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1. Introduction. Let

(1.1) F = Fix, t) = Fixo, • • • , X», t) » «o + Xit + • • • + xntn = 0

be an algebraic equation with real coefficients, and let N„ix) = Nn(x0, • • ■ , xn)

denote the number of real roots of (1.1)(2). In this paper, we apply methods

of Fourier analysis and calculus of probability to the study of the function

Nn(x0,   •   •   ■   ,Xn).

Let     Kn=2ZUt2i,     Ln=2ZUjt2H\     Mn=2ZUPt2i~2,     Dn=KnMn-Ll,
Rn = Dn2/Kn, and define two linear forms in x0, ■ • ■ , xn as follows:

Xn=2Zl-otiXj/iKl12), F»= Y.UiKnjt'-'-Lnt^Xj/iKnDnY12. In §4 we show
that at each continuity point of 7V„,

/CO

Rn\ Yn\ exp [- Xlh/2]dt.
-so

Now, Nnix) is an (re + l)-dimensional step function, and consideration of the

discriminant of (1.1) shows that the set of points of discontinuity of Nn (the

set of points (x0, • • ■ , xn) for which (1.1) has multiple roots) is an (re + 1)-

dimensional cone. Thus (1.2) defines 7V„(x) almost everywhere. We also notice

that dXn/dt = RnYn.

To obtain (1.2), we start with a formula due to Kac [5, pp. 315—316](3) :

/CO

*,(F) | dF/dt | dt,
-00

where \J/t(x) = 1 if \x\ <e and \p((x)=0 otherwise. This formula holds for all

choices of Xo, • • • , x» if multiple roots are counted only once. In §2, we de-

velop a Fourier-like inversion formula for a certain class of step functions,

and this formula, applied to (1.3), yields (1.2).

Other formulas for Nn(x0, ■ ■ ■ , xn), based on the expansion of (1.3) in an

Hermite series, are also given in §4. In §3, we state without proof the lemmas

Presented to the Society, April 29, 1944, under the title On the average sum of the real roots

of a random algebraic equation, and February 26, 1944; received by the editors March 10, 1944.

(') The author is indebted to Professor Mark Kac for his aid in the preparation of this

paper.

(2) For the case F=0, we define Nn(0, • • • , 0) =0.

(3) Numbers in brackets refer to the references cited at the end of the paper.
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concerning Hermite series of functions of several variables which are needed

in this connection.

It is easy to verify that Xn and F„ are orthogonal, normal linear forms in

Xo, ■ • ■ , xn. This fact is of particular importance if we assume that xo, • • • ,xn

are normally distributed independent random variables, so that x¡ has density

(\/sj(2T)m) exp [- (x - erf/2s)].

By the additive property of the normal distribution [2, p. 50], Xn and Y„

are themselves normally distributed, and the orthogonality implies that Xn

and F„ are mutually independent. Kac [6] considered the special case in

which the x's all have standard normal distributions—that is, with cy = 0,

Sj=i—and found that the mean value (mathematical expectation =m.e.) of

Nn(x) is given by

RJt.

(The restriction s¡ = 1 is not essentially more severe than the restriction

5o = ii= • • • =Sn-) In §5 we show that, because of the independence of Xn

and F„, (1.4) can be obtained easily from (1.2). Using (1.4), Kac also obtained

the asymptotic formula

(1.5) m.e. {Nn(x)} ~ (2/ir) log ».

In §6, we consider the more general case in which the means Cj may be

different from zero and from each other. However, we still require that

sq = si= • • • =sn=s. This case may have an application to empirical equa-

tions; that is, equations in which the coefficients are to be determined experi-

mentally. The observed coefficients can be written in the form c¡+e¡, where

Cj represents the "true" value, and ey represents the error term which may be

assumed to be a normally distributed random variable with standard devia-

tion s. We thus assume that all of the coefficients are measured with the same

precision. With the further requirement that e0, • • • , e„ be independent, we

see that the "observed" coefficients are precisely of the type considered in §6.

It would seem desirable to compare the average number of real roots of the

"observed" equation with the number of real roots of the "true" equation

(1.6) co+ cit+ ■ ■ ■ + cj" = 0.

In spite of the apparent simplicity of this problem, the computational diffi-

culties seem enormous. Only in two cases did we succeed in obtaining reason-

ably accurate estimates of the difference between the average number of real

roots of the "observed" equation and the number of real roots of the "true"

equation. These two cases are:

I. The equation (1.6) has no real roots in the neighborhood of 1 and —1.
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II. The   equation   (1.6)   is   such   that   there   is   an   a»>0   such  that

\C0 + Cit+   ■   ■   ■   +Cntn\ >«„,   Oáfál.

§7 is devoted primarily to the investigation of the average sum of real

roots in a given interval. It is shown that the average sum of the absolute

values of the real roots in an interval (—.4, A), A > 1, is asymptotically equal

to the average number of real roots in this interval. This result makes even

more apparent the fact already noticed by Kac [6, p. 320] that the real roots

of random equations show a strong tendency to cluster (on the average)

around 1 and —1. Finally, we find that the average sum of the roots in an

interval not containing 1 or —1 approaches a limit as «—>=o. In fact, the

average sum of the absolute values of the real roots in ( — a, a), 0<a<l,

approaches — (1/ir) log (1—a2) as w—>°°.

2. An inversion formula for step functions in more than one dimension.

It is well known [4, p. 456] that if f(x) is a one-dimensional step function,

then for each continuity point of /,

<2.1) f(x) =- I     e™*dv I    f(s)e-ivs^l2ds.
2ir   J _„ ./-„o

Thus, in considering an (« + l)-dimensional step function f(x) =f(x0, ■ ■ -,Xn),

one is naturally led to a generalization of this result which we can write

formally as(4)

exp(2~1E4) r       r     ,.v
=-     vB+1-J   • • • J exP (*2w VjXj)dv

• J   • • ■   I f(s) exp (- iJ2 VjSj - 2~ 2 si)ds-

In many cases, however, the right-hand side of the last equation is divergent,

a fact which can be easily verified for the function 7V»(jc). Therefore, following

Hille [5, p. 448], we overcome this difficulty by introducing a parameter z

into the integrand. More precisely, for 0<z<l, we write

P(f; x, z) =. P(f; xo, ■ ■ • , Xn, z)

-  exP (2     ¿- xi)

(2x)"+l

(2-2) • j   ■ ■ Jexp (i^VjXj-2-\l - i*)5>5>*

"  I • • •   I f(s) exP (~ îzS visi — 2    11 Sj)ds.

(4) Throughout this paper we shall use the symbol / ■ • • / ds to indicate integration over

the entire (» + l)-space, and where no confusion arises, ^Z shall mean23"_0-
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We see that, formally, P(f; x, 1) is exactly the integral which appears above,

and in this section we shall show that for certain classes of step functions,

fix) =limÎH.i-P(/; x, z) at every continuity point of/.

We begin with the simplest type of step function, namely the charac-

teristic function of an (w + l)-dimensional open rectangle. Accordingly, let

T = E(X)[aj<Xj<bj]"j = 0, 1, • • • , n] and let gix) — gixo, • • • , x„) be the char-

acteristic function of T. Obviously

(2.3) *(*) = H «,-(*/).
J-0

where

For 0<2<1, let

exp (2    2^, xi)

m - fi
o,- < x < bj,

otherwise.

Iig; x, z) =
((2t(1 - z2)yi2)»+l

X) (*» - *i)*
•/ ••• • fit*) exp(-     -2("'_ ,*'     - 2~1Zs2j)ds.

Using (2.3), we have

"      exp i2~1x*j)     rx /      ixj-s)2 \
Jig; x, z) = IT -—-r-       giis) exp ( - —- - 2-h2 ) ds.

f_„  (2x(.l -z*)yi*J-J*'     P\      2(1 -22) /

Now, each integral on the right is the well known Weierstrass integral  [3,

p. 634 ] and we have

exp (2~V)      r°° (       ix-s)2 \

M = S (2.(1 - iwñjjMexp \r w^) " 2_l5rs

at each continuity point of g¡. It follows at once that

(2,4) gix)  =   lim Jig;x,z)
«-»1-

at each continuity point of g.

Lemma 2.1. If fix) is the characteristic function of an in+ 1)-dimensional

open set R, then at every continuity point off,

fix)   =   lim /(/; x, z).
«->i-

Proof. According to the definition oí fix),
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exp (2    2^ xi)
J(f; x, z) = -

((2x(l - z2))1'2)^1

i  •••/eXP(-     2ft- ¿f-2~lj:fys-

Let (x) be a continuity point off(x). If (x) ££7?, we can choose e>0 such that

\Xj — Sj\ >e for at least one j. Thus

I J(f; x, z) I ^ CXP ^        exp (- í2/2(1 - z2)),
((1 — z2)1/2)"+1

so that limz,i-J(f; x, z) =0. If (x)Ç£R, then we choose an open (» + l)-dimen-

sional rectangle T with center (x) and such that TCZR. Thus, if g(x) is the

characteristic function of T, we have

.   -1 -^     2
exp (2    ¿^ a;,-)

J(f; x, z) = I(g; x, z) +
((2tt(1 - s2))1'2)»+1

•L   • • • JeXP("     2((r-"z2f - ^ '0*'
By an argument similar to that used above, the second member of the right-

hand side of this equation can be shown to approach zero as z—>1_, and using

(2.4) we see that limz,i-/(/; x, z) = 1. This proves the lemma.

We can now prove the main result of this section.

Theorem 2.1. Let R0, ■ ■ ■ , Rp be open sets such that the complement of

y.LnT?, has (n +1)-dimensional Lebesgue measure zero. Letf(x) =f(x<¡, • • • , x„)

be defined by

(2.5) f(x) = ait        (x)<ERi-

Then at each continuity point of f, f(x) =limz,1-P(/; x, z).

Proof. There is clearly no loss of generality in supposing that f(x) is the

characteristic function of an open set. For 0<z<l, the integrals in (2.2) are

absolutely convergent, so we may interchange the order of integration and

obtain by an easy computation

exp (2    52 X,)
P(f; x, z)

((2tt(i - z2)yi2y+i

(2.6)

/•••JW-^&^-'-'E-'h
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so that Pif; x, z) =J(f; x, z)+I(f; x, z), where

exp (2    X) Xj)
I(f; x, z) = -

J ((2t(1 - z2)yi2)n+1

E ixj - SjY

2(1 - z2)

If we let isj—Xj)/il— z2)1,2=Vj, j = 0, !,-••,«, and write

/     2-(*/-iy)YL

— 1 ^—v     2
Gis, x, z) = exp (—2    2», J3')

exp ( - 2    2~2\ Sj(z   - 1) - 22*,5,Y——J       J - 1   ,

we find that

—i x—*    2
i i      exp (2    2^ *í)   r C
7(/; a:, z)    ^ - I • • •   I   Gis, x, z)ds.1 ' (O)1'*)-*1    J J

If l/2"2<z<l, then (l-z2)<l/2 and (1 -z)/(l+z) <l/4. Thus, for 1/21'2

<z<l, Gis, x, z) is dominated by

exp i- 2    2~1 sj) U + exP (2    2~2 I XjSj 1+4    X sj) ],

a clearly integrable function. It follows that, corresponding to an arbitrary

e>0, we can choose an (w + l)-dimensional sphere A with radius so large that,

if C(A) denotes the complement of A,

I        • • ■   I Gis, x, z)ds < e.
J C(A) J

Since limz^i~G(s, x, z) = 0 uniformly for is) G.A,

I    • • •   j   Gis, x, z)ds < e

for z sufficiently near 1. Thus lim2^i-|7(/; x, z)\ =0 and so lim.,_i-P(/; x, z)

= limz.i-J(f; x, z). The theorem follows by Lemma 2.1.

In §4 we shall use Theorem 2.1 to obtain new formulas for Nn(x). Before

doing this, however, we first consider expansions in Hermite series of func-

tions defined in more than one dimension, a subject closely related to the

considerations of the present section. We shall then also obtain in §4 an

Hermite expansion of Nn(x).
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3. Summability of Hermite series in more than one dimension. Hille [4,

p. 450 ] has shown that for a function which satisfies fairly general conditions,

the integral in (2.1) is summable, in the sense of Theorem 2.1, to the same

function to which the Hermite series of the given function is summablë Abel.

This result can be extended to the many-dimensional case. The properties of

the Hermite polynomials which are needed in this connection are well known

[l, pp. 331-351 ], and because of the similarity of the methods to those of §2,

the proofs will be omitted.

The mth Hermite polynomial is defined by

Hm(x) = (- l)*"exp (2~1x2)dm exp (- 2~1x2)/dxm.

For a function g(x) = g(x0, • ■ ■ , x„) satisfying the condition

(3.1) /    " / I g{x) |2 CXP (_ 2_1 ̂  *')dx < œ

we write

1

((2t)1")*4-1

C C      .   .    Hm0(So) Hmn(Sn) -1~     2
• | • ■ •   I  g(s)-— • • • -— exp (-2    2- Sj)ds,

J J m0\ mA

and

(3.2)      Sm(g;  X)   =  Sm(g;  Xo,  ■  •   •   ,   X„)   =       2Z Am0..-m„Hm0(Xo)   ■   '   ■   Hmn(xn).

Recalling the notation of (2.2), we have the following theorem:

Theorem 3.1. If g(x)=g(x0, ■ • • , xn) satisfies (3.1), then for 0<z<l,

P(g; x, z) =J]Z-oSm(g; x)zm.

The following theorem is an immediate corollary of Theorem 2.1 and

Theorem 3.1.

Theorem 3.2. If f(x) is defined by (2.5), then at each continuity point of f,

f(x) =IimJ,i-222"-o5m(/ ; x)zm.

4. Formulas for Nn(x). In this section we obtain several formulas for the

number of real roots N„(x) =N„(xo, ■ ■ • , xn) of equation (1.1). Let us recall

the following notation of §1 :

s»-E<". ¿n = z;^\

(4.1) Mn   =   ZyV'~2, Dn   =   KnMn  ~  Ln,

7?„ = Dn /K„.

Let a¡ = ti/Kn/2 and bj=(Knjt'-l-Lnt')/(KnDny12, and let
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Xn   =   Xn(x)   =   2-1 ajXj,

F„ = Yn(x) = 2~1 bjXj.

Then we shall find that at each continuity point of Nn,

Rndt
-00

00

j  exp [- ixlh2 + (« - Ynh)2)/2]du

(4.3)

/
and

(4.4) Nnix) = lim (Ä/(2ir)1/2) f   7?„ | Fn [ exp [- x\h''/2]dt.
»-•» «/_oo

Other formulas for 7V„(x)—(4.11), (4.12) and (4.13)—will be presented later.

It is easy to verify that 2^,0,¡bj = 0 so that Xn and Yn are orthogonal linear

forms in x0, • • • ,x„; also that

(4.5) Z>î-Ë*î-i.
These facts are of particular interest in the case that x<t, • • • , xn are identical

normally distributed independent random variables. For then the orthogonal-

ity of Xn and F„ implies that Xn and F„ are themselves normally distributed

independent random variables, while if m.e. {x¡\ =0, j = 0, 1, • • • , re, then

(4.5) means that Xn and F„ have exactly the same distribution as have each

of xo, ■ • • , xn. A further interesting property of Xn and F„, particularly for

(4.4), is that

(4.6) dXn/dt  =   RnYn-

To obtain our results, we start with Kac's formula (1.3). By virtue of (2.6),

2 V->      2
2^ xj

exp[
2(1 - z2)

PiNn,   X,   Z)

/_    Z  2^Xj\

V     2(1 -z2))

((2x(i - z2)yi2)»+i

r     r A7 . ,     /z2ZxjUj      YjUj \
•J...JiV„(M)exPivT—r-^_^jd«.

Letting Uj = Vjii—z2)112, and changing the order of integration,

/   «*L**\ rM       (i -«V      i
PiNn; x, z) = exp [-] I     <í¿ lim-

F\     2(1-2*)/''—      -o 2« ((2t)1")"+1

• • J *.((! - z2)i/2F(«, 0) | dFiu, t)/dt | exp Í      _   '      - 2    £ «, já«.
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The change of order of integration is easily justified by means of the inequal-

ity [5, p. 316]

f.(F) | dF/dt | dt g 3« - 5.

The integrals which appear above can best be handled by means of the

formula

-1— fT)Ui)n+lJ
(W2)

• J      II /r ( 22 9nx, j   exp I - 2     22 xi)dx

•exp Í — -   X) Ark°yrys ) dyx ■ - - dyk,
\        2Ai   r,s_l /

where Ajfc = ||22"-o3ryç»y||, r, s — \, 2, • • • , k, and where A" denotes the corre-

sponding minor of A*. We assume, of course, that At>0 and that/i, ••-,/*

are such that the integrals exist. This formula can be obtained in many

ways. Perhaps the best procedure is to use the language of probability [2,

chaps. 6, 10]. We can consider x0, • ■ ■ , xn as normally distributed independ-

ent random variables with mean zero and standard deviation one. Then

yT =lJj-oqrjXj, r = l, 2, • • • , k, are again normally distributed random varia-

bles [2, p. 50] and our formula follows from consideration of the joint dis-

tribution of yi, • ■ • , yk [2, pp. 109-110].

If we put k = 3, qij = t>, qtj—jP'1 and q3¡ = x¡, then

A3 =

JS-n Ln / , t Xj

Ln Mn ¿^J1     xi

22<'*j  Hjt1 xi   Hx¡

and we find that
1^      2

nNn;x,z)^e,o[-w-7)^Jn(x, t)dt,

where

I„(x, t) = lim
(1 - z2)1'2

r-m 2e (2tt)3/2A13/2

I   I tf«(«,(l
-00 J —00 "   —00

z2)1'2) [ u \ exp
(zv

(1 - z2)1'2

A(w, v, w)

2A3 )
dudvdw,

and
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11     2 22   2 33   2 12 13 23

A(m, v, w) = A3 w  + A3 u  + A3 v  + 2A3 wu + 2A3 wv + 2A3 uv.

According to the definition of \¡/t,

1 f"  f°, /       21» A(«, v, 0)\
IJx, t) — - I       I        «   exp I-) dudv

i2Tyi2A\i2J-.„J-J     ' Kií-z2)1'2 2A3     /

exp (A3z2/27)B(1 - z2))  f ".     . / Aj'z« K„u \
= - I      \u\ exp I-) du.

2TTD1'2 J-J \      Dnii - z2)1'2        2Dn )

We let u = u'iDn/Kny12, and noting that Af - - FniTfnD«)1/2, we have

r/   .     J?»      /    z\xl-2Zx))\
Inix, t) = -exp (-1

2x \ 2(1 - 22)      /

/CO

I «I  exp (- 2-»(« - zF„/(l - z2)lt2)2)du.
-x

Thus,

1   r™
PiNn;   X,  Z)   =   — Rndt

2ir J -„
2       2

•   f    | «|  exp (-—-2-\u - zYn/ii - z2yi2)2)du.
J -=o \     2(1 — z2) /

Now Nnix) satisfies the conditions of Theorem 2.1, so equation (4.3) follows

at once by putting /t = z/(l —z2)1/2.

To derive (4.4), let Pn(A) =P(A„; x, h/ih2 + 1)1'2), and let

/CO

2c. | F„| exp [- Xlh2/2]dt.
-to

Since linu_„P„(/t) = /v"„(x) at each continuity point of 7Vn, we show that

lim*.«,[P.(*)-e.(A)]=0. We have

Pnih) - Qnih) = —— f   Rn exp [- X2/t2/2]
i2iry<2J _M

•   - j     I « I exp (- 2~l(w - hYn)2)du - h\ Yn\ \dt.
L(27r)1'2J_00l     ' J

Using the well known formula

,    ,        1   /* °°  1 — exp iiva)

(4.7) l"l=- -
IT   J-~

dv,
v

we obtain by a clearly justifiable change of order of integration
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■- f    I «I exp (- 2-1(« - hYn)2)du

1 /•">  dv C"
= ^TTTT; -       (1 - exp (ivu)) exp (- 2~1(« - hYn)2)du

ir(2iryi2J-a> V2 J-«,

1   r °°   1 - exp (ivhYn - 2-W)

(2t)1

J dv
v

and
1 - exp (ivhYn)

h   F„   = — I      -dv.
T   J-

P.(*) - e.(A) = -ttttTt; f  *» exp'[- xlh2/2]dt
x(2t)1/2 J-«,

Thus,

/l - exp (- 2-V)
exp (ivhYn)-dv.

-00                                                                                        B

1   pM 1 - exp (- 2-V) / 2 y'2

ir J -x V2 \ t /

1 - exp (- 2-1»2)
I        exp  (IVflïn)

J -m
Since

(4.8)

(4.9) | P„(h) - Qn(h) | á (1/t)  f  7c„ exp [- x\lî/2]dt.
J — 00

But 7?„ exp [—Xnh2/2] is dominated by 7?„ which is integrable. Thus

/" 2    2 C°° 2    2
Rn exp [- X„A /2]dt =   I     7?„ lim  exp [- Xnh /2]dt = 0.

-00 »   —00 Ä—*0O

This establishes (4.4).

We now obtain other formulas for Nn(x), based on the results of §3. It

can be shown, using (3.2), that S2m+i(N„; x) =0 and

(_!)»+!   r=o^   ^   Hnm-r)(Xn)H2r(Yn)
at.

I_    1 ) m+l     /• co T71

(4.10)        Sim(N„; x) =-       #„22
2">X J-oo r_0Z¡    (m - r)\r\(2r - 1)

In obtaining (4.10)„ essentially the same integrals appear as those encoun-

tered in the derivation of (4.3). The only difficulties that arise are purely

computational in nature and, accordingly, wé shall omit the details. Now,

22"-0'S'2m(7V„; x) is a rearrangement of the formal Hermite series of Nn(x),

and therefore

r

(4.11) Nn(x) = l.i.m. 22 S2m(Nn; x).

Let (x) be a continuity point of 7v"„. Since 7V„ has the form (2.5), we can

choose a set Tx such that (x) £ Tx and 7Vn is constant over Tx. Then if | Tx I
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denotes the (re + l)-dimensional Lebesgue measure of Tx,

ff &»(.s)ds = Nnix) \TX\.

Thus, termwise integration of the formal Hermite series yields

(4.12) Nnix) = r—-r ¿    f   • • •   f Sim(N»; s)ds.
|   Tx I   m_o    " Tx J

If the diameter of Tx is sufficiently small, we can choose Tx in any manner

that we please, and it is conceivable that for some particular choices of

xo, ■ • ■ , xn, Tx can be taken in such a way as to make (4.12) useful.

Finally, in light of (4.10) and Theorem 3.2, we have at each continuity

point of TV,,,

-   (- i)«+v» /•-    « Hnm-T)iXn)n2
Nnix) =  hm   2j - I    Rn2~,-

2-1-  m-o 2mx        J_K     r=0   (ret-r)!r!(2r

5. A formula for m.e. { 7Vn(a;)}. We suppose now that the coefficients

Xo, ■ ■ • , xn in equation (1.1) are independent random variables. The results

of this section are similar to those obtained by Kac [5], and we follow the

methods which are employed there. We need the following lemma,

Lemma 5.1. For each h>0,

(V(2tt)    ) I    Rn\ Yn\ exp [- xlh'/2]dt < 3n - 1.
J -00

Proof. Let h, • • ■ , tp denote the points at which Xn has a relative maxi-

mum or minimum. If Vk = Xn\ t-tx,

< 1

1/2      C   k+1 2    2

(V(2tt)   ) I        Rn\ Yn\ exp [- Xnh/2]dt
J Ik

exp [- u2h2/2]du
"k

using (4.6). Also,

(ä/(2tt)1/2)  f   Ä„| Yn\ exp [- Xlh2/2]dt

^ (â/(2tt)1'2) f   ' exp [- u2h2/2]du < 1,
"   -00

and similarly

/» CO

P„| F„| exp [- X\h/2]dt < 1.
In
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The lemma follows from the remark that p is not greater than the highest

power of / in the numerator of F„; that is, p^3n — 2.

Theorem 5.1. If x0, ■ • • , xn are independent random variables with finite

first absolute moments, then

(5.1)   m.e. \N„ix)} = lim (â/(2tt)1/2)  f   Rnm.e. { | F„ | exp [- x\h'''/2])dt.
h—* oo J „oo

Proof. Since mathematical expectation is nothing but a Lebesgue in-

tegral over a set with a completely additive Lebesgue measure, the measure

of the whole set being one, it follows from Lemma 5.1 and a well known

theorem from Lebesgue's theory that

m.e. [Nnix))  = lim (V(2tt)1/2) m.e. j   f   Rn \ Yn | exp [- Xnh*/2]dX .

Using (4.2), we see that

/oo y» 00

2?„m.e. { | F„ | exp [— Xnh /2]}dt < max m.e. { | x¡ \ }   I    Rn2~2 I °i I dt.
-oo Oéjân J-x

An examination of b¡ shows that this last integral exists. Thus

m.e. <   j    Rn\ Yn\ exp [- x\\i/2]dt\

/BO

P„m.e. { | Yn\ exp [-Xnh /2]}dt,
-00

and the theorem follows.

In case x*, • • • , X„ are normally distributed, the orthogonality of Xn and

F„, as pointed out above, implies their independence. Thus, from a well

known property of independent random variables, we have Theorem 5.2.

Theorem 5.2. If x0, ■ • • , xn are independent, normally distributed random

variables, then

m.e. {N„ix)\

/oo
Te. m.e. { | Yn\ } m.e. {exp [- x\h/2]\dt.

-oo

The formula (1.4) obtained by Kac is now a simple consequence of Theo-

rem 5.2 and (4.5). For if x0, ■ • • , xn have independent, standard normal dis-

tributions, then so have Xn and Yn, whence

m.e. { I Yn\ } = - f    I 5 I exp i-2~1s2)ds = (—)
U       "        (27r)1'2J_0ol    ' \tJ
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and

( r 22/l) C °° / —122 —12 1
m.e. iexp   — Xnh   2 \\ =- I    exp (—2   h s   — 2   5 )ds = ->

1    P L J)      (2t)"2J_oo (h2+ iyi2

so that
h r" 1   ca

m.e. [Nn(x)\  = lim Ä.A = -       Rndt.
A->»      7t(A2 +   l)ll2J-x T   J-x

6. The average number of real roots in case the coefficients have means

different from zero. Remarks on empirical equations. In this section we sup-

pose that the coefficients in (1.1) are independent, normally distributed ran-

dom variables with different means, say c0, ■ ■ ■ , cn, but having the same

standard deviation 5. Thus, if Xq, • • • , xn are independent, standard nor-

mally distributed random variables, we can write (1.1) in the form

(6.1) (co + sxo) + (ci + sxi)t + • • • + (c„ + sxn)tn = 0.

Writing Nn(c+sx)=Nn(co+sx0, • • • , cn+sxn), we find from (5.2) that the

average number of real roots of (6.1) is

/oo

Rn m.e. { | Yn(c + sx) \ }
-oo

m.e. {exp [— Xn(c + sx)h /2]}dt.
Now,

m.e. { | Yn(c + sx) \ } = m.e. { | Yn(c) + sYn(x) | }

= (*/(2x)1/2) f°°| y\ exp [- (y - Yn(c)/s)2/2]dy
J -to

and

m.e. {exp [- x\(c + sx)h'''/2]\ = m.e. {exp [- (Xn(c) + sXn(x)f h*/2]}

= (1/(*V + l)1'2) exp [- xl(c)h*/2(h2s2 + 1)].

Therefore

/oo

Rn exp [- xl(c)/2s2]dt

/oo

\y\  exp [- (y- Yn(c)/s)2/2]dy.

Yet e„ > 0 be chosen so small that

(6.3) Pt„= E(,A\Xn(c)\ <en]

contains no turning points of X„(c) which are not zeros of X„(c). In case

Cn^O, we can write
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N„(c)

(6.4) 2\n=£7,-,
)=i

where the 7's are disjoint open intervals, say (r3-, s¡),j = 1, 2, • • • , 7V\,(c), and

where Nnic) represents, of course, the number of real roots of

(6.5) cq+ cit+ ■ ■ • + cjn = 0.

If c„ = 0, then Pe„=2~223+(—«>, a) + ib, +°°), where a and b are suitably

chosen constants. We shall suppose that c^O; that is, that (6.4) holds. If

c„ = 0,-the arguments below still hold with slight modification. We use C(PeJ

to denote the complement of P€n. Let

/CO

Rn\ Ynic)\ exp [- xlic)/2v]dt
-00

and

1/2       li 2 2

(6.7)     Bnic, v, e„) = (lA(2x)    ) Pn | Ynic) I exp [- Zn(c)/2» ]dt.

Jp<n

An immediate consequence of (4.4) is that Nnic) =limv^oAnic, v). Since

Anic, V)   —   Bnic, V, 6„)

= (lA(2x)1/2)  f        P„| Ynic) I exp [- Xlic)/2vt]dt,
JC^,n>

we have

l 1/2 2 2      C W
| ¿„(c, fl) - Bnic, v, en) I á (1/w(2tt)    ) exp [- en/2v ]        7cn | F„(c) | dt.

•2-00

Thus, limv,o[^4n(c, v)—Bnic, v, €„)]=0, and therefore

(6.9) Nn(c) = lim Bnic, v, e„).

By (4.9), we see that

/00

2cn exp [- Xnic)/2s ]dt.
-to

We now proceed to show that

/» 00

exp (- 2~xu2)du.
in/.

Since
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/>W« 22 2    2
(1 - « Xn) exp [- X„u /2]du

i/t

= (1/v) exp [- Xl/2v2] - (i/s) exp [- xl/2s2],
we have

Bn(c, V, in)   —  Bn(c, S, en)

1/2       C i C l,V 2      2 2 2

= (1/(2t)    )  I     7?„ I F„(c) I dt I      (1 - « X„(c)) exp [- Xn(c)u /2]du.
J p, J i/»

Now, using (4.6), we can integrate by parts and obtain

I    Rn \ Yn(c) | uXl(c) exp [- xl(c)u/2]dt
''

= - Zn(c) exp [- X2(c)u/2]\ '+  f  Rn\ Yn(c) I exp [- X2n(c)u/2]dt.
Jr, J Ij

Since

Xn(c) exp [— Xn(c)u /2]      = 2«„ exp [— t„w /2],
-I o

we find, using (6.4), that

f    7?n | Yn(c) | m2zI(c) exp [- Xl(c)u/2]dl

H 2 2        r
= - 2tnNn(c) exp [- ¿u/2] + (     7?„ | F„(c) | exp [- xl(c)u/2]dt,

Jp<n

so that

1/2 C llV -1 2    2

73» (c, », «n) — Bn(c, s, e„) = (2/x)    en7V„(c)  I       exp (—2   e„M )</«.
v i/»

Formula (6.11) is now seen to follow from (6.9) if we let v—*0.

Using (6,8), (6.10), (6.11) and the well known inequality

exp (- 2~lu2)du < (t/2)1'2 exp (- 2~la2),        a > 0,
•f a

we have

\Nn(c) -m.e. \Nn(c + sx)] \

(6.12)

+ Nn(c) exp [- ¿/2s¿]

(1/t)  f   7?nexp [- Xl(c)/2s2]dt
J -00

+ (1/î(2t)1/2) f        R»\ Yn(c) | exp [- xl(c)/2s*]dt
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It is interesting to ask under what conditions the left-hand side of (6.12)

is near zero. That some condition must be placed on the polynomial in (6.5)

is apparent from consideration of the trivial case co= • • • =c„ = 0; for then,

by (1.5),

¡Nnic) — m.e. }Nnic + sx)} | = m.e. {Nnisx)} ~ (2/tt) log re.

We shall, in the following, exclude this case from consideration, and also ex-

clude those polynomials whose real zeros are near 1 and —1.

Theorem 6.1. If, for a fixed ß, 0<ß<l, equation (6.5) has no real roots in

1—ß< \t\ <1+ß, and if s = en/i2an log re)1'2, where an>k>1, then, for «^2,

5 4 I P   I
(6.13) | Nnic) - m.e. {Nnic + sx)} \ <

re4-1      x0(4 - ß2)

where |P<„| denotes the Lebesgue measure of P,n.

In order to prove Theorem 6.1, we shall need the following lemma.

Lemma 6.1. For s>0,

(6.14)
(lA(2x)1/2)  f        Rn\ Yn(c) | exp [- xl(c)/2s*]dt

< (8«Vcn(27r)1/2) exp (- e2n/2s2).

Proof. The left-hand side of (6.14) is certainly less than

A = (l/ic-n(2,r)1/2)  f        Rn\ Yn(c)Xn(c)\ exp [- Xnic)/2s2]dt.
J C(Pe„)

Let h, • • ■ , ¿j, denote the points at which X„ic) has a relative maximum or

minimum but which are not zeros of X„ic). Using the notation of (6.4), we

arrange the r¡, s¡, and t¡ in ascending order and integrate over the successive

intervals so formed, omitting, of course, the intervals (r3-, s,). We find integrals

of the following kinds:

il/sen)  f *Pn| Ynic)Xnic)\ exp [- xlic)/2s*]dt
J si

where vk=Xnic)\ ¡=il;

<i+l

= ± (s/en)[exp [- Xnic)/2s ]].,

= + (i/«") [exp [— vk/2s ] — exp [— e„/2s ]],

/'    *+1 2 2

Rn | Ynic)X„ic) | exp [- Z„(c)/2S ]dt
tk

± (i/en)[exp [- vk+i/2s ] — exp [— vk/2s ]];
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(l/sin) f ' Rn\ Yn(c)Xn(c)\ exp [- xl(c)/2s2 ]dt

= + (VO [exp [— en/2s ] — exp [— vk/2s ]].

In each of these integrals we have made use of (6.4). Since the choice of e„

implies that \vk\ >e„, each of the above integrals is certainly less than

(2i/e„) exp [ —e„/2i2]. We also need to consider integrals from — 00 to the

smallest of the r¡, s¡, t¡ and from the largest of these to + =°. It is easy to

see that the last estimate holds for these integrals as well. Now p, the number

of relative maxima and minima of Xn(c), is certainly not greater than the

highest power of t in the numerator of Yn(c); that is, p^3n — 2. Thus the

number of integrals involved above is less than 4». Hence A ^ (8«s/e„(2T)1/2)

•exp [ —e2/2s2]. This proves the lemma.

Proof of Theorem 6.1. Denote by Ju J2, J3 the three terms on the right-

hand side of (6.12). From the inequality [5, p. 319]

(6.15) Rn^-,--,

and the hypothesis of the  theorem,  we  see that if 5 = 73(o[|i| ^l]  and

r = £(„[|i| >1], then

dt r dt 4   i>

(1/t)  f    7?nexp [- Xl(c)/2s2]dt
JP'n

/dt                      r           dt
-+ (1/t) - <

SP.n   l - t2                 JTPin  t2 - 1       t/3(4 - /32)

Also, since [5, p. 319]

(6.16) (1/x)  f   Rndt < (2/t) log » + (14/t),
J-00

we have

(1/t) I Rn exp [- xl(c)/2s2]dt < (1/t) exp [- e!/2s2]  f   Rndt
J   CÍ.P,.) J -oo

< (14 + 2 log «)/»*.
Thus

(6.17) /1 < (14 + 2 log »)/t»* + 4 I P,n I /t/3(4 - ß2).

Using Lemma 6.1, we find that

Ji + Jz < exp [- eI/2i2](8«s/f„(2T)1/2 + Nn(c))

(6.18) »j t_i
< (4/(t log n)     + \)/n     .

Combining (6.17) and (6.18) and supposing »>2, we obtain (6.13).
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The question of the proper order of s/e„ to insure that m.e. {Nn(c+sx)}

is near Nnic) is a delicate one and we shall attempt to answer it in only one

particular case. To that end, we shall confine ourselves to the interval O^t^l,

and Nnic) will designate the number of roots of (6.5) in this interval. All

previous results hold in this interval by simply replacing the integrals over

(— oo, oo) with respect to / by integrals over (0, 1). We assume furthermore

that the polynomials in (6.5) are bounded away from zero uniformly for all re;

that is, there is an e>0 such that for Oig/gl,

(6.19) £ at»
)«0

> €, » = 1,2,

A trivial consequence of (6.19) is that Nn(c) —0.

Lemma 6.2. If

HP) =  f     b\ exp [- iy-p)2/2]dy,
J -00

p real, then

2 =g lip) g 2+ i2wy2\p\.

Proof. Formula (4.7) and an easily justified change of order of integra-

tion yield

I(p) = (2/x)1'2 f   il - icospw) exp [- w2/2])dw/w2
•2 -06

= (2/*-)1'2 f   (1 - exp [- w2/2])dw/w2
«2-00

/OO

(1 - cos pw) exp [- w2/2]dw/w2.
-00

Let

Jiq) =   I     (1 ~~ cos w) exp [— w2/2q]dw/w2,        q > 0.
•7—00

Then

/to
(1 - cos w) exp [- w2/2q]dw

-00

= iir/2q°y2ii - exp [- «y/2]).

Since Jiq) is a continuous function of q, and since /(0) = 0,

J(q) =  r J'(s)ds = (W2dy2 f'(l - exp [- s/2])ds/s*'2.
•2 o «2 o
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Letting     s=qv2,     J(q) = (2ir/qy'2f*(l-exp   [-qv2/2])dv/v2.     By     (4.8),

I(p)=2 + (2/*yi2\p\j(p2), so that

I(p) = 2 + 2 f   (1 - exp [- p2v2/2])dv/v2.
J o

Then, obviously, I(p) ^ 2, and

/• oo

(1 - exp [- p2v2/2])dv/v2 = 2 + (2t)1'2! p\
o

by a second use of (4.8).

The following theorem will enable us to find the proper order of s in cer-

tain special cases. Let ^4n=22"-o|c;| and 73„=22"-a7|cj| •

Theorem 6.2. If (6.19) is satisfied, and if 0<a<l, then:
(1) 7/5 = e/(2(l+a)loglog«)1/2,

m.e. {Nn(c + sx)}

(6.20) 1        r 7 + log »      (2 log log w)1'21        1-7 +log»      (2 log log »)«* "I
--(An + Bn)     .
ny+'l       2t ít1'2 J(log m)1

(2) //5=^„/(2(l-a)loglog»)i/2,

(6.21) m.e. {Nn(c + sx)} > (l/ir)(log »)—1 f   Rndt.
Jo

Proof. Using (6.2) and Lemma 6.2,

m.e. {Nn(c+ sx)} > (1/t) |    Rn exp [- xl(c)/2s2]dt.

For 0£¿¿1, we find, using (4.2), that |X„(c)| <An. Thus

i.e. {Nn(c + sx)} > (1/t) exp [- aI/2s*] f  Rndt,
J 0

m.i

and for s=An/(2(l—a) log log »)1/2, we obtain (6.21). On the other hand,

Lemma 6.2 yields

m.e.
/. 1 2 2

Rn exp [- Xn(c)/2s ]dt     .
0

+ (1A(2t)1/2) f   Rn\ Yn(c)\ exp [- xl(c)/2S2]dt
J 0

< exp [- e2/2j2] T(1/t) f   Rndt + (1 A(2t)V2) f  R* \ Yn(c) | all
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Using (4.2), we see that for Og/gl,

| Ynic) | < iKn/Dny2Bn + LnAn/iKnDny2

so that

1/2      f1 i i
(1/j(2t)    ) I    R„\ Ynic) | dt

•J 0

Now,

< (1A(2^)1/2) [^„ J* '-A- + An f\Ln/KT)dt].

J0        J

iKn)

dt

iKny

and, since dKn/dt = 2Ln,

< 1

J 0

7-n r     -1/2,1
dt=   -    [Kn       ]     <   1.

'o   Tí3'2
n

Thus, using (6.16),

n r 7 + log « 1 1
m.e. {Nn(c + sx)} < exp [- e2/2s2]   ---2_ + -—-— (¿„ + Bn)

L 27T 5(27r)1/'! J

and with s = e/(2(l+a) log log re)1'2, we obtain (6.20).

It is now easy to verify that if An is bounded and if Bn = 0 (log re) as

re—»co—for example, if c¡=j~2—the estimates (6.20) and (6.21) become re-

spectively

fur i    i      N,   ^ il(l0g l0g M)1/2
m.e. [Nnic + sx)) <-

(log «)«
and

m.e. {Nnic + sx)} > p2(iog n)a

where pi and p2 are absolute constants. Thus, in this case, the proper order

of 5 is l/(log log re)1'2.

As a possible application of the foregoing results, let us pose the following

question: Suppose we have an equation of the type (6.5), the coefficients of

which are to be determined experimentally. With what precision should the

observations of c0, • • • , cn be made to insure that the equation with the ob-

served coefficients will, ore the average, have the same number of real roots

as has (6.5), the equation with the theoretical coefficients? The observed co-

efficients can be written in the form c¡+sx¡,j = 0, 1, ■ ■ • , re, where sxj repre-

sents the error term, x¡ being a standard normally distributed random

variable, and s the precision or standard deviation. We can suppose further-

more that x0, ■ ■ ■ , xn are independent. Thus the observed equation is pre-

cisely (6.1), and an investigation of the above question is nothing more than
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an investigation of the conditions under which m.e. {Nn(c+sx)} is near Nn(c).

The results of this section, particularly Theorem 6.1, offer a partial answer

to the problem.

7. Some further remarks about the roots of random algebraic equations.

We assume in this section that the coefficients Xo, • ■ • , xn of equation (1.1)

are standard normally distributed independent random variables. I am in-

debted to Professor Kac for suggesting the following lemma which is a gen-

eralization of his formula (1.3).

Lemma 7.1. If neither a nor b is a root of (1.1) and if ti, • • • , tk are the real

roots of (1.1) in the interval (a, b), and if <p(t) is continuous in a^t^b, then

k /» ô

22 <p(t,) = lim (l/2e)  J    <t>(t)MF) I W/M \ dt.
y_l «-»0 J a

Proof. Choose e>0 so small that no turning point of F in (a, b), which

is not at the same time a zero of F, has absolute value less than e. Then if

5€=£(j)[| F\ <e], we can write Se =22*-17,, where 7yisan open interval. Then,

since we obviously can suppose that <p is real,

2e min (¡>(t) <   I   <f>(t) | dF/dt \ dt < 2e max <b(t),
«£/y JIj tGIj

k n k

22 min <p(t) < (l/2e)  I   <p(t) | dF/dt \ dt < 22 max <p(t).
i-l   'GIj Js( ,-_!   <£/,

so that

Letting e—>0, the lemma follows from the continuity of <p.

Formula (1.3) is obtained from Lemma 7.1 by taking <p(t) =1. We find that

(7.1)      m.e. j Z *(</)} = lim (1/2«)  f   <p(t) m.e. {*.(/?) | dF/dt \ }dt
\  j-l ) i->0 J a

or

(7.2) m.e. j ¿>(/,-)j = (1/t) j \(t)Rndt.

To prove (7.1), we follow exactly the method used by Kac in the case

<b(t) = 1 [5, pp. 316-318]. We need only to remark that <p(t) is bounded for

aSt^b, and that the probability that either a or b is a root of (1.1) is zero.

In case the resulting integral exists, we can put a = — « and b = + oo in (7.2).

Formula (1.3) shows [5, p. 320] that, on the average, the real roots of

(1.1) cluster about 1 and — 1. The following theorem gives an indication of

just how close the roots are to these points. It states, in effect, that in finding

the average sum of the real roots, we obtain the correct asymptotic result

by taking each positive root as 1 and each negative root as  — 1. Recalling
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that the average number of roots in any open interval containing 1 and — 1

is asymptotic to (2/ir) log re, we have

Theorem 7.1. If h, • • • , /* are the real roots of (1.1) in the interval i—A,A)

with A>1, then m.e. { £*-i|U\ }~(2/ir) log re.

Proof. Putting (bit) = \t\ in (7.2), we find

m-e- { ¿h/|l = (2/x)  f  tRndt = (2/,r) f   tRndt + (2/w)  f   Rndt/t.
I  ¡-1 J ■2 0 •'0 J l/A

We shall need the following estimates [5, pp. 319-320]:

(7.3) Rn á ((2re + 1)/(1 - i))1'*, 0g/<l,

(7.4) Rn > (1 - (re + 1) Vy'Va - I2), 0 á f á a < 1.

From (6.16), we see that f]tRndt<f]Rndt< tf + log «)/2, and by (7.3) and

(6.15),

/-l                                  /.l-l/n              ¿¿ /. 1

P-nC^A   g     I -■   +
l/A J.1IA tii-t2) J l_1/n

(2re + l)1'2^

(1 - ty2

< i% + log iA2 - 1) + log «)/2.

Thus

m-e- { Z | tj\\ < (2 log re + 14 + log iA2 - 1))/t.

In order to obtain a lower estimate, let e and a be arbitrary positive numbers

less than 1. Then by (7.4),

I    tRndt >  f
J o «2 o

(l-n«-1)1«

tRndt

> (1 - (re + 1)2(1 - re«"1)»)1'2 I
•2 o 1 -

and for n sufficiently large, this can be made larger than

(1 - «)1/2

/.

(1_„a-i,l/*        m

1   -  t2

Thus fltRndt> il-ey2ii-a) ilog n)/2. On the other hand,

f    Rndt/t >   f    Rn
J l/A J l/A

>(1 - e)

following [5, p. 320]. Therefore

Jt
l/A «/ l/A

>(1 - e)-'*(l - a) (log »)/2 - log ((4 + l)/(¿ - l))1'2,
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{ EM} > (2A)(1 - e)"2(l - a) log« - (lA)log [(A + 1)/iA - 1)].m.e
i

Since € and a can be made arbitrarily small, the theorem follows at once.

A natural question to ask now is whether the average of the sum of the

roots in an interval not containing 1 or — 1 has a limit as re—» ». This question

can be answered in the affirmative by means of the next theorem.

Theorem 7.2. If h, • ■ • , tk are the real roots of il.1) in the interval (—a, a)

with 0<o<l, then

lim  m.e. { ¿ | t¡\\ = - (1/tt) log (1 - a2).
»-no \   j=1 )

Proof. From (7.2) and (6.15),

m.e. < ¿ | tj\ \ = (2/tt) J     tRndt

/'a      tdt

= - (l/r) log (1 - a2).
Using (7.4),

( A I       11 Ca tdt
i.e. {EM} > (2A)(1 - (»+ 1)V")»'»J     ̂ ~

7"
- (l/x)(l - (re + l)2a2")1/2 log (1 - a2).

Since 0<o<l, limn^«, (re + l)an = 0, and our result follows.
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