ON THE DISTRIBUTION OF QUADRATIC NON-RESIDUES
AND THE EUCLIDEAN ALGORITHM IN REAL
QUADRATIC FIELDS. I

BY
LOO-KENG HUA

1. Introduction. One of the aims of this paper is to establish an explicit
upper bound for the least quadratic non-residue, mod p. The bound is not the
best(?) which the author can obtain. The author gives such a result owing to
the following facts: in the present procedure we may adopt some known re-
sults due to Rosser(?) and it is sufficient to establish some typical results in
the study of the E.A. (abbreviation of Euclidean algorithm) of real quadratic
fields(®).

As to the results in the study of the E.A., we have the following theorém.

THEOREM. For d >, there is no E.A. in the quadratic field R(d'?), where
d is a square-free integer.’

There are three ways to sharpen the result, (i) by means of Euler’s summa-
tion formula to improve an estimate of a sum, (ii) reconsideration of the esti-
mate of certain character sumis, and (iii) by means of higher order “average”
of Riemann-Mangoldt’s formula to smooth some results concerning dlstnbu-

tion of primes(*).
2. Lemmas quoted from Rosser’s paper.

LEMMA 1. Let
9(x) = 2 log p
- pSz
Presented to the Society, October 28, 1944; received by the editors November 29, 1943.
‘(1) A better result has been obtained, for example, we may have d>¢'° in the theorem.
But the proof of it is at least ten times more difficult than the present one.
(?) Amer. J. Math. vol. 63 (1941) pp. 211-232.
(3) As to a detailed description of the history of this problem, see a paper by A. Brauer,
Amer. J. Math. vol. 62 (1940) pp. 697-713.
(*) When the paper mentioned in footnote 3 appeared, it was unknown only in the following
cases whether the E.A. exists or not:
I. d.=p where p is a prime of form 8n41 or p=61 and 109.
II. d=p1p,=1 (mod 24) where p, and p, are primes and p;=p,=3 (mod 4).
In both cases it was known that the algorithm does not exist if d is sufficiently large. But in the
meantime it was proved by Rédei (Uber den Euklidischen Algorithmus in reellquadratischen
Zahlkorpern, Mat Fiz. Lapok vol. 47 (1940) pp. 78-90) that the algorithm does not exist in the
case I1. The paper of Rédei was unknown to the author; therefore he considered the cases 1 and
IT in the original version of chis paper. But the case II is now without any interest. In order to
accelerate the publishing under the present conditions this paper was changed a little without
the knowledge of the author such that only the case I is considered. A. Brauer.
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where p runs over all primes not greater than x. Then we have, for x=1,
3(x) < (14 0.0376)x

and, for x =512, 3(x) > (1 —-0.0393)x.

Proof. (1) By (10) of Rosser, we have, for x=e38, $(x) <(14+0.0376)x.
As to x <e!®8, we have d(x) <x<(140.0376)x by Theorem 2 of Rosser.

(2) By (10) of Rosser, we have, for x=e?3, d(x)>(1—0.0393)x. For
712<x <e'8, we have, by Theorem 7 of Rosser,

d(x) > x — 2.78x12 > (1 — 0.0393)«.
For 512<x <712, we have, by Theorem 5 of Rosser,

3(x) > x — 2212 > (1 — 0.0393)x.
LeMMA 2. Let

. 1—e z dy
w(x) = 21, lix=h‘m(f + ) .
€0 0 1+e lOg y

pSz

Then, for x=2, we have w(x)<(140.0376)()i x-+1.85), and, for x=512,
m(x)>(1—0.0393)ls x —1.7.

w(x) > (1 — 0.0393)li x — 1.7.

Proof. We have the identity

= 3(y)d
3(2) _'_f d(ydy

(=) = y log? y

log «
(1) By Lemma 1, we have

(x) < 1.0376( )
2 log y

* dy
= 1.0376<f - )
0 log ¥ log 2 o logy

< 1.0376(l: x + 1.85),

using the value /7 2=1.04.
(2) By the identity, we have, for x = K = 512,

3(x)  ¥(K) _l_f’ 3(y)dy

— (K) =
(@) = =(K) logx log K x y(log y)?
1 —0.0393 HK
5 1 =0.0399)z ()+(1—00393)f
log x log K (log y)2

K . 3(K)
=(1- 0.0393)( 3 LK) — .
log K log K
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Thus
w(x) > (1 — 0.0393)(li x + K/log K — li K) — (¢(K)/log K — w(K)).
Taking K =512, we have the lemma, since
J(K) = 2519.887, m(K) = 378, li (K) = 392.48.

LEMMA 3. For x=2,
9(x)/x = 0.3465735.

Proof. For x =16, this follows from Lemma 1 and Rosser’s Theorem 6. For
x =16, the lemma is proved by the direct verifications

9(2)/2 = 0.3465735, 3(3)/3 > 3(4)/4 = 0.44794,
3(5)/5 > 9(6)/6 = 0.56686,
$(7)/7 > 3(8)/8 > #(9)/9 > 4(10)/10 = 0.53471,
#(11)/11 > 9(12)/12 = 0.64542,
9(13)/13 > 8(14)/14 > #(15)/15 > 9(16)/16 = 0.64437.
3. A lemma concerning series.

LEMMA 4. For ¢<A,

4la 4 log A A
S S < Alog—22 4 Dy,
_1 logg ¢

Proof. Since d li(4/x)/dx <0, we have

Alg A 4le 4 Alq Alz
th—<f t—dx+le f dxf
1 0

= (A/q)lig + A loglog A — A log log g.

REMARK. The inequality in the lemma may be sharpened by means of
Euler’s summation formula.
4. Lemmas concerning character sums.

+ i 4
log ¥ )

LEMMA 5. Let p be a prime and p=1 (mod 4). Then, for A <p, we have
1
é _ Apllz
£5(5)=3
where (5) is Legendre's symbol.

Proof. We may assume that p < (4 +1)2. For otherwise, we have

EE( ) EZI—_——A(A""I)S—-APIM

a=1 n=1
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It is well known that

it
A~
"&Iﬂ
~
(\N
b
3
s
I
—~
~ |2
~
~
s

We have
A a n 1 A e P y ]
pl/2z Z( ) P2 Z Z (_) = Z Z Z(_) e2rirnlp
am=]1 n=1 a=0 n=—a ? 2 6=0 nm—qg re=1 ?

1

27

= iﬁ(L) E za: e2rirnlp
2 D/ 6m0 nm—sa
1
2

i( r)sin2 (4 + 1)/p )

sin? wr/p
Therefore, we ¢btain

pCOIER

1 22! sin?#ar(4 + 1)/1) 1 22!

s—% S5 3 s

pl/2

o=l sin? 1"'/? re=1 gm0 n=—a
= p(A +1)/2 — (4 + 1)%/2 < pA/2.
LEMMA 6. Let ry, 7o, - - -, 1, be s distinct primes different from p. Then

é 2'_1AP1/2.

a=1 n=1,(n,r1ry: - re)=1 P

Proof. The sum may be written as

SEE)-5E £ () D5 5 (D)

There are 2° sums each of the form

A a n

> > (%)

a=1 n=1,m|n P
A [a/m] mx
=% (2)|o
a=1 A=l P
4 falml / )\
£E(;)|sn
a=1 A=l ?

A
< m=pU/2 = Apii/2
m

Now we have

2.2.0)

£20)

b=1 A=l

by Lemma 5. Thus we have the lemma.

(®) [x] denotes the integral part of x.
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LEMMA 7. Let ry, r2 and r; be the least three positive primes which are quad-
ratic non-residues mod p. Then

) , 2 4
r = _Pllz, re = P2 r3 S P2

1 ' 1 1
e
71 4] 72

Proof. The first inequality(®) follows immediately from Lemma 5, for
otherwise, taking A =pl2

E zz() S1=3a=—du+;

a=1 n=1 aml n=1 a=1

this is impossible.
We have, by Lemma 6, with A =r,—1,

A a
E Z 1 < Apre,

a=1 n=1, (n,r1)=1

Consequently, we have

1 A
(1 - —) > a < Ap'ne

41 a=1
that is,
(1 — 1/r)A(4 + 1)/2 < ApP2,
r S ————pi2,
- 1- 1/1’1 p

The third inequality follows similarly, since

a a a a a a
BB
71 L) 7172 7 2] 7172

5. The growth of the least quadratic non-residue.

LeMMA 8 (VINOGRADOV)(?). Let ¢, * + -, g, be all the primes not exceeding
A which are quadratic non-residues mod p. Then, we have

720-G)-7.5.0526)

Proof. The left-hand side is the number of non-residues n <4. Evidently
each such # is divisible by one of the ¢'s.

(%) See A. Brauer, Uber den kleinsten quadratischen Nichtrest, Math. Zeit. vol. 33 (1931)
pp. 161-176.
(") Trans. Amer. Math. Soc. vol. 29 (1927) pp. 216-226.



542 L. K. HUA [November

LeEMMA 9. Under the same assumption as in Lemma 8, we have
a

22 (i-(2)-722i=2 = [4)

a=1 n=1 P a=1 n=1 a=1 qS¢,Sal ¢y

Proof. Summing up the formula in Lemma 7, we have the above lemma
immediately.

LeEMMA 10. We have

q.szm [%] - [j‘iﬂ" (%) - [qil] (x(qn) — 1)

where q runs over all primes satisfying the inequality

Gn=g=s4.
Proof. We have
A A
> [——]= 1+ X 244+ X [—]
asg¢sal ¢ AZg>A/2 A/22¢>A[3 AllA/mlzeza L Q1

=m(4) — 7(4/2) + 2(v(4/2) — =(4/3)) + - - -

2/ [5]) - e+ )
- [j)_'“:r (‘i) - [ﬁ;—] (nlg2) — 1).

LeMMA 11. We have, for g<A,

A [a/q]

a logd lig 1.85
T —-) < 1.0376 XA(4 +1)/2]{ log + —+ —)
v log ¢ q q

a=1 y=1

Proof. By Lemmas 2 and 4, we have, for ¢<e <4,

al alq
Zf ( )<10376Z<h——+185)
14

y=1 r=1 4

log a a a
<1.0376(alog ——+ —lig+ 1.85—)
logg ¢ q

+a—+1.85—
log ¢ q q

The inequality holds evidently for ¢>a. Thus

A ale a 1.0376 log A Ui 1.85
zzw(—)< : A(A+1)(logloggq+ q+——>.

a=1 v=1 14 q q

log 4 Ui
< 1.0376<a log —2 1 )
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THEOREM 1. Let g, be the least quadratic non-residue, mod p. Then, for

p =€, we have
q1 = (60p1/2)0-625,

Proof. (1) For g:<e®*, we have
91 < (608125)0’625 § (60?1/2)0.525.

(2) We suppose that ¢; >¢®. By Lemmas 9, 10, and 11, we have
1 42 n 4 a
7250-G)=5 2.[7]
2 Ge=1 nel P a=1 q15¢9Sa L ¢
A [a/g] a A a
-5 54(3)- Z[2]ew -
1

14 a=1

A4 + 1 logd Ii 1.8
4+ )(lo og +zq1+ S)

IIA

a=1  y=1

< 1.0376
log ¢1 a1 a1
A4 + 1)(1 2 )
- — - - 1).
2 0 4+1 (7"(41) )

By Lemmas 5 and 2, we have

A + 1) Apre A4 + 1
i(( +n_ 1;)<1.0376 (2+ )<log

log 4 Ui 1.85
g + 41+ )

2 2 log ¢1 Q1 Q1
AA4+1)/1 2
_L__)(__ )(0.9607liq1—2.7).
2 Q1 A+1
Therefore
ool < loe A+liq1+1.85 1 (1 P2 )
og lo - PV
og log g1 < log log " ¢ 1.0376\2  2(4+1)
1 <1 2 )(0 9607 li 2.7)
1.0376\q, A +1) > 8T Ew
Taking
A4+ 1 = 60pt2,

we deduce easily that
log log ¢1 < log log A4 + 0.07412 15 q:/q: + 4.453/q
— 0.48188 + 0.00804
+ 0.03115 15 g;/p/2 — 0.0546(1/p1?).

Hence
log log ¢, < log log A — 0.472
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for e‘°<bq1 <p'? and
0.07412 13 g1/q1 < 0.07412 15 €3°/¢% < 0.00095,
4.453/q: < 10733,
0.03115 12 ¢1/p% < 0.03115 13 p1/2/p1/2 < 0.03115/38 = 0.00082.
Therefore
g1 < AT < go-oms,
We have also:

THEOREM 2. Let q1, g2 and qs be the least three prime quadratic non-residues,
mod p. Then, for p =e*°, we have

gz S (240p1/2)0.626
< (720p1/2)0-625,

and

The proof of the theorem is similar to that of Theorem 1, but we start
with the inequalities

1562zl 25D

a=1 n=1,q1/n a=1 \gyS¢Sal ¢ ¢25¢=a/q1 L ¢19]

and

= = (-()=z(zE]- .= [=

2 a=1 n=1, (q192,n)=1 a=1 3S¢gSa L q - 93SgSa/g, L qlq—

g el P o )
. . 93S9Sa/gy L q2q 9359Sa/g19: L1929 ’
respectively, instead of

7250-G)=z 2.[7)

The corresponding estimates are given in Lemma 6.
6. A necessary condition for the existence of E.A. in a quadratic field.

IIA

LeEMMA 12(8). For a prime p of form 4n+1, the E.A. cannot exist in R(p'/?)
if p can be writien in the form

P = qin1 + gama,

where n1, n2, q1, g2 are all positive and quadratic non-residues (mod p), and
where the q; are odd primes which divide q:n; to an odd power for i=1, 2.

(®) P. Erdss and Ch. Ko, Note on the Euclidean algorithm, J.(London Math. Soc. vol. 13
(1938) pp. 3-8.
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LemMA 13. Suppose that s <qi. Let po be the least prime not dividing s. Then
po < (1/0.346) log ¢1.
Proof. By Lemma 3,
#((1/0.346) log ¢1) = log g1 > log s.
Thus, there is a prime not greater than (1/0.346) log ¢; not dividing s.

LEMMA 14. Let p be a prime of form 4n+1. Let g1, gz, and qs be the least three
primes which are quadratic non-residues mod p. Suppose ‘that ¢.>3. If

? > (1/0.346)¢19295 log g1,
then we can find two positive numbers s and t such that
P = 59293 + i1
where (3)=1and (s, g2gs) = (¢, 1) =1.

Proof. We have
P = s5q2q9s + tq1, 0<s<q

If g1/ ¢, the lemma follows from Lemma 12 since

$¢2q3 < 19293 < p.

The other conditions are evident.
If q1| t, let po be the least prime not dividing s, then there exists an integer

p such that '
s +.1#g:1 = 0 (mod po), O0<u<p<qr

Hence
p = ((s + vg1)/po)pogags + (¢ — vg29s)q1.
Since
s+ ug1/po < (1 + w)g1/po = @1
and, by Lemma 13,
((s + ng1)/po)pogags < pogigeqs < p,
we have the lemma by Lemma 12.
LemMmA 15. If 1> 3 and
(1/0.346)¢19295 log g1 < p,
then there is no E.A. in R(p'/?).

Proof. The lemma is a consequence of Lemma 14.
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LeEmMA 16. If ¢1=3, there is no E.A. in R(p'/?) providing that

5
5q:q5 < p  for <-;) =1,
and

5
4095 < p for (;) = —1.

Consequently Lemma 15 holds also for ¢1=3.
Proof. (1) (%)=1. We may write
p = sqags + 3¢, where s =1 or 2.
If 34¢, then this gives us a required decomposition; if 3| ¢, then
p = (s + 3)g295 + 3(¢ — gzq5)

will give us the same result.
(2) (3)=—1. Then we may write

p = 5sgs + 3¢, where s =1 or 2.

For s=1, the method in (1) gives us a required decomposition. If s=2 and
3| t, we write
p= 40q3 + 3(t —_ IOQ3).

7. Proof of the theorem for the E.A.

THEOREM 3. For d>e®° and square-free, there is no E.A. in the quadratic
field R(dV?).

Proof. According to the results which are already known, it is sufficient
to consider the case d =p=1 (mod 4). By Theorem 2 we have

(1/0.346)q192q5 log g1 < (1/0.346)(60-240-72053/2)0-625 Jog (60p1/2)0-625 < p,
We have the theorem by Lemmas 15 and 16.
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