ON HOMOLOGICAL SITUATION PROPERTIES
OF COMPLEXES AND CLOSED SETS

BY
PAUL ALEXANDROFF

The purpose of this paper is to find and to study topological invariants
which connect the homological properties of a space K with those of its closed
subset 4 and of the open complement G=K\4, and thus help to characterize
from the homological point of view the situation of A in K.

In the case when K is simply connected (that is when the Betti groups of
K are zero) the problem is solved by the duality theorems of Alexander,
Pontrjagin, and Kolmogoroff, which determine the Betti groups of G through
the Betti groups of 4. In the other special case when K is a manifold the first
duality theorems have been obtained by Pontrjagin [11](t) and Lefschetz [9]
in 1927-1928. All these results are special cases of the general theory to which
the present paper is devoted and which gives the very elementary construc-
tion (of the so-called extension- and intersection-homomorphisms, section 11)
dominating the whole variety of duality and other situation properties.

The complete combinatorial theory is given in Chapter I for an arbitrary
cell complex K and its closed subcomplex 4. In Chapter III the same theory
is generalized for locally bicompact normal spaces K and their closed sets 4;
this generalization is based on an approximation process developed in Chap-
ter I1. Chapter IV deals with manifolds and gives an elementary proof (com-
binatorial in character) of the Alexander-Pontrjagin duality in its most
general form. '

All main results obtained are completely formulated in the first four sections
of Chapter 1 (sections 11-14). Numerical consequences are given in section 16.
Section 18 deals with the Phragmén-Brouwer problem, while in section 19
some quite elementary examples are given as illustration.

The elementary known facts and notations used throughout this paper
are systematized in the Introduction; its first part contains the group theo-
retical material, the second the needed information on complexes. Thus the
present paper is practically independent of the previous literature on related
subjects. There are only few references to my paper [1], and each of them
may be read without reading the rest of that paper.

INTRODUCTION
§1. GROUPS AND THEIR CHARACTER GROUPS
1. Groups, homomorphisms, duality. All groups considered are commuta-
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(*) Numbers in brackets refer to the bibliography at the end of the paper.

286




PROPERTIES OF COMPLEXES AND CLOSED SETS 287

tive and written additively. In topological groups only closed subgroups and
continuous homomorphisms are allowed. The difference- (or factor-) group
of a group X over its subgroup X, is denoted by X —X,.

Let 0 be a homomorphism of the group X into the group Y; let Vi=0X
be the ¢mage of X under o and Xo=0"0 (or 0'0y) be the kernel of the homo-
morphism o, that is, the subgroup of all elements of X mapped by ¢ on the
zero element Oy of Y. Then we often use the picture

X2 X,
R
yrov,
We denote by I the additive group of all integers, by T the additive con-
tinuous (bicompact) group of all real numbers reduced modulo 1.

If B is the character group of the group 4 in the sense of Pontrjagin [10]
then A4 is the character group of B, and we write

(1.1) A| B.

The groups A and B are called in this case dual and the relation (1.1) is called
a duality.

2. Scalar products. If A|B, a€A4, bEB, then the character b of the
group A and the character e of the group B map respectively the elements
a&A4 and bEB on the same element

ba=abET

called the product of a and b.

Other cases in which products are defined are:

1. When a and b are elements of the same (commutative) ring.

2. When a is an element of an arbitrary group 4, while b is an integer.
Then for >0

agb=ba=ce¢+a+---+a (b times),
a(—b) = (— b)a = = (ab),

and ab=ba =0 for b=0.
The scalar product

(x-3) = 2 abs

of two linear forms x = a:# and y =2 b, is defined if the products a;b; are
defined.

3. Annihilators. Let X | Y;let ACX and BC Y be subgroups of X and ¥
respectively. If B is the annihilator of A (in Y), that is, the subgroup of all
elements y of Y satisfying the relation xy =0 whenever x €4, then 4 is the
annihilator of B in X and we write

XDA41BCY,
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this relation being called an annihilation.
A fundamental theorem of the character theory is:

THEOREM 3. The annihilation XD A _LB_C_ Y implies the dualities
o (X -4)|B,, (¥ —B)|A.
4. Conjugate homomorphisms. The fundaméhtal lemma. Let
X|X, VY|T.
The homomorphisms
_ » aometoY & of ¥ into X ,
are called -conjugate if (0x-5) =(x-75), whenever xEX yE Y. In this case we
write
1 X XT
Yy 7|
or—xf the images Yl =0X, ‘Yl =57 and the kefnels Xo=0"10y, Vo= 710z are
given— :

Qi

XQXo‘ ?1§X.

4.1) I 1 » a.
Yyov, YV,C7
Most of this paper is based on the
FUNDAMENTAL LEMMA 4. From (4.1) follows
S X2X% , TiCX
L t A
4.2 1 / —
.2 Yo2v/t 7,.c7
(where the diagonal line means the dualzty YII Y1) and
X X X
(4.3) 0 I ( 1)
(¥ — V)| 7o

The dualities (4.3) follow from Theorem 3 and the annihilations in (4.2),
while the duality X | ¥1 follows from Theorem 3 by means of the isomorphism
V1~ X — X,. Thus we need to prove only the anmhllatlons in (4 2). It is suffi-
cient to prove the first annihilation

XDXo_LXICX

To this end let x € X,, 7€ Y. Then
(x-69) = (ox-9) = 0.
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On the other hand, if ¢x 0, then there exists a §& ¥ with
(x-0%) = (ox-5) = 0.

Lemma 4 is proved.

5. Remark concerning the rational case. Let i be the field of all rational
numbers, R* the corresponding #-dimensional linear space, that is, the group
of all linear forms with » variables and rational coefficients; the group R* is
considered as a group with operators, the latter being rational numbers. Thus
only linear subspaces are allowed as subgroups. If we understand now by a
character of :®” a homomorphism of R” into R, the “character group” of R~
is again R*, as follows from the definition y(x) =x(y) =(x-y) for any xER",
yER", the scalar product being understood in the most elementary sense.
Thus the duality relation | turns in this case into the identity and Lemma 4
still holds but now becomes trivial.

§2. CONCERNING CELL COMPLEXES

6. Cell spaces and their subspaces. A cell space (Tucker [14], Kol-
mogoroff [8]) is a finite set of elements, called cells, satisfying the following
conditions:

1. To any cell corresponds a non-negative integer, the dimension of the
cell (denoted by a superscript: # is an r-dimensional cell or an r-cell).

2. To any cell ¢ corresponds a well defined cell —¢ of the same dimen-
sion 7, and we have — (—#) ={; the cells " and —¢" are called opposite (to each
other).

3. To any two cells & and ¢! of dimensions » and 7—1, respectively,
corresponds an integer (¢£:¢~!), the incidence coefficient of ¢ and #~!, under
the conditions:

(=t )y = (tr: — 1) = — (¢ ).
It is convenient to suppose that in any pair of opposite cells of the cell
space K a definite cell is denoted by £ and the other by —#. Then we put

r r r—1
€ = (t.':t,’ ).
Let €K and £EK be two cells, and s<r. We write ;>4 or 4 <f; if
cells §7'EK, - - -, 71 €K can be found so that

7 r— r—1 r— 8+1 8
(ti:tixl) # 0, (th :tizz) #0,---, (tir-.-—x:tk) = 0.

If £ <f we say that & is a face of £.
A cell space Q is called a subspace of the cell space K if Q is a subset of K
and

(a) two cells are opposite in Q if and only if they are opposite in K;
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(b) the dimension of a cell and the incidence coefficient of two cells in Q
are the same as in K.

A subspace Q of the cell space K is called: closed, if t€Q, ' <¢ (in K) im-
plies ¢’ €Q; open, if t&Q, t’ >t (in K) implies ¢’ €Q.

7. Chains and boundaries. An r-dimensional chain (or an r-chain) on a
cell space K with respect to the group X (the “coefficient-group”) is a function
x" with values in X defined on the set of all r-dimensional cells of K,
taking opposite values on opposite cells. The additive group of all 7-dimen-
sional chains on K with respect to X is denoted by L%(X) or by Lk. Chains
with respect to the group I of all integers are called snteger chains.

The chain taking the value ¢ €X on the cell # €K and the value zero on
all cells different from ¢ is denoted by a¢" (in particular, the integer chain
taking the value 1 on #, the value —1 on —¢" and the value 0 elsewhereis
identified with the cell #). This convention allows one to set for any chain
xrELk

x = Z a;t:

where a; is the value taken by x" on .
The scalar product

(a7 y7) = 2 aib;

is defined for two chains "= af; and y"=2_ b under the hypotheses for
coefficient-groups mentioned in section 2. In particular the scalar product
(xr-£;) is always defined and equal to the value of the chain x” on the cell .

Let x7 be any chain of the cell space K. The (r—1)-chain taking the value
E,é@(x“t{) on any 4 '€K is denoted by Ax" and called the A-boundary (or
the lower boundary) of x* (on K). The (r+1)-chain taking the value
S (x-£) on £T'EK is denoted by Vxr and called the V- (or upper)
boundary of x” on K; sometimes we write Agx’, Vxx" instead of Ax", Vx to
show the cell space on which A, V operate.

Obviously :

Wi ) = (067 = e

and thus for any two chains x” and y™+!
(7.1) (var-yr*1) = (a7-Ay™)

provided that these scalar products have a sense (section 2).
Let X|X, Lgx=Lk(X), Lx=Lk(X). Denote by
— —r+1

Hyx =vLlx; Hx=ALx

the images; by Zk, Zx the kernels of the homomorphisms

v(of Ly into Lk);  A(of I% into Ix).
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The elements of Z% (of Z%) are called r-dimensional V-cycles (A-cycles);
among all elements x” of Lk (of L) they are characterized by the condition

vxr = 0; Axm = 0.

From (7.1) and the Fundamental Lemma 4 follows

- r—1_ —r-1

Lozt L Hx CIx

(7.2) v A,

Ly 2 HyL Zp CL;

(7.3) (Lx — Hx) | Zk.

8. Cell complexes. A cell space is called a cell complex if for each of its
cells AA" =0, that is Z,-e},e};‘ 1=0 for every 7, 1, k. On a cell complex AAx"=0,
VVx" =0 for every chain x” and therefore HxCZk, HxCZk. The elements of
Hy, Hk are called bounding cycles (V- and A-, respectively).

9. Betti groups. These are the groups

Vk = Vk(X) = Zx — Hx; Ak = Ax(X) =Zx — Hx;
the first is called the r-dimensional V- (or upper) group and the second is
called the r-dimensional A- (or lower) group of K with respect to the given
coefficient-group (X for V and X for A). The elements of Vi (of A%) are called
r-dimensional V-classes (A-classes) of K. Two V-cycles (A-cycles) 2] and 2; are
- called homologous to each other on K if they belong to the same V-class

(A-class) ; we write in this case zj~z; on K.
Let us prove the duality

(9) Vx| Ak.

We recall from the character theory that from 4|4, C|C, C=4 —B fol-
lows B| 4—C. Apply this to the Emmy Noether isomorphism

(Lx — Hx) — (Zx — Hx) ~ Lx — Zx
and take from (7.3), (7.2) (with 41 instead of r)

(Lx — HY) | Zk, Lk —Zx~Hx |Hx
We get

Zx — Hx) | @x — Hy),

q.e.d.

10. Closed and open subcomplexes. Let Q be a closed subspace of the cell
complex K and #&EQ. Then Agtr=Agt" and AgAgt"=AgAxt"=0; thus Q is a
cell complex.

Let Q be an open subspace of the cell complex K. Take any chain x” on Q
and define the chain E¥x, called the trivial extension of x™ over K, by setting
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E$x"=x" on Q, E$x*=0 on K\Q. Then since Q is open on K, we have for
any -1€Q '
r r—1 Q r r-1
(AQx -1 ) = (AKEKx -1 ).
It follows that
(Aghox -1 7) = (AxAxExx £ ) =0

for any #—2€(Q, and Q is again a cell complex.
Thus closed as well as open subspaces of a cell complex are cell complexes.

CHAPTER I. COMPLEXES
§3. THE GENERAL THEORY

11. The extension- and the intersection-homomorphisms. Let Q be a sub-
complex of the cell complex K and x§ a chain on Q. Any chain on K taking
on the cells of Q the same values as the chain xj is called an extension of Q
(over K). Among these extensions the trivial extension E%xa takes the value
zero on K\Q.

If we assign to any chain on Q its trivial extension Efxj, we get the ex-
tension-isomorphism of Ly into Lk.

REMARK. If there is no possibility of confusion, we shall identify chains
with their trivial extensions and thus consider the extension-isomorphism as
the identical isomorphism of Lj into Lx2D L.

Now, let % be any chain on K. We denote by J§xk the chain on Q taking
on the cells of Q the same values as the chain x%. If we assign to any chain
x* on K the chain J§xk, we get a homomorphism J§ of L into Lj called
the intersection-homomorphism.

Obviously, if X|X, Ly =Lx(X), Lx=Lx(X), then

Lx ILx
(11.1) Jfl 5 _,KIE?(.
Lo Lqg

From now to the end of this chapter K is a ﬁxed cell complex, A is a fixed
closed subcomplex of K and G=K\A is the complementary open subcomplex.
It is easily seen that for any chains x} on 4, x§ on G, xk on K:

r r G r ] r
(11.2) AEI;(xA = E‘;(Ax,;; VEkxec = EgVxg,
r K r K r K r
(11.3) V]fo = JaV2k; AJgxx = JeAxk.
11.4. Therefore, the extension isomorphism maps identically

A-cycles of A V-cycles of G
on A-cycles of K on V-cycles of K

while bounding cycles are mapp'ed on bounding cycles. Thus the extension-
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isomorphism generates a homomorphism called the extension-homomorphism:
r r [e] r r
E}i( of A4 into Ag; Ex of Vg into Vk.

11.5.- The intersection-homomorphism maps V-cycles of K on V-cycles
of 4; A-cycles of K on A-cycles of G (while bounding cycles are mapped on
bounding cycles) and thus generates a homomorphism, also called the inter-
section-homomorphism : '

Ji of Vi into Va;  Jg of Ak into Ag.

12. The groups Aky4, Vig; Auix, Vex; Vik, Agx. We write Ox for the zero
element of both A% and V%, and use 04, O¢ in an analogous sense. Now we
define : :

r A r r G r r .
(12.1)  Axa = Exdy C Ax; Vke = ExVe S Vk (images),
(12.2) Ak = (E‘;c)_lox C Ax; Ve:x = (Eg)_IOK C Ve (kernels),
r K »r S | r K r r .
(12.3) Vag = JaVk S Va4,  Agx = JelAx S A¢ (images),

and prove for the kernels of the intersection-homomorphism:
K - r K. — r
(12.4) Ja) lOA = Vko; Je) lOG = Axa.

We prove only the left-hand formula (writing J for J5 and E for Ef).
1. If 2rE2Z%, 27 =2+h" with 5EZ, i EHk, then Jzr=Jh" € Hj.
2. If 7 EZ%, Jo €H}, then 2" =2p+k with 25EZG, W € Hg.

Let us prove 2. We have Jzr=Axj?, ¥, '€ L. For any £;E4

(" = VE&)-f) = (7-4) — (VE« ).
Now . '
@) = (U5 f) = (val -4d),
r—1 r . r—1 r r— r r— r
H (VExs “t1) = (JVEx,4 l'tA) = (W Ex 1‘tA) = (Vx4 l‘tA)~
ence '

((zr — VEx;—l)-t,:) =0 forts € A

so that the cycle 7 —VEx ' is on G. As VEx{ ' € Hg the assertion 2 and thus
the formula (12.4) are proved. ’
13. The geometrical meaning of the groups Ak, Vke; Az, Vax; Vik, Aok.
13.1. The subgroup

r T T r
Aga of Ak; Vke of Vi

defined as the image of A} (of Vi) under the extension-homomorphism has
for its elements those A-classes (V-classes) of K which contain A-cycles on 4
(V-cycles on G). .
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13.2. Take all those
A-classes 3;, € Ay; V-classes 3’0 =

whose elements bound on K. The resulting subgroup of A} (of V) is the group
1:x (the group Vg.x), defined as the kernel of the extension-homomorphism.

DEFINITION 13.3. 4 V-cycle on A (a A-cycle on G) is called extensible
(over K) if among its extensions over K there are V-cycles (A-cycles) on K.

13.4. Then the group V) (the group Ajg) defined as the image of Vi
(of .A%) under the intersection-homomorphism is the difference-group of the
group of all r-dimensional extensible V-cycles on 4 (A-cycles on G) over the
subgroup of cycles bounding on 4 (on G).

14. The results. From the definition of the groups involved, from (11.1)
and (12.4) follows by the Fundamental Lemma 4:

Ay DAnx L vix C Vi

Ex Ji
K ’ r — rlJa
(14.1) Ax DAks L Vike S Vk
Jo | Ex
G r ¥ r
Ae DA¢r L V&:xC Ve
and
(14.2) Axx| (Va — Var);  Vex| (B — Aux).
The picture (14.1) contains
1. two pairs of isomorphisms: the first pair
Ay — Mgk =~ Aga; Vo — Ve:x = Vka;
the second pair
Ax — Ak =~ Agk; Vi — Vxe = Vik,
2. the pair of dualities
Aka | Vax; V;KGI Agk;

3. three annihilations: the central annihilation
Ax D Axs L Vze C Vk
and the pair of annihilations

Ay D Ank LVax C Va; Ve 2 Vo:x L Agx C Ag.

In each pair of relations (isomorphisms, dualities, annihilations) the one rela-
tion is obtained from the other by interchanging A and Vv, 4 and G.
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From these relations the first pair of isomorphisms is a triviality, being
contained in the very definition of the groups involved.

The dualities in (14.1) and (14.2) are algebraic consequences of the an-
nihilations and the latter follow from the fact that the extension- and inter-
section-homomorphisms are conjugate.

The central annihilation may be brought obviously into the form of the
following

REMOVING THEOREM. Iz order that an r-dimensional V-cycle (A-cycle) on K
be homologous on K to a
V-cycle on G, A-cycle on A
it is mecessary and sufficient that its scalar product with each r-dimensional
A-cycle on A ; r-dimensional V-cycle on G be equal to zero(?).

In addition to (14.1) and (14.2) we have

THE MAIN DUALITY THEOREM.
+1
(14.3) Ak | V.
We give to this fundamental duality the form of a pair of isomorphisms
‘'by means of the following definitions:

T r T r r T
Va:g = Va — Vak; Ag:xk = Ag¢ — Agk.

REeEMARK. The groups V’.x, Ag.x can also be defined as the difference
groups of the groups of all r-dimensional V-cycles of 4 (A-cycles of G) over
the subgroups of all extensible cycles.

With these definitions we deduce from (14.2) the dualities

(14.2") Ak | Vaix;  Vax|Aex
and transform the duality (14.3) into the third pair of isomorphisms:

(14.3) Auk ~ Aax;  Vak = Verk.

The groups A;(Ar VrKG; AQ:K) VrG’:K; V:iKr A;(G; VrA:Kr A'(:V:K are called the
groups of the figure K, A, G. It follows from (14.1)-(14.3) that they are all
completely determined if we know for instance the groups Ak, A}, Ak, (for all 7).

In Chapters II and III the definitions of the extension- and of the inter-
section-homomorphisms as well as the definitions of the groups of the figure
K, A, G are generalized to the case of an arbitrary locally bicompact normal
space K and its subsets: the closed set ACK and its open complement
G=K\A. We show in these chapters that all relations (14.1)—-(14.3’) hold in
that general set theoretical case.

(?) I am indebted to L. Pontrjagin who first formulated the Removing Theorem and many
times pointed out to me (as did also L. Lusternik) the desirability of proving it under the most
general conditions.
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In particular, the duality theorem (14.3) (or the equivalent pair of iso-
morphisms (14.3’)) is the definitive generalization of the duality theorem of
Alexander-Kolmogoroff: If the space K is simply connected in:the dimen-
sion 7 (that is, if one and therefore both of the equivalent conditions A% =0,
V% =0 hold), then obviously A}.x=A}, Vi.x=Vs Hence, if K is simply con-
nected in the dimensions r and r-+1 then (14.3’) turns into the Alexander-
Kolmogoroff isomorphisms

r r+1 r r+1
Ay = Ag , V4= Ve .

Let us return to the combinatorial case, that is, let K be a cell complex,
A a closed subcomplex of K. Taking as coefficient-group the group I. of all
integers reduced modulo m and denoting by Akx(m), A(m), Ay:x(m), Vke(m)
and so on the corresponding groups (of K, of 4, of G, of K, 4, G) we see
by the first pair of isomorphisms that the order of the group A}(m) is equal
to the product of the orders of Ak4(m) and A}.x(m) and thus is completely
determined by the last two groups. Now by a theorem of M. Bockstein [6,
p. 373] all Betti groups of a complex K are completely determined by the
orders of the groups Ak(m) taken for all m and all ». Thus the groups A%
are determined by the groups A%,(m) and A}.x(m) (taken for all m and all 7).
An analogous result holds for Vi, while Ak is determined by the Ak, (m)
and Vie(m).

14.4. Hence if K is a cell complex, A a closed subcomplex of K and G=K\A4,
then the groups Ay and Ay (and all groups of the figure KA, G) for any r and
any coefficient-group are completely determined by the groups Ag(m), Aks(m)
and Ay.x(m) taken for all m and all r (while the groups Ak are determined by
Ak a(m) and Vig(m) taken also for all m and all ).

In Chapter III, section 40, we prove that Theorem 14.4 still holds if we
understand by K and A topological images of (finite) polyhedrons (in the
terminology of [4, p. 128]). Thus for topological images of finite polyhedrons
the homological situation-problem may be considered as being completely solved.

ReMARK. The third pair of isomorphisms is given for the first time in
my notes [2]. ’ ) _

15. The operator VE4 and the proof of the third pair of isomorphisms.
To any V-cycle 23 on A corresponds the V-cycle VE£2; on G which by its
very definition bounds on K. Let us prove: If 2} is extensible, then VE&Z,
bounds on G. By supposition there exists a V-cycle 2" on K such that 2} = J5z
and therefore (we write E instead of Ef)

2 = Ezy + Joz,
r K r
VEZA + VJGZ )

K
- VJGz'.

0=Vzr

VEz,
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As J%z is a chain on G, VEZ; bounds on G and our assertion is proved

Thus the operator VE produces a homomorphzsm of Vg into Vg'g. We call
this homomorphism again VE and prove that it is an 1somorphxsm of Vi.x
onto Vg'z.

To prove that VE ‘maps Vi.x on the whole Vg

take arbitrarily

r+1 r+1 41

2¢ €3¢ € Veak-

We have to find such a V-cycle 4 on 4 that Z5"'—VEzZ, bounds on G.
By supposition there exists a chain x* on K bounded by 2z and conse-

quently
VAJA x = ]AVx = ]fZZ;H = 0;

hence 23 = J5x" is a V-cycle on 4 and «} =x"—EJ%x" is a chain on G with

(15.1) Vig = Vo — VEJA x = zr(;+ — VEz,.

It remains to be proved that VE maps Vj.x on Vgig isomorphically. To
this end we show that if for a certain

2 € 31 € Vax

the V-cycle VEzj bounds on G then there exists such a V-cycle 2 on K that
2y =JKa.
By supposition

VEz; = Vi, e € L.
Therefore
V(Ez; - er) =0,
so that zr=Ez} —x§ is a V-cycle on K with
Ja7 = JuEsy — Fawg = 34,
q.ed.
REMARK. In an analogous way to any A-cycle 23! on G corresponds the

A-cycle AE$Z5 on A bounding on K, and the operator AE% produces an iso-
morphism of the group Ajlg onto the group A} .

§4. SPECIAL CASES

16 Numerical relations. In this section the coefficient- -group is either the
field I.., m being a prime, or the field R of the rational numbers, the latter
being treated according to the remark of section 5. Now all dualities tum
into isomorphisms. .

Let p denote the rank of a group of linear forms with respect to the given
coefficient-field. We put 7k =pA% =pV% (Betti numbers) and
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r r r r r r
TRA = PVaR = pAga4; mke = pAex = pVke,
r r r T T T
Ta:k = pAs:x = pVa:k; Te:k = pVe:k = plAg:k.
Then by the first pair of isomorphisms
r T T T r r
(16.1) T4 = TaA:kK + Tka; Te = Ta:k + TKG
while by the second pair of isomorphisms
r r r
(16.2) Tk = Tka + Tke
or
r T r r r
TK = (1I'A - WA:K) + (7|'G - WG:K)-

Using the third pair of isomorphisms and changing 7 into r+1 we get

r+1 r r+1 r+1 r+1

(16.3) ¢ = mak+7x — (T4 — Ta:x),
or
(16.4) ro = mux + (rx — TRA).

In the special case when K is an #-dimensional (orientable) manifold an
equivalent formula has been given by Pontrjagin; in this case by the Poincaré
duality (see section 42 below) we have 7" =7¢"""! and (16.4) can be written
as

76 = mux + (rx — Txa),
which is the Pontrjagin formula [11, p. 449, Theorem II].

17. Application to regular components. Now suppose that K is a komo-
geneously n-dimensional cell complex (that is, there are in K no cells of a
dimension greater than # while each cell of a dimension less than = is a face
of an n-dimensional cell). An (n—1)-cell £*~1is called regular if there are in K
two cells £ and £ such that ¢*—!is a face of +{} and +¢# and of no more
cells of K. A (finite) sequence £, - - -, £ of n-cells is called an r-sequence if
in it any two subsequent cells have in K a common face of a dimension at
least #—1. Two n-cells of K belong (with all their faces) to the same r-compo-
nent of K if they can be connected (in K) by an r-sequence. The cells common
to two different r-components of K are of dimension at most r—2. A complex
is called r-connected if it consists only of one r-component; an n-connected
complex K is called an n-dimensional pseudomanifold if all of its (n—1)-cells
are regular. There are orientable and non-orientable z-dimensional pseudo-
manifolds: the group Vx(I) of an n-dimensional pseudomanifold K is always
cyclic, infinite if K is orientable, and of order 2 if K is non-orientable. It
follows that if the #-dimensional cell complex K is in any way decomposed
into a certain number of #-dimensional pseudomanifolds no two of which
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have a cell of dimension at least #—1 in common, then the group V%(I)
is the direct sum of as many infinite cyclic groups as there are orientable
pseudomanifolds and of as many groups of order 2 as there are non-orientable
pseudomanifolds in our decomposition.

Let K be again an arbitrary homogeneously #-dimensional complex; de-
note by 4, the subcomplex of K consisting of all (z—1)-dimensional irregu-
lar cells and of all faces of these cells. The n-components of the open subcom-
plex G._1=K\A._, are called regular components of K (we slightly change
here the terminology of [4, p. 190]). The decomposition of G,_; into its #-com-
ponents (the regular components of K) is a decomposition of the kind just
mentioned and therefore the number q(K) of the regular components of K is
equal to the n-dimensional Betti number modulo 2 of G.-1, while the number
qo(K) of the orientable regular components of K is the ordinary n-dimensional
Betti number of G.—,. Denoting as usual by 7" the ordinary Betti numbers
and by #"(2) the Betti numbers modulo 2 we get, using (16.4):

17.1. For any homogeneously n#-dimensional complex K:

(17.1)  q(K) = w4, ox(@) + 7k(@); ¢o(K) = Tapx + 7k
In particular, if all (z —1)-cells of K are regular, then
(17.11) ¢(K) = 1r';((2); go(K) = TK.

This is the case with the complex G=K\A4 if the closed subcomplex A CK
contains all irregular (#—1)-cells of K. Therefore, applying again (16.4), we
get:

17.2. If the closed subcomplex 4 of the homogeneously n-dimensional
complex K contains all irregular (n—1)-cells of K, then

n

(17.2)  ¢(G) = 7ex(@) + 7x(2) — 7xa(D);  (G) = Taix + 7Tk — TRA-
If A is moreover (n —1)-dimensional, then

(17.3) 4G) = T0x(2) + 1%(2);  0.G) = Tk + Tx.

Now we call any cell of K regular if the n-dimensional V*-group of its
open star (with respect to the group I) is infinite cyclic. This definition agrees
for (n—1)-cells with the previous one. If 4 contains all irregular cells of
dimensions at least » then the r-components of G are identical with the regular
components of G. Thus for =0, that is if A contains all irregular cells of K,
the ordinary components of G coincide with the regular ones and their number
is still given by (17.2) and, in the case of an (n—1)-dimensional A, by (17.3).

REMARK. If no special hypotheses on the closed subcomplex 4 are made,
then the number of components of the open subcomplex G=K\4 depends
upon the homological properties of the mutual situation in X of two subcom-
plexes: the given subcomplex 4 and the subcomplex 4, of all irregular ele-
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ments of K. Even the most elementary.examples show that the features of
this mutual situation may be very different.

18. The Phragmén-Brouwer theorem. Let 4 be as always a closed sub-
complex of the cell complex K, G=K\4 and

A= A,\JA, Aiand A, closed in 4,
Ql = A\A 1y Q2 = A\\AZ; Gl = K\A 1, G2 = K\A2y
Ao = AlnAg.

Denote finally by E4., ¢=1, 2, the homomorphism of Vj, into Vj.x which
assigns to each element 2" of Vg, the class 3”&V} containing the element
E%z". We shall prove the isomorphism

(18.1) (Ex:xVo) N (Ea:xVa,) =~ Voo N Voo

Note that the elements of the group (Ey.xV) \(EixVa,) can be defined as
being those classes §* EViy.x of V-cycles which contain both cycles on Qy and Q;
the elements of Vg.q/MVgg, are V-classes of G whose elements bound both
on G and Go.

The isomorphism (18.1) is realized by the operator VES: let 3 € (E4xVa)
MN(E}.xVg,)- Take zE3; on Q1. Then E%7 is equal to zero on A4,, thus VEgz,
bounds on Gi. Consequently all elements of the V-class VEg;; EV5 ' bound
on Gi. Taking 25 €3) on Q: we see in the same way that all elements of VES:,
bound on G,. Hence the isomorphism VEg maps the left-hand member of
(18.1) into the right-hand one. To show that this mapping is on the right-
hand member of (18.1) let

ta € Exio =16 € Vaia, N Vit
As 73! bounds on Gy, 1=1, 2, it is Z" =V«] with &} on G.. Therefore 2} = J5x}
is a V-cycle on Q; and by (15.1) (with xf=x,— EJ%x]) we have:

4 +1
VEKZ; E 32} ’
thus 2} €37, and 3; contains cycles on Q; as well as cycles on Qs, q.e.d.

Let K be simply connected with respect to r; then the isomorphism (18.1)
is replaced by

7+1 +1
(18.2) Vae, N Vg, = Va:e, N Vi,
Now
r r r r .
Ag D Apa; L Vag, © Va, 1=1,2,
therefore

A} 2 (Aha + Aday) L (Vg M Viag) © Va
(the sum at left may fail to be direct) and
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(18.3) (82 — (Aaay + Aaan) | (Vae N Vig,)-

To any A-cycle 2" on 4 corresponds the A-cycle

AJos = — ATag on Ag= A1 N 4y

(where A operates on A). This correspondence generates a homomorphism
(the “Naht-Homomorphismus” of [4, p. 292]) of A} onto A} 4 MNALY, with
the kernel A}y, +Ajy, (the proof is easy and is given in [4, pp. 289-293]).
Thus

(18.4) (A% — Qhay + 84ap) = Ay, N Al
From (18.2)-(18.4) follows a duality which we call

THE PHRAGMEN-BROUWER THEOREM.

(18.5) A Birts N M) | (Votes N Vo).

19. Examples.

1. The elements of the complex K are: a triangle, its edges and its ver-
tices, thus the cells +#, +#, +#, i=1, 2, 3, with obvious incidence coeffi-
cients. The open subcomplex G consists only of ¢, the closed subcomplex A
of the remaining elements of K. The operator VE4 assigns to the V-class
24 €V} consisting of the V-cycles £, #, #3 on A the V-class z5 €V the only
element of which is #2. The groups V4(I) and V&(I) are both infinite cyclic
(duality theorem of Alexander-Kolmogoroff).

2. Consider the circular ring in the plane decomposed into the cell com-
plex K whose elements are: £, +4#, +#, ¢=1, 2, 3, with the incidence
coefficients

i) = (i) =1, (i) =0, (um) =1, (i) =—1,
(et =0 if 4,7 =1,2

The open subcomplex G contains only the cells +# and 4 =K\G. All grdups
of the figure K, 4, G are determined by their ranks:

0 0 0 0 0 0 0

Tk = wra = 1; T4 = 2; Ta:gk = 1; we¢ = kg = wa:x = 0,
1 1 1 1 1 1 1
1rK=7rKA=1; 1rA=2; 7r,4:K=1; 1rg=1ra;x=1; ‘HKG=0,
2 2 2 2 2 2 2
TK = Tga = T4 = Ta:x = wge = 0; m¢ = mg:x = 1.

3. The elements of K are =+, +¢!, 4+ with the incidence coefficients
(#2:81) =2, (#:4°)=0; the elements of 4 are +¢! and +# (the cell complex K
is a cell decomposition of the projective plane; then 4 is a line on this plane).
The group A}.x consists of all elements of the form =+ 2n# with an arbitrary
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integer n, while the elements of AZ.x=A% are of the form n#?; thus A}.x and
A% are both infinite cyclic.
4. The cells of K are: +£, +£; +#; +# with the incidence coefficients

(i) = :t) =23 () =0
(two projective planes intersecting in a line); let the cells of 4 be +#, +¢,
+#. The coefficient-groups are I for V and T for A. Then V% is the direct sum

of an infinite cyclic group (generated by ) and of a group of order 2 (gener-
ated by & —£). Correspondingly A% ~T+1I, and

2 2 2 2 2
Vke = Vg = I, Agq = I, Vak = Va = I,

The geometric meaning of the annihilation A¥ DA%, 1 V% CVkis in this case
particularly simple.

Now let K be the same, while the cells of 4 are +#!, +# (thatis 4 is the
intersection line of the two planes). Then Vix=Vi=I, Vig=Vi~I+I,,
V4 ~I+1, while V4 (isomorphic with V}.x) is the infinite cyclic group gen-
erated by 2(£& —£).

5. Let K be the three-dimensional (continuous) polyhedron composed by
the interior and the surface of an ordinary anchor ring. Let A be a ring-shaped
body (homeomorphic with K) lying in the interior of K and going twice around
K. We suppose moreover that A is decomposed into the simplices of a certain
closed subcomplex A of a simplicial decomposition K of K; then I'=K\A is
decomposed into the simplices of the open subcomplex G=K\A4 of K. The
coefficient-groups are I for A and T for V. Then Ak,=24%, Alx~Vke=I,
(the equator of K generates the group Agg; taken twice it bounds on G). The
group Ak, is not a direct summand of the group Ak.

6. Let K be a complex which arises when we identify the two poles of an
ordinary two-dimensional sphere. 4 is composed of two parallel circles of
this sphere. It follows from (16.4): '

7o =mux+ ok —TRa=2+1—0=3.

7. In addition to the well known elementary examples illustrating the
theorem of Phragmén-Brouwer we illustrate the formula (18.1) by a torus
surface K on which two meridians 4, and 4, form the complex 4 ; the whole
figure is considered in a cell decomposition in which the two meridians
A1 and 4,, oriented in opposite senses, are cells #; and . Then #; —# is a V-cycle
on A extensible over K; therefore f; and £ belong to the same class }'€V.x;
the group (EjxVe,)N(E%.kVy,) is generated by this 3! and is infinite cyclic.
The group (VgeMVég,) ~I is generated by £ —#, where the cells £ and 4
correspond to the two domains into which the ring surface is decomposed by
the meridians 4; and A4.. An open plane circular ring K and two radial seg-
ments 4; and 4, on it could be treated in the same way.
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CHAPTER II. SPECTRA
§5. CELL SPECTRA

20. Projections. Let K, and Kjg be two cell complexes. Let there be given
for each dimension 7 a homomorphism o of the group Lj(I) of all 7-dimen-
sional integer chains of Kj into the group L}(I) of all r-dimensional integer
chains of K,. We suppose moreover that these homomorphisms commute
with the operator A, that is, that for any (integer) chain x5 on Kp

(20.1) Awix:g = wiAx;.

Under these conditions the system of the given homomorphisms &f is called
a projection of the cell complex K into the cell complex K,.

Let A.CK., AsCKj be closed subcomplexes of K,, Kg respectively. We
put G.=K.,\A4., Gs=Kg\A4s and write systematically L), L., L., for

ko Ly Lby « - -, and J%, J&, - - - for J5e, J&e,

Any chain on 4,, 4 being a chain on K,, Kg, we say that the projection
of is cogredient (with Ag, A.) if every (integer) chain of 4z is mapped by o
onto a chain on 4.,. As for x5 on 4, &, on A,, the boundaries Axg, Ax], are the
same_ on Ap, 4, and on Kjp, K,, the projection @ of Kjinto K, (cogredient
with 4, A,) generates a projection afg of Aginto 4.,.

Now define for any chain x5 on Gg:

Bl r a B r
(20. 11) Wa1Xp1 = Jalwaxﬁl-
Then whatever be the chain x5 on Kjs, J&afxs=J%al 5xs. We use this
remark in

Bl r a B r @ B8 r a B r a BB r
Ao1®a1%81 = Aot ca1®ar = Ja1Ba®a®81 = J a1®aBpxp1 = J a1®at p18p%81
81 .8 T g1 r
= Wa1Sp188%81 = Wa1lp1%p1,

where A,, Ag, Aa, Ap operate on K., Kj, G, Gs.

20.2. Thus a projection & of K into K, cogredient with A, 4. generates
a projection afy of Ag into A, (identical on Az with &) and (by (20.11)) a
projection af: of Gg into G,.

21. Conjugate homomorphisms. The projection & of Kj into K, assigns
to each chain %= a}; on Ks (with respect to a given coefficient-group )
the chain &85 =Z,a,~m£t§, on K (with respect to the same coefficient-group
) and thus produces for any 7 a homomorphism af of the group Lz=L4(3)
into L, =L"(%) which will still be called a projection. The conjugate homo-
morphism 7§ of L., =L(¥) into Lj=L5(A), where A|¥, assigns to any chain
%, &L, the chain wgx, EL; defined by

(21.1) (mpva-ty) = (u-walp),

whatever % E K. The homomorphisms 7§ commute with V as is seen by
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+1 @ 1 [:] +1 B r+1
(Vs aa-ty ) = (msau-Als ) = (Ha Tulls ) = (o ATuty )

B8 r+ a +1
= (Vae@ats ) = (x3Vaa-ty ).
Moreover, if of is cogredient with A, A, then for a chain xl; on G, and any
t;EAﬂr
ar r r Br
(Tﬂxal'tﬁ) = (xal'watﬂ) = 0’
so that 7§ maps L], into L, and thus produces the homomorphism 7§ of L,
s map: : 8 p C : B .
into L}, identical with 7§ on L, C L and conjugate with &f;.
On the other hand we have the homomorphism 755 conjugate with aﬁg
in the form
ald 7 a r

B r B ¢
Ta0 X0 = JBoTE X0 for any %40 &€ Lao-

We collect all we have just said about the cogredient projections af in the
following formulas:

r —r r —_T T —T

(21 2) a lLa La I B al l Lao Lao )}A 80 al l Lal Lal mﬂl
. | —r | Ba; g0 r —r | Ba0, ma1 r — al
Lg Lg Lgo Lgo LLsy Lg
where
80 B al B a

Bad = Ba; 7o = Jpoms,
(21 -3) B1 a B al a

Wa1 = Jalwa; w1 = T,

and of, o, of commute with A, while 7§, 7%, 75 commute with V. There-

fore the homomorphisms af, &2, &®} map A; A%, A% respectively into
P oS Tar Tao P 8 Sgoy L1 P

A, AL, ALy, while 7":;, 7r§07 7"31 map Ve, Vae, Vi into V,'sr VEo: VBN

r r r r r- r
; a Va Aa B al VaO AaO . B0 .al l Val AalT B1
(214) s r r | Bas w80 r r a0, me1 r r , Wa1.
Vs Qg Vso  Ago lver Ap;
From the definition of &2, &}, - - - follows furthermore:
B_B0 r a0 B0 _r a_al r 1 al r
(21.5) G’aEp Xgo = Ea TaoXgo; 7r,sEa Xa1 = Lig Tp1%al,
al_a r B a r g1 .8 r a B r
(21.6) w;;o]aox,, = ]ﬁomg Xay Cdal.]plxg = J,,;wax .

22. Cell spectra. Two projections of and @ of K; into K, are called
homologous to each other if they produce the same homomorphism of Aj
into Al.

Now let there be given an unbounded partially ordered set of cell com-
plexes K,; we write 8> a if in this set K; follows K,; “unbounded” means that
to each two elements of the set a third element of the same set can be found
which follows on each of the two given elements.

Suppose that for any 8> a a finite number of “allowed” projections &f
of Kginto K, is given in such a manner that:
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1. Any two allowed projections of K; into K, are homologous.

2. If y>B>a and o}, of are allowed projections then the projection
ol =ab(a}) of K, into K, is allowed.

Under these hypotheses the partially ordered set of the cell complexes K,
with their allowed projections af is called a cell spectrum and denoted by

(22) K = {Ka o).

A cell spectrum (22) determines two group spectra [1, pp. 58-62] or
homomorphism systems [13, pp. 668-669]: the inverse group spectrum
(A%, o) and the direct group spectrum (V,, 7§), the homomorphisms of the
two spectra being conjugate. Therefore the limit groups (see section 23)
called the Betti groups of the cell spectrum K,

Ak = lim inf (Ah, ®);  Vx = lim sup (V, 73),

are dual. :

Now let the closed subcomplexes 4, K, be given in such a way that

1. each allowed projection af is cogredient with As, Aa;

2. each two projections a9, &5 of Aginto A.; afs, w8 of Gsinto G,, gen-
erated by allowed projections &f, @ of Ks into K,, are homologous to each
other. Then the given cell spectrum (22) is called cogredient with the subcom-
plexes A, and G.; such a spectrum defines the cell spectra

A={dedn}; G= {Gaom
with their Betti groups
Ay = lim inf (Ah, wi%), Va = lim sup (Vao, w;f);
A% = lim inf (Ahy, o), Ve = lim sup (Vey, 751)
and the dualities

r r r r
Ax|Va;  Ag| Ve

§6. THE EXTENSION AND THE INTERSECTION HOMOMORPHISMS AND
THE GROUPS OF THE FIGURE K, 4, G FOR CELL SPECTRA

23. Lemmas on group spectra. In this section “spectrum” means “group
spectrum.” Let (U,, 75) be a direct spectrum with the limit group U. The set
theoretical sum of all groups U, is decomposed into bundles or classes of
equivalent elements, where two elements #,& U, and ug& Us are called
equivalent if there exists a y>a, 8 such that 7%u.=7%us. These bundles are
the elements of the limit group U. To get the sum of u= {u,} EU and
u' = {ua' }EU take u.Eu, ud €u’ and any y>«a, 8. Then u+u’ is defined
as the bundle containing n5u.+75us (see [1, p. 59]). Let (U., o) be an in-
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verse spectrum. The elements of the limit group U=lim inf (T., &f) are
“threads,” that is systems #= {#,} of elements #,E U, such that:

1. the thread # contains one and only one element #, of each group U.,;

2. if #,Ea, #sE% and B> « then 4, =i,

The sum of two threads #= {#,} and @’= {@/ } is the thread {#@.+a. }
(see [1, p. 58]).

LEMMA 23.1 (obvious). If in an inverse spectrum (U, of) the subgroups
T.0C U, are given in such a way that ot UsoC Uao for B> a then the groups Uao
with their homomorphisms ofg=af form an inverse spectrum and U,=lim inf
(Taoy o5) is a subgroup of U=1im inf (U,, of).

If in a direct spectrum (U,, 7§) the subgroups U.o S U. are given in such
a way that 7§ U.oC Uso, then the U, with their homomorphisms g0 =g
form a direct spectrum (UL, 759). Any bundle of this spectrum is contained
in a bundle of (U., 7§) and any bundle of (U., 75) contains at most one
bundle of (Uso, 75). Therefore the group Us=lim sup (Uao, 759) is mapped
isomorphically on a subgroup of U=Ilim sup (U,, 7§) and can be identified
with this subgroup(®).

LeMMA 23.2. Under the previous hypotheses the group
ﬁﬁ:ﬂo = UB - —U—ﬂo; Ua:ao = Ua - Uao
is mapped by

wi into ﬁa:ao =Uqs — Uao; 1r; into Up:po = Ug - Uﬁo
and(®)
T — To = lim inf (Taao, 82); U — Up = lim sup (Ustaos 73)-

Let us sketch the proof of Lemma 23.2. To prove the left-hand as-
sertion we take any element of U—TU,, that is, any class of threads
#={1.} EU congruent with respect to the subgroup U,CT, and as-
sign to each thread @={u,} belonging to this class the thread {u.}
€lim inf (Up— Uao, &f) where #,Elia & Ua— Uao. This correspondence is
easily seen to be an isomorphism between U— U, and lim inf (U, — Uao, of).

To prove the right-hand assertion define the group U’ as follows. Call the
elements u, and %z of the set theoretical sum of the groups U, equivalent with
respect to Uy if a ¥>a, B can be found such that 7%, —75us € U,o. The set
theoretical sum of the groups U, falls now into classes of elements equivalent
with respect to U, and these classes form the group U’ (we define the sum of
two classes # and «' as follows: take u,Eu, ug €u’ and v> «, 3; define u+u’

(® In cases when among all isomorphisms between two isomorphic groups a well defined
isomorphism is chosen in some “natural” way we often replace the sign of isomorphism by the
equality sign and consider the given groups as being identical.




1943] PROPERTIES OF COMPLEXES AND CLOSED SETS 307
as the equivalence class containing m%u.+72u4 ). The group U’ is easily seen
to be isomorphic with both U— U, and lim sup (U, — Uao, 75).

LEMMA 23.3. Let two direct spectra (U,, ps) and (Va, ) and two inverse
spectra (Ua, ) and (Va, &) be given [the elements U, and V, (Us and Vo)
of these spectra correspond to each other in (1-1) manner]. For every alet a
homomorphism

faof Uginto Va;  foof Vainto U,
be given in such a way that for every B> a and uE U, (5.EV,) we have

a a B - _5 -

(23.31) Opfatha = fopptia; Pafsls = fadals.
Then we obtain a homomorphism
S of U=1limsup (Ua pa) into V = lim sup (V., a5);

| Fof V = lim inf V., 62) into U = lim inf (T, 5o)

. by pulting in correspondence to each
bundle u={u.} thread 5= {1, }_ _
", the bundle v=fu the thread u=Fo= {faba}.
- containing for a n.Cu
the element f.ua.

The proof of Lemma 23.3 may be left to the reader as well as the proof of
the following -

LEMMA 23.4. Under the hypotheses of Lemma 23.3
a B, 5= = —

(23.41) Q'ﬂ(faUa) g fﬁUﬁ; ba(fﬂVﬁ) .g faVa
and (taking into account Lemma 23.1)
23.42)  limsup (falUw o) = fU;  lim inf (FVa po) = FV.

The same is true for the kernels of the homomorphisms fa, f, fa» f:
(23.43) 05(f00) C f3°05;  Ga(fa 0p) S fa Oa
(we write Oq, Og, 04, Og for the zero elements of V., Vs, U, Us), and
(23.44)  lim sup (f='0u, p5) = f Ov;  lim inf (Fx 0, 72) = F 07

Finally we have

LemMA 23.5. If, still under the hypotheses of 23.3, we have for every a

Ue TUal-
f"‘lva V.,If"»’
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|\U UI_
flV Vf'

then

The proof follows from the definition of the scalar product for limit groups
[13, p. 670, formula (6.2) ], namely:
For any u= {u,} € lim sup (Us, pg), &= {#,} € lim inf (T., 5

(23.51) (u-u) = (e Ua),

where u, is chosen arbitrarily in u.
The formulae (23.51) and (23.41) lead to

(fui’) = (faua’i'a) = (ua‘fai)u) = (uf'l-)),

which proves Lemma 23.5.

24. Simplified definitions of the V-groups of a cell spectrum. Lemma 23.2
allows the definition of the group V%, where K is a cell spectrum K = { K,, of},
to take the following simple form. Two V-cycles 2, and 2 of K., Kj, respec-
tively, belong by definition to the same V-class of K if there exists a ¥ >a, 8
such that 722, —7%2; bounds on K,. These V-classes are the elements of Vk.
The sum of two V-classes 2" and '2’" is defined as follows: take 2, E3z", z5 C3"”
and v>a, B. Then 2742’7 is defined as the V-class containing r$z§+1rfz§.

25. The extension and the intersection homomorphisms. The groups of
the figure K, A4, G. By the formulae (21.5) and (21.6) and the Lemmas 23.3
and 23.5 the homomorphisms EX, EZ, J%, J2 generate the homomorphisms
E4, E%, J%, J& of the corresponding limit groups according to the figure:

r r r r
k|Vk AxT _a k| Ak Vi1 _6
25.1 Jl - rA[E; J r 'IE .
(25.1) v oallE A VIREA

According to Lemma 23.4 (and Lemma 23.2 used in (25.3)) define:

r K . T al,
Vak = Ja V;K = lim sup (VA,K“, Tg0);
.. T B
Axa = E‘;(A; = lim inf (Ax_4,, @a),

25.2 r r r
(25.2) Aok = T5Ak = lim inf (Af_x., &)
r G _r . r @
Vie = EKVG = lim sup (VKaGav "ﬁ),
A;:K = (E;)—IOK = lim inf (A;atKa’ a’i(:));
r G -1 T al
Ve:x = (Ex) Ox = lim sup (Ve _:x,, m61),
(25.3)

r L r . r al
Va:k = Va — Vax = lim sup (A4 _:x_, mp0);

r r r . . r 81
Ag:x = Ag — Agk = lim inf (Ag:k,, @a1).

Then by Lemma 23.4 and the formula (12.4):
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K — r a k4
(Ja) lOA = lim sup (VkuGa ™) = Vke;

25.4 _ , ,
25.4) (U8) 06 = lim inf (Akasw &) = Axa.

From these formulae we get literally as in section 14 the relations (14.1)—
(14.2) for the spectra K, 4, G.

- 26. A direct definition of the groups of the figure K, 4, G. Since any
A-cycle (A-homology) on 4, is a A-cycle (a A-homology) on K,, to any thread
= {SQO}EAQ corresponds the thread Zx= {3;} €A% where 3. is com-
pletely determined by 38.,C &.. This thread Zx is the thread E&z).

Since any V-cycle (V-homology).on G, is a V-cycle (V-homology) on K.,
any V-class (section 24) z;&Vg is a subset of a well determined V-class
2k EV%, and this Zx is the V-class E%2.

Let zK { 8.} €A% Then {J 13’} is a thread and this thread is the
thread J&zx €A,

Let gx= {z;} EVK Then all Jg oz’ are elements of the same V- class zQEVA
and this V-class is J52k.

Thus we get the following direct definitions of the groups of the figure
K, 4,G:

The eléments of Ak, CA% are threads 2k = {BL} €A%k containing threads
= { 3‘,0} €A} in the sense that each A-class 8, is a subset of the corre-
sponding A-class 3. )

The elements of Vg are V-classes 2k EVk containing as subsets V-classes
2gE V.

The elements of VjxCSVy are V-classes 23 &V} containing among their
elements extensible V-cycles, that is, V-cycles z., on 4, of the form z[,= JZ2,
where 2, is a V-cycle on K,. For any element 2}, of 2 EV)g there is a >«
such that 7507, is extensible.

The elements of AjxC Ay are “extensible threads” zp= {3,1} €EAg, that is,
threads whose elements 3, are all extensible (that is of the form g, =J5z,
where 3" €A,

The elements of Ay.xCA} are threads 2 = {3:,0} €A} bounding on K in
the sense that the elements of each A-class 3, bound on K,.

The elements of VggCVy are V-classes z5EVy bounding on K in the
sense that 27 is a subset of the V-class zx =0 representing the zero of the group
V%. In other words, for any 2, €25 there is a 75z, bounding on K.

' DEI'?IN:i‘T_i(.)N 26.1. The V-cycle 2, on A, and the V-cycle gy, on Ag belong
to the same extension class (with respect to the cell spectrum K) if there exists a
v > a, B such that T3z, — 1oozk, is extensible.

DEFINITION 26.2. The threads Z5= {8} and 2= {380} belong to the
same extension class if for each a the A-class 3, —3m s extensible (that is, is of
the form 3o, — 3oy = J3s, with Z,EAL).
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Now the elements of V}.x =V’ —Vik can be identified with the extension
classes of V-cycles z,. To get the sum of two extension classes z” and 2'” take
as always 7, €2", 25E2'", choose any v > a, § and define 2"+2'7 as the exten-
sion class containing 7597, +m5ez4; the group Vi.x can be defined as the
group of the extension classes of r-dimensional V-cycles on 4, (a variable)
with this addition.

The elements of the group Af.x are extension classes of threads €Ay

27. Proof of the third pair of isomorphisms. Let

2 = {Z:(o} € Vax.

The V-cycle VE®2Z, is on G, and bounds on K,.
27.1. If £y and 2 belong to the same extension class, that is, if for a cer-
tain y>a, 8

al r B0 »r Yy r
(27.11) Ty0%a0 — Ty0380 = J y03y,

where 2, is a V-cycle on K, then

a al B ] r
(27.12) TaVEs tno — 7y VEs 530 € Hoyp'

(H3, is the group of all r-dimensional V-cycles on G, bounding on G,).
To prove (27.12) we first deduce from (27.11) and section 15:

Y0 a0 r 70 B0 r r+1

(27.13) VE, TyoZa0 — VEy wyo280 € Hy1 .
On the other hand

« ald r Y0 a0 r a_al r Y0 a0 r
‘ﬂ'-yVEa Za0 — VE, Ty08a0 = V(‘l'-yEa Za0 — Ey ‘l'sozao)

and 72E2Z,— E}* %075 is on G,. Thus

« al
(27.14) TaVES tne — VE mooter € Hoy'
and in the same way
B_ B0 r 0 80 r+1
(27.15) TVE, 23 — VE) wostse € Hyy' .

From (27.13)-(27.15) follows (27.12) and therefore (27.1).
Thus the operators VEZ® generate a homomorphism—we call it VE—of
V:Q:K into VE'-I%'
27.2. The homomorphism VE maps Vix onto Vgg. To prove this let
7 EVeg and 1 E4}'. We are seeking a 8>« and a V-cycle zj, on A
such that
al r4+1 r+1

8o
(27.21) VEg 250 — Ta12a1 € Hpy .

From ZI'EZ'EVyg and the definition of Vilx it follows that there exist
a 8> a and a chain x5 on Kj such that Vag=n521". As Vaj is on Gg, the chain
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Jhoxs =25 is a V-cycle on A, while x5— E5°Jhx5 is on G and
V(s — EgToors) = Vs — VEg Toos = mprzer — VEp zh0
from which follows (27.21) and thus (27.2).

27.3. VE maps Vi.x on Vg'g isomorphically. Suppose that the element
23y EV)i.x is mapped by VE on the zero element of the group Vgx. We shall
prove that the extension class 2} is the zero element of the group V}.x. Take
Z0E2y. It follows from our hypotheses that there exists such a 8> « that

739 Eq a0 € Hpy -
Since
w;VE:oZ';o - VEgo‘ir;:ZLo e H;;l
(see (27.14)) and 750z, €24, we may suppose from the beginning (replacing
B by @ and w552, by 2o) that for some 25, E2)
VE: a0 € Hay .
To deduce from that the identity 2 =0 we have only to prove that 2z, is ex-
tensible. To this end take a chain x}, on G, bounded by VEz,. Then
7, =EXZ,—x, is a V-cycle on K, and J%Z, =2, q.e.d.

§7. SIMPLICIAL SPECTRA

28. Nerves. We denote by N, N., Ng, --- and call nerves the finite
complete simplicial complexes (complete means every face of an element of V
is itself an element of N). The oriented simplices of IV form a cell complex
denoted by N too.

Let N,., N be nerves, C., Cs closed subcomplexes of N,, Nj, respectively,
and

K. = N,\Ca, Ks = N5\Cs.
Let o2 be a simplicial mapping of Ng into N, such that the image of Cs under
o2 is contained in C,:

(28) e2Cs C C.

Then in a well known way o2 generates a projection denoted also by o of
the cell complex N into the cell complex N.; for any oriented simplex
f=(ch - - - &) of Nywe putobtz=(dief - - - ohef) if the vertices ofej, - - -, oBe?
are all different, and o®=0 if for some i5j, ofef=05¢/, whereupon for
any chain xj=2 a.y, ofxj= abty. The projection of of Nj into N,
generates a projection of of Kj into K, by setting

g r Nog B r r r r
BaX = Jg.CaXs for any xs € Lg = Li,

(see section 20 where K., Ga, of, of; are to be replaced by N., K., d5, of, re-
spectively).
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A known fact is(%):

LeEMMA 28.1. Let o4 and ol be two simplicial mappings of Ng into N, both
satisfying the condition (28) and the condition:

(28.11) For every simplex Tg& Ny there exists a simplex ToE N, containing
among its vertices all vertices of both d5Ts and ofTs; if in particular TsECs
then T, can be chosen among the simplices of Ce.

Under these hypotheses the projections of and wf of Kp into K, generated by
o8 and o' are homologous to each other.

The proof is as follows. Let e;, e, - - -, €, be all vertices of N in a definite
order. Take a copy N§ of Ns with the vertices ef, ef, - - - , e! and consider
all simplices of the form Ie,0 - - e, - e|, where p=0, 1, - - -, r and
Ie.o - e,,l is any simplex of Ng. The simplices just defined and their faces
form a nerve N4’ called the prism over Ns. Now define for each oriented
simplex 3= (e;, - - - €;,) of N the prism over t§ as the chain

p=r

My = 3 (= D)(eiy- - eiyes, - - - e)
=0
while the prism over the chain x5=) a. €L}y is by definition the chain

Hx; = E a; Htgr,'

on N{§’. An easy calculation shows: If 25 is @ A-cycle on K then

(28.12) Allzg = 25 — 25 — IlAzg,

where 24 is the copy of 23 on N§ and A operates on N{’ at the left and on N;
at the right (see [4, p. 199]). ‘ ’

Now map the vertices of N by ¢ and those of NJ by 0. By virtue of
(28.11) we get in this way a simplicial mapping ¢.% of N4’ into N.,. Denoting
by «"* the chain ¢.*IIz; (on N.), by « the chain ”‘“IIAz,g which is on C,.
we get

r+1 Br B r r
AN Xa = 0aZ8 — Oalg — Xa
and, K, being open on N,,
Ng r41 N, r+1 8 r Ng B r B r B r
Ax JK.%a = JRDAN Xa = ]K“G’azﬁ Jr a2 = waZp — Ba 28

qed.
In the next chapter (section 31) we need the following

CoRrOLLARY 28.2. Let A., Ap be closed subcomplexes of Ko=N,\C.,
Kg=N\Cs; let o2, 0. map Csinto C. as well as Ag into A,. Suppose the con-

(*) We write Tr= ,eo . -e,l for non-oriented and #/= (e, - - - ¢,) for oriented simplices.
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dition (28.11) satisfied; suppose moreover that for TgE Ag the simplex T, of the
latter condition can always be chosen in A.. Under these hypotheses not only the
projections of and o of Ks into K, generated by oo, af are homologous but
the same is true for the corresponding projections oy, o2 and ofi, &’ of Ag
into A, and of Gg into G,.

To prove the assertion concerning Ag, A. replace in 28.1 N, N, by
A JCs, ANIC, and K, K, by Ag, A.. To prove the assertion concerning
Gs, G, replace in 28.1 C3, C, by Cs\JA4;, C.\JA, and K;, K, by Gs, G..

29. Simplicial spectra. Let an unbounded partially ordered set of nerves
N, be given; we write 3>« if in this set Ng follows on N,. Let (for each «)
C. be a fixed closed subcomplex of N,. We suppose that for each pair 8>«
a finite number of simplicial mappings ¢® (called projections) of Ns into N,
is given and that the following conditions are satisfied:

1. o maps Cs into C,;

2. for each pair 8>« the projections ¢ satisfy the conditions (28.11);

3. if ¥y>B>a and ¢}, o8 are projections, then the simplicial mapping -
o} =d50} of N, into N, is a projection.

Under these hypotheses the partially ordered set of nerves N,, of their
subcomplexes C, and of the projections o4 is called a simplicial spectrum

(29.1) N = {Nu Ca 0u}.

A simplicial spectrum (29.1) generates according to section 28 the cell spec-
trum

(29.2) K = {Ka oL},

where by K, is denoted the open subcomplex N,\C, as well as the cell com-
plex of all oriented simplices of this open subcomplex; the projections &f are
(as defined in section 28):
B r Ng B r r r r
Baks = J K Oaks for any xs € Lg = Lk,
ReMARK. The complexes C, are called special subcomplexes of the spec-
trum N; if they vanish the spectrum is called bicompact.

CHAPTER III. SPACES

§8. THE CELL SPECTRUM AND THE BETTI GROUPS
OF A LOCALLY BICOMPACT SPACE

30. The simplicial and the cell spectrum of a locally bicompact space.
The nerve N is called the nerve of the finite system

a = {Aly"'yAl}

of subsets A; (of the given set R) if the vertices e, - - -, €, of Narein (1-1)-
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correspondence with the elements A4;, - - -, 4, of the system « and any
ei, -+ +, e;, are vertices of a simplex of N if and only if the associate sets
A,, - - -, 4; have a non-vacuous intersection (%).

Now let K be a locally bicompact Hausdorff space. We consider the set
of all finite coverings,

a={0a1y""0as}y S = Say

of K by open sets 0.1, - -, 0as. The nerve of « is denoted by N,. We denote
by C. the subcomplex of N, consisting of all simplices of N, whose vertices
correspond to sets 0,;&a having a non-bicompact closure d.; in K. Thus the
open subcomplex K,=N,\C, is the subcomplex of all simplices of N, which
have among their vertices at least one corresponding to a set 0.;&a with
bicompact closure. The set of all N, is partially ordered: we set 3>« if B is
a refinement of a (that is if each element of 8 is a subset of one or more ele-
ments of a) while a is not a refinement of 8.

Let 8>a. We get by definition a projection o5 of Ns into N, if we
assign to each vertex eg; of Ng any vertex e.; of N, satisfying the con-
dition that 05;Co0.:. It is easily seen that the nerves N, with their spe-
cial subcomplexes C. and projections ¢5 constitute a simplicial spectrum
{N.,, Ca, 02} called the simplicial spectrum of the locally bicompact space K.
According to section 29 this simplicial spectrum generates the cell spectrum

(30) K = {Ka o)
called the cell spectrum of the locally bicompact space K. The Betti groups
Ak = lim inf (Ak,, @2); Vi = lim sup (Vk,, 75)

of the cell spectrum K are called Betti groups of the space K and are denoted
correspondingly by Ag, Vi.

If the space K is bicempact, then so is its spectrum K and the previous
definitions are simplified by C,=0, Ko,=N,.

31. The figures K, A, T and K, 4, G. Let the notations of the previous
section hold. Let A be a closed set in the locally bicompact normal space K;
the complement I'=K\A is open.

Denote by 4,C K, the closed subcomplex of all simplices T, E K, satisfy-
ing the condition: the associate set 0.: S of each vertex e,; of T has points in
common with A. It is easy to see that the projections 2 of Nsinto N, defined
in the last section satisfy the conditions of the Corollary 28.2 and thus define
in addition to the cell spectrum (30) the cell spectra

(31.1) A = (Ao oo},

(5) Our terminology is correct, each nerve being, for example, the nerve of the system of
the open stars of its own vertices.
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and
(31.2) G = {G., o).

Now A, Vi are by definition identical with A%k, Vk while, as we shall see
in the next paragraph, there exist certain natural isomorphisms between the
groups

A; and ATA; V,: and V:&,
Ag and AT Ve and VI.

These isomorphisms transform the homomorphisms E§ ES%, JX, JE into the
homomorphisms Eﬁ, EIIC" JK Jllg and thus lead to the definition of the groups
of the figure K, A, T. )

§9. THE NATURAL ISOMORPHISMS, THE GROUPS AND THE
HOMOMORPHISMS OF THE FIGURE K, A, T

32. Special types of coverings. Throughout this chapter K means always
a normal locally bicompact space; by a covering (without any special at-
tribute) is always meant a finite covering by open sets (of the given space).

In any covering a= {o.,;, <., o.,.} of K we denote by 04, - - +, 04 and
call elements of the first kind the elements meeting A; the remaining elements
Ou.p+1y * * * , Oas have no points in common with A and are called elements of
the second kind. An element of the second kind is called a boundary or an
inner element according to whether its closure has or has not points in com-
mon with A.

A covering a= {o,,l, <+ o, Oapy * * *, 0as) Of K is called cogredient with A
if it satisfies the following conditions:

1. Any two among the point sets AMo;, 2 <p, are different.

2. If 49, » - -, 4, =pand 04, - - M0ai, #0, then AMNogiy M - - - Mg, #=0.
3. The bicompactness of ANMo,;, ¢ < p, implies that of d,..
Let a= {oal, c ey Oapy oa.} be a covering of K. Denote by ¢ the

sum of all those sets d.; which are bicompact and lie in I'. The covering «
is called cogredient with T, if it satisfies the following conditions:

1. The elements of the second kind of « form a covering of T' (denoted
by TIa). .

2. No element of the first kind meets ¢.

REMARK. In my paper [1] coverings cogredient with T were called “regu-
lar with respect to I.”

The covering a= {o.,l, C ey Oapy oa.} is called regular (“regular with
respect to A” in the terminology of [1]) if the following conditions are ful-
filled :

1. The covering a contains no boundary element of the second kind.

2.If Gaiy - - - Mbai,#=0and 4o, - « -, 4, =p, then ANoaig M\ -+ - M0gs, %0,
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To finish with these preliminary notions take in K, all simplices T, with
the following property: Each vertex of T, corresponds either to an element
0.;Ea of the first kind or to a boundary element of the second kind; these
simplices form a closed subcomplex 4./ of K, and for 8>« the complex 44
is mapped by any o into 4./, the conditions of Corollary 28.2 being satisfied.
Therefore we have the cell spectrum A’= {4/, &5} and the still more im-
portant for us cell spectrum
(32.1) G' = (Gl wi},
where G =K.\A4., and &/, &' are the projections of 44, G{ into 4., G
generated by d?.

32.2. Obviously if « is regular, then 4) =A4., GJ =G..

The following results are proved in detail in my paper [1] (one can read
the proofs without reading the rest of the paper):

32.3. Any covering of K has a regular refinement [1, p. 80, Theorem 6.22].

32.4. Any covering of K has a refinement cogredient with I'—and even

more: :
32.5. Any two coverings o and 8 of K have such a common refinement v
cogredient with T that every element of the second kind of v is contained
in an element of the second kind of a and in an element of the second kind
of B [1, p. 89, Lemma 8.5].

32.6. For every covering ap of T there is a covering a of K cogredient
with T and such that ap= T« [1, pp. 87-88, Theorem 8.33].

Let us prove now:

32.7. Every covering a={0a, * * *, Oapy * * * » 0as} 0f K has a refinement
cogredient with A.

Proof. Let
(32.71) AN oay, oy AN 04, g= 9
be chosen among the AMo,y, - - -, AMo,yp in such a manner that no proper
subsystem of the system (32.71) is a covering of A. Take such closed sets
a;C(ANoy), 1=1,2, - - -, g, as to get a closed covering of A. Choose for

each a; a neighborhood Og¢;Co.; under the following conditions:

1. All Oa; are different.

2. Any Oa;,, - - -, Oa;, have points in common only if ai, - - -, a;, have.

3. The bicompactness of @ implies that of Oa;. The sum of Oa,, - - -, Oa,
is a neighborhood OA of A. Take the closed sets 5, CK\OA so as to get a
closed covering {bi, - - -, b.} of K\OA in such a way that each of the b;
is contained in some 0,:. Then define Ob;, as 0.:MN(K\A), where 0,; is any ele-
ment of a containing b;. The covering Oay, - - -, Oay, Oby, - - -, Ob, has the
required properties.

Let ap be a covering of A. We write ay = Aa, a being a covering of K,
if the elements of ay are in (1-1)-correspondence with the elements of the
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first kind of a, each element of ay being the intersection of A with the corre-
sponding element of . From 32.7 follows:
32.8. If we consider among the coverings of A only those of the form
o4 = Aa, where a is a covering of K cogredient with 4, and set for these cover-
ings AB> A« only if 3>« we get a cofinal part of the set of all coverings of A.
33. A lemma on group spectra.

LEMMA 33. Let the group spectra:
(inverse) {Ua, oft} and {TU., of}; (direct) {Ua, 75} and {U., 73}
satisfy the following conditions:
1. There exists an isomorphism ¢2
of Uar onto Uy; of Ue onto U..

2. Bu>al implies B>c.
3. For every _
aﬂp E Uﬁy; Ua E Ua)\
we have
a\ B B B Bu al a al
Pa wa‘;\aﬂu = Gad’a”ﬂﬂu; ¢'ﬁ“7"ﬂpua)\ = Wgda Uar
Under these hypotheses if we replace the elements of
each thread {12,,;}'; each bundle {ua}

by their images under ¢ we get an isomorphism between
liminf (Tay, o) and lim inf (Te, o) ; lim sup (Ua, 75) and lim sup (U., 75).

The proof is easy and may be found in [1, p. 62, Theorem 3.61].

-34. The natural isomorphisms between A}, V; and A, V};. We return to
the figures of section 31 but we change slightly our notations: we denote now
by « any covering of A which can be written in the form a= Aa), where aA
is a covering of K cogredient with A (and satisfying the condition Ao =a).
We use N.», N, for the nerves of o\ and «, write o2 for the projections of
Ng, into Naa, while 62 denote now only those projections of Nginto N, which
are generated by a projection dik. As usual K., K, is the subcomplex of
N., N, respectively formed by all simplices which have among their vertices
at least one corresponding to an element of a\ (of &) with bicompact closure;
Ay is the subcomplex of K.\ defined by the vertices which correspond to ele-
ments of e\ meeting A.

The passage from o\ to a=AaN produces an isomorphic mapping(?) of

(¢) Let N, N’ be nerves, Q, Q' subcomplexes of N, N’ respectively. We define [Q] C N as
the nerve consisting of all simplices of Q and of all faces of these simplices; the same for [Q’].
Any (1-1)-mapping of Q on Q' generated by a (1-1)-simplicial mapping of [Q] on [Q’] is called
isomorphic.
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A\ onto K, and therefore an isomorphism ¢ of the groups A%y, Viao (0of Aan)
on the groups AL, V. (of K,). The isomorphism ¢2* satisfies the hypotheses
of Lemma 33 and thus generates a well defined isomorphism

I r B ..
of lim inf (Aano, wﬁ) on lim inf (Aq, wﬁa);
. ak .
of lim sup (V:,xo, Wp,,:) on lim sup (V:., r;).

Since the coverings o\ form a cofinal part of the set of all coverings of K while
the coverings a form a cofinal part of the set of all coverings of A we may
identify

.. Buo, . . Y
lim inf (A;xo, Bano) With Ay; lim sup (V:,xo, r;“:) with Vi,
.. 8 . . @ .

lim inf (A:,, &) with ArA; lim sup (V:., mg) with V:‘

and get in this way the natural isomorphism (A A) of A}, V} on A}, V}; the
inverse isomorphism is denoted by (A A4); we return to them in section 37.

35. The natural isomorphism between AT, Vi and Ag, Vg. Now we de-
note by a any covering of T, by a\ an arbitrary covering of K cogredient
with T and such that T'aA =a. Then Ng), Na, Ken, K have an obvious mean-
ing. We retain among the inequalities Bu>a\ only those for which there
exists a projection oy which assigns to each element 05, &E8u of the second
kind an element 0. Eal\, 0.0Co0s,, of the second kind. Only these ogy will
be taken into account. In this way we get by virtue of 32.5 a cofinal part
(35.1) Ky = {Ka, oa)
of the spectrum K.

According to section 32 we denote by G, the open subcomplex of Kaa,
the simplices T/, EG.\ being defined by the following property: among the
vertices of T there is at least one corresponding to an inner element (of
the second kind) of the covering aA. We denote by @5* the projection of the
cell complex Gj, into the cell complex Gy, generated by da. It is easily seen
[1, p. 88, formula (8.41)] that K. =G, for every a\; thus we may identify
the group

Ay = Ak, with Alays = Agy; Ve = Vi, with Viay: = Var,
and therefore
- B, . .. 8
AT = lim inf (A:,, ®.) with Ags = lim inf (Ar(a)‘):, Bor ),

. a . . al\
Vr = lim sup (Vs mg) with Vg = lim sup (Viany's Ty )-

But since the coverings e\ (cogredient with T') on the one hand and the regu-
lar coverings on the other form both cofinal parts of the partially ordered set
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of all coverings of K we get (taking into account 32.2) a natural isomorphism
between

Ag: and A'g; Ve and V'G,
and therefore between
AT and A'g; VP and Vg
This isomorphism (considered from T to G) is denoted by (I' G), the inverse
isomorphism by (G T).
36. The groups of the figure K, A, I and the results concerning them.

Because of the identities A=Ak, Vi =Vk the natural isomorphisms trans-
form the homomorphisms

Ex, Ex, Ji Jo
(of the groups A}, Vg, Vk, Ak into the groups Ak, Vk, Va, Ag) into the homo-
morphisms
EX,  Ek, Ex JY
of the groups
AA, VI, VK, 4K
into the groups
AK, VK, VA, AT
and thus define the groups
BkA = EitAh = Ex(A4)AA = ExAL = Aka; VKT = ERVE = Vio,
BAX = JAVk = (ANJAVx = (ANVax; AT = JTAK = GDAUK,
AAK = (EK)' Ok = (AA)(ER)’ 0x = (4A)81x; VPR = (BE) 0k = GD)Va,
VAK = VA — VAK = (4A)Vs — (4A)Vix = (4A)Va:x; ATRGDAG:x.

If we define the product of an element of A (of V) with an element of v,
(of AT) as the product of the corresponding elements of A}, V} (of Vg, Af),
we see that not only all isomorphisms but also all dualities and annihilations
between the groups of the figure K, 4, G are transformed by the natural
isomorphisms into the corresponding relations between the groups of the
figure K, A, T. Therefore all results (14.1)—(14.3") formulated in section 14
for the figure K, A, G hold for K, A, T.

37. Remarks on the natural isomorphisms and the groups of the figure
K, A, T. Let an element of the group V} (of the group A}) be given. Take
only the coverings a\ of K cogredient with A. Using the subscript a\0 for
V-cycles (A-classes) on 4., we can write for any 27 €V}, 7 EAY:
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z = {Z:o\o}: F = {3:&\0}-

As we know A4, can be identified with the nerve of o= Aa; therefore zr, 2"
can be considered as elements of V;, A} and this identification represents an
isomorphism—our natural isomorphism—(4 A).

For a moment, let us denote by a coverings of I'; let z7= {zﬁ}ev’r.
Each 2, can be considered as a V-cycle on GJ,, thus (G, & G., being open on
G.y) as a V-cycle on Gaa, where o is cogredient with I'and a= I'a\, Conserve
among the coverings of K only those which are cogredient with I' and among
the projections a2 of these coverings only projections which map elements
of the second kind of Su on elements of the second kind of a\. Then we can
identify our 2" with a certain element of Vg and this identification is the
natural isomorphism (I' G). We needed the regular coverings only to prove
that this isomorphism maps VT onto Vg.

Now let a be a covering of K. Let

T r T
Z¢ = {Bal} € Ag.
Assign to any £, E3;; the cycle
r Ggo_r
Z(ayr = ]Ga"zal

(this is a customary method if we consider Z); as a Lefschetz relative cycle
mod A. and keep in mind that 4/ DA4.). We get in this way an isomorphism
of Ay on Ay (the “on” is again proved using the regular coverings). If now
we take into account only the coverings of K cogredient with T we can iden-
tify 2 = {2y} €A% with a certain element of AT. Thus by the transition
from Aj to A and then to A we get the natural isomorphism (G T') of A
onto Af.

To the simple intuitive meaning of the natural isomorphisms corresponds
a direct definition of the groups of the figure K, A, T. Since Aj, =A%,
Vir=Vie Va:x=Va—Vak AT:x =AT— ATk, we are interested in the groups
Vak Atk; A Vg only.

The elements of the bundle 27 €V bemg identified with the V-cycles 2,
on A, ok cogredient with A, the bundles 2"= {2,,} belonging to V’ AK are
characterized by the property: there is for each 2,,&2" a fu>al such that
ThoZmo is extensible over Kg,.

The elements 2"&ATg are characterized in the followmg way: we first
identify the elements of the thread # with A-classes of Gj (a\ cogredient
with T) and thus identify the thread 2z with a certain thread #'* of the spec-
trum G’; then using regular coverings we identify the thread 2’7 with a thread
of the spectrum G; this latter must be extensible in the sense of section 26.

The elements of Ay are threads z" €A’ bounding on K; it means that
if we consider Z,E8.E7ECA) i as a A-cycle on Aa\ (o cogredient with A,
Ao\ =a), this cycle bounds on K.
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The elements of V.i are bundles 2”&V bounding on K; it means that
if we consider the elements of the bundle 2 as cycles on Ga.x (a\ cogredient
with T'), these cycles are elements of the bundle representing the zero of V.
In other words, if 2, E2" and 2" &VT, then there exists a fu>aN such that
T bounds on Kg,.

As a matter of fact, the elements of the groups V.=V, —Vyi can be
defined as extension classes of V-cycles: let &, 8 be two coverings of 4 ; define
N,, N3, K., Kg as in section 34; two V-cycles 2, 25 on K,, Kz respectively
belong by definition to the same extension class if there exist coverings al, S,
yv cogredient with A such that a=Aa\, B=ABu, yv>a\, Bu and wﬁf}(?z{,
— nP0z; be a V-cycle on A ,,, extensible over K,,.

The elements of AT.x could be defined as extension classes of threads:
two threads 2= {8} €A} and 2’7 = { 87} €A} belong by definition to the
same extension class if for each a the cycle z,—2; (where Z,E 3., s/ €37
considered as a cycle on G, (a\ cogredient with I’ and TaA =«) is extensible
over K.

38. Another form of the definition of the natural isomorphism (A 4).
This other form will be used in Chapter IV, remark 1 in section 43. We con-
serve the notations of sections 30 and 31 and suppose for the sake of simplicity
that K is bicompact. Take in each K, the closed subcomplex 4. with the
same vertices as 4, and simplices Ie.-,, - - - e;,| corresponding to those ele-
ments 0, - -+, 0, of the covering a of K which satisfy the condition

ANo;;,MN---MNo; #0.
Obviously 4/ is a subcomplex of 4, and

(38.1) AL =A.for a cogredient with A.

Now denote by @\ the coverings of K. To any eA={oy, - - -, 05, - - -, 0,}
corresponds the covering
a = Ao\ = {Ao;, cee, Aop}

of A where the Ao;=ANo; are “indexed sets” (in the sense of [1, p. 72, §5]),
that is Ao; and Ao, are considered as different if 7 545.

Each covering a of A can be put in the form a= Aa\. The nerve of Ao\
being A, there is a natural isomorphism between V', Ay and

ak
Vars = lim sup (V;;')‘, 1r5,,:) , Ay = lim inf (A;:)\, wii‘é).

By virtue of the identity (38.1) this isomorphism turns into an isomorphism
between V7, Ay and V7, A} which is our natural isomorphism (A 4).

§10. THE CASE OF CONTINUOUS POLYHEDRONS K aANnp ACK

39. An invariance theorem. Let K be a finite polyhedron, K a simplicial
decomposition (Simplizialzerlegung) of K (terminology of [4, pp. 128-129]).
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Let 4 be a closed subcomplex of the complex K; then A denotes the poly-
hedron composed by the simplices of 4; as usual G=K\4, I'=K\A. Let us
show that the groups of the figure K, A, T are isomorphic to those of the figure
K, A, G. To this end denote by

KI,KZ»“’me"

the successive barycentric subdivisions of K; then the nth barycentric sub-
division 4, of A is a subcomplex of K,. Denote for a moment by N\, the
covering of K by the closed barycentric stars of the vertices of K, and take
the open neighborhoods of the elements of N, so closely as to get an open
covering N\, of K similar to N, (that is, having the same nerve as \,) and
cogredient with A. Put a,= A\,. Obviously the N\, and the @, form cofinal
parts of the sets of all coverings of K and of A respectively. The nerve of \,
being K,, and 4. being the nerve of a,, the projections of K,,; into K, and
of A.41into A, map any vertex e,;; of K,41 (of 4,41) on a vertex of the carrier
of é,41in K, (in A,) and thus are “natural displacements” (“natiirliche Ver-
schiebungen” in the sense of [4, p. 349]). Therefore by a well known standard
process the elements of Aj, A, are in (1-1)-correspondence with the elements
of A%, AY, this correspondence realizing an isomorphism between

Ag and Afx, AA  and A},
A;CA and A;(A, ‘A:&:K and A,'A:K-

All other groups of the figures K, A, T' and K, 4, G can be derived respec-
tively from Ak, Aga, Ax:x, and Ak, Aky, Al:x by the same algebraic construc-
tions; thus the groups of K, A, T are respectively isomorphic to the groups
of K, 4, G.

40. The general polyhedral case. Let K and ACK be continuous poly-
hedrons (that is, topological images of finite polyhedrons). In this section
coefficient-groups are the so called “elementary groups,” that is discrete groups
with a finite number of generators and their (bicompact) character groups.
Any subgroup and any difference group of an elementary group being elemen-
tary, it follows that the groups Ak, Vi, A%, Vaar Aka Ve A4k Vak: Vak
as well as (by the third pair of isomorphisms) the groups Aq.g, V:gforr=1
are elementary. Now if—for a discrete group X—a subgroup U and the dif-
ference group X — U are both elementary, then X itself is elementary (the
proof is obvious, see for instance [4, p. 576, section 38]). By this lemma and
the first pair of isomorphisms the groups AT, VT for 721 are elementary.
If X is the coefficient-group then, as is easily seen, V(X) is the direct sum
of as many groups isomorphic to the group X as there are compact compo-
nents of I'. As in our case the number of these components is finite, Vop is
elementary. '

40.1. Thus if K and A are continuous polyhedrons, then with respect to
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any elementary coefficient-group all groups of the figure K, A, T are elemen-
tary; they are all finite if the coefficient-group is finite.

For a finite coefficient-group X the order of the group Vi is equal (by the
second pair of isomorphisms) to the product of the orders of Vi and Vig.
This holds in particular for X =1I,, whatever the integer m =2. Since by a
theorem of M. Bockstein [6] all groups Vi (I) are completely determined by
the orders of the groups Vi (m) taken for all m and all 7, it follows that all
Vi are determined by Vi p(m) and V)i (m) (taken for all 7 and all 7). In the
same way by the first pair of isomorphisms the groups A); are determined by
A’y g (m) and Aj; 4 (m) taken for all m and all 7. To get an analogous result for
the groups VT, Vg, Vikr we need the following

LEMMA. The groups V(m) (even the groups Vip(X) for any X) can be deduced
from the groups V'p(I) (taken for all r) by means of the same relations as in the
case where T is a finite cell complex.

Let us assume for a moment that this lemma is proved. Then as the Bock-
stein theorem for a complex K rests solely upon the algebraic relations between
Vx(I) and Vk(m), its original proof still holds for I. Thus our lemma im-
plies the following:

BOCKSTEIN THEOREM FOR I. The groups V(1) are completely determined by
the orders of the groups V'p(m) taken for all m and all 7.

Now by the first pair of isomorphisms the order of V(m) is equal to the
product of the orders of V.y(m) and Vip(m), and therefore V(J) is deter-
mined by the groups V.g(m) and Vi p(m).

It remains only to prove the lemma. A proof of it is contained in the con-
struction of Steenrod [13, section 11] which in our case gives the desired
expression. But one can proceed more quickly by the following argument of
Bockstein which uses only the final result of Steenrod and not his intermediate
construction. The groups Ap(I) being groups with a finite number of genera-
tors, they are respectively isomorphic to the groups Vy(I) where NVis an ap-
propriate nerve (see for example [4, p. 266, section 9]). Let N be the
corresponding polyhedron. By the fundamental theorem of Steenrod the
groups Vn(m) can be expressed through the groups Vn(Z) and these expres-
sions depend only on the groups involved (and the given coefficient-group,
in our case I,,) and are therefore the same for T and N. On the other hand,
the groups Vn(I), V(m) are isomorphic to Vy(I), Vy(m) and the expression
of Vi(m) through the groups Vi(I) is the same as the expression of Vi(m)
through the groups Vy(I), which proves the lemma.

Thus all results announced in section 14 are now completely proved. Let
us remark that the theorems of section 18 could be extended by the same
methods first to spectra and then to spaces; such an extension does not pre-
sent any serious difficulty and may be left to the reader.
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CHAPTER IV. MANIFOLDS
§11. INFINITE COMPLEXES

41. Infinite complexes(?). Let Q be an infinite locally finite, complete (sec-
tion 28), simplicial complex, thus a simplicial decomposition of a locally bi-
compact space (of an infinite polyhedron) Q. Denote by L the group of the
r-dimensional finite chains on Q with respect to the discrete coefficient-group
X, by I the topologized (as in [13, p. 691]) group of all (infinite) r-dimen-
sional chains on Q with |respect to the bicompact coefficient-group E]X .
The topology in Ly is that which makes of Lj the direct sum of the groups L,
the group L;~ & being the group of all chains of the form af], where £ is an
oriented simplex of Q and @ runs over . Since Ly is the direct sum of the dis-
crete groups L;~X (the elements of L] being the chains af; with @ running
over X), the groups Ly and Lj are dual to each other. With these groups we
get in the usual way the groups A and Vj: the group Vi (the group Ap) is
the difference group of the group of all r-dimensional finite V-cycles (infinite
A-cycles) over the subgroup of the bounding ones (a bounding V-cycle bounds
by definition a finite chain).

The purpose of this section is the proof of the following theorem:

41.1. If Q is a simplicial decomposition of the infinite polyhedron Q, then
(41.1) Mg ~ Ag; Vo = Va.

By virtue of the dualities Ap| Vo, Ap|Vj it is sufficient to prove the first
of the isomorphisms (41.1).

PRELIMINARY REMARKS. Let « be a (finite open) covering of Q; an element
of a (as well as the corresponding vertex of the nerve N.) is called regular
if its closure is bicompact; the other elements of « (and vertices of N,) are
called special. The simplices of N, whose vertices are all special form the
special subcomplex C. of N,; the open subcomplex K,=N,\C. is called the
regular part of N,; all regular vertices of N,, and only the regular vertices,
are zero-dimensional elements of K..

The open finite subcomplex G of Q is called a regular subcomplex of Q
if it is the sum of the open stars(®) of some of the vertices of Q, or (whichis
the same) if each simplex of G has at least one vertex which belongs to G as
an element. The proof of the following statement is obvious: If G is any open
finite subcomplex of Q, while @i, G, are barycentric subd1v151ons of Q, G re-
spectively, then G, is a regular subcomplex of Q.

Our last auxiliary definition in this section is the following: A covering
a of Q is called combinatorial with respect to Q if the following conditions are
satisfied:

(") This section will not be needed in the rest of this paper.
(8) We use the word “star” for complexes as well as for the corresponding point sets.
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(a) Each regular element of « is the open star of some vertex of Q.

{b) Let G, be the (regular) subcomplex of Q defined as the sum of all open
stars which are elements of «; let T, be the corresponding point set in Q
and T its closure (in Q). Any special element of « either has no points in
common with T or is of the form 0.,\JO:, where O, is on Q\T‘ and o, is the
open star (with respect to Q) of a vertex of some simplex of G..

LeMMA 41.2. The regular part of the nerve N, of any covering o combina-
torial with respect to Q is a regular subcomplex of Q and any regular subcomplex
G of Q is the regular part of the nerve of some covering combinatorial with respect

to Q.

The first statement of Lemma 41.2 follows immediately from the defini-
tion of a covering combinatorial with respect to Q. Let us prove the second
statement. Let e; be a vertex of an element of G. If e; G denote by o; the open
star of e;; if e; is not an element of G put 0;=0/\J(Q\T"), where o/ is the open
star of ¢; in Q. The open sets 0; form the required covering.

LevMA 41.3. Each covering o of Q has a refinement which is combinatorial
with respect to a certain subdivision Q\ of Q.

Proof. Let oy, - - -, 0, be the regular and 0,44, - - -, 0, the special elements
of a. Take the closed sets a;To; in such a way as to get a closed covering
{al, ce e, a,} of Q. The ¢; with 4=<p are bicompact while the @,41, - - -, as
may be supposed to be not bicompact. Choose the subdivision Q» of Q such
that any star of Q) meeting a; is on 0;. Now let on, - - -, 0as be all stars
of vertices of Q) which meet any one of the sets ai, - - -, a,. These stars form
a regular subcomplex Gy of Q\; denote by I') the corresponding subset of Q.
Denote by Oy, h=p+1, - - -, s, the open sets composed by all stars of Q\
which have points in common with as. Among all zero-dimensional elements
of O\\G» denote by ef, - - -, e/ those which are vertices of elements of G.
Define forz=1,2, - - -, ¢

O uti = oni \U (Ohs\r‘)\)y

where 0y, is the star of ¢/ in Q) and k;=p+1 is chosen under the condition
that as, has points in common with oy,. By the definition of O, we have

’
OXi g Oh.' g Ohjy

thus ox,u4+iCos;. If in the latter construction Oy1, - - -, Opyqy are the only
sets O, actually used, we put, for j=¢’+1, - - -, s—p,

O\ utq+i = 017+J'\ D.

The open sets oxi, =1, 2, - - -, u+g+s—p, form the required covering.
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Now we go over to the proof of the isomorphism Ajp=Aj. Retain only
those coverings of Q which are combinatorial with respect to subdivisions
of Q. If @, B are combinatorial with respect to Q\, Q, then we set § >« if both
of the following conditions are satisfied:

1. B is a refinement of a, « is not a refinement of 8.

2. Q. is a subdivision of Q.

The coverings with this ordering form a cofinal part of the set of all cover-
ings of Q. The subcomplexes K,=N,\C, being open (even regular) subcom-
plexes of Q,, they undergo projections generated by natural displacements
(section 39) of Q, into Q». Let af be those projections. Then

(41.4) A = lim inf (A%, o).

Take on the other hand all finite open subcomplexes Ga of all subdivisions
O\ of Q. We say that G, follows on G and write Su >al if Q, is a subdivision
of Qx and the subdivision s}Gax of Gax in Q, is a subcomplex of Gg,. In particu-
lar, if G, are the subcomplexes of Q itself, then B>« means that G.CG,.
Denote by ¢f the natural displacements of Q, into Qx and write (as indices)
(Br)\ instead of 4Gy, and a) instead of G Since Ga is an open subcomplex
of 6¢Gs, we may define a projection p% of the cell complex Gs, into Gax by
means of
Bu BuN n
partoy = Jax  oaTpy

for any chain xs, on G, This gives for p=\ the relation phxm=J%xsm and
in particular pfx,= J8x; on Q.

Those G.\ which are subdivisions of appropriate G.CQ form a cofinal
part of the set of all Ga, and p2* maps isomorphically A}, on A,. Therefore
lim inf (AL, o) ~lim inf (AL, J%). But the groups lim inf (AL, J?) and Aj
are isomorphic as shown by Steenrod [13, pp. 691-692]; thus

(41.5) Ay =~ lim inf (Ama, o).

On the other hand, since the regular subcomplexes form a cofinal part in
the set of all G, we deduce from Lemma 41.2 the isomorphism

(41.6) A% =~ lim inf (A, po)-

From (41.5) and (41.6) follows Aj = Ap, q.e.d.

42. The groups & and the duality theorem of Alexander-Pontrjagin. Let
X be a discrete coefficient-group. Denote by & the difference group of the
group of all 7-dimensional finite A-cycles of the (infinite) complex Q over the
subgroup of the bounding cycles (a bounding cycle bounds by definition a
finite chain). In this section we suppose that Q is an #-dimensional combina-
torial (4-)manifold (finite or infinite), that is, that for the open star O; of
any vertex e; of Q
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Ao(I) = Vo(I) = I,

while for r <z the groups Ay,(I) =~Vp,(I) contain the zero element only. We
suppose moreover that Q is orientable, which means that for every component
Q: of Q, AY(I) =Vg,(I)=1. The oriented (open) barycentric stars of Q
form a cell complex Q*. If # is an oriented simplex of Q, then we denote by
74, with g=n—p, the barycentric star with the center in the center of £ ori-
ented in such a way that the intersection number (f X7{) be equal to +1
(see for example [12, §69]). Then we have in the cell complex Q* the incidence
numbers
(77 ) = (= D).

Define now for any p-chain x? on Q the g-chain D%?® on Q* taking on 7{ the
same value as x? takes on £. An easy calculation shows that

42.1) ADix? = (— 1)PHiDe-lyxr

whence it follows that the operator D? generates an isomorphism between
Vg and 6% As both 8§ and &) are isomorphic to 8), where @, is the bary-
centric subdivision of Q, we have the

DUALITY THEOREM OF POINCARE.

Ve = do, g=n=p.

Let Q be an n#-dimensional continuous manifold, that is, a finite or infinite

polyhedron, one and thus all simplicial decompositions of which are combina-

torial manifolds. Then any open set on Q is also a continuous manifold (see

[4, pp. 143-146, Theorem “of Runge” ]). There follows then from the duality
theorems of Kolmogoroff and of Poincaré the

DUALITY THEOREM OF ALEXANDER-PONTRJAGIN. If the n-dimensional ori-
entable continuous manifold Q is simply connected in the dimensions p and p+1,
A is a closed set on Q, and T'=Q\A, then the groups A and 8% are dual (the
groups V and 6“171 are isomorphic) to each other. Here the coefficient-group for
8% ' and V') is the discrete group X while the coefficient-group for A% is the bi-
compact group E|X.

The generalization of this theorem for an arbitrary orientable manifold
(not necessarily simply connected in any dimension) is given by the

GENERAL ALEXANDER-PONTRJAGIN DUALITY THEOREM. For any n-dimen-
stonal orientable continuous manifold K, any closed set ACK, and T'=RK\A,
the group V'y.; is isomorphic to the group 8.y, where the latter group is defined
as the difference group of the r-dimensional finite cycles on I over the subgroup
of the cycles bounding on T (coefficient-group discrete).
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Here the finite cycles on I are to be understood in some invariant sense
(as “continuous cycles” in the sense of [4, pp. 333-339] or as convergent
cycles on compact sets ¢ C T (section 43)) or to be replaced by the §-classes
of section 43. -

To prove this theorem we have to show only that the groups V. and
0T.x are isomorphic. This can be done by the standard methods of proving
invariance theorems (see for example [4, Chapter IX] and [3]); these meth-
ods, however, so far as the writer sees, need at a certain moment the Combina-
torial Lemma 45.3. But the same lemma is the only essential point in proving
directly the isomorphism V7. = 8. We prefer therefore to give this direct
proof which rests entirely on section 15 (Chapter I), being practically
independent of Chapters II and III.

§12. THE GROUPS A)j.g, V).k, AND 8. FOR A MANIFOLD K

43. The groups A’y .y and V.. for a polyhedron K. Let K be a polyhedron;
we suppose this polyhedron finite (that is bicompact) although the follcwing
definitions hold for infinite polyhedrons too. As usual A is any closed set in K
and I'=K\A4. In this case the groups A’y., V).g can be defined in a quite
elementary way, independent of the definitions and results of Chapters II
and III. Let

(43.1) Ky, Ky o+, Kyye o -

be a sequence of successive subdivisions of a given simplicial subdivision K
of K; we suppose moreover that for any integer « =1 the complex K4, is the
result of one or more successive barycentric subdivisions of K,. Taking in K,
all simplices which meet A and all faces of these simplices we get a closed
subcomplex 4. of K,. Put in correspondence to any vertex €41 of Kay1 a
fixed vertex e, =0%""e,41 of the carrier of esy; in K,. This gives a well defined
simplicial mapping (a “natural displacement,” section 39) called a projection
of K.y onto K,. The projection 62! maps Aay1 into 4,. For 3>a+1 put
B a+t+l a+?2 B
Oq = Oq Oq41 ° ° ° 0—1

which implies the transitivity relation ¢ =020} for any v>B>a.

The projection of generates a homomorphism af of Lj =Lk into L, =Lk,
and a homomorphism afg of Lj=L} into L,,=L},; the conjugate homo-
morphisms 7§ and 739 of the group L, into Lj and of L], into L, are defined
by

a r T r 8 r
(mg%a 1) = (%a 0alp)

for any chain x}, on K, (on 4.) and any oriented simplex #5 of K, (of A,).
The homomorphisms af, 75 generate homomorphisms (denoted also by
aff, m50) of A}y into AL, (of Vi, into Vj) and map Aps=A%,.x, into

Aloa =A%,k Vao:a=V24,:K, int0 Vg s=V4,.x,. We define now:
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.. r -1 . r )
A’AK = lim inf (AaO:a, Cﬁao); V’AK = lim sup (VaO:cu 760)-

REMARK 1. It is easily seen that the groups 4., V5. just defined do not
depend upon the special choice of the sequence (43.1). But one can also show
that the definitions of this section agree with those of Chapter III. In fact,
the simplices of 4, are characterized among the simplices of K, by the prop-
erty that their open stars meet A; therefore 4, is the nerve of the covering

a = {oaly"' yoas}

of A, where 0,;=AMN0O,; and the O,; are those open stars of (the vertices of)
K, which meet A. In other words, if @\ is the covering of K by the open stars
of the vertices of K, then in the sense of section 38 we have a=Aa\. The
coverings e\, =1, 2, - - -, form a confinal part of the set of all coverings
of K and the projections ¢% put in correspondence to each Og;an O 20;;. If
we take into account section 38 we see at once that the definition (43.2) gives
us the same groups as the definitions of Chapter III.
REMARK 2. The elements of A’y.x are those “threads” or sequences

r r r r r r r B0 r
4 =(311527"'13a1"')€AA, 3a€AaOy a’a033=3:

whose elements 3}, €A, are classes of cycles on 4, bounding on K,.

It is easy to see that the group Ay . can also be defined as the difference
group of the group of all r-dimensional convergent cycles (see for instance
[5, p. 241]) of the set A over the subgroup of cycles bounding on K.

The elements of V'y.x are extension classes of r-dimensional V-cycles; the
V-cycle Z, on A, and the V-cycle 2; on 4, belong by definition to the same
extension class if there exists a y>a, 8 such that 7%, —nfz; is extensible
over K,.

REMARK 3. The coefficient-groups in A’y.g, V. are dual: bicompact for

A:x and discrete for V'y ..

44. The groups 0. for a manifold K. From now to the end of this paper
K is a continuous #-dimensional manifold (definition in section 42) which
for sake of simplicity we suppose closed (that is bicompact) although all
following definitions and results hold without this restriction. We conserve
the notations of section 43 and denote by K,; the barycentric subdivision of
K, (thus K,y either coincides with K., or is a subdivision of K.1). The com-
plex of all (open) barycentric stars of K, is denoted by K . The barycentric
stars which correspond to simplices of G,=K,\A4. form a closed subcomplex
G of K *. Since the elements of K* are subcomplexes of K.1, we get a closed
subcomplex G, of K., called the barycentric subdivision of Go¥,if we take all
simplices of K, lying on elements T2 of G5* (that is all simplices which are
elements of the subcomplexes T*EG*). The polyhedron composed of all
simplices of G}, is denoted by I'%,. It is I'Y, CT" and even I'=\U__,T%,. Without
loss of generality we may suppose that I';y &I (44151 Therefore the subdivision
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of G into simplices of Kz, B2 ¢, is a subcomplex s§,Gy; of Gi;, and for any
chain «f; on Ga.1 we have the subdivision s§ix; on Gj,.
REMARK 1. By definition

al r r r r
(s1%a1-281) = (Za1"ta1)

if the simplex £, of G lies on £, and its orientation is coherent with the ori-

al 1

entation of #,;; (s§ix5; ;) =0 if £, lies on a higher dimensional element of
G.

REMARK 2. In an analogous way we define the subdivision s§«f, of a chain
x., on G¥. Obviously for 8>«

a T al a r
$1%a = $B1S5a1%a.

After these preliminary remarks we define the group 8T as follows. We
say that two A-cycles, the cycle 2, on GJ and the cycle 25, on Gz, belong to
the same r-dimensional 8-class on T if there is a ¥ >a, 8 such that 527, —s5ij,
bounds on G};. To get the sum of two d-classes 2 and 2’7 take ad libitum
7, €2, 2, E2'" and define 2”42’ as the §-class containing 527, +s5,2; where
v is any integer which is greater than or equal to the greatest among the in-
tegers « and .

DEFINITION 44.1. The discrete additive group of all r-dimensional 6-classes
on T is called the group 67 (with respect to the given discrete coefficient-group).

DEFINITION 44.2. The subgroup 8. of Op is formed by the d-classes 2" &€
whose elements 27, bound on (the corresponding) K .y.

REMARK 3. The groups 6T, 01.g could be defined also as follows. A con-
vergent cycle on a compact subset of I' (with respect to a discrete coefficient-
group X) is called a cycle on T'; by definition, it bounds on T if it bounds on
a compact subset of I'. The difference group of the group of all r-dimensional
cycles on I' over the subgroup of the cycles bounding on T is the group 6
the subgroup of 8T whose elements are classes of cycles bounding on K is the
group 8T.k; the latter group can also be defined as the difference group of the
group of all r-dimensional cycles on T over the subgroup of the cycles bound-
ing on K.

§13. THE GENERAL ALEXANDER-PONTRJAGIN DUALITY THEOREM:
REDUCTION TO THE COMBINATORIAL LEMMA

45. Formulation of the theorem and of the lemma. From now on we either .
suppose the manifold K orientable or take for the coefficient-group the group
I,. All notations of §12 hold.

The theorem to be proved is:

45.1. The groups A%y.x. and 85 (g=n—p) are dual;
A:K K
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or (equivalent formulation):
45.2. The groups Vy.i and 85y (g=n—p) are isomorphic.
The proof rests upon the following

COMBINATORIAL LEMMA 45.3. If 25 is a V-cycle on K. equal to zero on A,
then for any > o we have

(45.3) sngzwszz o gDz on G:l
(o is the sign of komology, section 9, D4 is the duality operator of section 42).

This lemma will be proved in the next paragraph;in the present paragraph
we suppose the lemma proved and prove on this basis the Theorem 45.2.
We write E, insteat of Eﬁg.

46. The operators ADZE, and the isomorphism AD'E. To each V-cycle
Z%, on A. corresponds the V-cycle VE.&, on G, and thus the A-cycle
DU 'WE = (—1)?"ADLE,2% on G bounding on K*. If a V-cycle 2, on G.
bounds on G, the chain 227!, then D%z bounds on Gg* the chain + D¢ a2~}
and vice versa. Therefore from section 15 we have:

46.1. The operator ADSE, produces an isomorphism of the group Vi k.
onto the group AY ik s

Our purpose is to show that the operators ADZE, taken for different o
produce an isomorphism—we call it AD?E—of Vj.x onto 8%:x. We need for
this proof some minor lemmas.

LEMMA 46.2. For any V-cycle 250 on A, and >«
(46.2) 739 Euzao © VEgmgoser on Gp.
Proof. As 75 commutes with V we have to prove the homology
Vs Badao © VEpW;:ZZo on Gg
or
V(s Eazao — Epr;(?zio) o~ 0 on G;.

But an easy direct calculation shows that the chain m§E.z% — Esm5022 is itself
on G, which proves the assertion.
The fundamental lemma follows:

LEMMA 46.3. For any V-cycle 25y on A, and B>«
(46.3) SglAD;Eﬁ‘ll’;:Z:o o~ s:lADZE.,zzo on G;l.
Proof. Set in (45.3)

p+l P
Z2a = VEazao
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instead of 2¢; it becomes
(46.31) 51D} 7V Eazty o 551D 'VE.z% on Gon.
Apply to both sides of (46.2) the operator D§™*; this gives
' D§ w3V Euzio © D 'VEsmgasey on G,
Thus on the left-hand side of (46.31) we can replace D§ 'm3VE.z%, by
Dt VEmgoz” and get
(46.32) S DIVERT, o saD% 'VEus%y on Ga.
But by (42.1)

r+1 ald p

{Dp VEmrﬂoz,,o = (— 1) ADpEpﬂ'ﬁozao,
Da VEuzaO = (— 1) ADaEaZa,o.

If we bring this into (46.32) we get (46.3).

It is now easy to prove that the homomorphisms ADZE, taken for differ-
ent a generate a homomorphism AD’E of VY. into 6% : since every AD2E.2%,
bounds on K;* we need only to verify the following :

LEMMA 46.4. If for the V-cycles 23y on A, and 25, on Ag there exists a y>a, 8
such that ‘n'—,ozzo 1rﬁ°z” is extensible over K,, then

(46.4) S:ylAD E,,,zao M SylADngZpo on G-yl

Proof. From 46.1 it follows that ADE, (75075 1rf,’8z”) bounds on G», ,
thus

(46.41) s,lAD.,E.,qr.,oz.,o o s.,,AD E-y’ll'nonﬁo Aon G.,l
On the other hand (46 3) gives (with B replaced byy)
s,lAD E.,1r.,ozao o~ s-,lAD E.z09 on G,l
and (thh o, B replaced by 8, vy respectlvely)
s.,lAD E.,1r.,ozao o~ Sn,lADpEﬁZgo on Gﬂ

These homologles substituted into (46.41) give (46.4).
46.5. The homomorphism AD’E of V7. into 8%k is an isomorphism.
This follows from

LemMmaA 46.51. If we have for a V-cycle 200 on A, and a certain B>a the
homology ' .

« q » *
581D 4 E o240 © 0 on Gg,

then w3052, is extensible over K.
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Proof. By (46.3)
SZIADiEazZo ) sglADgE,gr;:zzo on G:l,

thus s§;AD§E 9%, bounds on Gi. It is known (see for instance [4, p. 247,
Theorem III]): If a cycle of the form sglzp*, where z¢* is a A-cycle on G§,
bounds on Gz, then z¢* bounds on Gg*. Therefore AD§Esmg0z%, bounds on Gg*
and by 46.1 the V-cycle 75035, is extensible.

46.6. The isomorphism ADE maps V7. onto 8%.k. Let z22-1be an element
of 8%k It is known (see for instance [4, p. 246, Theorem III]): Any A-cycle
on G}, is homologous on G}, to a cycle of the form s%z* with z* on G It
follows that.the é-class z¢~! contains a cycle s3,2.*, where 2z is a A-cycle on
G and bounds on K.*. From 46.1 it follows that there exists a V-cycle 2%,
on 4, such that ADE,z%, is homologous to z,* on G* and therefore

a q » q—1
SaADE 20 € 3,

which proves our assertion.

§14. PROOF OF THE COMBINATORIAL LEMMA

47. The fundamental identity. We write in this paragraph T for non-
oriented and ¢ for oriented simplices. The simplex T, of K.1 whose vertices
are the centers of the simplices T,°> - - - > Tur will be denoted by

T =| T2 >+ >TY|.
A simplex T, of K, is called principal if its dimension is the same as the
dimension of its carrier in K*; the other simplices of K. are called accessory.

Among all simplices of K. the principal simplices and only these are of the
form

To=|To>T > >TH.

If we put in correspondence to the center of each simplex T of Ks the center
of the simplex ¢5Ts we get a simplicial mapping ¢: of Kg into Ka: for
Th=|Te>TE> - - - >TY| €EKp we get

81, r [ ) B ™ B ,n
UalTﬂl = | o'aTﬂ _>—.'. UaTﬁ g tet g aaTﬁ'

E Ka1~

REMARK 1. If o2 does not degenerate on T} (that is, if the dimensions of
02T and T3 are the same) then for any simplex T§ lying on Tj the simplex
021 T4, is the image of T} under the affine transformation of of T7.

The manifold K being orientable, choose any definite orientation of K,
and the corresponding orientation of Kz as well as of all #-dimensional sim-
plices T; and Tg of K. and K. These orientations will be denoted by £, #.
For p <n take ad libitum a definite orientation of each p-dimensional simplex
T?cK, and denote this orientation by #££. Choose the orientation 7% of the
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corresponding barycentric star T? in such a way as to get the intersection
number (£X72)=+1. For T4 ET. take the orientation #; corresponding
to 72.

Choose as follows the orientations £ of the simplices T} of K. If o does
not degenerate on T%, and o2T%=T7, define # by the condition d5f=2.
If o5 degenerates on T3, choose 5 arbitrarily. The orientation 7§ of the bary-
centric star T§ corresponding to 7} is again defined by the condition
(8 X7§) = +1. Finally, the orientation #; of T4 &T§ corresponds to 7.

The proof of the combinatorial lemma 45.3 rests on the following

FUNDAMENTAL IDENTITY.

B1 B _q a p a g P
(47.1) 0a1561Dpmp X = Sa1Daa

for any chain x5 on K, and any 3> a.

REMARK 2. The mapping ¢5 (of K on K,), being a natural displacement,
has the degree 1 (see [4, p. 348, Theorem II]). If ¢ is an arbitrary simplicial
mapping of the degree d of the arbitrary n-dimensional closed orientable
manifold on Kz on the arbitrary z-dimensional closed manifold K., then
(47.1) is replaced by

(47.2) GarssDyms % = dsaDixe
for any chain x% on K. where the operator = is defined as usual by (w57, - 5)
= (x2-021%) for any oriented € K;. In this general form the identity (47.2)
formulates a known property of the Hopf “Umkehrhomomorphismus” (see
for instance [7]). The proof given below involves this general case.

48. Proof of the fundamental identity. Let us see how the principal sim-
plices are transformed under ¢2}. First of all:

48.1. If the accessory g-dimensional simplex
Tar=|T: >+ > T € Ka

is the image under o2\ of the principal simplex Tg=|Ta>Ta > - - - >T} [,
then n,<p.

Proof. From 5373 *= T} follows n;<n—i, in particular no<n, n,<p. If
n,=p, the simplex T}, would be principal, and 48.1 is proved.

The principal simplices T§ mapped under o5 on the principal
T = | T2> --->T7 I are easily seen to be in (1-1)-correspondence with
the T} €Ks mapped under o on T7. Moreover the orientations £, &, £, £,
%21, t§1 have been chosen in such a way that from T, = | Tz> --->T, £| and

(48.11) oty = el (with e = +1)

follows
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(48.12) oot = ety

with the same € in (48.11) and (48.12) (the simple proof uses remark 1 of
section 47). Therefore for any principal simplex ¢,

81 B
(U'alz t;l‘til) = (_o'.,Z t;'t:t),

where the sum is taken over all principal t, at the left and over all z#-dimen-
sional simplices of Kj at the right. Since the value of 6 _f3 on #} is equal to
the degree d we get

8
(48.2) et =dX
(summation on both sides over all g-dimensional principal simplices of K
and K. respectively).

The proof of the fundamental identity presents no more difficulty. To
simplify the notations put

B a
y;l = SBID;W,Q xz.

We shall calculate the value of the chain y§, on an arbitrary simplex #, of Kg.
If £, is accessory this value is zero by the very definition of the operator s

If £, is a principal simplex, let 7§ be its carrier in K¢* and # the corresponding
(oriented) simplex of Ks. By the definition of s5;, D§ and 7§ we have

(48.3) (yor-thr) = (20 ouds).

To evaluate the left-hand side of the identity (47.2) take any T4, EKau
and all principal simplices

Ti=|T5() > > T €Kny  j=1,2-" %
which are mapped by ¢® on T%. Let

oonll = e, e, = 1
We have by (48.3) and the definition of the ¢;:
81 8 o
(48.4) (Caryir-tar) = 2 (vareit) = 2 e(xa-0als ()
i i

If T?, is accessory then by (48.1) we have 7n,<p; it follows—since
d8T3(j) = Ta—that (+2-05£5(j)) =0, therefore by (48.4)

81
(craly;l : tfu) = 0.

Obviously (s3,D%?%-#,) =0, thus both sides of (47.2) take on the accessory #;
the value zero.

If TS is principal, T =|Te> - - - >T?|, then o8T2(j)=T2, and even
0585(j) =1, hence by (48.4)
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81 q P P P P
(U'alyﬁl tal) = Z ei(xa'ta) = (x ’ta) Z €.
i

1
By (48.2) X_;e;=d and therefore
(s tar) = d(22-20).
So much for the left-hand side of (47.2). At the right, the chain s, D%, takes
the value (x%-#) on &%, which completes the proof of the identity (47.2).

49. The rest of the proof of Lemma (45.3). This is based on the following
two elementary propositions:

49.1. Let T, '}, denote the set theoretical sum of the simplices of G., G
respectively. There exists a continuous mapping C of the point set I, onto
the point set I'}; leaving all points of I'}; invariant.

49.2. Let the V-cycle 22 on K, be equal to zero on 4,; if zf,l—sng'w,z”
differs from zero on a given T4, €Kp then a convex subset of I', contains both
the closures of T4 and of o2, T4,.

Proof of 49.1. The open set T, is the set theoretical sum of the mmphces

T 1€ K lying on it. Each of the simplices Te1 €K a1 lying on I', but not be-
longing to Gy, is of the form

Ny

Tar=|T2> - >Ta'> - >T,

’

where T.° - - -, T4 belong to G., while T,%, ..., T. are elements
of 4. Thus each point a¢ of T, is on a segment |a’a"| CT, joining a
pomt a’ of the simplex Tj=|T»> ... >T¥| €GY with a point a’’ of
To= ] Trn> . >T"'| the sxmplex T .1 belonging to the barycentrlc
SllblelSlOI'l Aal of A.. If we put C(a)=a’ for a €T\ and C(a)=a for
a €T we obtain a continuous mapping C with the required properties.
Proof of 49.2. Let T be a simplex, T? a face of T™. Denote by S(T»?, T*)
the complex composed of 7" and all faces 7" of 7™ satisfying the ‘condition
T'2T? (where T/ >T’' means that the simplex 7"’ is a face of T’). Denote
by D (T?, T*) the set theoretical sum of all elements of S(T?, T*). Among all
points of the closed set T* the points of y_(T?, T") are characterized by the
property that their barycentric coordinates (in the coordinate system defined
by the vertices of T*) corresponding to the vertices of T? are all positive.
Therefore the point set D (T, T™) is convex. This obvious remark will be
applied now to the proof of 49.2. The hypotheses of 49.2 1mply that T4 is
a principal simplex, .

Th=|10> - > 1),
and that #52] differs from zero on Tj; hence

ATE = TP €G..

Denote by T, the carrier of T3 in K., and put
8
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T, = a’ZT;.
The mapping of being a natural displacement, we have
Ts < Ta
and therefore
T = ¢uT; < T
Since T3 &G, and G, is open in K,, we have
S(Ta Ta) S S(Te, T2) S G

The vertices of o5, T4, being the centers of the simplices

=2t e 2 AT = T,
are points of the set > (T2, T®)C> (T2, T"). Since the point set (T2, T%)
is convex and contains the vertices of the simplex o274 it contains the
closure of: this simplex. It remains to prove that the closure of the simplex
T4 is contained in the same convex set 3 (T2, T7). Let T%,i=1,2, - - -, g,
be the carrier of T3~ in K.. Since T is the carrier of T} and T =d5 T” =< T"'
we have = -

ThzThz - 2Ta2 TZ,

whence it follows that T2, T2, - - -, T2 and therefore the centers of T3 T%,
T"“C:T” , TEC T2 are on Z(Ta, T") since E(T: » T2) is convex, the
closure of the 81mplex ThH=|T;>T3 "> - - - >TE| is a subset of D (T2, T%)
and 49.2'is proved.

It follows from 49.2 that the prism with the bases z§ and aﬂlzpl (see sec-
tion 28) lies on a polyhedron ICT. (composed of the simplices of this prlsm)
and thus #, o082, on IICT, (this homology being understood in some in-
variant sense—either as a continuous homology in the sense of [4, p. 335]
or as a homology between convergent cycles [5 pp. 240, 241]). If we take
%4, from (49.2) we obtain -

(49.3). o SﬂIDprZa ) aillsng;w;zz onII1 CT,C T
On the other hand, we have by (47.1)
qg « p

81
SalDaza = UalsﬂlDﬁTﬁzay

thus s lD”z” (considered as a continuous or as a convergent cycle) lies on I
and therefore

«_q p al a _q P @ g P
 $g1Da%a = sg15a1DaZa © Sa1Daz. on IL

Hence we may replace in (49.3) the chain af}sng},wgzZ by s5Dizh, which gives
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8
sBngr;z: © sngzzZ on ITI C Ty
By the mapping C of 49.1 this homology turns into
8 a
snggr;'zZ o® s,ngizZ on I'g;, thus on GpT,

which completes the proof of the combinatorial lemma, as well as the proof
of the general duality theorem of Alexander-Pontrjagin.

§15. THE REMOVING THEOREM

50. The removing theorem in the case of a manifold. A V-cycle 2, on K,
is homologous on K, to a cycle on G, if and only if the A-cycle D%z is ho-
mologous on K to a cycle on Gz*. As the scalar product of 2z}, with a A-cycle
22y on A, is equal to the intersection number of D222 with the same 25, we
get the following form of

THE REMOVING THEOREM FOR MANIFOLDS. A §-class 2% on the (n-dimensional
orientable) manifold K contains as a subset a d-class on the given open set
I'=K\A if and only if, whatever be the thread 7= { 320} EAL and £ E29, the in-
tersection of 2, with any 20, E3h s equal to zero (here, as usual, the O6-classes
are taken with respect to a discrete coefficient-group X, while the coefficient-group
in A% is 5| X).

Another formulation of the same theorem is: ,

A ¢-dimensional convergent cycle z¢ (with respect to the discrete group X)
on K is homologous on K to a cycle on T if and only if the intersection of 3¢
with each p-dimensional convergent cycle on A (with respect to & l X) is equal
to zero.

REMARK 1. The theorem holds also for X = EZ=% (see section 5).

REMARK 2. For non-orientable manifolds the theorem holds in the special
case X=E=1,.
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