular with

respect to a" in the terminology of [l]) if the following conditions are ful-

filled:
1. The covering a contains no boundary element of the second kind.

2. If Oai0C\ ■ ■ ■ r\öair7*Q and i0, ■ ■ ■ ,ir^p, then AHo^n • • • r\oair9*0.
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To finish with these preliminary notions take in Ka all simplices Ta with

the following property: Each vertex of Ta corresponds either to an element

OaiEa of the first kind or to a boundary element of the second kind; these

simplices form a closed subcomplex A' of Ka and for ß>a the complex Aß

is mapped by any of into AJ, the conditions of Corollary 28.2 being satisfied.

Therefore we have the cell spectrum A'= [AJ, »lo°} and the still more im-

portant for us cell spectrum

(32.1) 6' = {Gl.O.

where GJ =Ka\Aä, and a'Ja, a'fo are the projections of Aß , Gß into AJ, GJ

generated by of.

32.2. Obviously if a is regular, then AJ =Aa, GJ = Ga-

The following results are proved in detail in my paper [l ] (one can read

the proofs without reading the rest of the paper):

32.3. Any covering of K has a regular refinement [l, p. 80, Theorem 6.22].

32.4. Any covering of K has a refinement cogredient with T—and even

more:

32.5. Any two coverings a and ß of K have such a common refinement y

cogredient with T that every element of the second kind of y is contained

in an element of the second kind of a and in an element of the second kind

of ß [1, p. 89, Lemma 8.5].
32.6. For every covering ap of T there is a covering a of K cogredient

with T and such that ar= Ta [l, pp. 87-88, Theorem 8.33].

Let us prove now:

32.7. Every covering a = {oa\, • • • , oap, ■ ■ ■ , oa,\ of K has a refinement

cogredient with A.

Proof. Let

(32.71) AA?.ll-'-,AAv qSp,

be chosen among the Aflca, • • • , A.f~\oap in such a manner that no proper

subsystem of the system (32.71) is a covering of A. Take such closed sets

aiC.(Ar\oai), i = 1, 2, • ■ • , q, as to get a closed covering of A. Choose for

each a,- a neighborhood Oo.Coai under the following conditions:

1. All Oai are different.

2. Any Oa,0, • • • , Oa,-r have points in common only if Oi0, • • • , aif have.

3. The bicompactness of <z,- implies that of Oai- The sum of Oai, ■ ■ ■ , Oaq

is a neighborhood OA of A. Take the closed sets bhdK\OX so as to get a

closed covering [bi, ■ • • , bu\ of K\OA in such a way that each of the bu

is contained in some oa{. Then define Obj, as oai(~\(K\A), where is any ele-

ment of a containing bh. The covering Oai, ■ * * i Oaq, Obi, ■ • • , Obu has the

required properties.

Let aA be a covering of A. We write aA = Aa, a being a covering of K,

if the elements of aA are in (l-l)-correspondence with the elements of the
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first kind of a, each element of aA being the intersection of A with the corre-

sponding element of a. From 32.7 follows:

32.8. If we consider among the coverings of A only those of the form

aA = Aa, where a is a covering of K cogredient with A, and set for these cover-

ings Aß > Aa only if ß >a we get a cofinal part of the set of all coverings of A.

33. A lemma on group spectra.

Lemma 33. Let the group spectra:

{inverse) {Uax, o^} and {T!a, of}; (direct) { UaX, irt) and [Ua, iraß}

satisfy the following conditions:

1. There exists an isomorphism <pa

of Ua\ onto Ua; of Ua\ onto Ua.

2. ßß>a\ implies ß>ct.

3. For every
üßn £ U$n\ ua\ £ Ua\

we have
a\       _             ß   0ft _ ß/t   aX a aX

4>a Oa\Üßß = &a<t>ß Üßlt', 4>ß ^ßltUa\ =  TTß<t>a Ua\.

Under these hypotheses if we replace the elements of

each thread \ üa\\; each bundle \ua\\

by their images under </£x we get an isomorphism between

lim inf (Fax, ©fx) and lim inf (Ua,     ; lim sup ( Ua\, ir^) and lim sup (Ua, n%).

The proof is easy and may be found in [l, p. 62, Theorem 3.61 ].

34. The natural isomorphisms between ArA, VA and AA, VA. We return to

the figures of section 31 but we change slightly our notations: we denote now

by a any covering of A which can be written in the form a = AaX, where aX

is a covering of K cogredient with A (and satisfying the condition AaX = a).

We use Na\, Na for the nerves of a\ and a, write ofx for the projections of

Nßlt into 7V„x, while rrf denote now only those projections of Nß into 7Va which

are generated by a projection ofx- As usual Ka\, Ka is the subcomplex of

Na\, Na respectively formed by all simplices which have among their vertices

at least one corresponding to an element of aX (of a) with bicompact closure;

Aa\ is the subcomplex of Ka\ defined by the vertices which correspond to ele-

ments of «X meeting A.

The passage from aX to a= AaX produces an isomorphic mapping(6) of

(6) Let N, N' be nerves, Q, Q' subcomplexes of N, N' respectively. We define [Q] as

the nerve consisting of all simplices of Q and of all faces of these simplices; the same for [Q'].

Any (l-l)-mapping of Q on Q' generated by a (l-l)-simplicial mapping of [Q] on [Q'] is called

isomorphic.
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Aa\ onto Ka and therefore an isomorphism <p"x of the groups aax0, VLxo (of -<4<*x)

on the groups ATa, V„ (of Ka). The isomorphism c/£x satisfies the hypotheses

of Lemma 33 and thus generates a well defined isomorphism

r SmO. r ß
of lim inf (a„xo, ©oxo) on lim inf (a„, aa);

... .  t oXO. .   r a
of hm sup (Vaxoj 7TgMoJ on lim sup (Va, Tß)-

Since the coverings aX form a cofinal part of the set of all coverings of K while

the coverings a form a cofinal part of the set of all coverings of A we may

identify

. r . t .. t aXO        , r

hm inf (aax0, a«xo) with AA;      hm sup (Vaxo, ir^0) with Va,

lim inf (a1, ml) with aa; lim sup (vl, tt/j) with VA

and get in this way the natural isomorphism (A A) of AA, Va on aa, Va ; the

inverse isomorphism is denoted by (A A); we return to them in section 37.

35. The natural isomorphism between arr, Vrp and A'q, Vg- Now we de-

note by a any covering of T, by «X an arbitrary covering of K cogredient

with T and such that Ta\ = a. Then 7Vax, 7Va, Ka\, Ka have an obvious mean-

ing. We retain among the inequalities ßp>oik only those for which there

exists a projection ojjü which assigns to each element Oß^Eßß of the second

kind an element oax£aX, oaxCo^, of the second kind. Only these <r£x will

be taken into account. In this way we get by virtue of 32.5 a cofinal part

(35.1) K~i = \Ka\, aa\\

of the spectrum K.

According to section 32 we denote by GaX the open subcomplex of Ka\,

the simplices F^GG^ being defined by the following property: among the

vertices of Ta\ there is at least one corresponding to an inner element (of

the second kind) of the covering aX. We denote by a'ff the projection of the

cell complex G£M into the cell complex G„x generated by ofx. It is easily seen

[l, p. 88, formula (8.41)] that Ka = G'alx for every aX; thus we may identify

the group

a« = AK<x with a(ax)' = Ag^;      vl = VKa with v'^x)' = Vg^

and therefore

ar = lim inf (a1, aa) with ag' = lim inf (a(ox)', o'ax),

ra r r /aX

Vp = lim sup (Va, TTß) with Vg' = hm sup (V(aX)', irßß ).

But since the coverings aX (cogredient with T) on the one hand and the regu-

lar coverings on the other form both cofinal parts of the partially ordered set
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of all coverings of K we get (taking into account 32.2) a natural isomorphism

between

ag'   and   ag; Vg'   and Vg,

and therefore between

a'r    and   Ag; Vr   and Vg-

This isomorphism (considered from T to G) is denoted by (Y G), the inverse

isomorphism by (G Y).

36. The groups of the figure K, A, T and the results concerning them.

Because of the identities AK = AX, Vk=Vx the natural isomorphisms trans-

form the homomorphisms

T7A fg TK JK&k,      -ßx,      Ja, Jg

(of the groups ArA, Vg. Vk, ArK into the groups ATK, Vk, Va, Ag) into the homo-

morphisms

£k, £k,    £a, 7r

of the groups

aa, vr,    vk, Ak

into the groups

Ak, vk,     va, Ar

and thus define the groups

r Ar A r Ar r r V   r r

aka = Eka\ = £k(A4)Aa = ekAa = aka; vkr = EKVr = Vkg,

AAK = JAVx = (A\)jAVrk = (4 a) Vax;   ArK = /Fak = (Gr)a<?x,

Aa« = (EK)1 Ok = (Ak)(eKf Ox = (Ak)aa:k; vtk = (E&'ok = (GT)vg:k,

VA-K = VA - VAK = (AA)Va - (^A)Vax = (^A)Va-.x; Ar:k(Gr)Ao:x.

If we define the product of an element of AA (of VjO with an element of VA

(of Ap) as the product of the corresponding elements of A^, Va (of Vg, Ag),

we see that not only all isomorphisms but also all dualities and annihilations

between the groups of the figure K, A, G are transformed by the natural

isomorphisms into the corresponding relations between the groups of the

figure K, A, T. Therefore all results (14.1)—(14.3') formulated in section 14

for the figure K, A, G hold for K, A, Y.
37. Remarks on the natural isomorphisms and the groups of the figure

K, A, r. Let an element of the group Va (of the group AA) be given. Take

only the coverings ak of K cogredient with A. Using the subscript aXO for

V-cycles (A-classes) on Aa\ we can write for any z'GVa, zr£AA:
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z  = {za\0} ;        z  = {<3aXo} •

As we know Aa\ can be identified with the nerve of a = AaX; therefore zT, zr

can be considered as elements of VA, AA and this identification represents an

isomorphism—our natural isomorphism—(A A).

For a moment, let us denote by a coverings of T; let zr= } GVp.

Each Za can be considered as a V-cycle on G„x, thus (Ga^QGa\ being open on

G7«x) as a V-cycle on Ga\, where oik is cogredient with T and a = Ta\. Conserve

among the coverings of K only those which are cogredient with T and among

the projections ofx of these coverings only projections which map elements

of the second kind of ftu on elements of the second kind of aX. Then we can

identify our zr with a certain element of Vg and this identification is the

natural isomorphism (T G). We needed the regular coverings only to prove

that this isomorphism maps Vp onto Vg.

Now let a be a covering of K. Let

r ,    r   \ r

zq = i3«i} G AG.

Assign to any zaJG3ai the cycle

Z(a)>  — J G'Zal

(this is a customary method if we consider zal as a Lefschetz relative cycle

mod Aa and keep in mind that AJ ~DAa). We get in this way an isomorphism

of AG on AG- (the "on" is again proved using the regular coverings). If now

we take into account only the coverings of K cogredient with T we can iden-

tify zg'= {2(a)'} GAG' with a certain element of A'r. Thus by the transition

from A0 to AG> and then to Arr we get the natural isomorphism (G T) of AG

onto Arr.

To the simple intuitive meaning of the natural isomorphisms corresponds

a direct definition of the groups of the figure K, A, T. Since AjjA = AÄil,

Vkr = Vkq, VA:k = VA — VAK, A'r.K = Arr — ApK, we are interested in the groups

Vak> ATK' aa:k- Vr:Konly.
The elements of the bundle zrGVx being identified with the V-cycles zaX0

on Aa\, aX cogredient with A, the bundles zr= {zaM} belonging to Vak are

characterized by the property: there is for each z„xoGzr a ßß>a\ such that

^ßßOza\o is extensible over KStl.

The elements zrGArrK are characterized in the following way: we first

identify the elements of the thread zT with A-classes of Ga\ (aX cogredient

with T) and thus identify the thread zr with a certain thread z'r of the spec-

trum G'; then using regular coverings we identify the thread z'r with a thread

of the spectrum G; this latter must be extensible in the sense of section 26.

The elements of AAK are threads zrGAA bounding on K; it means that

if we consider ZaGBLGz'GA^.j^ as a A-cycle on ^4„x («X cogredient with A,

AaX=a), this cycle bounds on Ka\.
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The elements of Vj<:k are bundles z'GVp bounding on K; it means that

if we consider the elements of the bundle zT as cycles on Ga\ (otk cogredient

with T), these cycles are elements of the bundle representing the zero of Vx-

In other words, if zaA€izr and z'GVjpi then there exists a ßn>a\ such that

t/sJXx bounds on Kß^.
As a matter of fact, the elements of the groups Va:k = Va — Vak can de

defined as extension classes of V-cycles: let a, ß be two coverings of A; define

Na, Nß, Ka, Kß as in section 34; two V-cycles z^, zTß on Ka, Kß respectively

belong by definition to the same extension class if there exist coverings a\, ßß,

yv cogredient with A such that a = \a\, ß = Aßp, yv>a\, ßß and ir"™^

— TTytoZß be a V-cycle on A T„, extensible over Kyv.

The elements of Arr.K could be defined as extension classes of threads:

two threads zr = £Ar and z'r = {£'*} GArr belong by definition to the

same extension class if for each a the cycle z„ —z« (where CG ,8a, zaGB«)

considered as a cycle on G„x (aX cogredient with T and Ta\ = a) is extensible

over Ka\.

38. Another form of the definition of the natural isomorphism (A .4).

This other form will be used in Chapter IV, remark 1 in section 43. We con-

serve the notations of sections 30 and 31 and suppose for the sake of simplicity

that K is bicompact. Take in each Ka the closed subcomplex A'J with the

same vertices as Aa and simplices | e»0 • • • etT\ corresponding to those ele-

ments Oi0, • • ' , 0i, of the covering a of K which satisfy the condition

A n »h rS • • • n oir ̂  o.

Obviously A'J is a subcomplex of A„ and

(38.1) A'a = Aa for a cogredient with A.

Now denote by aX the coverings of K. To any aX= \ oi, ■ ■ ■ , op, ■ ■ ■ , o,}

corresponds the covering

a = Aoi\ = {Aoi, • • • , Aop\

of A where the Ao< = AC\Oi are "indexed sets" (in the sense of [l, p. 72, §5]),

that is Aoi and Ac?, are considered as different if i?*j.

Each covering a of A can be put in the form ct = AaX. The nerve of AaX

being A'J^ there is a natural isomorphism between VA> AA and

Va" = hm sup (Va0'x> *M)   <      AA" = hm inf (AA'a'x, ffi„xo).

By virtue of the identity (38.1) this isomorphism turns into an isomorphism

between VA, AA and Va> Aa which is our natural isomorphism (A A).

§10. The case of continuous polyhedrons K and AcK

39. An invariance theorem. Let K be a finite polyhedron, K a simplicial

decomposition (Simplizialzerlegung) of K (terminology of [4, pp. 128-129]).
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Let A be a closed subcomplex of the complex K; then A denotes the poly-

hedron composed by the simplices of A; as usual G = K\A, T = K\A. Let us

show that the groups of the figure K, A, T are isomorphic to those of the figure

K, A, G. To this end denote by

K\, K~i, • • ■ , Kn, • • •

the successive barycentric subdivisions of K; then the nth barycentric sub-

division An of A is a subcomplex of Kn. Denote for a moment by \'n the

covering of K by the closed barycentric stars of the vertices of Kn and take

the open neighborhoods of the elements of Wn so closely as to get an open

covering X„ of K similar to \'n (that is, having the same nerve as \'n) and

cogredient with A. Put a„ = AX„. Obviously the X„ and the an form cofinal

parts of the sets of all coverings of K and of A respectively. The nerve of X„

being Kn, and An being the nerve of a„, the projections of Kn+i into Kn and

of An+x into A„ map any vertex en+i of Kn+i (of An+i) on a vertex of the carrier

of en+i in Kn (in A„) and thus are "natural displacements" ("natürliche Ver-

schiebungen" in the sense of [4, p. 349]). Therefore by a well known standard

process the elements of AJj, AA are in (1-1)-correspondence with the elements

of ArK, AA, this correspondence realizing an isomorphism between

A^    and   AK, A\     and AA,

Ajja and   AKA, AA-.K   ^ ^:K-

All other groups of the figures K, A, T and K, A, G can be derived respec-

tively from Ajji AjjA, AA.K, and ArK, ATKA, AA.K by the same algebraic construc-

tions; thus the groups of K, A, T are respectively isomorphic to the groups

of K,A, G.
40. The general polyhedral case. Let K and ACK be continuous poly-

hedrons (that is, topological images of finite polyhedrons). In this section

coefficient-groups are the so called "elementary groups," that is discrete groups

with a finite number of generators and their (bicompact) character groups.

Any subgroup and any difference group of an elementary group being elemen-

tary, it follows that the groups ArK, VK- ArA, VA, ArKA, VKr, AA.K, VAK, VA:K,

as well as (by the third pair of isomorphisms) the groups Arr.K, Vi\KIor?' = 1

are elementary. Now if—for a discrete group X—a subgroup U and the dif-

ference group X—U are both elementary, then X itself is elementary (the

proof is obvious, see for instance [4, p. 576, section 38]). By this lemma and

the first pair of isomorphisms the groups Arr, Vp for rj^l are elementary.

If X is the coefficient-group then, as is easily seen, Vlp(Ar) is the direct sum

of as many groups isomorphic to the group X as there are compact compo-

nents of r. As in our case the number of these components is finite, V°p is

elementary.

40.1. Thus if K and A are continuous polyhedrons, then with respect to
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any elementary coefficient-group all groups of the figure K, A, T are elemen-

tary; they are all finite if the coefficient-group is finite.

For a finite coefficient-group X the order of the group Vjj is equal (by the

second pair of isomorphisms) to the product of the orders of vjjr ana^ ^AK-

This holds in particular for X = Im whatever the integer m^2. Since by a

theorem of M. Bockstein [6] all groups Vjj(-0 are completely determined by

the orders of the groups Vj^(m) taken for all m and all r, it follows that all

Vj^are determined by Vjjr(m) an(i ^AK^) (taken for all m and all r). In the

same way by the first pair of isomorphisms the groups AA are determined by

AA.K(m) and A]KA(w) taken for all m and all r. To get an analogous result for

the groups Vp, Vimo VKr we need the following

Lemma. The groups Vp(w) {even the groups VTp(X)for any X) can be deduced

from the groups Vr-p(T) (taken for all r) by means of the same relations as in the

case where T is a finite cell complex.

Let us assume for a moment that this lemma is proved. Then as the Bock-

stein theorem for a complex K rests solely upon the algebraic relations between

Vtk(I) and Vk(w), its original proof still holds for T. Thus our lemma im-

plies the following:

Bockstein theorem for T. The groups Vr(7) are completely determined by

the orders of the groups Vp(m) taken for all m and all r.

Now by the first pair of isomorphisms the order of Vri>(m) is equal to the

product of the orders of Vp^m) and V^^m), and therefore Vj«(2) is deter-

mined by the groups Vp^m) and Vjjr(w)-

It remains only to prove the lemma. A proof of it is contained in the con-

struction of Steenrod [13, section 11 ] which in our case gives the desired

expression. But one can proceed more quickly by the following argument of

Bockstein which uses only the final result of Steenrod and not his intermediate

construction. The groups Arr(7) being groups with a finite number of genera-

tors, they are respectively isomorphic to the groups Vjy(I) where /Vis an ap-

propriate nerve (see for example [4, p. 266, section 9]). Let N be the

corresponding polyhedron. By the fundamental theorem of Steenrod the

groups Vn(ot) can be expressed through the groups Vn(-0 and these expres-

sions depend only on the groups involved (and the given coefficient-group,

in our case Im) and are therefore the same for T and N. On the other hand,

the groups Vn(-0, Vn(w) are isomorphic to Vat(7), Vat(w) and the expression

of Vn('w) through the groups Vn(-D is the same as the expression of V#(w)

through the groups Vj\r(7). which proves the lemma.

Thus all results announced in section 14 are now completely proved. Let

us remark that the theorems of section 18 could be extended by the same

methods first to spectra and then to spaces; such an extension does not pre-

sent any serious difficulty and may be left to the reader.
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Chapter IV. Manifolds

§11. Infinite complexes

41. Infinite complexes(7). Let Q be an infinite locally finite, complete (sec-

tion 28), simplicial complex, thus a simplicial decomposition of a locally bi-

compact space (of an infinite polyhedron) 0- Denote by Lq the group of the

r-dimensional finite chains on Q with respect to the discrete coefficient-group

X, by Lq the topologized (as in [13, p. 691]) group of all (infinite) r-dimen-

sional chains on Q with |respect to the bicompact coefficient-group S|x.

The topology in Lq is that which makes of Lq the direct sum of the groups L\,

the group L\« S being the group of all chains of the form ät[, where t\ is an

oriented simplex of Q and ä runs over S. Since Lq is the direct sum of the dis-

crete groups L\^X (the elements of L\ being the chains at\ with a running

over X), the groups Uq and LQ are dual to each other. With these groups we

get in the usual way the groups AQ and Vq: the group Vq (the group Aq) is

the difference group of the group of all r-dimensional finite V-cycles (infinite

A-cycles) over the subgroup of the bounding ones (a bounding V-cycle bounds

by definition a finite chain).

The purpose of this section is the proof of the following theorem:

41.1. If Q is a simplicial decomposition of the infinite polyhedron Q, then

(41.1) Aq ~ Aq;      Vq ~ Vq.

By virtue of the dualities Aq| Vq, A<j| Vq it is sufficient to prove the first

of the isomorphisms (41.1).

Preliminary remarks. Let a be a (finite open) covering of 0; an element

of a (as well as the corresponding vertex of the nerve Na) is called regular

if its closure is bicompact; the other elements of a (and vertices of Na) are

called special. The simplices of Na whose vertices are all special form the

special subcomplex Ca of Na; the open subcomplex Ka = Na\Ca is called the

regular part of Na; all regular vertices of Na, and only the regular vertices,

are zero-dimensional elements of Ka.

The open finite subcomplex G of Q is called a regular subcomplex of Q

if it is the sum of the open stars(8) of some of the vertices of Q, or (which is

the same) if each simplex of G has at least one vertex which belongs to G as

an element. The proof of the following statement is obvious: If G is any open

finite subcomplex of Q, while Qu Gi are barycentric subdivisions of Q, G re-

spectively, then Gi is a regular subcomplex of Q\.

Our last auxiliary definition in this section is the following: A covering

a of Q is called combinatorial with respect to Q if the following conditions are

satisfied:

(7) This section will not be needed in the rest of this paper.

(8) We use the word "star" for complexes as well as for the corresponding point sets.
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(a) Each regular element of a is the open star of some vertex of Q.

(b) Let Ga be the (regular) subcomplex of Q defined as the sum of all open

stars which are elements of a; let r„ be the corresponding point set in 0

and r its closure (in 0)- Any special element of a either has no points in

common with T or is of the form o'a^JOh, where Oh is on Q\T and o'al is the

open star (with respect to 0 of a vertex of some simplex of Ga.

Lemma 41.2. The regular part of the nerve Na of any covering a combina-

torial with respect to Q is a regular subcomplex of Q and any regular subcomplex

G of Q is the regular part of the nerve of some covering combinatorial with respect

to Q.

The first statement of Lemma 41.2 follows immediately from the defini-

tion of a covering combinatorial with respect to Q. Let us prove the second

statement. Let e< be a vertex of an element of G. If e;£e7 denote by o,- the open

star of e<; if d is not an element of G put Oi=o/W(Q\r), where ol is the open

star of d in Q. The open sets o,- form the required covering.

Lemma 41.3. Each covering a of Q has a refinement which is combinatorial

with respect to a certain subdivision Q\ of Q.

Proof. Let oi, ■ ■ ■ , op be the regular and op+1, • • • , os the special elements

of a. Take the closed sets ötCo» in such a way as to get a closed covering

{ai, ■ • ■ , a,} of 0- The a< with i^p are bicompact while the ap+i, • • • , ae

may be supposed to be not bicompact. Choose the subdivision <2x of Q such

that any star of Q\ meeting a< is on Now let o\i, ■ ■ ■ , o\u be all stars

of vertices of Q\ which meet any one of the sets Oi, • • •■ , ap. These stars form

a regular subcomplex G\ of Q\; denote by T\ the corresponding subset of Q-

Denote by 0», A = p + 1, • • ■ , the open sets composed by all stars of Q\

which have points in common with ah. Among all zero-dimensional elements

of Q\\G\ denote by el, ■ ■ ■ , eq those which are vertices of elements of GA.

Define for i = \, 2, ■ ■ ■ , q

o\,u+i = ol,- U (Oh,\T\),

where oAi is the star of el in Q\ and Ä.-^p + l is chosen under the condition

that ahf has points in common with o^. By the definition of Oh we have

oL Q 0hi Q ohi,

thus o\,u+i^Ohj. If in the latter construction 0p+i, • • ■ , 0p+q' are the only

sets Oh actually used, we put, for j = g' + l, • • • , s — p,

0\,u+q+j = 0P+,\T\.

The open sets ou, i = l, 2, ■ ■ ■ , u+q+s —p, form the required covering.
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Now we go over to the proof of the isomorphism Aq«Aq. Retain only

those coverings of 0 which are combinatorial with respect to subdivisions

of Q. If a, ß are combinatorial with respect to Q\, Qß then we set ß>a if both

of the following conditions are satisfied:

1. ß is a refinement of a, a is not a refinement of ß.

2. Qu is a subdivision of Q\.

The coverings with this ordering form a cofinal part of the set of all cover-

ings of Q. The subcomplexes Ka = Na\Ca being open (even regular) subcom-

plexes of Q\, they undergo projections generated by natural displacements

(section 39) of Q„ into Q\. Let aa be those projections. Then

(41.4) A0 = lim inf (_AK(x, aa).

Take on the other hand all finite open subcomplexes Ga\ of all subdivisions

<2x of Q. We say that Gß]i follows on Ga\ and write ßp. >a\ if Qß is a subdivision

of Q\ and the subdivision s]fia\ of Ga\ in Q„ is a subcomplex of Gß„. In particu-

lar, if Ga are the subcomplexes of Q itself, then ß>a means that GaCZGß.

Denote by o$ the natural displacements of Qß into Q\ and write (as indices)

(ftu)X instead of a$Gßlt and aX instead of Ga\. Since Ga\ is an open subcomplex

of ofGßfl we may define a projection pfx of the cell complex Gßß into Ga\ by

means of

ßß (ft")X ß
Pc&Xßn = J a\ 0-\Xßn

for any chain xßlt on Gßv.. This gives for p=\ the relation pa\xß\ = Ja\xß\ and

in particular pßxß — Jßxß on Q.

Those Ga\ which are subdivisions of appropriate GaCQ form a cofinal

part of the set of all Ga\, and p£x maps isomorphically A^x on A^,. Therefore

lim inf (A^, pS) «Hm inf (ATa, jf). But the groups lim inf (Ara) jf) and A'0

are isomorphic as shown by Steenrod [13, pp. 691-692]; thus

r ,      .  r ßß.

(41.5) Aq « hm inf (AoX, p«x).

On the other hand, since the regular subcomplexes form a cofinal part in

the set of all Ga\, we deduce from Lemma 41.2 the isomorphism

(41.6) A0 « lim inf (AroX, p%).

From (41.5) and (41.6) follows Aq « Aq, q.e.d.

42. The groups 6q and the duality theorem of Alexander-Pontrjagin. Let

X be a discrete coefficient-group. Denote by 6q the difference group of the

group of all r-dimensional finite A-cycles of the (infinite) complex Q over the

subgroup of the bounding cycles (a bounding cycle bounds by definition a

finite chain). In this section we suppose that Q is an w-dimensional combina-

torial (A-)manifold (finite or infinite), that is, that for the open star O,- of

any vertex e, of Q
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A0i(7) m Vn0i(7) « 7,

while for r<n the groups A0.(7) « vo^/) contain the zero element only. We

suppose moreover that Q is orientable, which means that for every component

Qi of Q, Ay<(7) «Vo,(7) «7. The oriented (open) barycentric stars of Q

form a cell complex Q*. If tFt is an oriented simplex of Q, then we denote by

Tqit with q = n—p, the barycentric star with the center in the center of t" ori-

ented in such a way that the intersection number (/fXr?) be equal to +1

(see for example [12, §69]). Then we have in the cell complex Q* the incidence

numbers

(rT-.u) = (- i)v(t>:tr\

Define now for any p-chain xp on Q the g-chain Dqxp on Q* taking on if the

same value as xv takes on tf. An easy calculation shows that

(42.1) AD*x» = (- l^+iD^Vx*

whence it follows that the operator Dq generates an isomorphism between

Vq and 6q.. As both Sq and Sq. are isomorphic to 8Ql, where Qi is the bary-

centric subdivision of Q, we have the

Duality theorem of Poincare.

Vq ~ ol, q = n — p.

Let 0 be an w-dimensional continuous manifold, that is, a finite or infinite

polyhedron, one and thus all simplicial decompositions of which are combina-

torial manifolds. Then any open set on 0 is also a continuous manifold (see

[4, pp. 143-146, Theorem "of Runge"]). There follows then from the duality

theorems of Kolmogoroff and of Poincare the

Duality theorem of Alexander-Pontrjagin. If the n-dimensional ori-

entable continuous manifold Q is simply connected in the dimensions p and p-\-l,

A is a closed set on Q, and T = Q\A, then the groups AA and 5p"1 are dual (the

groups VA and SjT1 are isomorphic) to each other. Here the coefficient-group for

5 p-1 and VAw the discrete group X while the coefficient-group for AA is the bi-

compact group S| X.

The generalization of this theorem for an arbitrary orientable manifold

(not necessarily simply connected in any dimension) is given by the

General Alexander-Pontrjagin duality theorem. For any n-dimen-

sional orientable continuous manifold K, any closed set ACIK, and T = K\A,

the group VA:jj ** isomorphic to the group where the latter group is defined

as the difference group of the r-dimensional finite cycles on T over the subgroup

of the cycles bounding on T (coefficient-group discrete).
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Here the finite cycles on T are to be understood in some invariant sense

(as "continuous cycles" in the sense of [4, pp. 333-339] or as convergent

cycles on compact sets <pCT (section 43)) or to be replaced by the 5-classes

of section 43.

To prove this theorem we have to show only that the groups V"t:K and

öji;K are isomorphic. This can be done by the standard methods of proving

in variance theorems (see for example [4, Chapter IX] and [3]); these meth-

ods, however, so far as the writer sees, need at a certain moment the Combina-

torial Lemma 45.3. But the same lemma is the only essential point in proving

directly the isomorphism VA:jj ~ 5p":jj. We prefer therefore to give this direct

proof which rests entirely on section 15 (Chapter I), being practically

independent of Chapters II and III.

§12. The groups Aa.k, Va:jj, and 6rr.K for a manifold K

43. The groups AA.K and VA:K for a polyhedron K. Let K be a polyhedron;

we suppose this polyhedron finite (that is bicompact) although the following

definitions hold for infinite polyhedrons too. As usual A is any closed set in K

and T = K\A. In this case the groups AA.K, Va:jj can be defined in a quite

elementary way, independent of the definitions and results of Chapters II

and III. Let

(43.1) Ki, K2, ■ ■ ■ ,Ka,---

be a sequence of successive subdivisions of a given simplicial subdivision K

of K; we suppose moreover that for any integer a^l the complex Ka+\ is the

result of one or more successive barycentric subdivisions of Ka. Taking in Ka

all simplices which meet A and all faces of these simplices we get a closed

subcomplex Aa of Ka. Put in correspondence to any vertex e„+i of Ka+i a

fixed vertex ea = o"+1ea+i of the carrier of ea+i in Ka. This gives a well defined

simplicial mapping (a "natural displacement," section 39) called a projection

of Ka+i onto Ka. The projection <r£+1 maps Aa+i into Aa. For ß>a-r-\ put

ß o+l  o+2 ß

9a = tTa    <Ta+l - - * aß-1

which implies the transitivity relation o2 = crf(Tß for any y>ß>a.

The projection of generates a homomorphism of of Lß = LrKß into La=L'Ka

and a homomorphism ofo of L'ao=LA into Lra0=LAa; the conjugate homo-

morphisms tt^ and -Kß° of the group LTa into Lß and of L'aQ into Uß0 are defined

by •

(iTß xa ■ tß) = (xa-catß)

for any chain xra on Ka (on A^) and any oriented simplex fB of Kg (of AB).

The homomorphisms afo, Trß° generate homomorphisms (denoted also by

ofo. Tso) of A^o into A^o (of Vo0 into %0) and map Aß0.Ji = AAg.Kß into

Ko-.a = AAa.Ka; Vao:c = VAa:Ka into Vrß0ß = VAß..Kr We define now:
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r •   r /  r *®\ r T a®\

aak = lim inf (aa0:a, aao);      VA-K = hm sup {vao-.a, irß0).

Remark 1. It is easilyseen that the groups aa.k, Va:k just defined do not

depend upon the special choice of the sequence (43.1). But one can also show

that the definitions of this section agree with those of Chapter III. In fact,

the simplices of Aa are characterized among the simplices of Ka by the prop-

erty that their open stars meet A; therefore Aa is the nerve of the covering

a = { 0ml, ■ ■ • , 0a,\

of A, where oa,= AC\Oai and the Oa% are those open stars of (the vertices of)

Ka which meet A. In other words, if a\ is the covering of K by the open stars

of the vertices of Ka then in the sense of section 38 we have a = AaX. The

coverings a\, a = l, 2, ■ ■ ■ , form a confinal part of the set of all coverings

of K and the projections erf put in correspondence to each Oßlan Oai^.Oßj. If

we take into account section 38 we see at once that the definition (43.2) gives

us the same groups as the definitions of Chapter III.

Remark 2. The elements of aa.k are those "threads" or sequences

r.rr r . r r r 00 r r

3    =  (gl, It, * - ' , ia, • • • ) € aa, ha g Ao0, fflaOäS = ha

whose elements i„gaa0 are classes of cycles on Aa bounding on Ka.

It is easy to see that the group aA.j^ can also be defined as the difference

group of the group of all r-dimensional convergent cycles (see for instance

[5, p. 241 ]) of the set A over the subgroup of cycles bounding on K.

The elements of Va:k are extension classes of r-dimensional V-cycles; the

V-cycle zTa on Aa and the V-cycle Zß on Aß belong by definition to the same

extension class if there exists a y>a, ß such that 7r"C — T^zß is extensible

over Ky.

Remark 3. The coefficient-groups in aa.k, VA:jj are dual: bicompact for

aa.k and discrete for Va:k.

44. The groups öjvjj for a manifold K. From now to the end of this paper

K is a continuous w-dimensional manifold (definition in section 42) which

for sake of simplicity we suppose closed (that is bicompact) although all

following definitions and results hold without this restriction. We conserve

the notations of section 43 and denote by Kai the barycentric subdivision of

Ka (thus Ka+i either coincides with Ka\ or is a subdivision of Kai). The com-

plex of all (open) barycentric stars of Ka is denoted by K *■ The barycentric

stars which correspond to simplices of Ga = Ka\Aa form a closed subcomplex

G* of Ka*. Since the elements of K* are subcomplexes of Kai, we get a closed

subcomplex G*\ of Ka\, called the barycentric subdivision of Ga*, if we take all

simplices of Kai lying on elements T* of C7a* (that is all simplices which are

elements of the subcomplexes Ta*(E.Ga*). The polyhedron composed of all

simplices of G*t is denoted by T^. It is r*,cr and even r=U"=ir*1. Without

loss of generality we may suppose that r„iCr((I+i)i. Therefore the subdivision
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of G*! into simplices of Kß\, ß^a, is a subcomplex s^G^ of Gßl, and for any

chain xTal on G„i we have the subdivision sß[xTal on Gßl.

Remark 1. By definition

air      r r r

Ufll^al'^u  = (Xal'tal)

if the simplex fßl of Gßl lies on tal and its orientation is coherent with the ori-

entation of t'al; (sß\xral -tßl) =0 if fßl lies on a higher dimensional element of

0*i.
Remark 2. In an analogous way we define the subdivision sßlxra of a chain

x'a on G*. Obviously for /3>a

a    r al a r

S/31#a = S0lSal#a-

After these preliminary remarks we define the group orr.K as follows. We

say that two A-cycles, the cycle d on G*y and the cycle £ßx on Gßl, belong to

the same r-dimensional 5-class on V if there is a y >a, ß such that s"}Ci— ^{Zßi

bounds on G^. To get the sum of two S-classes zT and z'r take ad libitum

4iG2r, 3^1Gz'r and define zr+z'r as the 5-class containing s°{d+^i^i where

7 is any integer which is greater than or equal to the greatest among the in-

tegers a and ß.

Definition 44.1. The discrete additive group of all r-dimensional 8-classes

on r is called the group 5r (with respect to the given discrete coefficient-group).

Definition 44.2. The subgroup 5p.K of 5rr is formed by the 5-classes zr£or

whose elements zal bound on (the corresponding) Ka\«

Remark 3. The groups 6r, orr.K could be defined also as follows. A con-

vergent cycle on a compact subset of T (with respect to a discrete coefficient-

group X) is called a cycle on T; by definition, it bounds on T if it bounds on

a compact subset of T. The difference group of the group of all r-dimensional

cycles on T over the subgroup of the cycles bounding on T is the group 5r;

the subgroup of 5p whose elements are classes of cycles bounding on K is the

group Sp:K; the latter group can also be defined as the difference group of the

group of all r-dimensional cycles on T over the subgroup of the cycles bound-

ing on K.

§13. The general Alexander-Pontrjagin duality theorem:

reduction to the combinatorial lemma

45. Formulation of the theorem and of the lemma. From now on we either

suppose the manifold K orientable or take for the coefficient-group the group

h. All notations of §12 hold.

The theorem to be proved is:

45.1. The groups AA.K and öjT.jj (q = n — p) are dual;
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or (equivalent formulation):

45.2. The groups VA:k and op~.jIj (q = n — p) are isomorphic.

The proof rests upon the following

Combinatorial lemma 45.3. If zva is a V-cycle on Ka equal to zero on Aa

then for any ß>awe have

(co is the sign of homology, section 9, Dq is the duality operator of section 42).

This lemma will be proved in the next paragraph; in the present paragraph

we suppose the lemma proved and prove on this basis the Theorem 45.2.

We write Ea instead of EK^.

46. The operators ADaEa and the isomorphism AD"E. To each V-cycle

z£0 on A a corresponds the V-cycle VEaZ^ on Ga and thus the A-cycle

Da-1VEXo = (- l)p+lADqaEazlo on G* bounding on K*. If a V-cycle zva on G«

bounds on Ga the chain a*-1, then Dazva bounds on Ga* the chain ±Da+1xpT1

and vice versa. Therefore from section 15 we have:

46.1. The operator ADaEa produces an isomorphism of the group Vvaa:ka

onto the group AqaJ.K<*.

Our purpose is to show that the operators ADaEa taken for different a

produce an isomorphism—we call it AD"E—of Va-.k onto öfTi- We need for

this proof some minor lemmas.

Lemma 46.2. For any V-cycle zva0 on Aa and ß>a

(46.2) irßVEazlo co vEßiTßozlo on Gß.

Proof. As wB commutes with V we have to prove the homology

But an easy direct calculation shows that the chain ^£«0^0 — Eßitß^zlo is itself

on Gß, which proves the assertion.

The fundamental lemma follows:

Lemma 46.3. For any V-cycle zvM on Aa and ß>a

(45.3)
ß   9 <* p     »   9 p *

SßlUßTTßZa co SßlUaZa   Ott (jßl

or

(46.3)

Proof. Set in (45.3)
P+i
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instead of z£; it becomes

(46.31) SßiDß 1vßVEazlo co sßiDa V-EaZao on G*i.

Apply to both sides of (46.2) the operator DfT > this gives

Dß  iTßVEazao co Dß  VEßiTßoZao on Gß.

Thus on the left-hand side of (46.31) we can replace DJ_17rjVjE«2*p by

Tff^Efif&U and get
ß      q—1 aO p a »7—1 p *

(46.32) SßiDß  VEßiTßoZao co SßiPa VEazao on Gßi.

But by (42.1)

_ 9—1 aO p p+1 ,     <*0 P

|Dg    VE^oSaO =  (— 1) ADßEßTßoZcQ,

\    DT^Eazlt = (- l)P+1ADlEazl0.

If we bring this into (46.32) we get (46.3).

It is now easy to prove that the homomorphisms AD«Ea taken for differ-

ent a generate a homomorphism AD"E of Va:jj into dsf:\^: since every ADlEaz^0

bounds on K* we need only to verify the following

Lemma 46.4. If for the V'-cycles z£o on A„ and Zß0on Aß there exists a y >a, ß

such that 7^2^—7^0200 M extensible over Ky, then

(46.4) syiAD9aEazlo co s^iAD*£^0 on G*i.

Proof. From 46.1 it follows that AZ)?£T(7r7?^0-7^2^)" bounds on G*,

thus

7        9 _     «0 p 7        9 00 p He
(46.41) s7iAD7E77r702„o co 5TiA£>7£77r7O20o on G7l.

On the other hand (46.3) gives (with ß replaced by 7)

7        9_«0p a        9        J> *

s7iA£)7£77r7oSao co SyiADaEazao on G7i

and (with a, ß replaced by ß, y respectively)

7 q 00   p 09P *
SylADyEyTTyoZßß   co   SylADßEßZßQ    OYl GyU

These homologies substituted into (46.41) give (46.4).

46.5. The homomorphism AD8E of VA:K mto ^r~k 1S an isomorphism.
This follows from

Lemma 46.51. If we have for a V-cycle z£0 on Aa and a certain ß>a the

homology , .

Sß\ADtaEazPaa co 0 on G*i,

then 7r2o2f0 & extensible over Kß.
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Proof. By (46.3)
a       q        p ß        q        ctO p *

Sßi&DaEasa(, co SßiADßEßTßoZao on Gßi,

thus SßiADßEßWßoZ^o bounds on Gßl. It is known (see for instance [4, p. 247,

Theorem III]): If a cycle of the form Sßizß*< where zß* is a A-cycle on Gß*,

bounds on Gßl, then zß* bounds on Gß*. Therefore ADßEßir/ßzZo bounds on Gß*

and by 46.1 the V-cycle 7r^zJ0 is extensible.

46.6. The isomorphism AD"E maps VA:K onto ^Bk- Let z'_1 De an element

of oj^k- It is known (see for instance [4, p. 246, Theorem III]): Any A-cycle

on G,*i is homologous on G*t to a cycle of the form s^z* with z* on G*. It

follows that the ö-class z5_1 contains a cycle s^z*, where z* is a A-cycle on

G* and bounds on K*. From 46.1 it follows that there exists a V-cycle z^,

on A a such that ADaEaz% is homologous to z* on G* and therefore

a q V 9-1

salADaLaza t z ,

which proves our assertion.

§14. Proof of the combinatorial lemma

47. The fundamental identity. We write in this paragraph T for non-

oriented and t for oriented simplices. The simplex TTaX of Ka\ whose vertices

are the centers of the simplices Ta*> ■ • • > T2T will be denoted by

r;i = |rl°>... >tI'\.

A simplex of Kai is called principal if its dimension is the same as the

dimension of its carrier in K£; the other simplices of 7Tai are called accessory.

Among all simplices of Kai the principal simplices and only these are of the

form
_a I      n n—1 jji

tal = \ta>ta   > ■ ■ ■ > ta\ . .

If we put in correspondence to the center of each simplex Tß of Kß the center

of the simplex of 7^ we get a simplicial mapping of] of Kßl into Kai: for

Trßl = I T? > Tf > ■ ■ ■ > T?\ GKßl we get

Val-lßl — I (TaJ-ß   E* <ralß   =2  • ■ •   g <7alß   | t A„l.

Remark 1. If of does not degenerate on Tß (that is, if the dimensions of

of and Tß are the same) then for any simplex lying on Tß the simplex

<rfjr|iis the image of Tßl under the affine transformation <rf of Tß.

The manifold K being orientable, choose any definite orientation of Ka

and the corresponding orientation of Kß as well as of all ^-dimensional sim-

plices T2 and Tß of Ka and Kß. These orientations will be denoted by tß.

For p <n take ad libitum a definite orientation of each ^-dimensional simplex

TlEKa and denote this orientation by /«. Choose the orientation t« of the
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corresponding barycentric star T„ in such a way as to get the intersection

number (^Xr„) = +1. For 7^iGT^ take the orientation t"al corresponding

tori

Choose as follows the orientations tfä of the simplices Tß of Kß. If erf does

not degenerate on T$, and cr^Tß — T^, define tß by the condition of$ = C

If erf degenerates on Tß, choose tß arbitrarily. The orientation t| of the bary-

centric star TJ corresponding to Tß is again defined by the condition

(^Xr|) = +1. Finally, the orientation fßl of JjsiGT| corresponds to r|.

The proof of the combinatorial lemma 45.3 rests on the following

Fundamental identity.

,   _     . 01 0 _9 <*   J> "     a p

(47.1) CalSßlVßlTßXa = SaiUaXa

for any chain xva on Ka and any ß>a.

Remark 2. The mapping of (of Kß on Ka), being a natural displacement,

has the degree 1 (see [4, p. 348, Theorem II]). If of is an arbitrary simplicial

mapping of the degree d of the arbitrary w-dimensional closed orientable

manifold on Kß on the arbitrary w-dimensional closed manifold Ka, then

(47.1) is replaced by

(ah  n\ 01 ß     Q   a   p a     q p
(47.2; <Ja\Sß\L>ßiTßXa = dsa\L)axa

for any chain x% on Ka where the operator it% is defined as usual by (7r|a£-$)

= (x"-aa^) for any oriented tßEKß. In this general form the identity (47.2)

formulates a known property of the Hopf "Umkehrhomomorphismus" (see

for instance [7]). The proof given below involves this general case.

48. Proof of the fundamental identity. Let us see how the principal sim-

plices are transformed under of}. First of all:

48.1. If the accessory q-dimensional simplex

Ta\ = I Ta   >  • • •   > Ta' I £ Kal

is the image under of] of the principal simplex TB1 = | Tß > T}~1 > • • • >Tß\,

then nq <p.

Proof. From ofr^_i=r^'' follows n{^n — i, in particular n0^n, nq^p. If

nq = p, the simplex T^ would be principal, and 48.1 is proved.

The principal simplices TB1 mapped under of] on the principal

Tli=\Tal> • • • >T^\ are easily seen to be in (l-l)-correspondence with

the TßEKß mapped under of on 7^. Moreover the orientations tß, ta, tß,

Iii, tßi have been chosen in such a way that from TBl = | T£> ■ ■ ■ >T„\ and

(48.11) aalß = etl (with e = + 1)

follows
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(48.12) <Ta4l=dl

with the same e in (48.11) and (48.12) (the simple proof uses remark 1 of

section 47). Therefore for any principal simplex tqal

(Col 22 tßl ' tal)  =   jo a y. h ■ to) ,

where the sum is taken over all principal tßl at the left and over all w-dimen-

sional simplices of Kß at the right. Since the value of o^^tß on Q is equal to

the degree d we get

(48.2) ffilE/Ji = dj^ili

(summation on both sides over all g-dimensional principal simplices of Kßi

and Kai respectively).

The proof of the fundamental identity presents no more difficulty. To

simplify the notations put

9 ß  „9   OL p

Jßl = SßiVßWßXa-

We shall calculate the value of the chain y\\ on an arbitrary simplex tp\ of Kß\.

If tßi is accessory this value is zero by the very definition of the operator Sß\.

If tßy is a principal simplex, let tJ be its carrier in Kß* and tß the corresponding

(oriented) simplex of Kß. By the definition of sf,u Dqß and w% we have

g      q P      ß P
(48.3) (yßi-tßi) = (xa-ojß).

To evaluate the left-hand side of the identity (47.2) take any Tqi

and all principal simplices

T) = I Tnß(j) >       > TPß(j) I G KßU      j = 1, 2, • • • , v,

which are mapped by of} on 1 ai* Let

ßlt" _ » xi
falfj  —  tjtal, tj - II.

We have by (48.3) and the definition of the e,-:

(48.4) {<r^iylv tlx) = Y,(yl\ tjtqd = £ t j{xl-aatl{j)).
i i

If Tii ^ accessory then by (48.1) we have nq<p; it follows—since

otT$(j) = Tna«— that (a* • o%(j)) = 0, therefore by (48.4)

(o-aiyßl-tal)  = 0.

Obviously (s"iDaxa-tal)=0, thus both sides of (47.2) take on the accessory tqaX

the value zero.

If Tq! is principal, Tal=\T^> ■ ■ ■ >Tva\, then oiTvß(j) = TZ, and even

ott%(j)=C hence by (48.4)
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(o-aiylvtl\) = 22 d = (x-ta) X
i i

By (48.2) J2,ei = d and therefore

(o-aiyßl-tai) = d(xa-ta).

So much for the left-hand side of (47.2). At the right, the chain s^D^x^ takes

the value (x^-tva) on taU which completes the proof of the identity (47.2).

49. The rest of the proof of Lemma (45.3). This is based on the following

two elementary propositions:

49.1. Let r„, r*! denote the set theoretical sum of the simplices of Ga, G*x

respectively. There exists a continuous mapping C of the point set Ta onto

the point set T*i leaving all points of T*t invariant.

49.2. Let the V-cycle z£ on Ka be equal to zero on Aa; if zßl = ^DßiTßzl

differs from zero on a given TßiEKßi then a convex subset of Ta contains both

the closures of TB1 and of of}TB1.

Proof of 49.1. The open set r„ is the set theoretical sum of the simplices

TaiE.Kai lying on it. Each of the simplices TaXEKai lying on r„ but not be-

longing to G*j is of the form

fa, = \tn:> ■■■ >tnai>... >t:'\, \%\

where 7^°, • • • , If belong to Ga, while T**1, ■ • • , Tl' are elements

of Aa. Thus each point a of TaX is on a segment |a'a"| C^, joining a

point a' of the simplex 7^ = | T"""> • • • >T«\ £Cr*i with a point a" of

Tal = I 7^<+1 > • • • >T^\, the simplex Tal belonging to the barycentric

subdivision A„i of Aa. If we put C(a)=a' for aETa\T*i and C(a)=a for

aGF*! we obtain a continuous mapping C with the required properties.

Proof of 49.2. Let T" be a simplex, Tp a face of Tn. Denote by S(TP, Tn)

the complex composed of Tn and all faces Tr of T" satisfying the condition

T'^T" (where T'>T" means that the simplex T" is a face of 7"'). Denote

by^(Tp, Tn) the set theoretical sum of all elements of S(TP, T"). Among all

points of the closed set T" the points of 1^(TP, T") are characterized by the

property that their barycentric coordinates (in the coordinate system defined

by the vertices of Tn) corresponding to the vertices of Tp are all positive.

Therefore the point set 12(TP, Tn) is convex. This obvious remark will be

applied now to the proof of 49.2. The hypotheses of 49.2 imply that Tßl is

a principal simplex,

gin pi

Tßl = I Tß > • • •  > Tß I,

and that tt^z^ differs from zero on T%\ hence

ß  p p
caTß = Ta £E.Ga.

Denote by T„ the carrier of Tß in Ka, and put



1943] PROPERTIES OF COMPLEXES AND CLOSED SETS 337

J- a    —  0~al ß.

The mapping of being a natural displacement, we have

Tn° < T"
* a    =  a. a

and therefore     . .

1 a — Va-l ß  =  -l a-

Since 7^£C7a and Ga is open in Ka, we have

S(Tl, T7)QS(TPa, Tl) QGa.

The vertices of of} 7"^, being the centers of the simplices

no ß   n ß   n—1 0    p p
Ta = o~aTß = o~aTß    ^ • • • ^ craTß = Ta,

are points of the set £(7* OcIfH, I^). Since the point set £(Ta. H)

is convex and contains the vertices of the simplex of}7^ it contains the

closure of this simplex. It remains to prove that the closure of the simplex

is contained in the same convex set 7XTt, 7"*). Let T«, i = 1, 2, • • • , q,

be the carrier of T%~1 in Ka. Since T« is the carrier of Tß and Tl =of Tß ^ T^,

we have

Tn > rnl > • • • > Tn" > Tv

whence it follows that 7"£, • • • , r«5and therefore the centers of TßQT2,

T^CTT, • • • , TJQT2' are on £(72, 7^); since £(72, 7Z) is convex, the

closure of the simplex Tß! = | T%>T%~1> • • • >T$\ is a subset of ?Xft. T^)

and 49.2 is proved.

It follows from 49.2 that the prism with the bases zQßl and oflzjjj. (see sec-

tion 28) lies on a polyhedron ncro (composed of the simplices of this prism)

and thus z^coofjz^ on II cr„ (this homology being understood in some in-

variant sense—either as a continuous homology in the sense of [4, p. 335]

or as a homology between convergent cycles [5, pp. 240, 241]). If we take

z£i from (49.2) we obtain

ß     q   a p ßl  ß     q   a p

(49.3). Sß\DßiTßZa co OaiSßiDßirßZa on II C r, C Tß.

On the other hand, we have by (47.1)

<•  _«  P Jl J     !   « f
....  .    ... SalVaZa — °~alSßlVß1Tß Za

thus SaiDlzl, (considered as a continuous or as a convergent cycle) lies on II

and therefore
"    q  P «1 a     q  P a     q p

, Sßiüaza = Sßisalüaza co saXDaza on II.

Hence we may replace in (49.3) the chain ofJ4i7$7(/»zE by s^Dlzl, which gives
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ß     q   a p a     q p

SßiDßTßZa oo sßlDaza on II C Tß.

By the mapping C of 49.1 this homology turns into

ß _«   " P <*     q  p *
SßiüßTßZa co SßiDaza on Tßu thus onG^i,

which completes the proof of the combinatorial lemma, as well as the proof

of the general duality theorem of Alexander-Pontrjagin.

§15. The removing theorem

50. The removing theorem in the case of a manifold. A V-cycle zva on Ka

is homologous on Ka to a cycle on Ga if and only if the A-cycle D^z^ is ho-

mologous on K* to a cycle on G*. As the scalar product of za with a A-cycle

z£0 on Aa is equal to the intersection number of Z>°z£ with the same z£0 we

get the following form of

The removing theorem for manifolds. A S-class zQ on the (n-dimensional

orientable) manifold K contains as a subset a 5-class on the given open set

T = K\A if and only if, whatever be the thread zj= {j^o} £A« and CGz5, the in-

tersection of z£ with any zvM £j£0 is equal to zero (here, as usual, the 8-classes

are taken with respect to a discrete coefficient-group X, while the coefficient-group

in Apa is a\X).

Another formulation of the same theorem is:

A g-dimensional convergent cycle z" (with respect to the discrete group X)

on K is homologous on K to a cycle on T if and only if the intersection of z«

with each ^-dimensional convergent cycle on A (with respect to S| X) is equal

to zero.

Remark 1. The theorem holds also for X= S = 3t (see section 5).

Remark 2. For non-orientable manifolds the theorem holds in the special

case X = S = Ii.
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