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The present note deals with spaces in which geodesies exist and are

uniquely determined by any two of their points.

The existence of geodesies without additional topological or differentiabil-

ity conditions finds its expression in the Axioms A, B, C, D below. It may

be helpful to point out that a symmetric variational problem in parametric

form will satisfy these axioms when the extremals are considered as geodesies.

It will appear that there are only two different types of spaces in which the

geodesic through any two distinct points is unique, similar to the two familiar

examples of the euclidean and the elliptic spaces. Namely, either the space is

simply connected and all geodesies are congruent to a euclidean straight line,

or the space S is not simply connected and all geodesies are congruent to one

euclidean circle (with the length of the shorter arc as distance). Then S pos-

sesses a two-sheeted universal covering space Si which also satisfies the Axioms

A, B, C, D and which shares the following property with an ordinary sphere.

All geodesies of Si are congruent to one euclidean circle, and the geodesies passing

through a given point Xi of Si all pass through the other point XI of Si which

lies over the same point of S as X\.

This theorem will be applied to obtain improvements on the theory of

spaces with convex spheres as developed in chap. 4 of the author's Metric

methods in Finster spaces and in the Foundations of geometry(l). Finally the

two-dimensional case will be discussed.

1. Sphere like spaces. The axioms which guarantee the existence of geo-

desies in the space S are these:

A. S is metric.

The distance of the two points A, B will be denoted by AB. We use the

notation (ABC) to express that the three points A, B, Care different and that

AB+BC = AC.

B. S is finitely compact, that is, any bounded sequence of points has an ac-

cumulation point.

Presented to the Society, September 13, 1943; received by the editors September 27, 1942.

(1) Annals of Mathematics Studies, no. 8, Princeton, 1942. This book will be referred to

as B. It contains the references to the literature, which will therefore be omitted here. But it

should be stated explicitly that in the special case of flat spaces our main result was established

long ago by Hamel (see Hamel [2] in the bibliography of B). Moreover, it has been shown al-

ready in B that if the geodesic through any two distinct points is unique, each single geodesic

is congruent to a euclidean circle or to a euclidean straight line.
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C. 2 is convex, that is, for A 5* C, there is a point B with (ABC).

D. Every point P of 2 has a neighborhood v with this property: For any two

points Aj^B in v and a given e>0 there is a positive 5(A, B)^e to which there

corresponds a unique point Bs with

(ABBs) and BBS = S.

We shall now compile those consequences of Axioms A, B, C, D which

will be needed in the present note. For the proofs the reader is referred to B.

A point set r is called a segment if it is congruent to an interval [a, b]

of the real axis, that is, there is a mapping t—+P(t) of [a, b] on r such that

P(h)P(h) = I h — h\ for any in [a, b], P(t) is called an isometric representa-

tion of t. The points P(a) and P(b) are the end points of r. Any two points

are the end points of at least one segment. t(PQ) will denote a segment from

P to Q. The following trivial property of segments will be used frequently.

(1) If (ABC) and a,r are segments t(AB) and t(BC) respectively, then cr+r

is a segment t(AC).

When the spherical neighborhood v(P, p) of P (consisting of those points

X for which PX<p) satisfies Axiom D and 0<p^p/6 then v(P, p) is a so-

called standard neighborhood of P, that is, it has the following properties:

(2) For any two distinct points A, B in v(P, p) and a given 0 <t < 1 there is

exactly one point C with (ACB) and AC = t AB. And for any given 0<s^2p

there is exactly one point D with (ABD) and BD = s.

A point set g is called a geodesic if it is a map >P(0 of the real axis

— =0 </< 00 such that for every real to sl positive e(/o) exists for which the

subarc \ t —10\ ^e(t0) of P(t) represents a segment isometrically. P(t) is called

an isometric representation of g.

(3) For a given segment t(PQ) with an isometric representation P'(t),

a^t^b, a<b, there exists one and only one geodesic g which contains t(PQ),

and g admits an isometric representation P(i) such that P(t) =P'(t) for a^t^b.

The simplest geodesies are the straight lines. They are by definition con-

gruent either to a euclidean straight line or to a euclidean circle. More ex-

plicitly, if P(t) represents a straight line isometrically then for any real h, h

either

(4a) P(t\)P(ti) = \t\ — t-i\ (open straight line)

or an a >0 exists such that

(4b) P(ti)P(t2) =min /2+fck|, ^ = 0, ±1, +2, • • • (closed straight line).

In the latter case g is congruent to a euclidean circle of radius a/2w. Hence a

is called the length \(g) of g. For any point A of g there is exactly one point A'

on g (the conjugate point to A on g) for which g contains two segments t(^4^4')-

The point A' may also be characterized as the point on g for which no

point Y with (AA'Y) exists. For, if AVZCg then (AAY) with Y = A'. If
a point Y with (AA'Y) existed, it would obviously not lie on g. On the other
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hand, it follows from (1) that a segment t from A to A' on g forms together

with any segment t(A'Y) a segment r' from A to Y. Let g' be the geodesic

that contains t'. Then g'^g because Y(\_g. But (3) and the fact that r is

contained both in g and g' would yield g=g'.

A straight line contains with any two points P, Q also a segment t{PQ).

The converse holds too, so that we may state

(5) A geodesic is a straight line if, and only if, with any two points P, Q

it also contains a segment t(PQ).

In this form the theorem is not in B. However the proof of Theorem 3,

chap. 1, §2, in B can easily be modified to yield this result.

As a consequence of (5) we have

(6) If there is only one geodesic through any two distinct points, then all

geodesies are straight lines.

Namely, if g is any geodesic and A, B two different points on g, then a

geodesic g' exists containing a given segment t(AB) (compare (3)). Since, by

hypothesis, g=g', it follows that g contains a segment t(AB), and hence must

be a straight line by virtue of (5).

A space which satisfies the hypothesis of (6) is called an S.L. space, in

particular an open S.L. space if all straight lines are open, a closed S.L. space

if they are all closed.

As stated in the introduction, the main purpose of this note is to show

that all S.L. spaces are either open or closed, and that in the latter case all

straight lines have the same length.

In any space with Axioms A to D the straight lines have this property:

(7) If two straight lines g and h have two different common points A and A'

then either g = h or else g and h are closed, have the same length, and A and A'

are conjugate on both g and h.

For if g is open or closed and A' not conjugate to A, then g contains a

point Y with (A A' Y) and a segment a from A' to Y. The geodesic h contains

a segment t from A to A'. By virtue of (1) t+o- is a segment t(A Y). Using (3)

twice we find that the geodesic which contains t+o" must coincide with h

because it contains r and with g because it contains tr. Hence, if g^h, the

points A and A' are conjugate on both lines, so that X(g) =X(A) =2AA'.

Let the space 2 satisfy Axioms A, B, C, D. If all geodesies of 2 are closed

straight lines and if all geodesies which pass through a given point A pass

through a fixed point A', the conjugate point to A in 2, we call 2 sphere like.

(The word spherical will be reserved for spaces congruent to a euclidean

sphere.)

(8) Let 2 be a sphere like space. Then all geodesies have the same length.

The conjugate point A to A' in 2 is the conjugate point to A on every geodesic

through A. The mapping A—>A' of 2 on itself is an isometry. The geodesic

through A and B is unique, when A and B are not conjugate.
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The first two assertions follow from (7).

There is a geodesic g through A and B. Any geodesic g'^g through A

intersects g, besides at A, only at A', hence g is the only geodesic through A

and B. If we denote generally the conjugate point to X by X', the isometry of

the mapping A—>A' may be written as

(9) XY = X'Y'.
For Y = Xor Y = X' the relation (9) is obvious. When Y^X, X' the points

X and Y are not conjugate. Hence the geodesic through X and Y is unique

and contains both X' and Y'. Since XX' = YY' and g is a closed straight line

of length 2XX' we see that XY = X'Y'.

We show next that every sphere like space is covering space of a closed

S.L. space.

Theorem 1. The non-ordered pairs X=(X, X') of a sphere like space 2

form with the metric

(10) XY = min (XY, XY')
a closed S.L. space 2 in which all straight lines have length XX'.

Proof. Obviously XX = 0. If X^Y, then X^ Fand X* Y', hence XY>0.
Moreover (9) yields

XY = min (XY, XY') = min (YX, YX') = YX.

The triangle inequality

(11) XY + YZ^XZ
follows from (9), (10) and these 4 inequalities:

XY + YZt XZ, XY' +YZ = X'Y + YZ ^ X'Z = XZ',

XY + YZ' ^ XZ', XY' + YZ' = X'Y + YZ' ^ X'Z' = XZ,

which also show that the equality sign holds in (11) only if X, Y, Z are on

one geodesic in 2.

We see that 2 satisfies Axiom A. Clearly, Axiom B holds too. The metriza-

tion (10) applied to the points X of 2 which belong to a fixed geodesic g

(the point X' lies then also on g) amounts to identifying diametrically op-

posite points on a circle, and yields therefore a closed straight line in 2 with

length XX'. Hence any two distinct points X, Y in 2 are on at least one closed

straight line. This line contains a segment from X to Y, consequently 2 satis-

fies Axiom C.

For XY<XX'/2 we have

(12) XY=mm(XY, XY')=min(XY, YY'-XY)=XY.
Any two points X, Y of a spherical neighborhood v(P, p) in 2 have distance

XYS.XP+PY<2p. Therefore it follows from (12) that the mapping X-^X

maps the neighborhood v(P, XX'/4) of P in 2 isometrically on the neighbor-

hood v(P, XX'/i) in 2. Hence Axiom D holds in 2.
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The characteristic property of a geodesic to be locally a segment shows

together with the local isometry of the mapping X—>X that each geodesic g

of 2 consists of those points X=(X, X') for which X belongs to a fixed

geodesic in 2. We have seen already that these points form a closed straight

line of length XX'. Since the geodesic through two not conjugate points X

and Y in 2 is unique, it follows that the geodesic through X and F in 2 is

unique, as soon as X^Y.

By means of Theorem 1 results on closed S.L. spaces lead to results,on

sphere like spaces. For instance Theorems 7 and 8 in B, chap. 5, §1, yield the

following:

A sphere like space is spherical (that is, congruent to a euclidean sphere)

if it can be reflected in each of its straight lines.

A symmetric sphere like space is spherical.

2. The main theorem. It is easy to see that an open S.L. space is simply

connected. The segment t(XY) connecting two arbitrary points X and Y is

unique and depends continuously on the end points X and Y. Let X(t),

a^t^b, be any continuous curve and P any point. We denote by Xa(t),

O^agl, the unique point on t(PX(t)) for which PXa(t) =aPX(t). The point

Xa(t) depends continuously on both t and a, moreover Xi(t) =X(t), X0(t) =P.

Hence varying a from 1 to 0 we obtain a deformation of X(i) into P.

Similarly we see that a sphere like space 2 is simply connected. For let

X(t), a^t^b, be any continuous curve which does not cover all of 2, and P'

any point not on X(t); finally let P be the conjugate point to P'. Then the

segment t(PX(t)) is unique for every X(t) and we may proceed as before.

We are going to show that an S.L. space 2 which is not open is not simply

connected. This may be accomplished either by showing that a closed straight

line cannot be contracted to a point, or by constructing a covering space 2

different from 2. We shall use the second method because it will yield di-

rectly a two-sheeted sphere like space 2. Since on the one hand 2 is the mini-

mum number of sheets and on the other hand a sphere like space is simply

connected, we see that 2 is, topologically, the only covering space of 2. The

original space is obtained from 2 as in Theorem 1, which implies that all

geodesies in 2 are closed straight lines of the same length.

Let the S.L. space 2 contain at least one closed geodesic f, and let A

be an arbitrary point on g. The unique geodesic through the two different

points X, Y of 2 will be denoted by 8(XF). When D^A and %(Ä~D) is closed,

then any geodesic q(AX) with XQi>(D, e) is closed provided e>0 is suffi-

ciently small (compare B, chap. 3, §1, Theorem 3).

Call ß the locus of the conjugate points to A on the different closed geo-

desies through A. Finally let v(A, p) be a standard neighborhood of A (com-

pare (2)) and k its boundary, that is, the locus XA =p.

We are going to define a mapping X-+X* of 2— ß on v(A, p). We put

A* = A. If A?±XC.2 — ß, the segment t(AX) is unique, hence there.is exactly
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one point X* with (AX*X) and

A*X* = p(ÄX/(l + ÄX))((2 + M(ÄX))/M(ÄX)),

where \q(AX) is the length of the geodesic $(AX) and

(2 + Xg(JZ))/Xö(IZ) = 1 if Xg(ZX) = »,

Because the length of a geodesic depends continuously on the geodesic (see

B, chap. 3, §1) the mapping X—>X* is one-to-one and continuous. Call k* the

subset of those points X* of k for which §(AX*) is closed. We map the point

X* of k* on the conjugate point X to A on $(AX*). We then obtain a con-

tinuous mapping a of 2* = v(A, p)+k* on all of 2. Each point X of ß has two

images X* and -X"2*, which are diametrically opposite points of ~k.

We now assign a definite neighborhood u(X*) to every point of 2* as

follows: If X is not on /3 we let u{X) be a standard neighborhood of X which

does not meet ß, and u(X*) the image w(Z)a_1 of u(X), If and AY and

X2* are its two images we choose a positive r)<p/2 so that q(AZ) is closed

for ZCZviXf, rj) or Z(Zv(X>t, 77). We choose a standard neighborhood u(X)

of X such that Q(AY)_meets_i>(X:?, v) and j>(X2*, t;) when YCu(X). (This is

possible because q(AXv)-+q(AX) when X„—>X.) Let uit i = l, 2, be the set of

those points Y in u(X) for which a point Zi in v{Xf, 77) with (FZ.yl) exists.

We have üi+üi = u(X), and Mi and «2 have only the points Y of ß-u(X) in

common. For if (YZiA) and Zi(Zv(Xt, y), i = i, 2, then

Z1Z2 > XfXz* - 2ri = 2p - 2i) > p > 2r,.

If F were not conjugate to A, the segment t(AY) would be unique and con-

tain both Z\ and Z2. But then

= I JZn - ZZ21 < (p + >?) - (p - >?) = 2»,.

The image u(X?) of    we define as neighborhood of X?.

Now let 2** be congruent to 2* and designate by X** the image of X*

under a definite congruent mappiffg p of 2* on 2**. Let X? and X? be any

two diametrically opposite points of k*. We then identify Xf with Xf* and

Xf* with X}. The sum of 2* and 2** will be called 2. The mappings a.

and p.a define together a continuous mapping a of 2 on 2. Under a"1 every

point X of 2 has exactly two images X* and X** in 2. We say that X* and

X** lie over X.

With every point of 2 we also associate a neighborhood. Namely if X<£ß

then we take the previously defined u(X*) as neighborhood of X* and

u(X**)=u{X*)ß as neighborhood of X**. If XCß we take u(Xf)p.+u(X?)

as neighborhood of Xi** = X2* and u(X?)+u{X£)p. as neighborhood of

X? = Xf*. The_neighborhoods u(X*) and u(X**) of the two points X*

and X** over X are disjoint and a maps both «(X*) and u(X**) homeo-

morphically on the standard neighborhood u{X) of X. ...
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We metrize 2 in the following manner: For a continuous curve c with a

representation P(t), 0^2 gl, in 2 we define the number X(c) as the length

of the image P(t) =P(t)a in 2 and put for any two points X, Y in 2

(13) XF = inf \(cXr),

where Cxy traverses all continuous curves from X to Y. X Y is always defined

and finite. For, any point of X* of 2* (or X** of 2**) can be connected to A*

(or .4**) by a path whose image is one of the possibly two segments from

X to ^, and the points A* and ^4** can be connected by a curve whose

image is a given closed straight line through A in 2.

The relations_XX = 0, XY=YX, XY+YZ^XZ are obvious and so is

XY>0, for ÄV7 (we put generally Za = Z). If X=Y the relation XY>0

follows from u(X*) ■ u(X**) = 0.

We show next that with this metrization of 2 the mapping a is locally

isometric. We see from the definition of X(c) and XY that

(14) XYjJiY.
If u(X) =v(X, 5) we put v{X) — v{X, 5/2). Under the homeomorphic mapping

a of u(X) on u{X) where X stands for a definite one of the two images of X,

the set v(X) may correspond to v(X). Let A, B<Zv{X). Since A, B<Zv(X) the

(unique) segment t(AB) lies completely in u(X) so that the image of t(AB)

in u(X) has the same length as t(^4.B), that is AB. Hence it follows from (13)

and (14) that

(15) AB = JB for A, BCv(X).
We conclude from (15) that v{X) satisfies the requirements of D for the

point X; since X was an arbitrary point of 2 we see that Axiom D holds.

Because of the local isometry (15) the number X(c) equals the length of c

as curve in 2.

Axiom B now follows readily. For if PX, <d then PXv<d because of (142-

Hence {X,\ contains a subsequence {XVn} converging to a point X in 2.

(15) implies that with proper notations the images {-X-»*} and {X„**} of

{X,n} tend to the images X* and X** of X respectively. The sequence {XVn)

contains infinitely many points of at least one of the two sequences {X„*}

and {.X,**\r which proves Axiom B.

To prove Axiom C we observe that because of B and (13) a curve cxz

exists which connects two given points X and Z and such that

XZ = \{cxz)

(compare Property Le in B, chap. 1, §1). The additivity of the arclength and

the triangle inequality yield in the well known fashion that XY-\-YZ = XZ

for every point of Cxz-

We conclude from the local isometry (15) of 2 and 2 that the image

g = ga of any geodesic in 2 is a geodesic in 2, and that at least one geodesic

g in 2 lies over every geodesic f in 2.

Moreover, if g and h both lie over | and have a common point P, then
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g = A, because g and h coincide in a neighborhood of P (compare (3)). It fol-

lows that there is only one geodesic which lies over a given geodesic g of 2.

For if gi and g2 lie over g we select a point G,- on gi such that & ^ G2. There is a

geodesic k through Gi and G2. Its image k intersects f at both Gi and G2)

hence g = k, and it follows from &g,OG,- that k=gi so that also gi=g2- We

may now conclude

(16) If a geodesic g of 2 contains X*, then g also contains X**.

For g lies over a geodesic g through X, and there is a geodesic gi over g

through X**. Hence g = giZ)X**. Before we apply this result to the present

problem we notice a consequence which will be important in the theory of the

convexity of spheres.

Theorem 2. In a closed S.L. space each geodesic g intersects the locus ß(A)

of the conjugate points to an arbitrary point A (possibly g(Zß(A)).

Returning to our spaces 2 and 2 we see that the geodesies through A

must all be closed, for an open geodesic would have two images, one in the

interior of 2* and one in 2**.

Since the length X(g) of a geodesic g depends continuously on g, and all

geodesies through A are closed, the lengths of the geodesies through A are

bounded. Hence the space 2 is bounded and therefore compact. We show next

(17) Each geodesic g in 2 is a closed straight line.

Since 2 is compact 2 is compact, hence open straight lines cannot exist.

Because of (5) it is sufficient to show that g contains with any two points

X, Y also a segment t(XY). Let X^Y. Consider a segment t(XY) and a

geodesic h which contains this segment t(XY). Then g and h both contain

X and F, hence g = h and g = h, so that g contains t(XY). Now let X = Y,

and consider a sequence of points Y,^ Y on g which tend to Y. For large v

we have Yrr^X. Hence g contains a segment t(XYv). A suitable subsequence

of )t(IF»)j tends to a segment t(JF). As the image of g the geodesic g is

closed as a point set, hence t(XY)Qg, which proves (17).

(16) and (17) show that 2 is a sphere like space. Moreover 2 can be ob-

tained from 2 as in Theorem 1. This implies that all geodesies in 2 have

length X*X**. We formulate our results as follows:

Theorem 3. Let the space 2 satisfy Axioms A, B, C, D and let there be only

one geodesic through two distinct points of 2.

Then 2 is either simply connected and all geodesies are congruent to euclidean

straight lines.

Or 2 has a sphere like space 2 as two-sheeted universal covering space, from

which 2 is obtained by identifying conjugate points. The geodesies of 2 are all

congruent to euclidean circles and have the same length.

3. Convexity of spheres. A sphere K(A, p) is the locus of those points
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X for which XA = p. The set v(A, p) is by definition the interior of K(A, p).

When a is the common length of the straight lines of a closed S.L. space

K(A, a/2) is the locus ß(A) of the conjugate points to A, and K(A, p) is

empty for p >a/2. In the following the radius p of a sphere is always assumed

to be not greater than a/2.

Theorems 2 and 3 enable us to simplify and to complete the theory of

spaces with convex spheres as developed in B, chap. 4. We shall indicate the

new method here.

In an open S.L. space we would naturally say that K(A, p) is convex if

a segment t(XY) whose end points X, Y are in or on K(A, p) lies except for

X, Y in the interior of K(A, p). But this definition cannot be applied to closed

S.L. spaces, since then not even all spheres of an elliptic space would be

convex. In euclidean geometry an equivalent definition of convexity is avail-

able in terms of supporting planes. One is therefore led to ask whether con-

vexity can be expressed satisfactorily in terms of the existence of supporting

geodesies.

We call the straight line / of a sphere like space or an S.L. space a tangent

of K(A, p) at Z if points X,^ F„ on K(A, p) exist which tend to Z and such

that the line <&(X,Yy) tends to t. We say that K(A, p) is convex if no tangent

of K(A, p) contains points of v(A, p). The spheres of an elliptic space are

convex in this sense.

On the other hand one might consider dropping the distinction between

the interior and exterior of a sphere and simply require that the spheres are

surfaces of order 2. More exactly we say that a set p. of a sphere like space

or of an S.L. space has order not greater than n if any straight line intersects p.

in at most n different points, or else is contained in p., and that p has order n

if it has order not greater than n but not order less than or equal to n—l. We

can then show the following:

(18) Let the sphere K(A, p) of an arbitrary S.L. space 2 not be the locus

ß(A) of the conjugate points to A and have order 2. Then K(A, p) is convex.

Assume for an indirect proof that a point Z on K(A, p) and a tangent t

of K(A, p) at Z, which contains a point P of v(A, p), exist. By definition t

is limit of a sequence of straight lines §(XVY,) where Xy^ F„, X,A = Y,A =p

and Xy->Z, Y,->Z. Choose P, on q(Xv F„) such that i\—>P.

First let 2 be an open S.L. space. Then either of the subrays of Q(XyY,)

with origin P, contains a point of K(A, p) (because PT varies continuously

as T traverses Q(X,Yy)). The ray which contains Xv will also contain Y„ at

least for large v, because X,Y,—>0. But then $(XyYy) would intersect K(A, p)

in at least three points.

Next let 2 be closed and K(A, p)^ß(A). Because of Theorem 2 the line

Q(XyYy) contains a point Q, of ß(A). Then QVA >p. For the same reason as

before either subarc of Q(XyYy) from P, to Q, contains a point of K(A, p),
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and for large v the arc which contains X, also contains F„, so that q(X,Y,)

would intersect K(A, p) in at least three different points. This result will be

completed by:

(19) If the spheres K(A, p) of a closed S.L. space have order not greater

than 2 then ß(A) has order 1.

We have to show that ß(A) contains the line g if it contains the two

distinct points X and Y of g. Call 5i and 52 the two subarcs of g from X Xo Y.

If the theorem were not true, at least one of the arcs, bx say, would contain

a point P with PA = p — t\, €i>0. Then 52 cannot contain a point Q with

QA =p — «2, e2>0, because the sphere K(A, p — min (ei, €2)/2) would contain at

least four points of g without containing g. Hence K(A, a/2) =ß(A) would

have to contain 52 without containing g, and would not have order less than

or equal to 2.

The results (18) and (19) lead to the following theorem:

Theorem 4. In any S.L. space the following properties are equivalent:

I. The spheres are convex.

II. The spheres have order not greater than 2.

III. A given point P has exactly one foot on a given straight line g; or else

PX is constant for XQg.

IV. If the point P does not lie on the line g, then either PX = const, for XCZg

and all lines fl(PX) are perpendicular (2) to g, or else there is exactly one per-

pendicular through P to g.

A proof of Theorem 4 may be obtained by combining our present results

with the results in B, chap. 4, §§1 and 3. Although many simplifications are

now possible we refrain from giving a complete proof here in order to avoid

duplication.

B, chap. 4, §1, Theorem 3, states that I implies III, and B, chap. 4, §3,

Theorem 1 contains the equivalence of II and III. Our present relations (18)

and (19) show that II implies I. Finally B, chap. 4, §3, Theorems 4, 5 and 6

yield together with the present Theorems 2 and 3 that IV follows from II.

Therefore we have to show here only that IV implies III. Let P not be con-

jugate to all points of g and not on g (otherwise III is trivial) and consider the

perpendicular q(PF), FQg, through P to g. Since not all points of g are

conjugate to P, F (as a foot of P) is not conjugate to P, so that q(PF) con-

tains a point Q with (QPF). According to the definition of a perpendicular F

is a foot of Q on g, therefore we have for every X^ F on g

PX > QX - QP ^ QF - QP = PF,

which means that F is the only foot of P on g.

<2> The straight line h^g is a perpendicular to g if k intersects g and all points of h have

this intersection as foot on g.
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Theorems 1 and 4 yield, together with B, chap. 4, §2, Theorem 1, the

following characterization of the elliptic spaces.

Theorem 5a. A closed S.L. space of dimension not less than 3, which has

one of the properties I, II, III, or IV, is congruent to a finite dimensional elliptic

space.

A sphere K(A, p) of a sphere like space of dimension not less than 2 whose

geodesies have length 2a is not convex as soon as p>a/2. But the point sets

which carry K(A, p) and K(A', a — p) coincide and one of these spheres is

convex. Therefore we conclude from Theorems 5a and 1:

Theorem 5b. Let 2 be a sphere like space of dimension not less than 3,

whose geodesies have length 2a. If the spheres of radius pga/2 are convex, or

if one of the properties II, III, IV holds, 2 is congruent to a euclidean sphere.

In B, chap. 4, §2 an example of Hamel was quoted to show that a closed

S.L. space is not even then necessarily elliptic when its geodesies are the

straight lines of a projective space. By means of Theorem 1 we see from

this example that there are metrizations of a euclidean sphere (of any dimen-

sion not less than 2) in which the geodesies are the euclidean great circles

but the metric is not spherical. The condition of Theorem 5b may therefore

not be omitted.

4. Two-dimensional spaces. The characterization (5) of the straight lines

suggests the problem to determine all spaces which satisfy Axioms A, B, C, D

and in which the geodesies are straight lines. As solution one would conjecture

the S.L. spaces and the sphere like spaces. The proof seems difficult for higher

dimensions but it is easy for two.

Theorem 6. Let each geodesic of a two-dimensional space 2 (with Axioms

A, B, C, D) contain a segment t(XY) when it contains X and Y. Then 2 is

either homeomorphic to the euclidean plane and an open S.L. space, or homeo-

morphic to the projective plane and a closed S.L. space, or homeomorphic to a

2-sphere and sphere like.

Proof. If no two geodesies have more than one common point, the asser-

tion is contained in B, chap. 3, §2, Theorem 1. Let therefore two different

geodesies g and h which have the two common points A and A' exist. It fol-

lows from (7) that they have no further common points and that g and h are

closed with A and A' as conjugate points on both lines.

Call tri, a-2 and T\, r2 the two segments t(^4^4') on g and h respectively.

Because of B, chap. 1, §4, Theorem 4, a standard neighborhood v(A, p) of A is

homeomorphic to a circular disk. Let Si, T, be the point on <ii and t3- respec-

tively with SiA = TjA =p, and call gx a geodesic which carries a segment

t(A'X), where X is an interior point of the unique segment t(SiTj). By virtue

of B, chap. 1, §4, Theorem 3, gx intersects t(SiA)-\-t(ATj). The point A is
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the only possible intersection because each intersection of gx with g or h other

than A' is conjugate to A' on gx and g or h.

Therefore the (unique) segment t(AX) lies on gx. The set^^t^X) with

X<Z^i,jt(SiTj) covers a whole neighborhood of A, hence all geodesies through

A are closed straight lines and pass through A'. The geodesic &(AX) is unique

because X is not conjugate to A, and varies continuously with X. Hence the

space is homeomorphic to the 2-sphere.

Consider now any point B^A, A'. There is a geodesic k through A and B.

Let / be any other geodesic through B. Since / crosses k at B and is a closed

Jordan curve it follows from the topological structure of a sphere that / inter-

sects k at some other point B'. We see as before that every geodesic through

B' passes also through B. Since B was arbitrary the space is sphere like.

In an elliptic space we have complete duality between point and hyper-

plane. The dual of a given theorem is obtained by interchanging a point A

with the hyperplane ß{A) formed by the conjugate points to A. In a general

closed S.L. space of dimension w^3, hyperplanes are not defined and ques-

tions of duality become void.

But we may ask whether there are duality relations which hold in every

closed S.L. plane. ß(A) will in general not be a straight line. But in the elliptic

case ß(A) may be characterized as the straight line which has maximal dis-

tance from A. We shall show the following theorem:

Theorem 7. For every point A of a closed S.L. plane s there is exactly one

straight line g(A) which has maximal distance from A. The correspondence

A^>g(A) maps 2 topologically on the set it of all geodesies in 2.

By Theorem 3 this theorem is equivalent to the following statement on a

two-dimensional sphere like space S.

For a given point A in 2 there is exactly one straight line g(A) which has

maximal distance from A. When A' is conjugate to A, then g(A) = g(A').

The mapping {A, A')—*g(A) of the pairs of conjugate points on the geodesies

in 2 is topological.

We shall prove this fact. Because of Theorem 6 the space 2 is homeo-

morphic to the 2-sphere. Designate by 4a the common length of the geodesies

in 2 and by d(A, g) the distance of the point A from the geodesic g. If A is

not conjugate to X then the line $(AX) is unique for XCg and intersects g

also in X'. We see from

(20) 2a = XA+AX'=X'A'+A'X
that

(21) d(A, g)=d(A', g)
and min {AX, AX') ga, hence

(22) d(A, g) ga. The equality sign holds if and only if AX =a for XQg.

The number d(A, g) depends continuously on A and g. For a given point

A there is a line go for which d(A, g) reaches its maximum wia.
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(23) d(A, g0)=m = a if and only if A has two feet on go which are con-

jugate to each other.

For if F and F' are feet of A on go, we see from (20) that d(A, go)=AF

= AF'=a. Conversely if d(A, go)=a, then AX = AX' =a for any X on g0

because of (22).

The main point of the proof is

(24) // go has maximal distance from A, then any open segment on go of

length 2a contains afoot of A.

Assume for an indirect proof that (24) is not true. Then it follows from

(23) that go contains no two conjugate feet. Since the feet of A form a closed

subset of go, there is a closed segment 5 of length 2a on go which contains no

foot of A, so that AX>m + e for X(Zs and a suitable e>0.

The endpoints F, Y' of s are conjugate. Call s' the other segment t(FF')

on g0. A foot Fol A is an interior point of s'. Since A F = m <a, there are points

Z with (AFZ). The line gz = g(FZ) is unique and passes through Y'. Call sz

the subsegment t(FF') of gz which contains Z and sz the other subsegment

t(FF') of gz. For Z—>.F we have gz—*go, sz^>s, sz —*s' and d(A, gz)-*d(A, go).

Consequently, when FZ is sufficiently small each foot Fz of A on gz belongs

to sz so that d{A, sz) =d(A, gz). But s' separates A from sz' in the domain

containing A and bounded by s and sz' ■ Hence d(A, gz) =d(A, sz ) >d{A, s')

= d{A, go), which contradicts the definition of go.

(25) Any line h^go contains an open segment of length 2a which is free

from feet of A.

This statement is trivial for A CZh. Let therefore A not be on h and desig-

nate by D and D' the intersections of go and h, by p the side of go which con-

tains A, and by / the segment t(DD') on h which is not contained in p. For

any interior point G of t the segment t(AG) intersects g at some point

H^D, D'. Hence G is no foot of A on h, because otherwise

d(A, h) = AG > AH ^ d(A, go),

which contradicts the definition of g0. We see that the interior of s satisfies

(25).
(24) and (25) show that go is the only line which has maximal distance

from A. We designate this line henceforth by g(.4). Moreover g(A) = g(A').

(26) If Br^A, A' then g(A) contains an open segment of length 2a which

is free from feet of B.

The statement is obvious for BQg(A). If B does not lie on g(A), let it

lie on the same side of g(A) as A. The line &(AB) contains a point H on g(^4)

with (ABH). If His a foot of A on g(^4), then any Xr^H on g satisfies the in-

equality

BX > AX — AB S; AG — AB = BG,

so that G is the only foot of B on g(^4) and (26) holds. If H is not a foot of A,
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we traverse g(A) from H on, in either direction, until we meet the first foot

of A. We may thus obtain the feet Fi, F2. Because of (24) we have F\F2<2a.

To prove (26) it suffices to see that t(FiF2) contains all feet of B. If G is any

point on g(A) — t(FiF2), the segment t(AG) intersects t(AFi) + t(AF2) at some

point R. Let R(Zt(AF{). Since FiF2<2a the point Fi is different from the con-

jugate point H' to H, hence we obtain, using that F\ is a foot of A,

BFi <BR + RFi = BR + AFi - AR g BR + AG - AR g BR + GR = BG.

This shows that G is not a foot of B.

We conclude from (24) and (26) that g(A)^g(B) for A ^B; therefore the

mapping A—>g(A) is one-to-one. The continuity follows immediately from the

continuity of d(A, g) in A and g.

It is easily seen that all geodesies of 2 form a set ir homeomorphic to the

projective plane. Let n map tt topologically on S. The mapping A—*g(A)

—>g{A)ß maps 2 on the subset 2' of those points which correspond to geo-

desies which have maximal distance from some point of 2. Since the mapping

of 2 on 2' is topological, we have 2 = 2'. Hence g(A) traverses all of tt as A

traverses 2.

This theorem throws some light on the difficulties of the problem to de-

termine the closed S.L. planes with convex circles, because it shows how weak

an assumption the convexity of the circles is in two dimensions.

Illinois Institute of Technology,
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