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1. Introduction. This paper considers some new problems in the charac-

terization of functions or classes of functions by orthogonality relations. In

contradistinction to the usual problems treated in this connection, those taken

up here are nonlinear. Other alternative formulations of this investigation

are possible. Thus, as one instance, our work may be considered a chapter

in the theory of special systems of quadratic equations in an infinite number

of variables. It is expected that the methods used and the results obtained

will direct attention to a wide variety of allied significant questions.

Consider an oddC1) function f(x)(EL2( — ir, it) which is periodic of period

2ir and satisfies the conditions

1 r T
I — I   f{nx)f(mx)dx = 5nm, n, m = 1, 2, • • • .

tt J _x

A natural conjecture is that/(x) must be sin kx, k= +1, ±2, • • • . The spe-

cial case {f(nx)} complete proves entirely misleading and in the absence of

further restrictions the conjecture is false. There are in fact an infinite num-

ber of solutions, not of the form conjectured, but they are hardly obvious.

Our main interest is the study of such functions.

We list our principal conventions. We write [f(x), g(x) ]=n—1fr_rf(x)g(x)dx

and the norm, ||/|| = [f(x), f(x)]1/2 (this is 7r~1/2 times the usual norm). The

space Li{— w, tt) consists of the measurable odd functions with ||/|| < ». Un-

less otherwise stated, all functions of the real variable x are understood to

be in L2(—ir, it). The class K consists of functions/(x) which are odd, of

period 2tt, and satisfy I. The more extensive class for which I is satisfied

when inf(w, m)^N is denoted by Kn- In view of the Riesz-Fischer theorem

[2, pp. 10, 23](2), f(x)£K implies /(*)~2~£i«< sin ix, {a,-} Eh- We shall
write a for {an}. The terms "norm" and "completeness" are used in connec-

tion with the spaces k or L2(— it, w) only. The subclass K'QK consists of

Presented to the Society, November 27, 1943, under the title Orthonormal sequences; re-

ceived by the editors May 4, 1944.

(') The requirement that /(*) be odd is not essential. Indeed all our results are valid for

functions whose mean value is 0 on — tt^x^it. Thus/(x)~2^a»e*"V2 where o„=o_„, o0 = 0.

However, with complex coefficients the correspondent of f(x) =sin kx is f(x) =at cos kx—ßh sin

kx with I ot| =|a*+i/3t| =1. It seems preferable to gain uniqueness by requiring either the

ock's or ß,'s in the expansion oif{x) to vanish.

(2) Numbers in brackets refer to the Bibliography.
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functions for which a£/i. In order to avoid cumbersome repetition we write

a£K, K', or Kn to indicate the fact that the corresponding/(*) belongs to

these classes. Moreover, we shall often refer to a orf(x)(E.K, K' as a solution

of our problem. We have as the equivalent of I,

oo

II 2 amkdnk = 8mn, (*», ») = 1,

where 5m„ is the Kronecker delta and (m, n), as is customary, denotes the

greatest common divisor of m and n. We shall use the convention at = 0, t non-

integral. Thus we can write II as

00

zZ ß*öm*/n = 5mn, (m, n) = 1.

Most of the results obtained fall naturally into two main categories. Ac-

cordingly, with certain important exceptions the first ten sections are pri-

marily concerned with the specialization a£li, and the remaining sections

with a£lä, A brief partial summary of some of the main conclusions follows:

The numbers refer here to sections. In (2) it is shown that there are an

infinite number of nonvanishing an's if at least two of them are nonzero.

If f(x)E.Ki and {/(»*)} is complete then f(x) =+ sin x. If f(x)(E.K and
\f{nx)) is not complete the addition of no finite collection of functions can

complete the system. In (3) we develop an important criterion involving the

Dirichlet series associated with f(x). Explicit solutions of our problem are

given in (4). In (5) it is shown that no nontrivial linear combination of two

functions in K' can be a solution though, for certain special types, a linear

combination of 3 solutions may be a solution. A formulation of our problem

as a nonlinear integral equation furnishes the content of (6). In (7) it is shown

that the hypothesis f(x) G-KW precludes the possibility of representing

sin x, • • • , sin 2Nx even with the addition of N new functions to {f(nx)}.

Examples are given to show that if gr(mx), r—1, • • • , N; «* = 1, 2, • • • , are

adjoined then \f(nx)} may be completed. Section (8) indicates some curious

identities for an's, corresponding to certain solutions in K'. In (9) it is shown

that in a natural sense the most general transformations leaving the class K'

invariant are generated by a special type of rational function. The most gen-

eral solutions in K' involving powers of mrz alone are restricted types of

rational function of m~*. Section (10) is perhaps of special interest and con-

siders certain additional restrictions under which a solution in K' is unique.

It is shown in (11) that K is norm closed in l2 and that any finite number of

an's may be chosen in an essentially arbitrary manner. In (12) a more general

criterion for a solution, involving the associated Dirichlet expansion, is pre-

sented. On the basis of this criterion an example of a solution in K but not in

K' is given. The last section involves, in part, considerations not special to
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our problem and shows in particular that if anA0 for two values of n then

Eanw" has a singularity at w=\.

2. Preliminary results. In this section we present some results useful for

the purpose of proper orientation.

Theorem 2.1. Ifa^K' then = 1-

Since {o„} is absolutely convergent, so also is (2^ffl«)2=Z'».»a»a»", and

we may rearrange as a sum of series each corresponding to one in II.

Theorem 2.2. If a£.K then either there is just one or else an infinite number

of nonzero terms.

Let ßAf be the first and ün the last nonzero term in a. Let (M, N)=D

and define M' = M/D, N' = N/D so that (M', N') = l. Then from II using

m = M', n = N' we have omOn= omw- Since omcinAO it follows that M' = N'

= 1 and M=N.

Theorem 2.3. If a£.K and 0< \ap\ <1, p a prime, then akpA0for an infi-

nite number of values of k.

Suppose to the contrary that akp = Q for every k>N and apxA0. Let ant

be the first nonzero term in a. Define M' = Mf (M, Np) and N' = Np/(M, Np).

Since (if', N') = \ we derive from II, ani clnp = o~m-n- whence M=Np. Since

M^p we must have M=p. Thus ap is the only nonvanishing term in a; but

then \ap\ <1 and ||a|| = 1 are in manifest contradiction.

The following theorems indicate the great restriction imposed by a com-

pleteness, or closure, hypothesis. (The remarks in §7 are highly pertinent.)

Theorem 2.4. If f(x)e.K\ and \f(nx)} is complete thenf(x) = +sin x.

This theorem is included in a formally more general statement.

Theorem 2.5. If fi(x)£Ki and [f^x), fj(nx) ] = 5iy5i„ and if {fj(nx) \j= 1,
• • • , 7Y; n—1, 2, • • • } is a complete system then fi(x)= +sin x.

Write/i(x)~Ea'>SU1 nx- F°r arbitrary e>0, ||sin x —2~2jLi2~2m=ici,mfj(ntx)\\

<e, where M, cy,m may depend on the choice of e. Hence(3)

I a» I =1 [/i(*)> sin nx] \

AO). X X) c,-,mfj(mnx)
7—1 m=l

I r- JV

4-    fi(x), sin Cj,mfj{mnx)
I L j'=l m=l

g Mum I «f.* I 4- e||/i(*)||.

(3) Except when otherwise stated, the term "Dirichlet series" will be restricted to series of

the form 2~2b„/n'.

1
1
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Since e>0 is arbitrary, it follows that a„ = 0 for «>1. Moreover ||/i(x)||=l

and therefore/i(x) = +sin x.

The next theorem shows how sparsely distributed are the solutions of I.

Theorem 2.6. If + sin xAf(x)EK the system {/(rax)} cannot be completed

by the adjunction of a finite number of new functions.

Suppose the theorem false. Then {g<(x)|i=l, • • ■ , A7}, {f(nx)} is com-

plete. Let Q be the orthogonal complement in Hilbert space of the closed

linear manifold determined by {/(rax)} [2]. Obviously we may consider Q

to be the linear extension of {gi(x)\i=l, • • • , A7} where [gi(x), gy(x) ] = 8<y.

We write g,(x)~Z*°.-i-^ ** sin kx,f(x)~Zj- i^y sin jx.

Our assumption requires that

N 00

sin kx = 2~2 Cikgi(%) + Z dnfinx).
1=1 71=1

On multiplying by g»(x) or /(rax) and integrating over — 7r^x^ir we may

verify that c,J = A <*, d„ = ak/n.

Thus

(2.1) 1 = Z + Z <**/»/(»*)•
1=1 71=1

Since the functions on the right side are mutually orthogonal

(2.2) 1 = Z 04i*)2 + Z («*/»)2.
1=1 n

By Bessel's inequality

J    N     n r NM

n = - Z    (s<(*))2^ ^ Z Z (Asy,
*"     1=1 ^ — IT 1=1 *=1

for arbitrary if. Hence, in view of equation (2.2),

M 00

A7 ̂  if — Z Z («*/n)2
t_l n=l

or

(2.3) 1 - TV/if S Z Z (^/ny/M.
k=l n=l

Let £ be any positive integer. Then, for every integer m not divisible by p,

we have

Z («wn)2 ^ i - {aPy.
n



336 D. G. BOURGIN AND C. W. MENDEL [May

The number of positive integers below m+l which are not divisible by p is

m—[m/p], where [m/p] denotes the greatest integer not exceeding m/p.

Thus

(2.4) f) £) (a-,,)*    m - (m - l—Vla,'.
m-l n-1 V L p J /

Plainly [m/p]/m^l/p. Then by equations (2.3) and (2.4,

N/M = ap*(p - \)/p.

Since n is fixed and m is arbitrarily large it follows that ap = 0 for p> 1 or

f(x) = ±sin x. For results that in some respects generalize Theorem 2.6, cf.

Theorems 7.1 and 7.2.

3. Dirichlet series formulation. Consider now the Dirichlet series(3),

(3.1) <p(z) =  X) anfl~z,

where {an} is the sequence of Fourier constants for f(x). It is trivial that

aeh or a£/i implies absolute convergence of this Dirichlet series for

i?(z)>l/2 or R(z)=0 respectively. Uf(x)eK', K, KN the corresponding <p(z)

will be said to belong to K', K, Kw-

Theorem 3.1. The relation agiC' implies and is implied by a eh, and

IZön«'"! =1.

It is convenient for many purposes to replace considerations on a line by

those involving the complex plane.

Theorem 3.2. Necessary and sufficient conditions that <p(z) be in K' are

(a) 4>{z) is meromorphic, (b) <p(z) admits a Dirichlet expansion converging ab-

solutely for R(z)^0, and (c) III: <p(z)<p{-z) = 1.

The essentials of these theorems are brought in relief by making the pre-

liminary stronger assumption that the absolute convergence abscissa in equa-

tion (3.1) is F(z)= —e, e>0. This is to sayXo„ra-z and2^»»«' both converge

absolutely in the strip |F(z)| <e. In this strip we have, after permissible

rearrangement of terms,

(3.2) *(»)*(- %)=4 e (Y—y+ (-)) z

Uf(x)eK' then, in view of II,

III <t>(z)<t>(~ z) = L

This functional equation valid in the domain |P(z)| <e may be combined

with equation 3.2 to define <p(z) throughout the finite plane. Since possible

zeros to the right of the imaginary axis are of finite multiplicity, it follows
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that in the finite plane <p(z) can have polar singularities only. That is to say

<p(z) is meromorphic. We now proceed to the proof of Theorem 3.1.

Since an is real, the conjugate of zZanftiy is 2Za"n~iv- We recall that the

definition of the class K' involves d£li. Hence <j>(iy)<t>( — iy) has the represen-

tation given in equation 3.2 with iy replacing z. Therefore

i = <p{iy)<p(— h) = <t>(iy)<t>(iy) = I X) o,nniv\2.

For the reverse implication we must show that II is implied by III when a£ii.

A little reflection will show that our purpose will clearly be accomplished if

we show that the condition zZ^rriv = 0 where r ranges over all positive ra-

tional numbers and T!|/3,| < °o guarantees Br=0. This is essentially well

known [3, chap. 2]. Indeed if \f/(t) =Z>-<< Br then \f/(t) is of bounded variation

and

0 = lZ Brriy = f eu»d+{t).
d _oc

Then, either from the uniqueness of the integral representation or the fact

that

Lr^^~ f T I Z Brr*\Hy = £ (*(r +) - *0 -))2 = 0,
2T J —t

we infer Br=0.

In order to establish Theorem 3.2 we require a preliminary result.

Lemma 3.1. // a£X' then <p(z) defined by equation 3.1 can be continued to

the whole finite plane by <p( — z) = \/<b{z) and is then a meromorphic function

with poles at the negatives of the zeros.

Since flG^i, the Dirichlet series for <p(z) converges absolutely uniformly

for R(z)=Q and hence defines a function holomorphic for R(z)>0 and con-

tinuous on R(z) = 0. In view of Theorem 3.1,<p(z) has no zeros on the imaginary

axis. Let D\ be the half plane R(z) >0 from which the obviously isolated zero

points have been removed by nonoverlapping circles in R(z)>0. Let D2 be

the reflection of F>i in z = 0. Define <pi(z) in X>2 by z) = l/<f>(z), zGA.

Plainly <pi(z) is analytic throughout D2 since the derivative exists at —ZiGF>2

and is equal to
-*'(*)/*(s)2|~..

On approaching z = iy0, through values in D2 we get Lx^+,y^Va<t>i{ — x+iy)

= Lx*.o+,v~v0 l/<b(x — iy) = l/<j)( — iyo). The limit through Di values is <p(iyo)

which is identical with l/<f>{ — iyo) in view of Theorem 3.1. According to a

well known extension of the Schwartz reflection principle [4, p. 157] it follows

that <pi(z) is the analytic continuation of <p(z) and hence that <p(z) is analytic

in the open part of the union of the closures of D\ and D2. On allowing the
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radii of the circles, cutting out the zeros in Di, to approach 0 the assertion

concerning the position of the poles is easily verified.

Evidently Theorem 3.1 and Lemma 3.1 together imply the necessity con-

ditions in Theorem 3.2 (with the understanding that when <p(zo) = 0, III is

to be interpreted as L2^0<p(z)<p( —z) = 1). On the other hand hypotheses (b)

and III yield the sufficiency condition in Theorem 3.1. Our proof is therefore

complete.

4. Some examples in K'. The replacement of I or II by III constitutes

a notable simplification. Thus for solutions in K' we seek a meromorphic

function <p(z) whose zeros have positive real parts, and whose poles are at the

reflected points through the origin. Furthermore, <p(z) is to satisfy III and

admit an absolutely convergent Dirichlet series for R(z) ^0. A basic example

of such a function is given by

(E) <p(z) = («— - A)/(I - Am-')

where A is real with \A | <1 and m is an integer not less than 2. A function

of this type as well as the corresponding sequence a and function f(x) will be

called an elementary solution. The expansion for <j>(z) is given by

oo

<b(z) = - A +        -A)zZ (Am-)', \A\<1.
n— 1

Thus ak = 0 for k not a power of m; ai = — A and for k = mn

(4.1) ak = (1 - 4 V"-1, n = 1, 2, • • • .

Solutions of the form m~l with m = 1, 2, • • • are referred to as unit solutions.

Theorem 4.1. If </>&)£!£', j= 1, • • • , N, then <p(z)=HUAz)eK'.

The proof is trivial since the Dirichlet series for 4>j(z), j= 1, • • • , N, and

hence for <p(z) also, converge absolutely for R(z)=0 and III is obviously

satisfied.

Remark. It is natural to consider infinite product of solutions <j>j(z)(£K'.

Solutions in K may actually be generated in this way under certain further

restrictions. If for instance the functions <pj(z) are elementary solutions any

infinite product involves an infinite number of zeros (or zeros of arbitrarily

high multiplicity) in a bounded domain, and hence the presence of essential

singularities in the finite plane. Accordingly such new classes of solutions

cannot be members of K'.

Functions in K' may sometimes be factored into products of functions

similar to the elementary solutions except that the constants A need not be

real. For instance, the product

N

U(p-'+ o«,)/(l 4- ao>ip->)
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is a solution, where Wi, • • • , Wn are the Nth roots of unity, a is real with

I a I <1 and p is an integer not less than 1. In fact, this product is itself the

elementary solution obtained from (E) by setting m = pN, A = —aN.

Formally, the function eQ(z> where Q(z) is odd satisfies III, but this ob-

servation is not of as much value as might be expected since, for one thing,

the requirement of expansibility in a Dirichlet series remains, but cf. §§11, 12,

13. The same remark applies to the expression <f>(z) = F(—z)/F{z). However,

the last form is of direct application. Thus suppose a'^K' with EfT-il^»'!

= M,. Write <p„(z) for the corresponding function in K' and {a,} for a set of

N real constants.

Theorem 4.2. If Efla-^M <1 then <p(z) = ((1 +X)f«0<6„(-z))/(l
4Xfa^z)))nf<Pp(*) belongs to K'.

For z = 0, |EiW*(°)| ^Ef|a*l <1 since M, = l (Theorem 2.1). By
continuity l£fce«e),(-) | <1 if |z| <5 for some 8>0. Hence

14- E      ) = E (- E <*°<pM) •

n

E OCa<t>a(z)

Now, forF(z)^0

°°   / n

E( El
n-0 \ (T-l

<°   /  n \n

E( E |ot»Af.|) < 00•

Therefore En-o(—E^-iEB-i^^mV^O" is absolutely convergent as a multiple

series in n, <r, and m at least in the half circle Ds: R(z) SgO, | z| < 5. Accordingly

the terms may be rearranged. Now

n uz) (i+e «^.(- 2)) = n   + e «r^.w,

where F„(z) is m_r&>(z)/0„(z). Hence the numerator in the expression for

4>{z) is a sum of absolutely convergent Dirichlet series for R(z) = 0. It follows

finally that <p(z) is expansible in a Dirichlet series, absolutely convergent for

zGf s and then for R(z) ^0 also. Plainly <p(z) satisfies III. Our proof is com-

plete.

An interesting class of solutions is obtained by replacing <pP(z),

p = l, • • • , N, in the expression for <p{z) in Theorem 4.2 by the unit solu-

tions np~z. It will be noted that the factor HJfypfz) maY in this case be

replaced by M~* where M is the least common multiple of {n„). The solutions

obtained in this way and all finite products of such solutions are called quasi

elementary solutions. Every elementary solution is of course a quasi elemen-

tary solution. It is not true, however, that every quasi elementary solution
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is the product of elementary solutions as is shown by the simple example

N=2, ai, a2A0, Wi = 2, «2 = 3.

5. Combinations of solutions. If/(x) and <p(z) are corresponding functions

in K, we can write f{x) = F$(z). We can define a sort of composition opera-

tion, denoted by a star, for /(x) analogous to that occurring in other fields,

by writing/!(x)*/2(x) = F<pi(z)<p2(z)• (The transformations T, F_1 can be given

an explicit representation by using for instance the integral kernel E(x, z)

=y,r_ife-' sin kx at least for certain restricted cases. Thus with c denoting the

absolute convergence abscissa of the Dirichlet series for <p(z),

^      r» a+iu

f(x) = Lu^—; I       <b(— z)E(x, z)dz,      c < — a,      a > 1,

*(«) = — f Tf(x)E(x, z)dx, R{z) > 1.)

Theorem 5.1. If aw€LK', <r = l, 2, and <pi(z), <p2(z) and /i(x),/2(x) ore f&e

associated functions, then

00 CO

X' D /i(x)*/2(x) ~ £ a»(1)/2(«*) ~ E a»(2)/i(«x).
n=l n-1

ConsiderEn-i^n^'/aC^)- Since \fc(nx)} is orthonormal for a = 1 ando" = 2

an elementary application of the Riesz-Fischer Theorem shows that the se-

ries represents a function, /(x), in L2( — tt, tt). Since Z-jv-oo En-if(a»(1))! = "

and [sin nx, /(mx)]=0 for m>n it follows easily that

m

dm = [f(x), sin wx] = E ar0)am/rm.
r-l

Moreover {c?m} £Zi, for zZiHia"il)amw is obviously absolutely convergent.

It may be verified that, at least for R(z)}zO, (pi(z)<p2(z) =E^>»AM*- Whence

/(*) = ^1(2)0,(2) CK*

Theorem 5.2. If <pi(z),4>2(z)eK' and |<£i(z)/<p2(z)| f^l then no proper linear

combination is a solution in K'.

Let^(z) =a<pi(z)+ß(pi(z), aß AO. There is no loss of generality in assuming

<p<(0) = l, »5=1, 2. For a solution a+ß=+\. Plainly then, <pi(z)(p2( — z)

4-(pi(-z)<p2(z) = 2. That is to say (^i(z)/<p2(z))2-2(<^i(z)/(p2(z))-r-l =0 or

<pi(z)/<p2(z) = 1 in contradiction with our hypothesis.

We proceed to show that with three different functions in K' it is some-

times possible to determine a distinct linear combination also in K'. Thus let

3

<£(z) = E
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It follows at once on proper choice of signs of +<p,(0) thatEiaj=l a°d, in

view of Theorem 5.2, <XjA0,j= 1, 2, 3. Let £(z) = (/>i(z)/cp2(z), ij{z) =<p2(z)/(b3{z)

and £(z)»j(z) = <py{z)/<bz{z). Write also Aj=*afl. We observe that not only

<p(z), but 7i(z) and £(z) also, formally satisfy III and the condition that the

functions take on the value 1 for z = 0. Thus we obtain the quadratic equation

for 7){z)

AMz) + S(z)-1 - 2) 4- AM') + Viz)-1 - 2)

+ A,(faMz) + ({(z)ij(z))-1 - 2) = 0,

with discriminant

(|(z) - 1)W(I(*) + l)2 - 4{A, 4- .4.)L4, + iit)«-)).

If we require that v{z) be a rational function of £(z) we obtain a simple result.

Indeed, it is easy to show by consideration of the discriminant of equation 5.1,

that, after possible relabelling of indices, we must have «i = 1 and a2+a3 = 0.

Then
a£{z) - 1

ij(z) =

This leads to

{(*)(«, - {(*))

a3<j>2(z) - <pi(z)
4>z{z) = -—-— -0i(z),

«30i(z) — <i>2(z)

and finally to

<b(z) = <pi(z) 4- a3(<p3(z) - <b2(z)) = <l)2{z)4)3{z)/d>i{z)-

The relation III is satisfied formally. In order to satisfy conditions (a) and

(b) of Theorem 3.2 it is sufficient to require that £(z) be a solution and that

I as I <1. We state a partial summary of our conclusions in the following

theorem.

Theorem 5.3. // 4>j{z), j= 1, 2, 3, are algebraically independent solutions

in K', no linear combination involving at least two of the functions can be

a solution. If (pi(z)/<p2(z)£.SC' and is rational in <p2(z)/<p3(z) then the essen-

tially unique linear combination <pi{z)-\-a{<p3{z)—<^{z))=cp2{z)<b3{z)/<pi{z)eK'

where 4>3(z) = (a4>2(z)—<l>1(z))/(a(pi{z)—<b2(z))-<p1(z) and \a\ <1.

6. An integral equation. An interesting alternative formulation of condi-

tions I, II, III for a restricted situation will now be indicated. We write

h(t) =zZTar>e-nt and Ks for the class of functions in K' such that A'(f) = o(f8-1)

for f->0 where o>0 and h'it)=dh(t)/dt.

Theorem 6.1. If<t>iz)SK6 then f^sh'is)h'isu)ds= il+u)-2 for u>0.

We observe first that [4, problem 1, p. 314]
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r(z)<p(2) = f h{t)tz-Ht,
J 0

[May

R(z) > 0.

By Abel's theorem and the fact that aEh, it is clear that Lt~ah(t) = h(0) is

finite. Moreover

I MO I < Z>~n' < er'/(l - e-'), \h'(t)\ < e-'/(l - e~l)\

Thus both h{t) and h'(t) = 0(e~'), /—> co. Hence, it is easy to see that, at least

for F(z)>0,

(6.1)
/tzh'(t)dt

o

La~o.b~«,h(t)tz - z r h(t)t'-
d 0

it

- T(z + l)d>(z), R(z) > 0.

Actually the left side of equation 6.1 exists as a Lebesgue integral for

R(z) > — 5 and the right side is analytic for R(z) > — e for some choice of € > 0

(Theorem 3.2). Hence by analytic Continuation equation (6.1) is valid for

R(z)> — 7), 77 = min (e, 5).

If we replace z by — z in equation (6.1) there results

(6.2) f  t-'h'(t)dt = - r(l - z)<p{- z), R(z) < v.
J n

Hence, in view of Theorem 3.2 and a standard relation for T functions,

(6.3)-= <*.(z)r(i 4- «)*(- z)r(i - z)
sin irz «/ 0

Plainly for \R(z) \ <n

s I   h'{su)u2du  =   I h'{t)(t/s)zdt
I     J 0 I        I d 0

f   h'(t)t'dt f h'(s)s~zds,
dß do

I R(z) I < 17.

(6.4)

Hence

= j-«<«) r   1 a'/*) 1 Äf

nsh'{s)h'{su)uzdudz,
j

j > 0.

^(z) I < 5,

is a Lebesgue integral obviously equal to the right side of equation (6.3).

Therefore by Fubini's theorem

(6.5)
Z7T

sin irz
= J   uz~l i   usk'(s)h'(su)dsdu, | R(z) \ < rj.

do d 0

We show now that the inner integral in equation 6.5, denoted by F(u), is
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continuous for w>0. We write

(6.6) I F(w + Am) - F{u) \ = II     4- I    sh'(s)A(uh'(su))dsdu, \ R(z) \ < r,.

Consider «>0 fixed and e an arbitrary positive quantity. Manifestly for suffi-

ciently small 7, say 70, the contribution of the integral over the range

0 = s^yo/u in equation 6.6 is inferior to «/2, for all Au in 0^Am<m/2. Since

&'(/)ELi(0, <*>), Ls^uh'(su) = 0, and &'(-Z) is continuous for f>0, it follows

that for Aw < p (70) the contribution of the integral over the range ya/u^sK «>

is inferior to e/2. Hence the left side of equation (6.6) is dominated by e for

Au<min (m/4, p(7o)), which is the result desired. We observe further that

F(u) is Lebesgue summable over any finite range, 0^u = a< <x>.

It can be shown that Z7r/sin irz is the Mellin transform of u/(\-\-u)2. Ac-

cordingly the Mellin transforms of F(u) and w/(l-f-«)2 are the same for

1 R(z) I <i). Since both functions are Lebesgue summable on any finite range,

it is at once clear, on making an exponential transformation, that the hy-

potheses of Theorem (6.6) of Widder [5, p. 244] are satisfied. Combining the

continuity of F(u) and u/(l-\-u)2 for u>0 with the assertion of the theorem

quoted, we have, at least for u>0,

(6.7) f  sh'(s)h'(su)ds = (1 4- «)-2.
J 0

Remark. We can write equation (6.7) in the somewhat more perspicuous

form

/P{t)P(t - v)dt = e'/Q -f e")2,

where P{t) =e~th'(e-t).

Remark. The theorem is undoubtedly true with weaker conditions on h(t)

even without going to LP:P>i spaces. It would be of interest to determine

whether equation 6.7 (or generalizations to Lp spaces) has solutions for which

the associated sequence a does not satisfy II.

7. Completeness. Actually the completeness assertions are implicit as spe-

cial instances of most of the results collected in this section. We show first

that the hypotheses of Theorem 2.6 can be weakened significantly. Let the

linear extension of sin x, ■ ■ ■ , sin nx be denoted by En.

Theorem 7.1. If +sin xAf(x)(E.Kz, then the system {f(nx)} cannot be com-

pleted by the adjunction of a single function g(x).

Evidently there is no loss of generality in assuming g(x) normalized and

orthogonal to \f{nx)}. Since the Fourier expansion of f(nx) does not contain

sin kx for k<n and the linear manifolds determined by f(x), f(2x) and by

{f(nx)\n>2} are orthogonal, it is easy to see that our hypotheses require
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the consideration of

(7.1) sin x = dlg(x) + Djix),

(7.2) sin 2x = d2g{x) + D2f(x) + Bf(2x).

Suppose gO*0~E-4» sm nx and/(x)~Ea« sm nx- Then by the argument

used in Theorem 2.6, it is apparent that di=Ai, Z>< = a<, * = 1, 2, and 73=0!.

Let \{/(z) =X^4n/«', <p(z) =Ea»/w*- Then the correspondent of f(2x) is 2_*<p(z).

Hence we have for R{z)> 1/2

1 = A4(z) 4- ai<Kz),      2~' = ^2lr-(z) 4- (ai2~2 4" a2)(p(z).

We observe that ol24-^4i2 = l and we need only consider the case that

ah AiAO. For k>\, o*= — AiAk/ai from equation (7.1). Moreover from equa-

tion (7.2), 1 =422 4-Oi24-022 whence A2= ±axAi. Hence, in case A2= — axAi,

2-' 4- ai

oi2~2 4- 1

That is to say, <p(z) is an elementary solution. Accordingly f(x) is actually

in K' and this, by Theorem 2.6, is absurd. The contradiction follows similarly

for the other case.

Remark. It is interesting to note that the analysis of the theorem would

have led logically to the elementary solution had the latter been unknown.

In point of fact, this theorem followed the authors' discovery of the elemen-

tary solutions.

The proof above hinges on the fact that two equations in the two un-

knowns \p(z) and <p(z) are sufficient to determine <p(z) as an elementary solution

and hence Theorem 2.6 applies. It might therefore be expected that, for

the obvious generalization with the hypothesis f(x) E.Kat+i, there would be

N+l equations in ^,{z),j = l, • • • , N, and <f>(z) from which we could again

infer that <j>(z)(E.K. The theorem below requires instead the hypothesis

/(x)G7^2jv+i- It should be observed however that as a partial balance for the

strengthened hypothesis we are able to assert a good deal more than lack of

completeness. In this connection see also the second remark below.

Theorem 7.2. If +sin xAf(x) (E.K2N+1 then even with the adjunction of N

new functions {g,(x)|i=l, • ■ • , N] the closed linear extension of {f(nx)} and

\gi(x)} does not contain E2n-

Suppose the theorem false. Just as in the previous theorem we may show

that we may require ;<(*), i = 1, • • • , N, to be orthogonal to \f{nx)} for all n

and that in the expansion of sin kx only the first k functions in {f(nx)} need

be taken. By applying the Schmidt orthogonalization process to the linear

combinations of the gi(x)'s occurring in the expansion of sin x, ■ ■ • , sin 2Nx,

it may easily be established that {g.(x)} may be replaced by an equivalent

*(*) =
Ar 1

A 2 2~'

Ax ffi

A 2  ai2~* -f- o2



1945] ORTHONORMAL SETS OF PERIODIC FUNCTIONS 345

set {g»(x)'} where [gi{x)', gj(x)'] = &n and at most one new gj(x)' is intro-

duced in each of the successive equations expressing sin kx in terms of

{&i(x)'} and {f(nx)}. We drop the primes in reference to these functions and

write gi(x)>-^2iAik sin kx. Finally we can show that we must have

minCfc.AT) fc

sin kx = zZ   Aikgi(x) 4- zZ ak/nf(nx),     k = 1, • • • , 2N+1.
t-l n-l

We assume first that AkkA0 for k = l, • • • , N. (In this case the requirement

f(x)EK}f+2 suffices.) Let ti(z) =zZkAik/kz, <j>(z)=^a„/n". Then we have the

system

(7.3)

min (k ,7V) k

k~' =     ZZ     ̂ <V.(z) -f ZZ tt*/n»-'</>(z),
1—1 n— 1

k - 1,.... TV + 2, F(z) > 1/2.

DenotebY ^(z) and Ti^z)-aik'* by 7V(z). The first iV+1

equations yield

A:1      0        0 1

*(*) =

Ax»+i

(7.4)

0 A-2

4^ N-'

ann+i (Ar + !)-

0 Bx(z)

AS      Akk 0

An" BN(z)

Af+*   ■ An»+* BN+1(z)

(A(«) 4- n(7V 4- i)-')/(a!(A(2) + u(N -f l)-) 4- (?(*)),

where

A(2) -

0

ill*

0 1

0

4atw

ANN+1 0
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QW =

^i1

AS

Bx'{z)

AS+1

AN» Bn'{z)

AN™ BN+i'(z)

and II = 111^-4/. Since the identical vanishing of the denominator in equation

(7.4) implies the system in equation (7.3) is incompatible, it is impossible

that di = 0, Q(z) = 0; while if aiAO, Q(z) = 0 we infer that d>(z) =       and hence

=1, that is, f(x)= +sin x. Hence let us suppose Q(z)f£0. We show that

this leads to a contradiction. If the A^lst equation is replaced by the N+2nd

and the system is solved for <f>(z) the result is

<p(z) = (A'(z) 4- n(/V 4- 2)-') + MA'(z) + U(N + 2)-) + Q'(z)).

On equating the two expressions for <p(z) there results

(7.5) <2(z)(A'(z) 4- H( N + 2)-) = Q'(z)(A(z) + n(/V 4- I)-).

We observe that the finite Dirichlet expansions for Q(z) and Q'(z) contain

no terms in n~z with 2w> 7V4-2 and that the expansion for A(z) or A'(z) termi-

nates with the N~z term. Write

Q(z) = Z W.   e'W = E v/y

and let r and I be the largest j values for which b, and b/ respectively are

not 0. Now equation (7.5) is an identity in view of the uniqueness of

Dirichlet expansions [4, p. 309]. Hence bT = bi and (r(N+2))'=(l(N+l))*.

Therefore r={N+2)k, 1= (N+l)k, k an integer. In view of the restriction

l=r^(N+2)/2, this is impossible. Thus Q(z) = 0.

In the general case where a diagonal term A* may vanish our procedure

is the following: For convenience we shall refer to the highest subscript on a

^i(z) in any one of the equations of the system (7.3) as the terminal subscript

for that equation. Let M be the smallest integer such that the equations for

(M+l)~z and (M+2)~z have terminal subscripts no larger than that for the

equation for M~". Let m be the terminal subscript for the latter equation.

Since m^N one readily observes that M—2N— 1. From the first M equations

of the set (7.3) omit each equation in which the terminal subscript is no larger

than for the preceeding equation. Omit also all equations following the

M4-2nd. The resulting system of m-\-2 equations involves as unknowns

m\pi& and <p(z). Furthermore the matrix of the coefficients of the ^,(z),

i=l, • • • , m, in the first m equations is triangular and no diagonal term

vanishes. Now the argument for the special case in the previous paragraphs

depended only on the fact that the product of diagonal terms there denoted
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by 17. did not vanish, and not at all on the fact that consecutive equations

were chosen from the system in (7.3). Accordingly, just as before, we can

conclude eti= ±1.

Remark. The further study of functions of the type defined in (7.5) which

are expected to lead to solutions in Kn+i, though not in K, is foreign to our

purpose in this paper.

Remark. The form of the above proof suggests that/(x)G^2Ar+i could be

replaced by f(x)EKM and E2N+i by EM with M< 2N4-1. Actually, the theo-
rem stated is the best possible as is shown by the example gk(x) = sin (2k — \)x,

k = 1, 2, • • • , N and f(x) = sin 2x. In this case E2N is actually contained in the

closed linear extension of \f(nx)} and {g,-(x)} though E2n+i is not. However,

the question of the least M for which f(x)EKm will ensure \f(nx), g,-(x)} not

complete is still open.

We now turn to the closer study of the sort of situation considered in

Theorem 2.5, namely the problem of completing by adjunction of the se-

quences {fj(mx)\j = 2, ■ ■ • , N; m = l, 2, ■   • }.

Theorem 7.3. Iffj(x)EK', j = l, 2, then the system [fi(mx), f2(nx)]=0 is

incompatible.

Indeed let <py(z) =%2*anu)I11* correspond to /,•(*), j = l, 2. Since a1 and

a2(Eh it is permissible to interchange orders of summation in the product

series for 4>i(iy)4>2( — iy) and then the hypotheses of the theorem require

*i(*y)**(- iy) = E ^ak*a)ak°m((jy+(j) V) = 0-

Hence one of <pi(iy), <b2( — iy), say 4>i(iy), has zeros in contradiction with

Theorem 3.1.

The requirement that/,■(*)£/£', j= 1, 2, may be waived as in the following

theorem.

Theorem 7.4. Ifa^&i, {o„(2)re«} Eh, e>0, then the system [fi(mx),f2(nx)]

= 0 implies either <z(1) or a<2) is a null sequence.

As usual we write 4>i(z) =Ea"(?)/W, j = 1, 2, though here <bj(z) is generally

not a solution. We can easily establish that <pi(iy)d>2( — iy) =0 and we infer

from this that there are two alternatives: (a) <f>i(iy)=0 on a dense set of

points and hence by continuity <p\(iy) vanishes identically, or (b) <f>2(—iy)

vanishes for a set of points with a nonvacuous derived set. In the first case

a„(1) =0 for all n (cf. for instance the sufficiency argument for Theorem 3.1).

The second alternative implies a„<2)=0 for all n since 2a»<2)/MZ is analytic

for R(z)> -e [4, p. 88].

We now exhibit some examples of completing {fi(nx)}, where fi(x) EK,

by the adjunction of a finite number of sequences \fj(mx) \ j = 2, • • • , N;

m = l, 2, ■ ■ • ; fj(x)EK]. Of course /i(x) (^+sin x) cannot be orthogonal

to all fj(mx) (Theorem 2.5). Thus let/i(x)=sin rx, r a positive integer. Then
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(7.6) /,(*) = - A sin x + (A~x - A) £ A" sin rnx,   0 < | A \ < 1
l

(the correspondent of <p(z) = (r~*—A)/(\ — Ar~z)), yields the complete system

{fi(nx) \j = 1, 2}. The verification is immediate for

00

sin x = A~\- /,(*) + (4-1 - A)zZA"fi(r"-lx)),
n-l

with an obviously convergent right-hand side.

The next example indicates that sin x may be expressed in terms of a

finite sum of terms in/,■(«*). For this purpose we need merely specialize Theo-

rem 5.3. We choose #1(2) = 1, <MZ) =r~z, |«| >1 and

ar~' -f 1
**(*) = —;-,

a + r 1

so that

*(z)
\a + r-'/'

Then, on writing fi(x) for the function corresponding to <p(z) we obtain

sin x = /i(x) 4- oc(f2(x) — f3(x)).

Hence {/,■(»*) |j = li 2, 3} is complete.

Some restriction such asf(x)(EK is necessary for the validity of a theo-

rem of the type of Theorem 2.5. For instance, iff(x) =sin x — b sin 2x, \ b\ <1,

then {f(nx)} is complete for

N

(7.7) Zw.„2>"/(2B*) - sin at.
1

On the other hand for | b\ ~ 1 it is obvious'that ||sin x— ̂ FJtb*f(2*xm does not

approach 0. Moreover on combining the relations inf ||y(iVic) — '?~y^~1Cif(ix)\\

ä l&l and \b\ }zl it is easy to verify that [[sin x—zZ\c^M)finx)^\ cannot be

made arbitrarily small for any choice of M and {cn(M)}- Accordingly com-

pleteness for this type of f(x) is essentially a matter of convergence in

£2 (— it, it) of the formal series on the left side of equation 7.7.

For a general periodic function, f(x)-^^Jbn sin nx, biAO, it can be shown

that there is a unique choice of constants {dn} such that sin x — Efdnf(nx)

is orthogonal to sin x, ■ ■ ■ , sin Nx and that a sufficient condition for com-

pleteness of f(nx) is thatEr^»/(M3C)£-^2(—7T, «"). (In general, of course, the

constants {d„\ n = 1, • • • , N} will not minimize ||sin x— zZic"f(nx)\\-) We

observe parenthetically that for the elementary solution in equation (7.6),

in x — dnf(nx) = C\A
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for some C>0 (and \A \ <1), in keeping, of course, with the assertion of

Theorem 2.4. fn this connection it is worth while to note the following simple

result.

Theorem 7.5. If sin mx has an expansion in terms of [f(nx)} with

[f(x), sin x]^0 then {f(nx)} is complete.

By the expansion sin mx^£,bnf(nx) we mean /^„„llsin mx— zZiönf(nx)\\

= 0. As a consequence, Ln^J)n=0. Indeed

ll/(*)ll IMI =
N-l

sin x — 5j bnf{nx)
i

+ sin x — 2J b„f(nx)

g 2«

for N sufficiently large. Then m~' =^lbnn~z4>(z), where <p(z) is the Dirichlet

series associated with/(x), for R(z) sufficiently large. ThusE"bvn~* = m~'/<p(z).

Since l/$(z) has a convergent Dirichlet expansion for R(z) sufficiently large

[10], it follows from the uniqueness of Dirichlet expansions that the coeffi-

cients of corresponding terms on both sides of the equation must be alike.

Hence bn = 0 unless n is a multiple of m. Accordingly the expansion of sin mx

is ^Zn-ibnmf(nmx) and then sin x^E bmnf(nx). This is a consequence of the

elementary observation that for F(x) periodic of period 2ir and k a posi-

tive integer

l cT If**
— I   (sin kx - F{kx))2dx = — I     (sin x - F{x))2dx
IT J -r kirJ-hT

whence

= — f (sin x - F(x))2dx,

sin kx — F(Ääc)   =   sin x — F(x)

8. Some identities. Under sufficient convergence restrictions on {an\ we

can derive an infinite number of striking identities.

Theorem 8.1. If a(E.K' and {an«e} &i, e>0, then with'^2,an=\

E an(log n)2 = (E «« log «)2.

V-    /i      s*,At     V a-(loSn)3 (Eßnlogw)4
E Ön(l0g «)4/4! =  2_  '- E fl» l0g »

3! 8

The derivation is immediate. Since <p(z) is regular at z = 0 (Theorem 3.2),

we have with <b(z) =/. bnzn

1 = (p(z)«(- Z) = E^' E (-
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or

(8.1) dBk = ]£ (- i)mb»bm.
n+m=ft

Now

(8.2) bN = ^-m/N\ = D «».(log n)N/N\.
dzN

From equation (8.1) we get b0 = 1.. Moreover it is plain that for k odd,

jLZm+n-k( — l)mbnbm is identically 0 since one of m, n is even and the other is

odd, so that the terms ( — l)mbnbm and ( — l)nbnbm balance off in pairs. How-

ever, for k even we get nontrivial identities. For k = 2 we have 2bBbi — bi2 = 0

or bi = bi2/2. For k = 4 we get bi = b1b3 — b1A/8. The identities in the state-

ment of the theorem are now a consequence of equation (8.2). If these two

identities alone were required, the hypothesis {o„(log »)4} £/i would be suffi-

cient as is easily verified by a simple application of Abel's transformation for

series.

9. Transformations. A transformation of <j>(z)EK' is understood in this

section to be a function of w=<p(z). The transformations mapping K' into

itself are of simple type as the next theorem shows.

Theorem 9.1. If the transform F(<p(z)) £/£' for every <j>{z)£K' then F(w)

is a rational function of the form ± YLi(w~ — b/w), 0^\bj\ <1, subject

to the condition that Fiw) is real for real w values.

We observe that F(w) is single-valued. Suppose this were not true for

w = w0. Choose <p(z)EK' such that w0=<p(zo). Then F(<p(z0)) would be multi-

ple-valued in contradiction with the single-valuedness of solutions in K'. If

F(w0) is finite then F(w) is regular at w0. Let <p(z)EK' satisfy <p(z0) =w0 and

^>'(z0)^0. Obviously such a <p(z) can be found; in fact the solution 2~z serves

for Wo AO and some elementary solution for w0 = 0. Then w=<p(z) defines a

homeomorphism between a neighborhood of w0, say N(w0), and a neighbor-

hood of z0, say N(z0). Then

AF(w)     AF(<p(z)) /A<Kz)

Aw Az    / Az

where w = d>(z). In the neighborhoods mentioned, Aw—4) implies Az—»0 and

hence
dF(w)

dw

dF{<t>{z)) /d<b{z)

dz    / dz

that is to say F(w) is analytic at w = w0 and obviously single-valued and

analytic at all points in N{w0) for which F(w) is finite.

The correspondence w = 2~z defines a 1-1 map of the strip 0 — I(z) <27r/log 2

in the z-plane on the w-plane cut along the positive real axis with z = a> corre-
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sponding to w = 0. Since F(2~z) is meromorphic it follows that the set of

singular z values in the strip is isolated and hence the singular w values can

have Only 0 or « as limit points. If we use

1 - 21-'
w - -

2 - 2~'

it is clear that w = 0 is not a limit point. In short, the finite singular points

for F(w) are isolated. Now the singularities can be only poles or essential

singularities since F(w) is single-valued. Plainly F(w)F(\/w) = \ for all non-

singular w values. Hence if there is an essential singularity at wB there must

be one at l/w0. If w0A0 then using w = 2~z with w0, Wo-1 corresponding to zQ

and — z0 respectively, 0 = I(z0) <27r/log 2, it would follow that a function in

K' would have singularities on the axis of imaginaries or the right half-plane,

which is absurd. If Wq = 0 let

1 - 21-*
w =-

2 - 2~'

and we can derive the same sort of contradiction. Accordingly we have shown

that the only singularities are poles. Moreover by another appeal to the map

defined by a unit function or an elementary solution it is readily shown that

there are no poles for \w\ :S1. Accordingly F(w) is a rational function of the

form
m in

k n (w - */> / n (««** -1)
i     / i

where 0^|a,-|<l. The condition F(w)F(l/w) = 1 implies k2 = l, N=M,

dj = bj. Finally since w = 2~z maps 7(z)=0 into l(w)=0 and functions in K'

are real on the real axis it follows that F(w) is real for real w. Thus F{w) is

of the type indicated in the statement of the theorem. On the other hand it is

plain from the remarks in §4 that when w=<p(z)EK' a solution in K' is de-

fined by an F(w) of the form given.

Theorem 9.2. The most general solution of class K' whose Dirichlet series

has powers of m~z alone is a finite product of elementary solutions involving m~'

only.

Let yj/(m~z) have the expansion ^c„/nz. Now m~z goes to 0 as R(z)—+0

uniformly in 0 = J(z) — 2ir/\og m and \p(m~z) goes to C\. Moreover m~z and

\j/(m~z) are periodic of period 27r/log m. Since\j/{m~z)EK' there are no singu-

larities in the half-plane i?(z)^~e for some e>0. Hence 4,(w), w = m~z, is

analytic throughout D={w||w| <m'\. Any singular point wa must cor-

respond to a pole. Indeed obviously |w0| ^w'>l. If there is a nonpolar

singularity at w0 then there is a singularity at 1/wo in contradiction with the

analyticity of \p(w) throughout D. Hence \p(w) is rational. It is easy to verify
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that t]/(w) is of the form of F(w) in the previous theorem and that ^(m-*)

has the representation asserted in the present theorem.

Remark. If the restriction to class K' is weakened too much the theorem

is no longer true. (For instance, cf. §12 for the case of the class K".)

10. Uniqueness(4). This section is perhaps of special interest and is con-

cerned with conditions added to I, II, III under which only unit solutions

are possible. We have already obtained some results of this character. (Cf.

Theorems 2.4 and 2.5.) In the theorems of this section N is understood to

be a positive integer.

Theorem 10.1. The conditions {an log n/C} and a£K' are inconsistent

unless C = log N and then a„= + 8nx.

We have 4>'(iy) = — ̂,an log nttr*" and <Z»'( — iy) =%L.an log nniv, where

<t>'(+iy)=d<b( + iy)/diy, since termwise differentiation is valid in view of the

uniform convergence of the resulting series. Then if we use our earlier methods

(cf. §3) it follows that<t>'(iy)<j>'(-iy) = - C2. In view of III

</>'( - iy)M~ h) = - C*<p{iy)/<t>'{iy).
Also

o = {<t>(iy)<p{- iy))' = 4>(iy)<P'(- iy) + <i>'(iy)<t>(- iy)-

Hence

C = + ♦'(»»/>(»».

Thus <p(iy)=Ae±ivc. This requires that C = log N, N>1, and \A\ =1. The

admissible solutions are then an=±8nx.

When this theorem is stated in terms of f(x) it acquires a formidable

appearance. Thus let

G(x) = t [(log r(V2x)(sin */2)1/2) + ^- (y + log 2ir) --j-(7 + log 2x)/2l
L 2ir 2 J

where y is the Eulerian constant. For the theorem below it is convenient

to replace the condition/(x) is odd by the restriction that/(x) is even and has

mean value zero. Thus {an} is now the sequence of coefficients in the Fourier

cosine series expansion of f(x) and Li(—ir, it) no longer requires a function

to be odd.

Theorem 10.2. If f'(x)ELt(-w, it) and [F(nx), F(mx)] = Clhnm, where

F(x)=Tr-1f0hrG(t)f'(x — t)dt, then a necessary and sufficient condition for f(x) to

be a solution of I is that C = log N and then f{x) = +cos Nx.

If hjiDEUi-Tt, ir),j = l, 2, then

(4) It is understood that a sign difference is admitted. True uniqueness can be obtained by

requiring the first nonzero coefficient in o to be positive.
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1 r2T
H(x) = —        hi(t)h2(x - t)dt G F2(- w, t).

t J o

Furthermore if both hi(t) and hi{t) are even functions or odd functions, then

H{x) is even and H(x)^-^2anßn cos nx, where {«„} and {ßn} are the Fourier

coefficients for hi(t) and hzif) respectively. We now observe [6, p. 15] that

f (t)~52i na* sin nt. Moreover [7],

G(t) = X) (I°g n/n) sm nt-

Taking h\{t) as G{i), hz(i) as f'(t) and H(x) as F(x) we easily verify that all

conditions are met to give F(x)~y^™an log n cos nx. Furthermore [8],

X)|a„ log n\ < oo. Theorem 10.1 now justifies our assertions.

Remark. The first condition may be replaced by any restrictions sufficient

to guarantee the validity of termwise differentiation of the Fourier series for

/(x) and the finiteness of ^ | a„ log n |.

Theorem 10.3. Bothf{x) andf'(x)/C cannot belong to K' unless C = N and

then f(x) = + sin iVx.

This theorem is in a certain sense somewhat similar to some results of

Stone's (cf. his type 4(a) [9]). However, his interest and method of proof is

totally different from ours.

It is plain that the Dirichlet series for <p(z) converges absolutely for

R(z) =—l and that the sequence {ann} is associated with.<p(z — 1). Arguments

similar to those in §3 gain the conclusion <p(z —1 )</>( — (z4-l)) = C2. Moreover

<p(z4-l)<p(-z-l) = l in view of III. Thus <p(z-1) = C2<p(z4-1). Accordingly

<f>(z) = C2d,(z + 2). Then

^ nz C2     C2) " °"

However, this relation implies

an (— - —} - 0
V«2 cv

because of the uniqueness of Dirichlet expansions. Hence either a„=0 for

all m or 67= + A7 and then an = + ojv„.

Theorem 10.4. If f(x)(EK' and is entire with aiAO then /(x)= +sin x.

Evidently an — o{n~l) for every I [6, p. 35]. Therefore ~^2a„n~! =<p(z) con-

verges for all z. From III it follows that

Lb(z-)^x4>(— z) = l/oi,      LRW^„<b(z) = ai.

Accordingly laf1—2«»»*! <e for R(z)>Rt. Therefore \^annim+l\ for
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all m. Since termwise differentiation of the sine series for f(x) is obviously

permissible here, |/<m)(0)| <M. Hence |/(r)| <Afe|r| where r=x+it. Since

f(x) is periodic and

|/«>0) I S 2fXI x\m~l/(™ ~ 0!

it is plain that |/(!)(*)| ^ Me*. Write gT(x) =sin rx or cos rx accordingly as r is

even or odd. Then by continued partial integration

(10.1) I a. I iS 1/ttW J   I /r(x) I I gr{nx) \ dx g 2MeT/nr.

Since the left side of equation (10.1) is independent of r it follows that a» =0,

n>\. Henceui= ±1.

Theorem 10.5. If f(x)£K' is entire with a^ the first nonvanishing coeffi-

cient in a then f(x) = ± sin Nx.

The proof is entirely similar to that for the previous theorem.

Theorem 10.6. If <f>(z) has no zeros and is entire of order m and satisfies

III, and ifq>(z) has a convergent Dirichlet expansion, then <j>(z) is a unit solution.

We invoke the Hadamard factorization theorem [4, p. 250] in order to

write
<b(z) = <j>(0)e^\

where p(z) is a polynomial of degree m. Since <b{z) has a convergent Dirichlet

expansion, |<p(z)| must be uniformly bounded for some right half-plane. It is

easy to see this is impossible unless m = \. Hence <b(z) =cf>(0)ei+Cz and thus, in

view of III, 4>(z) = ±n~*.

The next two theorems are in the same spirit, but are not so near the sur-

face.

Theorem 10.7. If <p(z) satisfies III and admits a Dirichlet expansion with

ai5^0 converging for R(z)>—e, «>0, and <p(z) and l/<p(z) are entire, then

0(z)=±1.

Since <b(z) has no zeros and a^AO it follows from a theorem of Landau's

[10, p. 90] that l/<p(z) has a Dirichlet expansion converging for i?(z)> — e.

Accordingly <p( — z) =^annz =^,bnn~z in the strip |i?(z)| <e. Let ai(t) be the

step function with jumps of magnitude an at Z = log 1/w and a2(0 the step func-

tion with jumps bn at log n. Without changing the notation we may assume

normalization of these functions so that a»(0) =0 and

, x   cad 4- o) + ctiit - o) ...
ceAt) = -) I = 1, 2.

2

Of course «.(/), » = 1, 2, is of bounded variation in any finite interval. The
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equality of the two expressions for d>( — z) implies

f  e-"dai(t) = r

for |i?(z)| <e. According to a theorem of Widder's [5, Theorem 6a, p. 243]

we can conclude ai(t) —emit). Since «i(Z) is constant for t>0 and «2(0 is con-

stant for /<0 it follows that a„ = b„ = 0, n> 1, and ai = bi=<p(0) = ±1.

Theorem 10.8. If #(z) satisfies III and admits a Dirichlet expansion

^Zn=Nan/nz, N> 1, converging for i?(z)>—e, «>0, and <p(z) and l/<p(z) are

entire, then cp(z) = ± N~l.

We can show [10] now that

N—4(- z) = Z Onl—\ = E W»"
„_at VV/

for |i?(z)| <e (where /„ takes the values in order of size of JJJ_1(A7-f'jv)/A7',

A = 0, and k, is a positive integer). The argument used in the preceding proof

may be carried over with obvious modifications to cover these generalized

Dirichlet series.

Remark. There is no clear reason for supposing the hypotheses of either of

the two previous theorems quarantee s0i. Hence the functions may not be

in K'. On the other hand if <p(z)£/£' the writers do not know whether the

convergence abscissa is always to the left of i?(z) =0. These seem interesting

topics for further investigation. Very likely the requirement a(EK' together

with the assumptions <p(z) and l/<p(z) are entire may yield the conclusions in

the theorem.

Remark. The reader will easily verify that compact proofs of Theorems

10.4 and 10.5 are possible by making use of Theorems 10.7 and 10.8.

11. Closure of solutions. This section contains some results of basic inter-

est for our problem.

Theorem 11.1. The set of solutions in K is closed in h.

Let {atr|a'r£7£} be a sequence of solutions of II converging to a in the

norm sense. Then, of course, ||fl|

^2^an2<e2 and a" so that \\a' — a

= 1. For arbitrary e>0 choose N so that

<e. Then a simple application of the tri-

angle inequality yields E^(a„'r)2<4e2. Let ir, s) = 1 with s<r. Define m by

ms = N<(m + l)s. Then

anran X) (a»r — anr')an

+

i

i 00

4"     ZZ anrd,



356 D. G. BOURGIN AND C. W. MENDEL [May

We observe that

zZ ön/a»/ = JZ a«r'a<u - JZ a»r'a«" = - zZ anr'ans".
1 1 m+l m+1

On combining the relations above there results

.¥

<   a - \a\\+ \\a - a'\\ \\a°\\ + £ ((*»»)* + (O2) = 2e + 8«2.
l

Hence a satisfies II and the proof is complete.

Since
A - 2"

La~i——— <t>{z) = 4>{z)
1 - A 2—

it is clear that the solutions are not isolated points in /2. The next two theo-

rems dispel any notion that a solution is seriously restricted as regards the

choice of any finite number of coefficients.

Theorem 11.2. For any sequence {b„\n = l, • • • , N} with zZi\bn\ <1,

there is a quasi-elementary solution <p(z), whose associated a sequence has an = bn,

»-l, ... ,N.

Theorem 11.3. For any finite sequence \bn\n = \, • ■ ■ , N\ with biAO

there is a finite product of elementary solutions whose associated a sequence

satisfies a,=\bi, i = l, ■ • ■ , N, \A0.

Consider the quasi-elementary solution

1 + M'JZibnn-' ,

1 + M-'JZibnn'

where M is any multiple of the L.CM. of the n's associated with the nonzero

members of {bn\n = l, • • • , N} which also satisfies M>N2. It may easily

be verified that <j>(z) has the property asserted in Theorem 11.2.

To demonstrate Theorem 11.3 we write

i

*i(e) - II *.(«)
1

with
(n+ 1)- - An

<Pn(z) =
1 - An(n + 1)-

As usual let a' denote the sequence corresponding to \pj(z). In view of equa-

tion (4.1) wehaveai1= — A\,a^ = 1 — (yli)2. Then the requirement a21:öi1 = 62:&i

leads to bi(Ai)2 — bsAi — bj. = 0. Since the product of the roots is —1 there is

a unique Ai satisfying — 1 =Ai<l, 0< \Ai \. Write Ai = — Ai/bi. Thus
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(11.1) <lJ = Xift*, k=l, 2.

Suppose A\, • • • , 4m_i have been determined so that

(11.2) a*-"-1 = X„_iö4, k — 1, •••,».

Now ^m(z) =(pm(z)\l/m-i(z). Hence on comparing coefficients of 1, 2-*, ■ • • ,m~'

we obtain

(11.3) a*"* = - Amakm~\ k - 1, • • • , m,

(11.4) om+1'» = - Anam+^~l 4- (1 - (4m)2)a,"->.

Hence equations (11.2) and (11.3) imply

(11.5) ahm = \mbk, k == 1, • • • , m,

where Xm=— Am\m-\. Thus (11.4) becomes

Z>iXm_i4m2 ;f (am+1m-1 — X„_i&m+i)4„ — iiXm_i = 0.

Since 6iXm_i= ( —l)m_1 Ytä~1AjA0 there is a unique solution for Am under the

restriction — \—Am<\, 0< \Am\. We have finally

akm = Xmbk, k = 1, ■ • ■ ,m + 1.

In view of equation (11.1) and the induction from equation (11.2) to equa-

tion (11.3) the proof is complete and the function ^jv(z) satisfies the require-

ments of the theorem.

12. Functions in K". We now consider a different aspect of the question

of determining solutions in K than that developed in the preceding section.

In particular, we formulate a criterion more general than those in Theorems

3.1 or 3.2. We need a preliminary result. Let X and F represent the set

of points on the x and y axes respectively. We shall refer to an exceptional

set denoted by {y,} C Y which is at most denumerable and may be vacuous.

We assume 0<p^inf {\yt—y,>\ \aAo-'}. Let S„ be a closed interval of length

I independent of a in F containing y, as its midpoint. Write Fj = Uo„ and Fj'

for the complement of Yi in F.

Theorem 12.1. Let y(x, y) =^B r(x)riv where r runs through all positive

rational numbers and (a) the series for y(x, y) converges absolutely for eachx>0;

(b) \ y(x, y)| <M for x>0; (c) for each choice of l>0 the series converges uni-

formly to 1 in yGF;' as x—»04-. Then Lx^o+Br(x) = l, 0 according as r = \ or

n*l.

Let y'(x, y)=y(x, y)-l = J^B/Mr'" where Bx'(x) = Bi(x) -1 and

BT'(x) = Br(x), rj*l. Define v(\; x)= Yliog r<\Br'(x). Plainly v(K; x) is of

bounded variation for each x>0 by (a). Hence

iK*. y) — I   e^dvfr; x)
d -00
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and [3, chap. 2]

(12.1) £ (BT'(x)y = £«_«.— f I tfs, y) |»rfy
2f «/ r

where 7"= {y| — Z^y^/}. We may write T=T' + F" where T' is the set

intersection of Yi and F and T" that of Fj and F. Choose / to satisfy

lM2/p<e. By (c) we have \^{x, y)|2<e, yGF/ and 0<x<t]. Hence if we

examine the contribution of the ranges T' and T" to the integral on the right

side of equation (12.1) it is apparent that

\Z 0/(*))2 = e + MP/p = 2e.

Since e>0 is arbitrary we infer that Lx,o+B/(x) = 0 which is tantamount to

the conclusion sought.

We can now state the generalized criterion referred to above.

Theorem 12.2. Suppose the Dirichlet expansion of <p(z) has real coefficients

and the absolute convergence abscissa x = 0; (a) <j>(z) is uniformly bounded for

R(z)>0; (b) Fx,o+|<p(z)| =1 uniformly in y£F;' for eachZ>0. Then <p(z)£ÜT.

Evidently <p(z) = $(z). For i?(z)>0 we have, by hypothesis (a), that

I <p(2) |2 = 4>(z)4>(ß) = ^   Z    E aklak>(k2ls)-*((l/sy« + (!/*)-<•).

Hence

I <p(z)\* ^iZMxy*

where r sums over all positive rationals. Here

00

Ar(x) = Z akiak.{kHs)-x, r = Z/s, (Z, s) = 1.

All conditions of Theorem 12.1 are met. Accordingly

OO

(12.2) Fx-o+E aklak,(k2ls)-* = 5„, (Z, 5) = 1.

Evidently this implies that£(a&)2 converges and that the value of the sum

is 1. Indeed since zZ(a^~z)2 Is monotone it is plain that Z(a»)2=l- On the

other hand suppose y.f(ak)2>H> 1 for some N. Choose x so that N~2x

= 2/(7F+l). Then, in contradiction with equation (12.2),

N 2H

£ (akn-*y = zZ (<***-•)* >-> 1.
1 1 +1

The usual application of Schwarz' inequality then guarantees the absolute
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convergence of X^a*,. Accordingly the Dirichlet series £a*!afc,(A2/s)-!r con-

verges for z = 0 and hence [4, p. 291]

£ aktaks = I„o+E aktake(k2ls)~x = 0

for I, s not both 1, subject to (/, s) = l. The class of solutions satisfying the

conditions of this theorem is denoted by K".

13. Examples in K". In this section we exhibit solutions of our problem

which are not of class K'.

Consider then
0(-2) _ g-tanh(2log2/2) _ g-l+2(2-«/(l+2-*))_

Straightforward computation gives

I 0(z) |2    - e-2(l-2(l+2*ros(vlog2))/U+2te+2*+lros(vlog2))_

Plainly <p(z) is uniformly bounded for i?(z)>0. Moreover, except for

y, = (2<r 4- l)irt71og 2,      o- = 0, + 1, + 2, • • • ,

Z,»_o+|#(z)| =1 and the convergence is uniform for y£ F/, l>0. (Lx^0+\<p(x

+iy.) \ =0.) Write t = 2~z. Then

(p(z(0) = e^'CH-V-1.

This function admits a Maclaurin series expansion converging absolutely for

11\ <1. On replacing t* by 2~nz it is then obvious that <p(z) has an absolutely

convergent Dirichlet expansion involving powers of 2~z alone (compare Theo-

rem 9.2) for R(z) >0. Accordingly <p(z) satisfies the conditions of Theorem 12.2

and we infer that the associated a£K. In the same way we may show

exp( —sinh tanh(z log 2/2)), and so on, generates a solution.

If we start with <p(z) =exp( —coth(z log 2/2)) the analysis is essentially

the same except that y„ = 2o"7r/log 2 so that z = 0 is singular and again <p(z)

is the generating function of a sequence in K. It is worth while to point out

that the associated a is not in h. Thus, if we write t for 2~z the resulting

Maclaurin series is Xam<", m = 2n. From the form of <p(z) it is evident that

<p( —log f/log 2)—»0 as / approaches 1 along the real axis. If a&i then by

Abel's Theorem it follows that Xa< = 0. However, we should conclude from

Theorem 2.1 that (£o,-)s=l. Hence a^h. The result follows also from

Theorem 3.2.

Remark. A striking feature of the examples given above is the fact that

they are not representable as the limits of finite products of elementary solu-

tions. Indeed such products would have zeros to the right of the imaginary

axis.

Remark. A limit to the extent that the conditions in Theorem 12.2 can be

weakened is indicated by the function <p(z) =exp(coth(z log 2/2)). For this

function all conditions of that theorem save (a) are met, nevertheless <p(z)

does not generate a solution in K. Indeed it may easily be verified that the
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Dirichlet expansion in powers of 2~' of <p(z) has all its nonzero coefficients

greater than those for exp( — coth(z log 2/2)) and hence the sum of the squares

cannot be 1.

14. Singularities of associated power series. In this section we shall be

concerned with some results valid for a much wider range of Dirichlet series

than those occurring in the problems of this paper. Let 5 be the class of

Dirichlet series X(z) =£&„/«' satisfying (a) {bn} Qk, (b) if X(z) has a zero

it is not entire. When we replace 5 by K" or K' the more general results

below become assertions regarding our main problem. Thus Theorem 14.1

implies that except for unit solutions £a„w" has a singularity at w=\, and

so on.

Theorem 14.1. If\(z)£.S and more than one bn is not 0 then £&„w has

a singularity atw = l.

That there is a singularity on \w\ =1 if \(z)Q.K' is not a unit solution

is apparent. Indeed if the convergence radius exceeds 1, then the limit inferior

of |o„|_1/n>l or an>|a„|, 0^a<l, for n sufficiently large. Hence £a„/w*

converges for all values of z. It is easy to see that Theorem 10.8 bars such a

possibility. Among other things Theorem 14.1 asserts that the singularity is

actually at w = 1.

Write h{t) =£ö„e-'". We may assume convergence for t = 0. Otherwise

since bn—*0, there would be a singularity at / = 0 [4, paragraph 7.31], and the

assertion of the theorem would be granted. We have

1 r"
(14.1) X(z) = —- h{t)t>-Ht.

r(z) Jo

If the theorem is untrue then h(r), r=t+is, may be continued analytically

throughout a neighborhood of r = 0, say for |r| <5. In this case cut the r

plane along the positive real axis and consider the Hankel contour C„ running

along the upper bank of the cut from « to t = p then counter clockwise around

r = 0 to t = p on the lower bank and thence to °°. For p<5 we write formally

(14.2) C?(z) =        f (- t)*-lk(r)dr - -L f *  + f      + f "(- r)-^(r)dr,
2iriJ cp 2m J oo+     J \r\=p    J p-

where the 4- and — refer to the upper and lower banks respectively, with the

usual convention that log(-r) =log|r I -iron the upper and log | —r\ =log(r)

-r-jVon the lower bank of the cut. Let z = reia be a non-integer, with | &>| <w/2.

Then the integral around the circle is inferior in absolute value to

glxr f t

-P™       j h{pe") I dd.
2x J —r

Since h(r) is analytic for | t\ < ö the term just written vanishes with p. Hence
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Q(z) = L,.,-^(e"<»-» - f h{t)t^dt
(14.3) 2tn J „

= r(z) sin ir(z - l)X(z)/ir,

in view of equation (14.1). Since T(l —z)T(z) =x/sin ttz there results

(14.4) X(z) = - 1/2*»T(1 - z) f (- r)'~lh(r)dT,     p < 8, R(z) ^ « > 0.

FAe integral on the right side of equation (14.4) is analytic throughout any

hounded z domain, D. Indeed it is evident that (a) A(t)( — t)'~x is continuous

in t and z for t on Cp and z in a bounded domain D, and that (b) r*-1, t fixed,

is analytic in D. Write C„ = Cm+C~m where Cm is the part of C„ included in

the closed circle of radius m about t = 0. Then

(14.5) f    h(r)(- tY-hA g f    I h{r) e"2\ \ e^i\- r)*-1! <fr.
I J Q~-m I        J Q—m

For m>p the last integral is inferior to

(14.6) 2^J*   \ h(t)\2e'dt f er'^-W-D^J
11/2

Manifestly

I Ä(<) I2 = M

2

= Me-2'/(l - e-'Y

Hence the product of integrals on the right side of equation 14.6 goes to 0

uniformly in z£Z) when m—»a>. Thus (c)

Ä(t)(- ry-idr

goes to 0 uniformly in z£F> when m—*oo. The properties (a), (b), (c) are

sufficient to justify the assertion in italics [4, p. 100 J.

Accordingly the right side of equation 14.4 provides the continuation of

X(z) to the entire finite z plane. The sole possible singularities in the finite

plane are the simple poles of T(l—z) at z = n, n = l, 2, • • • . However, since

{b„} (Ezh, converges absolutely for i?(z)>l/2 and these poles do not

occur. Hence X(z) must be an entire function whose order may easily be found

from the representation in equation (14.4).

Consider the Hankel loop integral in equation 14.4 for large \z\. The fol-

lowing crude bounds are sufficient for our purpose. We have for fixed p,

0<p<min(5, 1),
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IJ" (- ty^h^dt j = j «I«!-1! h(t)\dt + j r^^\h{t)\dt

= M^f       xe—VC1 - e~')dl + J* rl*l-l<r-'/(l - e~')dt

Since

it is clear that

= MiT(.\ a I) + M2P-l2l.

r(| 2 I) < Jf,| a|l«l-w*e-l«l < M^l2

ir(- ty-T-h^dt

We have for the integral about the circle of radius p

— f (pew:
2x J_TV

)zh(pei>)d6

If —7r+e<arg (1 — 2)<7r — e,

I T(l - 2) I < Af9el'l2.

Since {&„}£Z2 it is plain that |X(s)j <Mio for i?(z)>l. Accordingly, in

estimating the order of A(2) we may restrict attention to the complement of

a sector including the positive real axis; that is to say, we need consider

— ir+«<arg (1—2)<7T—€ alone. Combining the inequalities obtained above,

we have
I X(z) I < Af„e2l*l2

or X(2) is of order 2 at most. Since X(2) £5 and is entire, it can have no zeros

in the finite plane. The Hadamard factorization theorem yields

X(z) = \(0)eC!+d!\

Since X(z) has a Dirichlet expansion with finite convergence abscissa, it is

obvious thatd = 0. Hence X(z) =bn/nz for some n. This is a contradiction with

our hypothesis. Our proof is complete.
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