
INDEPENDENT INTEGRAL BASES AND A CHARAC-
TERIZATION OF REGULAR SURFACES

BY

H. T. MUHLYO)

Introduction. The fundamental paper Theorie der algebraischen Funktionen

einer Veränderlichen of Dedekind and Weber opened a wide field of research.

The methods which these authors brought into play in the study of algebraic

functions of one variable have lent themselves readily, from the conceptual

point of view at least, to generalization to the case of several variables. How-

ever, even if one restricts himself to the case of algebraic functions of two

variables he finds a sharp line of demarcation in the analogy with the one

variable case when he attacks problems of enumeration such as the problem

of Riemann-Roch.

Several years ago Zariski made the conjecture that the analogy between

the theory of algebraic curves and the theory of algebraic surfaces would

extend much further in the case of regular surfaces, that is surfaces whose

arithmetic and geometric genera coincide. The objective of this paper is to

establish the truth of this conjecture and to show that this fact is in a sense

characteristic of regular surfaces.

A tool which proved to be most useful to Dedekind and Weber in deriving

the Riemann-Roch theorem as well as other allied results was furnished by

their so-called normal bases, the construction of which we shall describe briefly

below.
Let 2 be a field of algebraic functions of one variable x ever a field of

constants K, which is assumed to be maximally algebraic in 2 and of char-

acteristic zero. The field 2 is then an algebraic extension of K(x) of finite

relative degree v. Let o denote the ring of integral functions of x in 2 and o'

the ring of integral functions of 1/x in 2. If co is an element of o, the "expo-

nent" of co (in symbols exp co) is defined to be the smallest integer r such

that u/xr is an element of o' (that is o}/xr(Zo', co/xr_1Cto')- A set of functions

Ai, X», • ' • , X, is constructed as follows. Let Xi = l, and let X2 be an element

in 0 of lowest exponent r2, such that X2 does not satisfy a congruence of the

form X2 = cXi(ox) where cG-K". If Xi, X2, • ■ • , X;_i have been selected, take X<

to be an element in 0 of lowest exponent which does not satisfy a congruence

of the form Xi^dXi-f- • ■ ■ -f-Ci_iX,_i(o3c), CjEK, j = \, ■ ■ ■ , i — 1. Dedekind

and Weber show that this construction leads to a set of v( = [X:K(x))) func-

tions Xi, X2, • • • , X, in 0 which have the following properties:
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(a) They are linearly independent over Kix) and therefore form a modu-

lar basis for 2 over K(x).

(b) They form a modular basis for o over the polynomial ring 2C|x].

(c) If exp X,= r<, then ri( = 0), l^r2^ • • • ^r,. If co is in o, and if rh is

the last integer in the sequence fi, r% • ■ • , r, which is less than or equal to

exp co, then co is of the form co = Pi(x)Xi+ • • • +-F\(x)Xft, and the degree of

P,-(x) (a polynomial) is less than or equal to (expco — #%■).

(d) The quantities X/ =Xt•/xr^, t = l, 2, • • • , v, form a base for o' over

K[l/x] with the same properties relative to o' as the quantities Xi, • • ■ , X„

have relative to o.

(e) XX^Oi-l) =p, the genus of 2.
Dedekind and Weber refer to such a set of functions as a normal base for o

over if [x].

When we pass to the case of several variables, and let 2

denote an algebraic extension of K(x\, r), we must consider together

with the integral closure Oo of the polynomial ring K[xi, x2, • • • , xr] the inte-

gral closures o,- of the polynomial rings JK. ̂X\ fX\, * " * j Xi—1 /Xij 11X%y X%jp\fXif

• • ■ , Xr/xi], i = l, 2, • • • , r, if we want to generalize the concepts men-

tioned above. It will be pointed out in §2 that it is possible to define an

integer, exp co, for every element co in Oo (or in Oj) with the property

that if expco = /z then co/x?Co,-, co/x?_I(£oi, i = 1, 2, ■ • • , r. A set of

p(= [2:K(xi, X2, ■ ■ ■ , xT)]) elements, Xi, X», • • • , X, in o0 which form a

modular base for Oo over i£[xi, Xt, • • • , xr] (and consequently form a base

for-2 over K(xi, x2, • • • , xr)) will be referred to as a DW-base for Oo rela-

tive to K [xi, x% ■ • ■ , 2Cr] if in addition it satisfies the following conditions.

(a) If expX, = r,-then ri( = 0), 1 ̂ r2^r3^ • • • gf„ and if co is in o0 and rh

is the last integer in the sequence ri^r2^ • • • S r, which is less than or equal

to exp co, then co is of the form co = Pi(x)Xi+.P2(x)X2-|- • • • -f PA(x)X* where

the polynomial P< is of degree less than or equal to (exp co — r,).

(b) The quantities Xf'=X,/x;'', j = l, 2, • • ■ , r; i = \, 2, • • • , v have the
same properties relative to the ring oy as the elements Xi, X2, • • • , X» have

relative to Oo.

In §2 we show that if £<?, £*, • • • . £«* are the homogeneous coordinates

of the general point of an arithmetically normal variety Vr in P„ and if every

element of the integrally closed ring o*=K[£o*, £*, • ■ • , £n*] depends in-

tegrally on the algebraically independent elements £0*, £*, * • •, 5* then the

existence of a DW-base in Oo=K[<~1*/£0*, ■ ■ • , £*/io*] relative to the

polynomial ring K[$;i*/$io*, • • • i £*/£o*] is equivalent to the existence

of a modular base for o* over K [£0*, £*, • • • » |*J consisting of linearly inde-

pendent homogeneous elements.

It is well known that such modular bases do not exist in general in rings

such as o*, so that DW-bases likewise do not always exist.

In this paper we shall prove that if £0*,      • • • , £n* are homogeneous
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coordinates along a nonsingular, normal model of a field 2 of degree of

transcendency two relative to K, then the existence of a modular base for o*

over K[£<?, £*, £2*] consisting of v( = [2:.rv(£i*/|;o*, £2*/£*) ]) linearly independ-

ent homogeneous elements implies that the field 2 is regular. Moreover, if Fis

a nonsingular model of a regular field 2 and if 0/ is the ring of homogeneous

coordinates along a derived normal surface Fw of F belonging to a sufficiently

high character of homogeneity h [°](2), then Oa* has an independent homogene-

ous modular base relative to a suitably selected set of independent variables.

The proof of the first part of this statement, to the effect that the exist-

ence of a base implies regularity, is completely arithmetic in nature. For the

proof of the converse, however, we found it necessary to use a lemma of

Severi [6] which this author uses in his derivation of the Riemann-Roch

theorem for surfaces. The proof of the converse by means of totally arith-

metic arguments presents auxiliary problems requiring considerable investiga-

tion in themselves. We have not as yet been able to cope with all of the diffi-

culties arising in connection with them.

Throughout this paper we shall use the term normal to mean arithmeti-

cally normal. The coefficient field K is always assumed to be algebraically

closed and of characteristic zero.

1. Definitions and preliminary remarks. Let 2 be a field of algebraic

functions of degree of transcendency r relative to a subfield K. By a prime

divisor of 2 we shall mean any (r — l)-dimensional valuation of 2. If 3 is

any integral domain in 2, and if "iß is a prime divisor whose v-r'mg 93C$) con-

tains 31. then $ is said to be of first or second kind with respect to 3 accord-

ing as the center(3) of $ in 3f is or is not (r — 1)-dimensional.

If £0*, £1*, • • • » |«* are the homogeneous coordinates of the general point

of a projective model Vr of 2, and if o*=Ä~[|o*, £1*, • • * 1 £«*] is the asso-

ciated integral domain, then according to a well known theorem of Noether,

a nonsingular projective transformation can be found which will insure that

the first r+l £*'s, £0*, £*, • • ■ , £* are algebraically independent and that the

remaining ones, £?+t, ••■,£„* (and hence the entire ring 0*), will be integrally

dependent on £0*, £*, • • • , £*• If, then, we specialize 0* to the various

affine rings 0* ff/tf, It-i/tf, ÖWtf. ■ '• - . fcf/tfj,
j = 0, 1, 2, • • • , r, it follows that in each the first r coordinates are alge-

braically independent and the rest depend integrally on them. It is well known

that if "iß is a prime divisor of 2 such that 33 ßß) contains two of the rings o,-,

say Oai B#C4K$)« and if is of first kind with respect to 0«, then is also of

the first kind with respect to 0g. Consequently, one may speak of a prime

divisor as being of first or second kind relative to a given projective model V,

(J) Numbers in brackets refer to the bibliography at the end of this paper.

(3) By the center of in 3 is meant the prime ideal in 3 consisting of those elements ij

such that t)(^P, 17) >0. Throughout this paper we use the notation x) to denote the value

of x in the valuation <ß.
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of 2. Thus we may associate with a model Vr of 2 a set <S(Fr) of prime di-

visors, consisting of all those prime divisors which are of first kind with re-

spect to Vr-

Using the elements of <&(Vr) as generators we form the abelian group

®(Vr) which consists of all finite, formal, power products 'p"1^2 ' " "

where *!)3i£<3( Fr) and on is an integer, *— 1, 2, • ■ • , k. The elements of ®(Vr)

are called divisors. The divisor 3l=LTi,iW is said to be integral if an>Q,

i = l, 2, ■ • • , k.

With every element 77 in 2 one can associate a uniquely determined di-

visor 2I(r?) in ®(Vr),

SIM = n>c<\    •(») - n),

where the product is extended over all prime divisors of the set ©. (When

no ambiguity will result, we shall write n instead of 2I(r?).) Those divisors

which are associated in this way with elements 77 in 2 form a subgroup § of

®{Vr). Two divisors 21 and 33 are said to be equivalent if 2l-33_1£§.

With every prime divisor ^5 in © one can associate a unique, irreducible,

(r— l)-dimensional subvariety, Vr-i{$), of Vr. With every integral divisor 21

in ®(Vr), say 2l=IX'iß"i, we associate the effective subvariety

T/(2f) - A - aiV(%) + a2V(%) + ■ ■ ■ + akV(%).

The complete system determined by 21 (or A) is, then, the set of all effective

subvarieties V (21') which are associated with integral divisors 21' which are

equivalent to 21.

In what is to follow, we shall need the following lemma, proved in [4].

Lemma 1.1 The algebraically independent quantities £1, £2, • • • , £r

(£i = £t*/£o*, i = 1, 2, • • •, r) have divisor representations of the form £, = 2L/2lo,

*" = 1, 2, • • • , r, where 2li and 2lo are integral divisors and no prime divisor di-

vides both 2li and 2lo.

The following lemma is also needed.

Lemma 1.2. If % is a prime factor of 2f0, say SI0 = 'iP'32Io' where 2l0' is prime

to and «//(£i, £2, • ■ • , £r) is any polynomial in £1, £2, • • • , £, of degree h,

then v($$,f) = — hß. (The notation is that of the previous lemma.)

Proof. Assume first of all that f=<bh, a homogeneous polynomial in

£1, £2, ■ • • , £r of degree h, so that <£*/£? =</i» (1, £2/£i, ■ • • , £r/£i). This ele-

ment is in 01, and since $ is of first kind, and at finite distance with respect

to 01, the elements £2/£i, £3/£i, • ■ • , £r/£i must be algebraically independent

modulo pi, the center of $ in Oi. Hence z>0P, </V£i) =0 and v{% <ph) =hv($, £1)

= -hß.
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If / is an arbitrary polynomial then the lemma follows for / also since

a+b) = min OCß, a),       b)) if »($, a) *v($, b).
It is not difficult to see that if co is any integral function of £1, £2, • • ■ , £r

then co admits a divisor representation of the form

to = S3/2Io

where 23 is an integral divisor and k is an integer. In fact, if co is an integral

function of £1, £2, • ■ • , £r, then co has non-negative value at any prime di-

visor at which the values of £1, £2, • • • , £r are non-negative. Conversely, any

element co in 2 which admits a representation of the form co = 93/§lJ is an in-

tegral function of £1, £2, • • • , £r-

2. Exponents of integral functions. We now show that the Dedekind-

Weber method of assigning exponents to integral functions can be carried

over to the case of functions of several variables almost verbatim. The real

significance of these exponents is intimately connected with the notion of

arithmetically normal varieties, and we shall treat the subject from this point

of view.

Let £0*, £t*, • ■ • , £n* be the homogeneous coordinates of the general point

of a variety Vr in the projective space P„. It is assumed that V, is arithmeti-

cally normal so that o*=i2"[£o*, £*, • ■ •,£„*] is integrally closed in its quo-

tient field 2*. As in the preceding section we assume that £0*, £*, •••,£* are

algebraically independent and that 0* depends integrally on these r-f-1 ele-

ments. We again consider the rings Oo, 01, • • •, or, o<=X[£0*/£i*i • • • > £»-i/£»*>

£.*+i/£i*, ■ ■ • , £n*/£i*]> If X is any element in Oo, then X is a polynomial

/(£i, £2, • • • 1 £») (£< = £.*/£<*) of degree h, say. Consequently, £o*A-X=X* is

an element of 0* which is homogeneous of degree h. It is pointed out in [9]

that any element X* in 0* which is homogeneous of degree h satisfies an equa-

tion of the form

(2.1)        X*' + ctto*.        £r*)A*^ + • • • + a,(tf, ■ ■ ■ , £*) = 0

where o< is a form in £0*, £*, • • • , £* of degree h-i, i = l, 2, • • • , v

f>=[2*:2£(£o*, £1*, • • • , £*)])• If we divide equation (2.1) by £,**',

i = 0, 1, • • • , r, we find

(x*/£.**)' + (aV^XxVS,**)-1 + ■ • • +        = 0.

In other words X*/£f*( =X/£i") is integrally dependent upon o,- and hence

is in Oi. We thus see that given any element X in Oo there exist integers h

such that X/£?Coi, i = l, 2, • • • , r. Clearly, if this is true for one integer h

then it is true for any integer k greater than h. If for some *, the integer h is

such thatX/£?Co,-, then it is also true that X/£jCoy, for any j = 1, 2, • • • *r.

In fact, since X is in Oo, we have
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(2.2)

where 23 is integral, and

X = 23/2Io

(2.3) X/£.*= (S8/3Io) • (2Io/SI■) = 23/2lo *S&

If & is the smallest integer such that (2.2) holds (that is, if 23 is not a multiple

of 2I0), then the fact that X/£?C0j implies that h^k, for X/£?Coi, implies that

X/£? may be written in the form

where 9Jc is integral. Equations (2.3) and (2.4) then imply that 21$"1 • 21?• 5D2

= 2321J and, since 21,- and 2I0 are relatively prime, k^h for 23 is not divisible

by 2lo. Since we can represent X in the form X=23'/2lo it follows that

X/£* = 23'/2I*, and hence that X/£jCni-
We therefore define the exponent of the function X (notation: exp X) to be

the smallest integer h such that X/£j Coi. The exponent depends only upon X

and not upon the particular £,• which we take to define it. In the case of one

independent quantity, £1, this definition is precisely that of Dedekind-Weber.

Several obvious, but important, properties of exponents suggest them-

selves immediately. We list them below.

(a) exp \ = h if and only if X = 23/2Iq, where 23 is an integral divisor not di-

visible by 210.

In fact, if X=23/2IJ then clearly expX^A, but if expX = A'<h, then
X = 23'/2Io as has been shown. This implies that 23 is divisible by 2Io, which

is not the case.

(b) As a corollary to (a) we have exp X = 0 if and only if\EK.

(c) If 77 and f are two elements of Oo, then exp (rj-f-f) ^max (exp 77, exp f),

and if exp 77 > exp f then exp (77+f) =exp 77.

If exp 77= A and exp % = s, and if h^s then n/^i and f/£j are in Oi. Hence

exp (77+f) fSA. If h>s, then (rj+^/Q'1 is not in Oi for if it were then we would

have 77/£j~1 = (7?+r)/£''_1-?/£i~1 in Oi, which is not the case.

(d) 7/XGoo and exp X = h, then Xis a polynomial in £1, £2, • • ■ , £„ of degree

less than or equal to h.

This statement holds in view of the fact that V is a normal model of 2

and hence the system of hyperplane sections on F and all of its multiples are

complete [4].

(e) // X =/(£i, £2, ■ • • , £n) is a polynomial of degree h then exp X :S h.

(f) If 77 and f are in Oo, then exp (77 • f) j£exp 77-l-exp f. If 77 is a polynomial

in the independent elements £1, £2, • • • , £r only, then exp (77 -f) =exp 77+exp f.,

The first statement follows directly from (a); the second fellows from (a)

in view of Lemma (1.2).

(g) 7/2lo is a prime divisor then the equality sign always holds in (f).

Moreover, exp X = — v(ty, X).

(2.4) x/£- = a»/a'
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(h) 7f X*=c6(£o*, £*, • ■ • , £n*) is an element of o* of degree of homogeneity

h then exp X (X =<f>/<xo*h) is less than h if and only if cb is divisible by £0* in o*.

Assertion (h) follows almost immediately from (d) and (e). If exp \ = k<h

then, by (d), X is a polynomial of degree less than or equal to k in £1, £2, ■ ■ •, £*,

X=/(£i, £2, • • • , £„), say. Consequently ^ — <xo*hf is an element of 0*, and

0 = £*»-ty. On the other hand, if co = £0*"c/>', a>0, <b' in 0*, then X=0/£o**

= <?''/£,*h~°' = g (£i, £2, • • • , £a) where g is a polynomial of degree h — a. By (e)

this implies exp X^h—a.

Theorem 2.1. If 0* has an independent modular base over K [£0*, £*, • • •, £ * ]

consisting of v homogeneous elements ■ ■ ■ , X* where v= [2:i2"(£i, ■ • -,£r)]

then Oo {and of course also Oj, j = 0, 1, • • • , r) possesses a DW-base over

K[£u £2, • • • , £r] and conversely.

Proof. Assume that the elements X*, X2*, • • • , X„* are arranged in the

order of increasing degree, so that if X;* is homogeneous of degree ri we have

ri^Tz^ • ■ • ^r„. If co* is any homogeneous element of 0* of degree h, we have

(2.5)   co* = PJV + P2*X2* + ■ • ■ + P*X,*, Pf E #[£<*, £1*, • ■ • , £r*].

If Pf =£Py, where P% is homogeneous of degree j, it follows immedi-

ately by an application of the automorphism t:£0*—'i£o* of S* over S

(S*=ü:(£o*, £1*, • • • , £*) that P%mO if jV&-f<, and that P,*=P*_r.. In

other words, in the representation (2.5) of the homogeneous element co*, the

coefficient P* of A;* is homogeneous of degree Ä—f<.

It follows from the above remarks that none of the elements X * is divisible

by £0* in 0*, In fact, suppose X,* = £0*co*. Since co* is of degree r<— 1 (we as-

sume for the moment that i>l) we have co* = P*X*+ • • • +Pi*_iX*_i, and

hence X,* = ö*Xi*+ • • • +0/l*_1X*_i, where <2/ = £o*Pf. This is in contradiction

with the independence of the elements Xf. In particular, Xi* must be a con-

stant, which we may take to be 1.

If we let Xi=Xf/£o*ri, it follows that X< is an element of Oo of exponent r,-.

If co is an element of Oo of exponent h, then £0*^ is homogeneous of degree h,

and is in o*(4)- Hence we have £o*Aco = P1*Xl*+P2*X2:, + • • • +P*X* where Pf

is homogeneous of degree h — r,-. Consequently, we have co=22PiX,-, where

P, =P*/£o*'1_'r'. This implies of course that exp Pi( = degree of P<) is less than

or equal to h — r,-.

Since this argument could be carried out with any of the rings Oy as well

as with Oo, it follows that the elements X!, X2, • • • , X„ have the properties of a

DW-base. (See introduction.)

Conversely, if Xi, X2, • • • , X» form a DW-base in Oo relative to the ring

(4) This assertion follows by property (d) above. In fact, since exp co= h, a is a polynomial

of degree h in     &,••',{■ and hence        is a form of degree h in £0*, £*, £*.
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7sT[£i, £2, • • • , £r] and if exp X,=ri it follows immediately that the elements

X* = £o*riAt form a modular base for 0* over K[$io, £*, • • * , £*], q.e.d.

3. Differential divisors and the geometric genus. We shall henceforth as-

sume that we are dealing with a field 2 of degree of transcendency two over

the coefficient field K. We use the same notations as before except that we

put r = 2. We select the quantities £0*» £*, £2* in such a way that in addition

to our previous requirements we also have [2:7f(£i, £2)] =v, the order of our

model F. (We put £f = £,7£o*, *=»1, 2, ■ ■ ■ , n.)

Let A be any subfield of 2 such that 2 is algebraic over A. If $ is any prime

divisor of 2 with valuation ring 23, then 23a=23P\A is a valuation ring in A

which defines a prime divisor $a in A. The divisor ^T3a is the valuation which ^

induces in A. If pA is the ideal of non-units in 23a, and p is the ideal of non-units

in 23, then the extended ideal Pa -23 is a power of p, say pA -23 = pe, e=T. The

divisor is said to be ramified with respect to the field A if e> 1, unramified

if e = 1. The integer e — 1 is called the ramification degree of    relative to A.

We restrict ourselves to the case in which A=7£(£i, £2). We consider the

ideal Zo}lt(t) =g.c.d. (df/dz)^ [9], where co is an arbitrary element of Oo

and/(z; £1, £2) =7V(z— co). If pi, p2, • • • , p„ are the one-dimensional prime

ideals in Oo which occur in the decomposition of Z^^t^ then we have

(3.1) ^(£,.{o) ~ Pi -p2   • • • P»

where the symbol ~ denotes quasi-equality in the sense of van der Waerden.

It is well known that if Iß is ramified with respect to A, and if the ?>ring23

of contains Oo, then p, the center of 'iß in Oo, is one of the primes pi, p2, • • ■ , p„

and conversely. Moreover, the ramification degree of "iß relative to A is pre-

cisely the exponent a assigned to its center in the decomposition (3.1). We

conclude therefore that there are only a finite number of prime divisors in

the set <&(F) which are ramified over the field A (=2T(£,, £2)).

The assertions of the preceding paragraph are all consequences of the

following lemma.

Lemma 3.1. If ^ß is any prime divisor of the field 2 (at finite distance rela-

tive to the ring Oo) of ramification degree e — l relative to i£(£i, £2), then there is a

primitive element 6 in o0 such thatf'(9) =0 (p(e~n),/'(0)f^O (p(e)), where p is the

center of $ in Oo, and f'(6) =(df/dz)z=e- Moreover, it may be assumed that 6

has the form 0 = co+ci£i+C2i;2+ ■ ■ ' +c„£„, CiEK.

Proof. The proof is similar to the considerations set forth in [10, para-

graphs 11, 12, and 13]. We assume that £1 is transcendental mod Iß so that

the residue field of 'iß is algebraic over the field 7f(£i). We let L denote the least

normal (Galoisian) extension of 7£(£i) which contains the residue field of

Together with o0 we consider the rings o0' =7£(£i) [£2, £3, ■ • • , £n] and

Do = 7, [£2, £3, • • • , £»]. In view of the fact that £1 is transcendental mod p
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there is one and only one prime ideal p' in Oo' such that pT^Oo = p. Moreover,

if 3' is the quotient ring of o0' at p' and 3 that of o0 at p then clearly 3 = 3'

and consequently the ramification degree of $ as a "point" of the one-di-

mensional variety corresponding to Oo' is the same as the ramification degree

of ^ß as a "curve" of the variety belonging to 0o- Now if Oi, a», • • • , a» are

the prime ideals in Oo which lie over p', that is, Ctif^Oo' =p', then ©op'

= [di, 02, • • • , tth]- Moreover, it follows immediately from the first part of

the proof of Theorem 7 in [10] that if m is any non-negative integer then

CtfPiOo' =p'm(6).

Consider the field Z,(£2)D7C(£i, £2), and let P be the divisor induced by $

in 7£(£i, £2). The divisor 21,- in L- 2 = A defined by ct< in O0 induces a divisor Ai

in £(£2) which lies over P in 7f(£i, £2). Let p, o< be the centers of P and Ai

in their respective »-rings, and let <vf< be the center of 2L in its »-ring. If $Ri

is the v-r'mg of 21, then we assert that a< • dti =zA\ where e — 1 is the ramification

degree of relative to K(£1, £2). In other words, the ramification degree of 2l<

relative to 7,(£2) is the same as that of Iß relative to 7f (£1, £2). To see this, let 7?

be the »-ring of P in 7£(£i, £2) and let Si be that of Ai in £(£2). Now at=pSi

and hence a,-■ 3J< = p■ On the other hand, SR< = 3'■ 3J< and p-dii = (p- 3') • 9?<
=zA'e-dti where zA' denotes the center of ^ß in 3'. Since iA' -3J; =iAi we have

zA'e '3ti=iAei. This implies the assertion.

The lemma under consideration is well known in the case of functions

of one variable. In fact, if c? = Ci£i+C2£2+ • • • +c„£„, Ci^L, is a primitive

element of A over £(£2) then for non-special "constants" c,, we will have

/'(0) =0(aei~1), /'(0)^O (at). Since the values of d that must be avoided are

those satisfying certain algebraic relations, we can, in particular, find such

quantities in K. For such a choice of the c's, 6 will be an element of Oo and so

also will/'(0). This proves the lemma in view of the fact that a"P\Oo = p(m),

which holds, in particular, for m=e — 1, e.

The ramification divisor 3a of 2 relative to A is defined by the relation

(3.2) 3a = I1>-\

where e — 1 is the ramification degree of $ and the product is extended over

all prime divisors of the set ©(T7). 3a may of course contain prime factors

which are also factors of 2lo. (2lo is the common denominator of £1 and £2

mentioned in Lemma 1.1. It is given by the curve £0* = 0 on F.)

We let (So denote the complementary module of o0 relative to 7f(£i, £2).

(So consists of those elements e in 2 such that 5(ew) is integral for every w

in Oo. S(eoi) denotes the trace of eco relative to 7£(£i, £2). The module (So is of

(6) The methods of [10, Theorem 7] are applicable here in view of the fact that as a mini-

mal prime ideal of the integrally closed ring Oo, p defines a simple subvariety of the model V2

associated with Oo and hence p' defines a simple subvariety (point) of the model V{ associated

with Oo .
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paramount importance in the theory of ramified divisors. We prove that (So

is the inverse system of the ideal Z({,,{2). To this end two lemmas are needed,

the first of which will be used later in another connection.

Lemma 3.2. If A = 2£(£i, £2) and 13 is any prime divisor of the set ©(F),

and if <$i( = Sß), ^2, ■ ■ • , are the complete set of prime divisors in 2 which

induce the same valuation in A as does "iß, then for any function 77 such that

f($i. l)>0. i = L 2, • • • , k, it is true that »0ß, £(77)) >0, where the trace is

taken relative to A.

Proof. Let P be the common contraction of $1, $2, • • ■ , with A and

let ß be the least normal extension of A which contains 2. If 'Pi, <P2,

denote the various valuations of ß which induce the valuation P on A, then

each of these induces one of the valuations "iß* on 2, i = 1, 2, • • • , k. The inter-

section cBiC\(B2r\ ■ • • r^fög where 53* is the »-ring of <P< is the integral closure

(in ß) of the »-ring 23 of P in A [3]. We denote this intersection by D. The

ring D contains 5 distinct maximal prime ideals Oi, a2, • • • , a, where a,- con-

sists of those elements S in D with the property »(<P,-, 8) >0. By hypothesis,

77 is contained in the intersection a=[cti, a2, • • • , a,]. Since the ideals

cti, ct2, • • ■ , a, are conjugate over A [3], the intersection a is an invariant ideal,

and hence not only 77 but also all of its conjugates are in a. Hence their sum

5(77) is in a. Since a(~\^Q is the ideal of non-units in 23, we conclude that

Lemma 3.3. An element e of 2 is an element of the module (S0 if and only if

f OPi e) = — e+1 Ior every prime divisor of the set ©(F) whose v-ring contains oo

(e—1 denotes the ramification degree of

Proof. Let e be an element of 2 with this property. If e is not an element

of (So then there is an element co in Oo such that 5(«w) is not integral. If we re-

strict our attention to the group ©a of divisors in A generated by the prime

divisors in A of first kind with respect to the rings K[£i, £2], JTfl/fi, £2/£i],

and K [£i/i;2, !/£»], then S(eu) will have a decomposition of the form

where ßj>0, a is an integer, P, and Qj are distinct prime divisors in A,

and A0 is that divisor in A which corresponds to 2I0 in 2, that is, t-i=Ai/A0,

We fix our attention on one of the divisors Qt, say Q\. If q\ is the center

of Qi in R (=K[^i, £2]), then qi is a principal ideal, say qi=R <f>, where 0 is a

polynomial in £1, £2. We consider the extended ideal O051 which has a decom-

position of the form O0c7i= [p(l/l), pif'\ ■ ■ ■ , By definition, it follows that

/,•—1 is the ramification degree of the prime divisor of 2 determined by p,-.

»(P, 5(77)) >0, q.e.d.

t = l, 2.
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Now by our hypothesis we have z>(pi, ecoc/>) =■ —/< + l+/< (since z/(p,-, co)3:0),

and hence z>(p,-, ecoc/>)>0, i=l,.2, By Lemma 3.2 it follows that

v(Qh S(ecoc6))>0, or »(<2i, S(eco))-|-l>0, and hence we have v(Qu S(eoi))^0,

which is a contradiction. We therefore conclude that e is an element of (So-

Conversely, it is well known (see for example [5]) that for any primitive

element 0 in o0 the relation /'(0) -(SoCuo, where /(z) =N(z — B), holds. More-

over, by Lemma 3.1 it follows that for any prime divisor $ with center p

in On and ramification degree e — 1 there exists a primitive element 0 in Oo such

that/'(0)=O (p(e-")./'(ö)^0 (p<e>). From this it follows that for any e in (So

the inequality        e) ^ — e + 1 holds. This proves the lemma.

This characterization of (So in terms of the ramified divisors at finite dis-

tance relative to Oo (that is, having f-rings which contain Oo) is obviously

equivalent to the statement that (So is the inverse system of Z^.jj) in 2, in

view of the relation (3.1). Making use of this fact, it is not difficult to see that

every element e of (So admits a divisor representation of the form

(3.3) £ = (S)/3a)2Io

where 3) is an integral divisor and r is an integer which may be positive,

negative, or zero(6). Conversely, any element of 2 which admits a representa-

tion such as (3.3) is in (So-

An integral divisor <d equivalent to the divisor 3a21ö"3 (in symbols

3)~3a2I<T3) is called a differential divisor of first kind. To every such di-

visor 3) there corresponds an element 8, necessarily in (So, which expresses

the equivalence, namely,

(3.4) 6 = ml/3a.

The geometric genus pa of the surface F (a normal nonsingular model)

is defined as the number of linearly independent differential divisors of first

kind, that is the number of linearly independent elements 5 in (S0 of the form

(3.4). A curve K on F determined by a differential divisor of first kind is

called a canonical curve, and the complete system \K\ is called the pure

canonical system on F. The effective dimension of \K\ is pa — 1.

(6) Equation (3.3) follows immediately if none of the prime factors of 2Io is ramified.

Otherwise, the proof is as follows. If is any prime factor of 2Io, say 3Io= tye ■ 2Io , where 2to is

prime to 'iß, then e — 1 is the ramification degree of Since is at finite distance relative to

the ring 0i (= K [l/fi, {2/^1, ■ • • , W£i]) it follows that there exists an element 0i in 0i of ex-

ponent one, such that/'(9i)s0 (p<e_1)),/'(9i)^0 (p(e)) where p is the center of <ß in 0,. Since 0,

is of exponent one it follows that 6= £i0i is in Oo. A simple computation leads to the conclusion

that vC$,f'(8))= -e(v-l)+e-l, so that in the representation/'(»)= S.oa/JIo*"1 the divisor 2

does not have ^ as a factor. Since e •/'(»)=SD?/2I*, where 3« is integral, we have e= (WS-Sa)^"-*-1.

Applying this process to each of the factors of 2lo in turn, we find that e= (3c/U3a)8(o where U

has no factors in common with SIo. It then follows by Lemma 3.3 that 9c contains U as a factor.
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As it stands, our definition of differential divisors of first kind and of the

geometric genus p0 is but a formal generalization of similar definitions given

by Dedekind and Weber in [2]. However, it is not difficult to see that if one

considers a generic projection of our normal nonsingular model F into a sur-

face in S3 given by/(£i, £2, 0) =0 where d = c0+ci£i+ ■ ■ ■ +c„£n then the ele-

ments 5/'(0) will be adjoint polynomials, <j>»^ of degree v — 4, to the surface

/(£i, £2, 0) =0. Hence since o=0v_4//'(0) the pa independent elements 0 deter-

mine the pa independent double integrals of first kind attached to F.

4. The arithmetic genus. Let xQ, xi, • • ■ , x„ be indeterminates and let P

denote the prime 77-ideal in ÜT[x0, 1 which determines a nor-

mal, nonsingular model F of 2. In other words, P is a prime ideal in

K[x0, xn] such that K [x0, Xi, ■ ■ ■ , xn]/P^.o* and x~>£,* under the

isomorphism. Van der Waerden has shown [7] that if x(P> A) denotes the

number of homogeneous elements of degree A in K[x0, Xi, ■ ■ • , x„] which

are linearly independent (over K) mod P, then for large values of A (that is,

for h>h0, where h0 is a fixed integer depending on P) x(P, A) is given by

(4.1) x(P, A) = a0Ch,2 + aiCh,i + a2

where a0, 01, and a2 are integers independent of A. Van der Waerden showed

further that a<> = v, the order of the surface F.

Formula (4.1) can also be derived by means of the Riemann-Roch theo-

rem for surfaces, with the help of Noether's formulae for the genus and order

of a composite curve [8]. The theorem of Riemann-Roch states that if \D\

is a complete linear system on a surface F then its dimension r is given by the

formula r = n — 7r4-pa4-l — i+s where n, tt, and i are respectively the degree,

genus, and index of speciality of \D\, and pa is the arithmetic genus of F.

The non-negative integer s is called the superabundance of the system, and

the difference s—i is called the irregularity of \D\. The system \D\ is said

to be regular if s=i = 0. It has been shown by Severi, that if | C\ is a non-

singular system of dimension r^3, then for large values of A the system

Ch = I hC\ is a regular system. Applying the Riemann-Roch theorem to

Ch , and denoting its dimension, degree and genus by pn, Vh and 7rA respec-

tively, we have

(4.2) ph = Vh — Th + pa + 1.

If F is a normal, nonsingular model of the field 2, and | C\ is its system

of hyperplane sections, then | C\ is nonsingular, and the complete system

I hC\ is cut out on Fby the hypersurfaces of order h in its ambient space [4].

Hence in this case, x(7', A) =pft+l. A straightforward application of Noether's

formulae to formula (4.2) yields

(4.3) X(P, h) = (*(* - D/2> + f> - t + 1)A + pa 4- 1,
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where v is the order of F and 7r is the genus of | C\ (7).

As yet, no purely arithmetic proof of formula (4.2) is available. For the

purposes of this paper we shall regard formula (4.3) as the definition of pa(s)-

5. The existence of a DW-base implies pg = pa. Leto* = K [£o*,£i*, • • • , £«*]

where £0*, £*, •••,!»* are the homogeneous coordinates along a normal non-

singular model Fof the field 2. We make the following assumptions:

(a) £<*, £i*, £2* are algebraically independent and every element of 0* de-

pends integrally on them.

(b) There exist v (= order of F) homogeneous elements Xi*, X2*, • • , A*

in 0* linearly independent over if[£0*, £*, £2*] with the property that ifco*

is any element in 0* then co* = P*X*-f-P2*X2*-f- • ■ ■ +P*A„*, where P<* is a

polynomial in £0*, £*, £2*. We let r,- be the degree of X,*, and we assume as we

did in Theorem 2.1 that fi = 0, lgr2^r3^ ■ • • 2Sr„.

In the course of the proof of Theorem 2.1 we saw that under the above as-

sumptions we could assert in addition that if co* is a homogeneous element of

0* of degree h, and if, say, r„ is the last integer in the sequence fi, r2, • ■ ■, rv such

that h&r, (that is, h<r,+l if X8*+i is defined), then co* =P1*Xi*+P2*A2*+ ■ • •

+P*A* where P* is a homogeneous form in £n*, £*, £2* of degree h—fi.

The function x(-P h) mentioned in the preceding section gives the number

of homogeneous elements in 0* of degree h which are linearly independent

over K. If in particular h>r, we know that any homogeneous element of de-

gree h can be written in the form Pi*\i*+P2*\2*+ • • • +P*X* where Pf is

homogeneous of degree h — r,-. Since Xi*, X2*, • • • , A* are linearly independent

over if[£o*, £1*, £2*] it follows that a linearly independent ÜT-base for the

homogeneous elements of degree h in 0* can be obtained by taking together

all of the elements of the v sets of elements of the form aj^X,* where runs

over a linearly independent base for the homogeneous polynomials in £0*, £1*, £2*

of degree h — r\. There are, then, (1/2)(Ä —r<+l)(A —r,-f-2) such elements in

the ith set {a^Xt} and hence we have

n i\                 (p tS    V (*-'< ++2)(5.1) x(P, h) = 2- -^-

A simple computation (taking into account that ri = 0) yields

(') For a complete discussion of these questions see [8, chapter 4J.

(8) It seems to us that from the arithmetic point of view, formula (4.3) is a very natural

way in which to introduce the arithmetic genus. The question might be raised as to the neces-

sity of requiring Fto be nonsingular as well as normal in order that formula (4.3) hold. The cone

projecting an elliptic cubic from a point not in the plane of the cubic furnishes an example of a

surface in 53 which is arithmetically normal but on which the complete system | Ch\ cut out by

the surfaces of order h in Sz has a superabundance 5= +1 for every h.
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(5.2)

h(h - 1)       /       • \
X(P, h) v + (v- £(r*- 1) + 1 1Ä

2 \ t=2 /

+ t(f,-,)(r,-2) + |

»'=■2 2

Combining (5.1) and (4.3) we conclude that

(M> ,.-± '2>-
«=2 2

The proof that pg = pa is completed by showing that can also be ex-

pressed in terms of the integers rit and that the expression one thereby ob-

tains is p0:=(l/2)^l=2(ri—l)(ri — 2). This is somewhat more difficult.

As was pointed out in Theorem 2.1, if X; = X,*/£o*r< then Xi, X2, • • • , X„

is a DW-base in o0 relative to the ring K [£i, £2]. It is well known that there

exist v elements ei, e2, • • • , e„ in 2 satisfying the equations 5(e,X,) = 0,7

(5«=1, Sij = 0, i^j). These elements e are all in @0 (the complementary

modulo of Oo) and, in fact, form a modular base for (g0 over 2£[£i, £2], called

the complementary base to Xi, X2, • • • , X». The elements ei, e2, • • • , e„ are

of course linearly independent over 2?(£1, £2). If e is any element of @0, then

we have € = aiei+a2e2 + • • • +a,e„ o,Gi^[£i, £2], and it follows from the

equation 5(e<X,-) = 0,7 that the coefficient o,- is equal to S(e\i).

We assume, in particular, that e is of the form S521o/3a and we assert

that if ^ß is any factor of 2Io, then u(% £?e) >0. This is obvious if is not a

factor of 3A. If, on the other hand, 3a = ^b3' (3' prime to $), /3>0, then

since 'iß induces the divisor P in i?(£i, £2) at which (l/£i) has positive value,

it follows from the definitions of 3a and 2f0 that i>(^ß, l/£i) = /3+l, and that

SIo = ^ß^+12Io • We conclude that v($, e) ̂ 3(/3+l)-/3 = 2/3+3 and hence that

vW, ge)£2/3+3-203 + 1) = 1.
Writing e in the form e =y,a.ei we have

(5.4) at = S(t\i),      at/it 2 = 5(£i£ X,/£?').

Since VI? is an element of 01 (oi = K [£0*/£i*. £2*/£*. • • • , £«*/£*]) its

value at any of the prime factors of 2I0 is non-negative, and hence the value

of £?eX,/£? is positive at any such factor. It follows by Lemma 3.2 that

v{% 5(£?eX,/£?)) >0, and hence by (5.4), v(<$, Oi/|?_a)>0 for any such prime

factor % By Lemma 1.2, the inequality »($, a,/£J<-2) >0 implies that if r.^2

then fli is identically zero, and if r<>2 the degree of a< is less than r< —2.

We prove the converse of this result. That is, if e=£c,e,- is an element of

60 such that a» = 0 if r,^2, and for those values of i for which r, >2 the degree
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of a, is less than r< —2 then the element e admits a divisor decomposition of the

form « = 3)21o/3a. We consider the set of elements Xi', X2, • • • , X,' where

X/ =X./£?. As we have seen, these elements form a DW-base for the

ring 01. It is well known that the base t{, e{, • • • , t' complementary to

X/, X2 , • • • , X,' is related to the base ei, €2, ■ ■ ■ , (, by the equations e/ = £i'e,-.

These elements form an independent modular base over K[l/£x, £2/£i] for

the complementary module (Si of 01 relative to the ring K [l/£i, £2/£i].

Let iß be any factor of 2l0, say 2lo = l!ße2lo' where 2l0' is prime to 'iß. If e> 1,

we have $e_1 as a factor of 3a- Since *iß is a divisor at finite distance in the co-

ordinate system which gives rise to Oi, and since e' is in (Si it follows that

!»öß, el)^-e + l. Hence we see that »("iß, (l/£i)e/) =e + (-e+l) = 1. We thus

have »($, £ii_1ej)>0 and v(ty, ti)>e(ri — 1). By our assumptions concerning

the coefficients a; we have v($, ai)^ —e(r,- —3), and hence we conclude that

aied>2e.
The element ö<«,- is in (So, and if Ui is not identically zero we can write

•m = W/BlNi-V* • • • fS

where 9W is an integral divisor and $1, $2, • ■ • , iß* are the factors of 2f0.

If (e, — 1) is the ramification degree of then by our above results we have

Si — (e,— 1) >2e,-, and hence 5i = 3e,-. Hence, since 2Io=lTjW' we conclude that

the element die, is of the form

OA = ?Io3W3a.

The integral divisor %l is therefore a differential divisor of first kind. The

number of independent elements of the form did in (So which give rise to differ-

ential divisors of first kind is therefore zero if ri^2 and (r<—l)(f<—2)/2

( = number of independent a,- of degree less than r, —2) if rt>2. Since the e,

form a base for (S0, we conclude that

t    x                   - (r< - l)(r, - 2)      '   f>< - l)(r< - 2)
(5.5) p, = 2 -:- = £-

This completes the proof that the existence of a base implies pg=pa-

6. A lemma of Castelnuovo. This section is devoted to establishing an

important lemma due originally to Castelnuovo [l]. We consider a normal,

nonsingular model F of 2, and we use the same notations as before. In par-

ticular, we consider the various complete systems | Cn\ = | hC\ cut out on F

by the hypersurfaces of order h of its ambient space P„.

The system | Ch\ cuts out a linear series g,h on a generic curve C of the

system of hyperplane sections | C|. (In what sense C is generic will be specified

in a moment.) The series gvh has a certain index of speciality in and a certain

deficiency 5*. Clearly, if h, is large we will have ih = 0. Moreover, since C is
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generic in | C\ it is nonsingular and hence locally normal. This implies that

Sk = 0 for large values of A [12]. The lemma of this section asserts the follow-

ing equality(9)

(6.1) pn=T,(h- Sh).
h=l

Proof. We subject the homogeneous coordinates £n*, £*, ■•■,?,* to a

projective transformation \i =£ffl»,-i;J*, a,-,G-K\ For non-special values of the

dij the property of integral dependence of o* upon the first three coordinates

will not be lost. Moreover, since the system | C\ is obviously not composite

with a pencil, it follows by the theorem of Bertini-Zariski [ll] that for non-

special values of the constants a,-, the curve defined on F by the equation

|2 = 0 will be irreducible and nonsingular. In fact, it is easily seen from

Zariski's consideration in [ll] that for non-special constants an the ideal

o*|2 will be a prime iJ-ideal in o*. (This of course involves the fact that o*

is integrally closed.) It is in this sense that we speak of the generic curve

in I C\. We fix a set of constants a,-, so that these requirements are satisfied.

The characters ia and 5» are understood to refer to the series g,h cut out on

|2 = 0by \ Ch\.

As before we let x(P> h) be the number of independent (over K) homo-

geneous elements of degree A in o*, and we let be the number of homogene-

ous elements of degree A which are independent (over K) modulo o*|2- It

is not difficult to see that x(P> A)=M*+M*-i+ • ■ • +Mc In fact, let

Ök, 02i, • • • , 9ßii be a set of ßi homogeneous elements in o* of degree i which

are independent modulo o*|2. The ^?_0M< elements { ■ ■ ■ , Jj*tyi<,

•'•"* i ' " ' } are obviously independent, and every homogeneous ele-

ment of degree h in o* is a linear combination of these elements.

By the Riemann-Roch theorem (for curves), we have ßk = kv — iT-\-iis

— 3*4-1, k = l, 2, ■ ■ ■ , h, where it is the genus of |2 = 0, and since, clearly,

Ho = 1 we have

h

(6.2) X(P, A) = 1 + £ { kr - TT + it - «* + 1}
*=i

or on rearranging (6.2) we have

A(A - 1) *
(6.3) X(P, A) =-v + (»-*• + 1)* + £ (i* - a*) + 1.

2 fc=i

Since £*_i(i*— 5*) remains constant for sufficiently large A we see, if we

compare (6.3) and (4.3), that j>0=^"_i(i*—5*), q.e.d.

(9) The original lemma of Castelnuovo [l ] asserts that if one is given a system | T |, then

for high values of h the superabundance of | Ar| has a constant value s, and s+pa=2~I(*'>— **)•
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7. On the indices ih. We use the same notations and assumptions as in

the preceding section. The index of speciality, jh, of the system | Ck\ is defined

as the dimension, increased by 1, of the system |iiT — Ca| where \K\ is the

canonical system on F. If \K — Ch\ does not exist we put jk = 0. We observe

first of all thatj\ = 0 if A is sufficiently large.

The lemma of Severi [6] mentioned in the introduction is to the effect

that if h>v — 4: then the canonical system \K\, if it exists (that is, if pg>0),

cuts out a complete series on a generic curve Chof \Ch\- If pg = 0, the characteris-

tic series(10) of \Ch\ is non-special. Since, in any case, the series cut out on

I Ch\ by \K\ is totally contained in the series difference of the canonical

series on Ch and the characteristic series on Ch, it follows, by Seven's lemma,

that for h>v — 4 the complete series difference between the canonical and

characteristic series on Ch is cut out by the canonical system \K\. If

in addition A0 (>v — 4) is taken large enough so that jh0 = 0, then for all

A = Ao we have that the index of speciality of the characteristic series of Ch

is precisely pe.

The formulas of Noether [8] yield the following two formulas immedi-

ately :

(7.1) Vh ~ AV„       Th = ä7t! + (h(h - 1)/2K - (h - 1)

where vh and th denote the degree and genus of | Ch \ • From these one easily

sees that if h is sufficiently large, the inequality vh>irh— 1 will hold.

Let p be an integer greater than or equal to An and in addition large

enough so that for A Sip, vh>iTh — 1. We pass from F to the derived normal

surface F„ of F by referring the curves of | C„\ to the sections of F„ cut out

by the hyperplanes of its ambient space Pn. Since F is nonsingular, so is F„

[9]. If ih is the index of speciality of the series cut out on a generic Cp by the

system I Ci„ I, then

(7.2) h = p„, ii = H = • • • = 0.

(The condition i2 = i3= • ■ ■ =0 is implied by the fact that A><(>>2ir() —2 for

A = 2, 3, • • • .) A model Fof 2 will be called non-special if it is normal, non-

singular, and if the speciality indices on its generic hyperplane section satisfy

equations (7.2).

We return to the notation of §6, but we now assume that the model F

considered there is non-special. Combining (6.1) and (7.2) we find

(7.3) E 8* =
h— 1

It follows from (7.3) that if, in particular, F is regular then 5A = 0,

(10) By the characteristic series of \Ch\ on Ch we mean, of course, the series cut out on the

curve Ch by the complete system | Ck \ ■
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h = 1, 2, • • • . In other words, if F is a non-special model of a regular field,

then the systems | C*| cut out complete series on the general hyperplane sec-

tion C of F. This implies that the general hyperplane section of F is arith-

metically normal [4].

8. Construction of an independent base. Let o*=K[%0*, £*, • • • , £„*],

where £o*, £i*, • • ■ , £«* are homogeneous coordinates along a non-special

model F of the field 2. We assume that the quantities £0*, £* and £2* are

selected so that they are algebraically independent, and so that every element

in 0* depends integrally on them. The only other restriction which we place on

the elements £0*, £1*, £2* is that the net N: c0£o*+ci£i*+c2£2* = 0 (the c's are

parameters which vary over K) be sufficiently general in | C\ so that the

general curve of N will satisfy the condition of the preceding section, that

is, we require that the general curve of TV be arithmetically normal. We let

R* = K [£0*, £*, £2*] and we shall prove that 0* has an independent modular

base over R*.

We apply a nonsingular linear transformation 7?i=a,o£o*+afi£*+flt2£2*,

OijEiK, i = 0, 1, 2, if necessary, in crder to insure that (a) the three ideals

o*??o, 0*771, 0*772 will be prime in 0*, (b) that these curves will intersect pair by

pair in v distinct points of the surface F, each point of intersection being a

simple intersection, (c) each of these curves will be arithmetically normal.

Since £0*, £1*, £2* are algebraically independent, it follows that the net TV is

not composite with a pencil, and hence by [ll ] condition (a) is satisfied for a

general choice of the constants a<,G2f • It is easily seen that if the coefficients

an are sufficiently general, conditions (b) and (c) will automatically be satis-

fied. We point out that since 0* depends integrally on 770*, 77!*, 772*, the ideal

o*(77o*, V*> V2*) is projectively irrelevant, and hence none of the v intersection

points of 771 = 0 and 772 = 0 can be on the curve 770 = 0.

It should be observed that the transformation from £0*, £]*, £2* to 770, 771, 772

does not change the ring 7?*, and hence we may assume without loss of gen-

erality that the particular elements £0*, £*, £2* have all of the special properties

which we have assigned to 770, 771, 772.

We pass to the ring 0o = 7£ [£1, &,'••,?»] where £, = £*/£o* and we ob-

serve that if 21 = Oo(£i, £2) then the 7£-module Oo/2I is of rank v, the order of F.

In fact if 21= [qi, 02, • ■ ■ , qs] is the primary decomposition of 21 (q< is a zero-

dimensional ideal) then by assumption (b) we must have s = v and q,- = p,-,

i = l, 2, • • • , v, where p< is a prime zero-dimensional ideal. It follows im-

mediately that 2I* = o*(£*, £2*) admits a primary decomposition of the form

21* = [p*, p2*, ■ • • , p*, q], where p,* is the homogeneous prime in 0* corre-

sponding to the prime p,- in Oo. As an ideal in 0*, p* is one-dimensional, but

as a homogeneous ideal its dimension is counted as zero(u). The ideal q is a

(u) For a complete discussion of JT-ideals and their related affine ideals, see the first two

sections of van der Waerden [7].
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possible embedded component of 21* which is necessarily projectively irrele-

vant, that is, its associated prime in o* is the ideal o*(£o*, £*, ■ • ■ , §«*)•

The central point in preparing for the construction of a base is the following

lemma.

Lemma 8.1. The fact that £2* = 0 is an arithmetically normal curve on F im-

plies that 21* has no irrelevant components.

Proof. If we let 3 denote the ring o*/£2* then since o*£* is prime, 3 is an

integral domain, and since £2* = 0 is arithmetically normal, 3 is integrally

closed in its quotient field 2. This implies that if £*—>|i mod £2*, then the prin-

cipal ideal 3fi is an intersection of minimal ideals in 3, and has no embedded

ideals in 3- Since 2I*/£2* = 3£i it follows that 2f* can have no embedded ideals,

q.e.d. We can thus write 21*= [p*, p2*, • • • , p*].

We now show that under the conditions we have specified above the con-

struction of Dcdekind-Weber can be generalized to the case now under con-

sideration. Let «i, co2, • • ■ , co„ be v elements of On which are linearly inde-

pendent modulo 2l( = 0o(£i, £2)). If hi is the smallest integer such that

w,* = £o**'coi is an element of 0* then co,* is homogeneous of degree hi. Let us

suppose that in 0* a congruence of the form

(8.1) iW)co,* + iWV2* + • • • + i\(fo>* - 0(21*)

is valid, where P, is a polynomial in £0*. Let Ci£** be any term of P1(

so that Ci£0**w* is homogeneous of degree s = k-\-hi. The homogeneous com-

ponent of degree 5 on the left-hand side of (8.1) will then be Cii-o**«*

+c2£o*''~''2co2* + • • • -T-Cy<~o*!'~h,'io?, where Ci£o*'~hi is a term of degree s — hi

in Pi. Since 21*isani/-ideal,we must haveX)c<£o**_'"'w>*==^£* +B£i*,A,BCo*.

If A =Am+Am-i+ ■ ■ ■ +A0 and B =Bm+Bm-i + ■ ■ ■ +B0, where A{ and

Bi are forms of degree i in £0*, £*, •••,£„* then under the automorphism

r:£„*->*£o*, tGK we obtain

f(Atf + Btf) = tm+i{Amti* + BJif) + t-(A^tf +

+ • • • + tiAotf + P„£2*).

Since this is an identity in /, Atf+Btf =^4s_i£i*+P,_1£2* and Ec<£o**~&,W
= ^4,_i£i*+P,_i£2*. If we divide this last equation by £0*" we find ciw1+C2co2

+ • • • -f-CrCo, = 0 (2f). This implies Ci = Ct= • ■ ■ =c„ = 0. Repeating this proc-

ess with the other homogeneous components on the left-hand side of (8.1)

yields the conclusion that (8.1) implies Pi=P2= • • • =P„ = 0.

Conversely, if co* is an element of 0* which is homogeneous of degree s,

then co*/£o** =to is in 0o and co —(C1CO1+C2CO2+ • • • +CvCo„) =a£i + &i;2, o, and b in

On and c.E-K, i = L 2, • • ■ , v. If h is an integer so large that £0*''w, £0*^*,

<~ifh~la and io*h~lb are all in 0* then we have
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(8. 2) So**" sco* = E c^-^cofOl*).

We select elements Xi*, X2*, • • • , X* in o* as follows: take Xi* = l, and let

X2* be an element in 0* of lowest degree of homogeneity, r2, such that X2* does

not satisfy a congruence of the form £o**-r2X2*=Ci£o**_,"1Xi* (21*). where n = 0

is the degree of Xf. We let X3* be a homogeneous element of lowest degree

in 0*, say rs, such that X3* does not satisfy a congruence of the form

£o**-r3X3*=Ci£o**-riXi*+c2£o*i:-r2X2* (21*), Ci<=K, for any integer k. We must

have r2^r3, for any element co* in 0* of degree &<r2 satisfies a congruence of

the form £0**-*co*=ci£o**-riXi* (21*). In general, if X*, X2*, ■ • • , X,* have been

selected, and they are of degrees n ( = 0), 1 gr2^r3^ • • • respectively,

then we let X *+i be an element of smallest degree of homogeneity, r,+i, which

does not satisfy a congruence of the form

£0**-™Xf+1 =- d^^'Ai* + • ■ • + c,£0**-r'X,*(2l*),     a G K,

for any integer k. We of course have r.+i^r,-.

This process yields exactly v functions Xi*, X2*, • • • , X„* in 0*. This state-

ment follows directly from the fact that 0o/2l is of rank v over K, in view of

our considerations on the congruences (8.1) and (8.2). Moreover, if we put

X,■=Xi*/£o*''^ then Xi, X2, • • • , X„ are linearly independent modulo 21, for if

Xi, X2, • • • , X<_i are independent mod 21 while Xi = CiXi+ ■ • • -f-Ci_iX,_i

+a£i+ö£2, then for a sufficiently large value of kwe have £o**-r'Xl*=Ci£o*i-riX*

+ • ■ • +Ci_i£o**~r''_1X*-i(2l*). The choice of X,* excludes the possibility of such

a congruence. In a similar manner we deduce that if co* is an element of

0* which is homogeneous of degree h, and if, say, r< is the last element of the

sequence ri^r^^. • • • such that A^r< then co* satisfies a congruence of

the form

i
(8.3) £0*l'-*co* * E c^0**-r'Xf(2I*)

j-i

where k is an integer. Since ÄSi r,-, j = 1, 2, • • ■ , i, we can write

(8.4) m 0(21*),

and since 21* has no projectively irrelevant components we have

%

(8.5) co* - E c&}^'i\? = Atf + Btf
j-i

where A and B are in 0*.

We can now easily prove the following theorem.

Theorem 8.2. The elements\*    , ■ ■ ■ , X,* form a modular base for 0* over
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the ring R*. In fact, if w* is a homogeneous element of degree h in o*, and r< is

the last integer r^ such that h 3: r,-, then w* = PjXf + ■ • • +P,X,* where Pj is in R*

and is homogeneous of degree h — r,.

Proof. If h = 0 the assertion is trivially true. Assume, therefore, that the

theorem is true for elements in o* which are homogeneous of degree less than

h, and let co* be of degree h. We note that the left-hand side of (8.5) is homo-

geneous of degree h, so that we may assume that the elements A and B on

the right-hand side of (8.5) are homogeneous of degree h — 1. (This follows

by the usual application of the mapping r:£<*—t^K.) By induction,

then, we have A=^j=lAj\f, P =£j_iP3X3*, where Af and Bj are homo-

geneous of degree h—ff— 1, j = l, ■ • • , Hence by (8.5), m**=Pj*4\t* where

Pi — Cj^*h~r>-\-Aj4~i-\-Bjixf. Since there are at least v elements in o* which

are linearly independent over R*, the elements Xi*, X2*, ■ • • , X * are neces-

sarily independent over R*, q.e.d.
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