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Introduction. Among the valuation ideals in a polynomial ring 0 = K[x, y]

in two indeterminates, the ones of central importance are the simple valua-

tion ideals, that is, the valuation ideals which are not products of two ideals

different from O, since every valuation ideal has a unique factorization into

simple valuation ideals.

The problem of the characterization of simple valuation ideals has been

dealt with by Zariski, in the case that the field K is algebraically closed and

of characteristic 0, in his paper, Polynomial ideals defined by infinitely near

base points. There the problem is referred to the ring of holomorphic func-

tions in x, y: &* = K{x, y}, and a valuation ideal q in £)* is simple if and

only if its general element is absolutely irreducible. If, however, only the

characterization of the simple valuation ideals is desired, the notions of the

general element of an ideal in £>* and its absolute irreducibility are some-

what too strong for the problem set; although it should be stated that these

notions are applied by Zariski to other topics not touched upon here.

In this paper we treat the theory of simple valuation ideals by a more

explicit and direct method and we also extend the theory to algebraically

closed fields of arbitrary characteristic p9^0. We characterize the simple

a-ideals q in the sequence of zero-dimensional valuation ideals in £), for a

given valuation v, in terms of the value i>(q) (under v) of q (that is, the least

value assumed by elements of q) and of the least value greater than v(q) as-

sumed by elements of D. If q is not simple, an explicit factorization for q in

terms of the two mentioned values is given

Since in our treatment the field K is of arbitrary characteristic, Puiseux

series expansions for valuations are not available. A corresponding tool is

found in Theorem 6. There for a given valuation v, a certain (finite or infinite)

sequence of polynomials/,(*, y) is introduced. In the case that K is of charac-

teristic 0, if v is given(1), for example, by y = Cixrm+C2Xr{2)+ ■ • ■ , CiEiT,

r(i)=r{ rational, with 0<r,<r,+i, then the polynomials fi(x, y) correspond

roughly to the irreducible polynomials gi(x, y), gi(x, y), • • • which have

y = CiXr<1), y = CiXr(1)-T-C2*r(2), • • • respectively as roots.

We next reduce our considerations to valuations of rational rank 2. This

reduction serves two purposes. First it unifies the discussion; but much more

Presented to the Society, August 14, 1944; received by the editors September 30, 1944.

(') For the representation of valuations by means of power series, in the case of ground

field of characteristic 0, see A. Ostrowski, Untersuchung zur arithmetische Theorie der Körper,

part III, Math. Zeit. vol. 39 (1934).

387



388 A. SEIDENBERG [May

important is the following. If v is of rational rank 2 then the value group

contains irrational numbers, and if r is the least irrational value assumed by

elements of O, then the description of the valuation ideals in © for the valua-

tion v is intimately connected with the approximants and quasi approximants

to a certain integral multiple of r.

Our treatment also provides a proof for the main theorem proved by

Zariski in the case p = 0, to the effect that under a quadratic transformation

simple u-ideals are transformed into simple f-ideals.

1. Valuation-ideals and O-dimensional valuations. Let 2 be a field con-

taining a subfield K and let v be a valuation of 2 over K, that is, a valuation

in which the elements of K other than zero have value zero. Let S3 be the

valuation ring of v. Let O be an integral domain contained in S3. By the

valuation ideals, or v-ideals, in D belonging to, or for, the valuation v we mean

the contracted ideals in © of the ideals in S3, that is, the ideal 21 in O is a f-ideal

for the valuation v if 21=0/^©, where a is an ideal in 33. It is clear that the

i>-ideals in £> belonging to v may be characterized as the sets of elements in ©

which contain together with any element all elements of © of equal or greater

value. Another simple property of valuation ideals in © dependent only on

the fact that they are contracted ideals of ideals in an overlying valuation

ring is the following. If v' is a second valuation of S over K with valuation

ring S3' such that ©CS3'CS3 then the valuation ideals in O belonging to the

valuation v are among the valuation ideals in © belonging to the valuation v'.

In fact, if 21 = onO, a an ideal in S3, then also 21 = (aPiS3')n©, and a/OSS'
is an ideal in S3'.

Let now O be a finite integral domain over K, $Z)=K\x1, • ■ • , **], con-

tained in S3 (that is, © consists of the polynomials in a finite number of ele-

ments of S3 with coefficients in K) and let 2 be of finite degree of transcend-

ency n =i 1 over K. By the dimension of v is meant the degree of transcendency,

over K, of the residue field of v. We assert that the valuation ideals in ©

belonging to v are among the valuation ideals in © belonging to a O-dimen-

sional valuation v' of 2 over K. In fact, if v is not already O-dimensional,

let v0 be a O-dimensional valuation of S3/$ over K, where 'iß is the ideal of

non-units in S3. It is well known (2) that the two valuations v and v0 together

determine a valuation v' of 2 over K such that v'(a/ß)=0 if and only if

v(a/ß) =0 and v0( [a/ß]) =0; and such that v'(a/ß)>0 if and only if v(a/ß)^0

and v0([a/ß])>0, where [a/ß] is the residue, or image, of a/ß under the

homomorphism S3—>93/"iß. Clearly the valuation ring S3' of v' is contained

in S3 and v' is O-dimensional. Moreover v0 can be taken such that fl'(x,)säO,

*=1, • • • , k. In fact, since v(xi)^0 it follows that the f-residues of the

are finite, and hence there exists a v0 such that »o(£,)=0, whence f'(x,) = 0.

£5 is then contained in S3', and this completes the proof of our assertion.

(2) This has reference to the process of composing v and r0. See Krull, Allgemeine Bewer-

tun^stheorie, §5, Journal für Mathematik vol. 167 (1932).
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Below, 2 is taken to be a pure transcendental extension of K of degree 2,

and O to be a polynomial ring over K in two indeterminates. As our purpose

is a study of the f-ideals in © belonging to valuations v of 2 over K, these

valuations are restricted without loss of generality to be O-dimensional.

2. Valuation ideals in a ring with chain theorem. Let v be a valuation of 2

over K with v-ring 33, and let © be an integral domain with chain theorem

contained in 33, and let the quotient field of © be 2. Then every v-ideal in ©

belonging to v has an immediate successor in the ordered set of v-ideals belonging

to v. In fact, let (ori, • • • , a*) be a basis for an arbitrary ideal 21 in ©, and

place v(21) = min(v(oti), • • • , v(ak)); it is immediate from the valuation axioms

that t>(21) is independent of the basis. If u(21) =v(W) for two ideals 21 and 21'

in ©, we also write 21^21'. Since v is non-trivial (by assumption), there exists

an element a of 2 with v(a) >0. Let a=f/g,f, g€EO; then v(J) = v(a)+v(g) >0,

since g£©C33 implies v{g)giO. Thus there exist elements of value greater

than u(21), for example, the elements of 21/. Let 21 be a fl-ideal for v. The set

of elements 21' in © of value greater than n(21) has the property that together

with any element it contains all the elements of © of equal or greater value.

Hence 21' is a u-ideal for v, and clearly 21' is the immediate successor of 21.

Let v be O-dimensional, and consider the well-ordered set of z>-ideals in ©

belonging to v. The first u-ideal q0 in © is © itself. The immediate successor

qi of qo is the contraction to © of the ideal of non-units $ in 33, and is a prime

ideal in ©. Moreover, it is O-dimensional. In fact, since liI3P\© = q1,

©/qiC33/93, whence ©/qi is algebraic over K, or in other words, qi is

O-dimensional. The well-ordered set of ^-ideals in © belonging to v starts

with a simple sequence: qo, qi, q2, • • • . Each q,-, Oil, is a primary ideal with

qi as associated prime ideal. In fact, i>(qi) <z>(q?) < • • • <v(q[), whence

v(c\\)^v(cfi); therefore q*Cq<C<|i, whence q,- is a primary ideal with qt as

associated prime ideal.

The intersection Aqf of all the ideals q,- is a prime ideal. In fact, if

ab = 0(Aqi), a^0(Aq,), &^0(Aqi), then let qr be the last ideal in the sequence

{q, } containing a, and q„ the last ideal in the sequence {q<} containing b.

Then v(a)=v(qr), v(b)=v(qt), whence v(ab)=v(qrq!). Since every o-ideal for

v contains together with any element all elements of equal or greater value,

we have qrqs = 0(Aqi). Since some power of qi is in qr and similarly for q„

also some power of qi is in Aq,-, say q1' = 0(Aqf). This is a contradiction, for if

q" = 0(qj) then i cannot exceed the length of q?.

If K is algebraically closed (and v is O-dimensional) the sequence q0, qr, • • •

is called a Jordan sequence, in view of the fact that in this case each q,+i is a

maximal subideal of{3) q,-.

We are particularly concerned below with all the above results in the case

that K is algebraically closed, of arbitrary characteristic, that 2 is a pure

(3) O. Zariski, Polynomial ideals defined by infinitely near base points, Theorem 1, Amer. J.

Math. vol. 60 (1938).
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transcendental extension of degree 2, and that O is a polynomial ring in two

indeterminates (generating elements of 2 over K). These assumptions on K

and 2 are assumed hereafter. Also any considered valuation » of 2 over K

is understood to be 0-dimensional.

In general, Aq,- is prime. In the case that O is a polynomial ring in two

indeterminates, Aq,- is either the ideal (0), or it is 1-dimensional, whence prin-

cipal, say Aq, = (/). In the former case every »-ideal belonging to » is in the se-

quence {q,}. In the latter case every »-ideal belonging to » is of the form

(/)"qm, n = 0, 1, • • • ; m = 0, 1, • • • . As a consequence, the study of »-ideals

in O reduces essentially to the study of the 0-dimensional »-ideals.

3. »-ideals and quadratic transformations. Let » be a 0-dimensional valua-

tion of 2 over K. Since any element or its reciprocal has non-negative »-value,

2 has two generating elements x, y with non-negative value. Let !0 = K~[x, y].

The center of the valuation » in £>, that is, the contraction to £) of the ideal

of non-units in the »-ring 58 of », is the prime ideal qt. Since qi is 0-dimensional

and K is algebraically closed there exist constants c, d such that x = c(q0,

y = d(qx). Clearly qx=(x — c, y — d). Replacing, if necessary, x — c by x and

y—d by y, we may without loss of generality assume qi=(x, y). At least

one of the elements x, y is not in q2, say je^0(q2), or equivalently, »(qi) =v(x).

Since » is 0-dimensional and K is algebraically closed there exists a constant

b such that v(y — bx) >0. Replacing, if necessary, y — bx by y, we may without

loss of generality assume v(y) >v(x).

With these assumptions on v(x) and »(y), we consider the quadratic trans-

formation T:

x' = x,   y' = y/x;      x = x',   y = x'y',

having at x=y = 0 a fundamental point, and we denote by £)' the ring of

polynomials in x', y': D'=K[x', y']. O is a subring of £)', and moreover

£)'C23 since v(y') =v(y/x) >0. Let q0', qi, • • • be the Jordan sequence of

»-ideals in £)' belonging to v.

If 21 is any ideal in O and if 0'2l=x"'21', 2t'^0(x'). the ideal 21' is called
the transformed ideal of 21 (under the quadratic transformation T), in sym-

bols: 2l' = r(2l). By a theorem of Zariski(4), the transform of a v-ideal in £5

for v is a v-ideal in £)' for v. We shall have occasion to give another proof of

this theorem.

Our principal goal below is to prove that the transform of a simple »-ideal

is simple. By a simple ideal we mean the following. An arbitrary ideal 21 in O

is said to be composite if it is the product of two ideals S3, £ in O different from

the unit ideal: 21 = 93S, S3 £), S ^ SO. 21 is said to be simple if it is not composite.

It is true that if 21 is a v-ideal for v and is composite, 21 = S36, then 21 is also the

product of two v-ideals for v different from the unit ideal. In fact, let 33', S'

be the »-ideals in £> for » such that »(S3) =»(33'), »((£)=»(£'). Since 33, £ differ

(') O. Zariski, ibid., Theorem 4.1.
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from £> and therefore 21C93, 2ICS properly by a well known theorem, we

have»(93)>0, 0(6)>0, whence »(93')>0, »(6')>0, and 93', <£' differ from £).

Since 93'293, <£'2<£ we have 93'e'=?936 = 2I. On the other hand, »(21) = »(93£)
= 0(93'S'), and since 31 is a »-ideal for », 21393'6'. Thus 21 = 93'©'. This com-
pletes the proof. This remark permits us in proving the simplicity of a given

»-ideal 21 to restrict the discussion, first, to any valuation 0 for which 21 is a

»-ideal, and second, to the ideals in O which are »-ideals for ».

4. The valuation given by y = xT. Let 0 = K[x, y] be a polynomial ring in

two indeterminates x, y over the field (s) K, and let 2 be the quotient field

of £). Let r be an arbitrary irrational number greater than zero.

There exists one and only one valuation v of 2 over*K such that v(x) = 1

and »(y) =t. » is necessarily O-dimensional. The value group of this valuation

is the additive group of real numbers of the form a+br where a and b are

rational integers. (See, for example, Saunders MacLane and O. F. G. Schil-

ling, Zero-dimensional branches of rank one on algebraic varieties, construction I,

Ann. of Math. vol. 40 (1939).) We shall say that the valuation v is given by

y=xT, or that y = xr is the valuation v.

Consider the valuation » given by y = xT, r an arbitrary positive irra-

tional number. Since v(x)>0 and »(y)>0, the ring O = K[x, y] is contained

in the valuation ring 93 of ». Let q0> qi, q2, ■ • • be the Jordan sequence of

»-ideals for ». Here qo = D, qi — p=(x, y)-

From the definition of » every »-ideal q< has value mi-\-n,r, mi, ni non-

negative integers. Conversely, every number m+nr, m, n non-negative in-

tegers, is the value of one of the ideals q;, namely that one which contains

all the elements in O of value equal to or greater than v(xmy"). Hence the

sequence »(qo), »(qi), »(q2), • ■ • coincides with the set of numbers {g+hr},

g and h non-negative integers, ordered according to magnitude.

Theorem 1. Every v-idealfor the valuation given by y = xT has a basis con-

sisting of monomials xmy".

Proof. Let q be a »-ideal for », and let g(x, y)Gq. If g(x, y) =£em„xmyn,

CmnCK, cmn5*Q, then v(g) =min (v(xmy)), by definition; that is, v(xmyn)^v(g)

^»(q) for every term cmnxmy" of g(x, y), whence xmyn£q for every such term.

Thus a basis for q can be replaced by all the various terms in the elements

of-the basis. This completes the proof.

Corollary. Let mi+nir, m-i+niT, ■ ■ ■ be the set of positive numbers

[g-f-hr], g, h non-negative integers, ordered according to magnitude. The ideals

qi, q2, • • • can be described in the following manner: q; has a basis consisting

of the elements xm(-k)ynW, k^i, where m(k)=mk, a notation used later also.

Theorem 2.1. If »(q.) =m+nr, v(qj)=m, v(qk)=nT then qi = qjqk.

(E) K need not be algebraically closed in this section.
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Theorem 2.2. If »(q,)=jr, »(q,+i) = m+nr and if mn^O, then s>n and

<\< = (\Ak, where v{q,)=nr, v(qk) = (s — n)r.

Theorem 2.3. If »(q,)=r, v(qi+1) = m+nr and if m»^0, then r>m and

<Ti = PjQ*> where v(ol,)=m, v(qk)=r — m.

Proof. 2.1. Clearly qyq*Cq,-. Conversely, let xm'yn'Gq,-. Since nt'+n'r

^m-\-nr, either n'^n or m'^m. In the first case,

xm'y"' = xm'y"'~"- y" G q,q*

since xm'yn'~nGqy (in view of m'' + («'' — n)r^m) and ynGq*. In the second

case
xm'yn' = xm- xm'-myn' G q,-qk

since a:m£qy, 3cm'-my"'Gqt. This completes the proof.

2.2. We cannot have n<2:s, for n^s together with m j£0 implies m+nr — sr

e£l, whence there exists an integer between the irrational numbers sr and

m+nr. (Note that sj^O, for if s = 0 then »(qi+i) = l or r.) This contradicts

the fact that st and m+nr are successive in the ordered set of numbers

{g+hr}, g, h non-negative integers. Hence s>n, and the ideals qy, q4 exist.

Clearly qyq*Cq,.. Conversely, let q»=(y*, xmy", xm'yn', • ■ ■ ). Then clearly

y* = yy*_nGqyq* and *my"Gqyqi since m> (s — n)r, so that xmGq*- As for

xm'yn', either ft'äxior«'^», since m'+n't}£m+nT. Hence if we write xm'yn'

in the form xm-xm'~myn' or in the form xm'yn'~" ■ yn, we conclude in either case

that xm'yn'Gqyq*. This completes the proof.

2.3. This case is really not different from the case 2.2. In fact, consider

the order preserving automorphism of the additive group of real numbers

given by: x—*x/t. If we replace the value group of v by the isomorphic group

obtained under this automorphism, the statement and proof of 2.3 are the

same as those of 2.2. This completes the proof.

Theorem 3. Let h be the greatest integer less than r if t>1, or the greatest

integer less than 1/t if t < 1. If i^h then q< is simple. If i^h and if q,- is simple,

then of the two numbers »(q,), f(q,+i) one is an integer, the other an integral

multiple of r.

Proof. If t>1 then t>(qi) = l, z/(q2) = 2, • • • , v(q4)=A, v(q\+1)=T. If r<l

then »(q1)=r, v(q2) = 2r, • • • , v(qh)=hT, »(qA+i) = l. In the first case yGq<,

i=i, 2, • • • , h; in the second case *Gq<, t = l, • • • , h. In either case the

ideals qx, q2, • • • , q* must be simple because each element of the product of

two ideals which are different from the unit ideal must have a leading form of

degree at least 2.

If, now, i^h and i»(q<) =m-\-nr, «5^0, then Theorem 2.1 proves

that q,- is not simple.

If i^h, v{qi) = st and v(q«+i) = m+wr and «^0, then also m^O. In fact,

if m = 0 then clearly n = s + l. If t> 1, then »(qi+i) — »(q.) = r > 1, whence there
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is an integer between v(qi) and »(q,+i): this is a contradiction. If t<1 then

st>1, since i^h and i = h is excluded because z>(q,+i) = (s + 1 )t j* 1. If A is the

greatest integer less than (sr — 1)/Y + 1, that is,

(st — l)/r < k < (st — 1)/t +1, & an integer,

then st<1+£t<(s + 1)t; k>0 since sr — 1 >0. This is a contradiction. Hence

m^O. By Theorem 3.2, then, q,- is not simple.

If igt h, v(qi)=r and »(q,+i) = m-\-nr and wz?^0 then similarly q< is not sim-

ple. In fact, this case is not really different from the one immediately above,

as may be seen by the argument given in 2.3. This completes the proof.

We wish now to prove the converse of Theorem 3. For this we need two

lemmas.

Let wi + l/(?M2 + l/(w3+ • • • be the continued fraction expansion of r.

Consider the sequence of numbers: nt\, + Wi + 1/2, • • • , Wi + l/»ij,

mi + l/^ + l/l, • • • , Wi-r-l/(w» + l/'»8, • • • . Of these, the numbers mi,

oti + I/wjo, mi + l/(m2 + l/ms, • • • are known as approximants, the others as

quasi approximants (6), to r.

Lemma 1. If the two numbers r, sr (or sr, r), r, s positive integers, are suc-

cessive in the set of numbers {g-\-kr}, g, h non-negative integers, ordered accord-

ing to magnitude, then (r, s) = 1 and r/s is an approximant or quasi approximant

to t (and therefore s/r is also an approximant or quasi approximant to 1/r).

Conversely, if r/s, r, s positive integers with (r, s) = l, is an approximant or

quasi approximant to r and s/r is an approximant or quasi approximant to 1/r

then r, st (or st, r) are successive in the set of numbers {g + hr}.

Proof. Let r, st (or st, r) be successive in the ordered set of numbers

{g+Ar}. From the symmetry of the lemma, we need consider only one case,

say the case r<sr. A theorem of Lagrange and its conversed) state that r/s

is an approximant or quasi approximant to t if and only if «>s for every

rational number m/n, m, n positive integers such that r/s <m/n <r. Now,

if r/s <m/n<t, m, n positive integers and n^s, then

st — r > (s/n)(nr — m) ^ wr — m > 0,

whence r <m-f-(s — »)r <st, which contradicts the assumption that r and st

are successive in the set {g-f-Är}. Hence n>s and r/s is an approximant or

quasi approximant to t.

Conversely, suppose (r, s) = l,r, s positive integers, and that r <u-\-vt <st

for some non-negative integers u, v. If v?±Q then either (r — u)/v>r/s or

u(s — v)>r/s, for (r — u)/v^r/s and u/(s — v)^r/s imply rs — us^rv and

us^rs — rv, whence us = rs — rv, and r/s = u/(s—v) which contradicts the as-

sumption (r, s) = l. Moreover (r — u)/v and u/(s—v) are both less than r.

(') Perron, Nebennäherungsbrüche.

(7) See O. Perron, Die Lehre von den Keltenbriichen, p. 38, Theorems 20 and 21.
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Hence there exists a rational number m/n (either (r — u)/v or u/(s — v)) with

0<ra^s such that r/s<m/n<t. The same is true even if i> = 0; namely

m/n = u/s. By the theorem mentioned above, r/s is therefore neither an ap-

proximant nor a quasi approximant to t. This completes the proof.

Lemma 2. If m\-\-n\t, m2-\-n2r, ■ ■ ■ , mk-\-nkt, r, st is an initial segment

of the ordered set of positive numbers {g+hr}, g, h non-negative integers, then

there exists an irrational number t'>0 suck that Wi-f-Wir', m2-\-n2t', ■ ■ ■ , mk

-\-nkr', st', r is an initial segment of the ordered set of positive numbers {g+hr'},

g, h non-negative integers. A similar statement holds for an initial segment

mi+ntf, m2+n2t, ■ • ■ , mk+nkr, st, r.

Proof. If s—l, then n\ = n2= ■ ■ ■ =nk — 0 and any irrational number r'

between r —1/2 and r satisfies the lemma. If r = i, then any irrational num-

ber t' between l/(s-|-l) and l/s satisfies the lemma. If s9*l, ry^l then r/s

and s/r are not integers, since (r, s) = l. Let r/s have a continued fraction

expansion öi4-1/(024-1/(^34- • ■ • 4-1/(0; with bt> 1. It is well known that if

a is an arbitrary irrational number greater than 1 then bx-\-l/(b2-\- ■ • •

+ —l) + l/(l-t-l/(er and bi + l/{b2+ ■ ■ ■ -r-l/(öi + l/(tr are irrational

numbers having r/s as an approximant, of which one is larger, the other

smaller than r/s. Thus there exist irrational numbers t' <r/s having r/s as an

approximant: s/r will also be an approximant to 1/r'. Let r' (<r/s) be any

irrational number having r/s as an approximant or quasi approximant. We

assert that f' satisfies the lemma. In fact, by Lemma 1, st' and r are succes-

sive in the ordered set of numbers {g-t-Ar'}. Moreover, if u-\-vt' <st', u, v

non-negative integers, then v<s, whence u+vt<st since t'<t. Hence

u+vt^r; equality is excluded since u-\-vr = r implies v = 0, u = r>st'. Thus

u+vr<r. Similarly, if w-r-z/r<r, u, v non-negative integers, then u+vt' <r

since r'<r. Hence u-\-vt' ^st'; equality is excluded, since u-\-vt' = st' im-

plies m = 0, vt = st<r. It remains to prove that w.+w.-r' <w,+i4-wi+ir',

• • •,/fe —1. If w,+i = «, thisisclear; if w.-^Mf+i, then (w—w,+i)/(«,+i —«,)

>ror <r according as wt+i <«,• or wi+i>Wi. If (m,- — w,+1)/(w,+1 — »,•) >t(>t')

then ni+x — w, <0 and nti+nir'<w<+i-fn<+ir'. If (m,- — mi+l)/(ni+i — »,■) <r

then (»»,—< r/s also since 0 <ni+i— Ki<s and r/s is an approx-

imant or quasi approximant to r. But then, again because 0<wt+i —w, <s and

r/s is an approximant or quasi approximant to t', (m,—w,+i)/(m,+i —n.) >r'

is impossible, that is, (mi — mi+i)/{ni+x — »,■) <r' and w,-f-w,-r'<m,+i-f »j+it'

follows. This completes the proof.

Theorem 4. If of the numbers v(qf), v(qi+1) one is an integer, the other an

integral multiple of r, then qt is simple.

Proof. The case i = 0 is trivial. If i>0 then p(q,)=r, v(qi+i) =st or

Z)(qt.)=ST, v(qi+i)=r, r, s positive integers. As both cases are similar, we

consider for the sake of brevity only the case z>(q,-) =st. Consider the sequence



1945] VALUATION IDEALS IN POLYNOMIAL RINGS 395

^(Qi)> v(fy)> " • • > that is, the sequence:

»i + mit, w2 + w2t, • • • , nti-i + Ui-iT, st, r, ■ • • ,

where z>(qy) =fwy4-«yr. By Lemma 2 there exists an irrational number r' such

that
nti + Mix', >»2 + ra2r', • • ■ , nii-i + «,_it', r, st'

is an initial segment of the set of positive numbers {g+hr'}, g, h non-nega-

tive integers, ordered according to magnitude. Consider uie valuation v' given

by y = xT', and let q{ — (x, y), q2, • • • be the Jordan sequence of (0-dimen-

sional) valuation ideals in £) = K[x, y] for the valuation v'. By the corollary

to Theorem 1, qi = qi', q2 = q2', ■ • • , qt = q'. The assumption q, = q,qifc, j<i,

k <i, now leads to a contradiction. In fact, (wy-r-w/r) + (wt+nir) =st, whence

mj-\-mk = 0. Since m,-, mk are non-negative, mj = mk = 0, whence f(qy) =w/r,

v(qk)=nkr. But thejth and kth numbers in the sequence mi+nir', w2+n2r',

• • • , mi-i+rii-iT', r, st' are «yr', nkt', whence n'(q,) =«yr', v'(qk) =nktr,

whence fl'(q,) =»'(qyq*) = (wy-r-w*)1"'= ■""'; this is a contradiction. This com-

pletes the proof.

Let Wi + l/(wi-4-l/(w3+ • • • be the continued fraction expansion for t;

and consider the sequence: ao = 0, ax = \, a% — 2, • • • , amm=mi, am(D+i

= OTi + l/l, amm+2 = mi + \/2, • • ■ , a»d)+m(!)=»!1 + l/j»2, • • • . Let $0, $1,

^2, • ■ • be the sequence of simple p-ideals for the valuation y = xT in K[x,,y],

Corollary. There is a 1-1 correspondence 93i*=to,- between the simple v-ideals

and the a,, i^O. The correspondence is such that if ai = r/s, r, s non-negative

integers with (r, s) = 1, then v(^i) =min (r, st).

Proof. Consider first the case r>l, or equivalently, Wi^l. By Theo-

rem 3, v(Sßi) = i = m'm {i, t), i = 0, 1, • • • , mx. By Theorems 3 and 4, for

h ^ mx, qk is simple if and only if either v(qk) = r, v(qk+i) =sr or v(qk)=st,

v(qk+i)=r, r, s positive integers. By Lemma 1, r/s is an approximant or quasi

approximant to t. Conversely, let r/s, r, s positive integers with (r, s) = l,

be an approximant or quasi approximant to t. Since 1/t<1, s/r is certainly

also an approximant or quasi approximant to 1/r. Hence r, st or st, r are

successive in the ordered set {g-r-Ar}, g, h non-negative integers; that is, if

»(qi)=min (r, st) then »'(qi+i) = max (r, st) and q* is simple by Theorem 4.

We make q* and r/s correspond, and it remains to show that 'ißj^a,-. It is

well known that if a, = r,/s<, rf, Si positive integers with (rt, Si) — t, then

r<<r,+i. Since the set {g-r-Ar} is ordered according to magnitude, it is clear

that the correspondence could not be other than ^.«^a,-.

Consider now the case t<1, or equivalently, mi = 0. Here <Jo = 0,

ai = 0-|-l/l, • ■ • . The valuation y — xT is also given by x = y1,T. Let

6o = 0, bi, b2, ■ ■ ■ be the sequence for 1/t corresponding to the sequence

{a,-} for t. Clearly 0, = l/a,- for i>0; if aj = r,/sj, rit s, positive integers,
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(?u Si) = l, then £>,- = s,/r,-. By the case t>1, $i<=^>,- and the correspondence

is such that min (siv(y), (/.AMy)). Since v(y) =t,        = min (s.-r, r,).

This completes the proof.

Theorems 3 and 4 enable us to prove our principal theorem for the valua-

tion y = xT; that is, that the transform of a simple f-ideal under the trans-

formation T (see §3) is simple. Here we assume that t> 1, whence v(y) >v(x).

T is then the transformation:

T:   x' = x,   y' = y/x;      x = x',   y = x'y'.

As above we denote the ring K~[x', y']=K[x, y/x] by O', and the p-ideals in

©' for v by q0', <Ti, q2', - - - . Consider the valuations given by y = xT and

y'=;c'r-1. Since in both the value of x is 1 and the value of y' is t — 1, they

are, in fact, the same valuation: that is, the valuation y — xr is also given by

y' = x'*-\

Let ^3o = <To, $i = qi, $2, • • • be the simple n-ideals for » in O and let

= q£, $1 =Qi» $s'i • • • be the simple 0-ideals for n in £)'.

Theorem 5. The transform of the ith simple v-ideal 'iß,-, i>0, is ^3/_i.

Proof. Let mi+l/(m2 + l/(m3-t- • • • be the continued fraction expansion

for t; Wi^l since r>l. Let Oi = 1, c2 = 2, • • • , o»(i,=»ti, flm(i)+i = wi4-l/l,

ßm(D+2 = Wi-f-l/2, • • • , fflm(i)+m(2) =m14-l/w2, • • • . By the preceding corol-

lary there is a 1-1 correspondence between the numbers a,- and the ideals 'iß,-;

the correspondence is such that if a,- = r/s, r, 5 positive integers with (r, i) = 1,

then fl(^ßi) = min (r, st). Let {a/ } represent the corresponding numbers for

t-l (>0). Clearly at +1 =ai+1.

For i = 2, • ■ • ,«i the ideal $, = cj; is simple and contains the element y.

Clearly £)qi = 0(x'). Moreover y=yV£q,- so that Oq,-^0(x'2). Hence, by

the definition of F, i/(F(qi)) = i>(q,-) — 1 =*— 1, whence F(q,)C<ß/_1. By the

theorem of Zariski mentioned in §3, F(q.) is a f-ideal for v, and since n(F(q,))

= »($/_,) we have F(q,) = ?ß/-i.

In the special case with which we are dealing here it is also possible to

prove this result by a direct and simple calculation. In fact, clearly = q,'_i

= (y', x'i_1). The element y' arises from y£q,-, and the element x'i_1 arises

from a^Gq,-, whence, together with r(q,-)C^}/_i, we have F(q.) = Thus

Theorem 5 is true at least for i = 1, 2, • • • , «i.

For i>mu v(tyi)=r, »(q)=st or z>(<ß,)=5r, v(q) = r, r, s positive integers,

where q is the element of the sequence qu q2, • • ■ immediately following ^ß,-.

The two cases are not really different: in fact, let m\-\-nxt, m2+n2t, ■ • ■ ,mk

+nkr, r, st be an initial segment of the ordered set of positive numbers

{g-\-hT}, g, h non-negative integers. By Lemma 2 of Theorem 4, there exists

an irrational number t'>0 such that Wi-fwir', ntt+ihr', • • • , mk+nkt',

st', r is an initial segment of the ordered set {g+hT'\,g, h non-negative in-

tegers. By the description of the p-ideals for y = xT given in the corollary to
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Theorem 1, we see that qi, q2, • • • , are »-ideals for the valuation y = xT''.

and in this valuation the value of is st'. Moreover, sincei>nt\ the numbers

mi, t are among the first k numbers of the set {g+Är}, whence also ni\, r'

are among the first k of {g+hr'}, whence mi<r'. Thus by changing from r

to t' we retain the assumption r>l. Therefore without loss of generality we

need consider only the case »($,) = sr, v(q) = r.

Now, a, = r/s, whence a,!-i=(r — s)/s (and clearly (r — s, s) = l). Since

sr<r, we have st' = s(t — l)<r — s; whence »($/_i) = sr. On the other hand,

tyi has a basis consisting of monomials xmy" with m+nr^sr; since t>1,

m+n^s, whence O^i^0(x'') and F($<)^0(x''+1) since ^,Oy* = y'**'»

^0(x'«+1). By definition, then, v(T(^i))=v{^i)-s = s(t-l)=ST, = v(^U).

Applying the fact that F(*ß,-) is a »-ideal for v, we have F($.) = This

completes the proof.

5. The general case; reduction to rational rank 2 valuations. Let

7i, 72, • • • be a sequence of positive rational numbers. Let A0 be the additive

group of integers. For a given i>. 1, we consider the additive abelian group G<

generated by 1, 7i, • • • , 7,-, that is, the set of numbers of the form ?w+rai7i

+ • • • +M;7t, m, rij integers. In this sequence of groups let Ay be the jth

group G containing its predecessor properly. Let To be the set of non-

negative integers, Ty the set of numbers in Ay which are of the form

w+«i7i(i) + • • • +Wj7,■(,•), where m, w< are non-negative integers. We de-

note the numbers 7,(1), 7,(2), • • • by Si, ö2, • • • .

Let Sk = rk/sk, where rk, sk are positive integers and (rk, s*) = l; let t0 = l,

4 = 1.cm. (si, • • • , sk); and let dk = tk/tk-X. Since A* consists of all the numbers

m/tk, m an integer, it is clear that dk is the smallest positive integer such that

dk8k£Ak-i.

Lemma 3. If for a given j, 5j>d|_i8i_i for all l^j, then
(ay) k/tj^djSj, k an integer, j^ 1, implies k/tjCTj,

(by) dAQWfci.

Proof. The lemma may be vacuously true, in fact, is vacuous if and only

if the 7,- are integers. We suppose this not to be the case: 8i=7<(i)=riAi is

then the first non-integer in the sequence 71, 72, • ■ • .

For j = l we have t,-=ti = si, /y_i = £0 = l, so that di = sx; whence (b) holds

forj' = l. Forj = l, (ai) becomes: if A/si = si"riAi = ri then k=msi+nrx, m, n

non-negative integers. Since (/1, si) = l, we can at least get the equality

k = msi+nri, m, n integers. If now n is taken such that O^w-Oi, then m must

be positive since &=^Siri>Wi: whence (a,) is true for j = l. Now (by) follows

from (ay_i). In fact, since *y=0(jy) we have djSj=tj/tj-i-rj/sj= k/t,--i, k an in-

teger, and since £y>/y_i and, by hypothesis, ry/5y>dy_i5y_i, we conclude that

£/2y_i>dy_iOy_i; thus by (ay_i), tj/tj-i-rj/sjEYj-\-

Let s'j =g.c.d. (tj-i, Sj); we have also fy = l.c.m. (tj-i, Sy). Then sjJy=<y_iSy.

Now g.c.d. (s2, sy%)=g.c.d. (s2, <y_i, si) =sr g.c.d. (sy, t+jd—s-fil, whence
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g.c.d. (Sj/sj-u ytf-i) = 1. Sj/s'j =tj/ti-1 = dj. Let fj/5/=sy". Then (rys*', d,) = 1,

whence there exists a non-negative integer m <d, such that k — mrjSj' =0(dj),

whence

ß Mr,- & mrjSj" k' k' > r> ^ ^ r>~1

tj      Sj      tj     djSjSj'     s'js'j'     tj-i     Sj Sj-i

Statement (a,) now follows by induction.

Let K be an algebraically closed field of arbitrary characteristic,

1i=K(x, y) a pure transcendental extension field of K. Let v be a 0-dimen-

sional valuation of S over K with v(x)>0, v(y)>0. In the case that v is of

rank 1, we may normalize the value group of v by placing v(x) = 1; the mean-

ing of the phrase "v(z) is a rational multiple of v(x)" is then clear. In the case

that v is of rank 2, the phrase "v(z) is a rational multiple of v(x)" has the fol-

lowing precise meaning: there exist integers r, s, s>0, such that v(za)=v(xr).

Let qi, q2, • • • be the Jordan sequence of O-dimensional »-ideals in

K[x, y]; 7i = fl(qi). Let A0 be the group of values {mv{x)\, m an integer. In

case v is of rank 1, v(x) is taken to be 1, and A0 is simply the group of integers.

Let Di be the additive abelian group generated by v(x), yi, y2, • • ■ , y,-. We

have A0 = Z'o^7)1c: • • • . Let A, be the jth group Dm) containing its prede-

cessor properly; we also place Ao=/-?.•«>)■ Let T0 be the set of values {m(v(x))},

m a non-negative integer; T, the set of values {w.-r-«i7i(1)+ • • • +«j7i(j)}i

where m, rii are non-negative integers. We denote by Si, 62, • • • the integers

7<(i)» Y<(2)> • • • •

Theorem 6. Let Ai CA2 C • ■ • be the finite or infinite sequence of groups in-

troduced above. There exists a corresponding sequence of polynomials, fi(x, y),

h(x, y), ■ • • , elements of K[x, y], such that:

(1,) fj(x, y) is monic in y, that is, the coefficient of the highest power of y is 1.

(2,-) vtt)-a*jfcl.
(3y) Degree in y of f, is equal to dy_i • degree in y o//,_i, j > 1, where d,_i is

an integer; degree in y off\is\.

(4j) dy_iD(/j-_i)£Ay_2; fo>(/y_i)(£Ay_2, 0 <k <<iy_i, j> 1, wAere A is on integer.

(Sj) V(fi)>dh.1v(fi-1)j>i.

Proof. If every 7,- is an integral multiple of »(*), we have D$ = D\= ■ • • ,

and there is nothing to prove; that is, the theorem is vacuously true. Suppose

then that some 7,-, say yk, is not an integral multiple of v(x). If v(y) is not an

integral multiple of v(x) then v[y) =7<(i) = 5i, that is, any element g{x, y)

(E.K~[x, y] of value less than v(y) has an integral multiple of v(x) as value.

Thus Theorem 6 is satisfied, in this case, at least forj = l (/i = y). Suppose

v(y) =kiv(x), k\ an integer. Since v is O-dimensional and K is algebraically

closed, there exists an element CiGisT such that v(y — CkXha))>v(y); if

v(y — cixH1))=k2v(x), ki an integer, then there exists an element c2GK

such that v{y — ci**(1)— c2xi(2)) >f(y — CiXkm). Suppose this process can be
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repeated i times, so that we have integers ki, k2, ■ • • , ki+\ and elements

Ci, c2, • ■ ■ , c.G-K such that v(y — Cixkm — • • • — cixk<-i)) = ki+iv(x). Setting

y1 = y — CiXiil)— ■ ■ ■ —axHi)), we assert that v(yi) <yk. In fact, let g(x, y)

be an element of K\x, y] with v(g)=yk, and suppose v(yi)>v(g(x, y)) (equal-

ity is not possible since v(g) is not an integral multiple of v(x)). Then

gix, y)=g(x, yi + c1xkil)+ • • ■ +cixk(-i))=h(x, yi)=h'(x)+yih"(x, yi), where

h'(x)£K[x], h"(x, yi)EK[x, yi]=K[x, y]. Thus v(yih")>v{g), whence

v(g)=v(h'(x)), which is a contradiction, since v(h') is an integer. Only a finite

number of values less than v(g) are assumed by elements of K[x, y]. There-

fore, since ki <k2 < ■ ■ ■ , there exists an integer m such that y — Cixkm — ■ • ■

— cmxkim) has a value not an integral multiple of v(x). As above, v(y — CiXk(1)

— • • • — cmxklm))>v(g) is impossible, whence v(y — C\Xk{1) — • • • —cmxk(m))

= 7i(U = 0i. Thus assertion 2 of the theorem is satisfied by/i(x, y) =y — CiXk(-1)

— ■ ■ • —cmxk(-m) =y'. Also/i(x, y) is monic in y. Thus Theorem 6 is satisfied

at least for j = i, 3, parts 4, 5 being so far vacuously true. Note that we may

without loss of generality take/x(a:, y)=y, since K[x, y]=K~[x, y'] and any

monic polynomial h(x, y') is transformed into a monic polynomial h\(x, y)

= h(x, y+CiXkm+ ■ ■ • +cmxklm)) with degy>h(x, y')=deg„h(x, y).

The proof now proceeds by induction on j. Suppose, then, that we have

polynomials/i,/2, ■ ■ • , /y satisfying conditions 1, 2, 3, 4, 5. We have either

to show that Di{i) =Di(})+1= • • • , or produce an /y+i(x, y)£.R~[x, y] such

that the five conditions are satisfied by fi,f2, ■ ■ • ,/y,/y+i-

Note that v(Ji), v(f2), • • • , »(/y-i) are rational multiples of v(x). In fact,

suppose »(fi), v(f2), ■ • ■ , v(jk), k<j—l, are rational multiples of v(x); these

values generate A*. Since dk+1v(fk+i)(EAk by 4, v(fk+1) is a rational multi-

ple of v(x). Thus v(Ji), • • • , v(Jj-i) are rational multiples of v(x). Let

v(fk) = 8k = rk/sk-v{x), rk, sk positive integers, (rk, s*) = l, k^j — 1. Let t0 = l,

tk = l.c.m. (si, • • • , sk). By Lemma 3, in view of condition 5, we have:

(ay_i) If k/tj-i-v(x)^dj-1v(fj-i), k an integer, then k/tj-i-v(x)EYj-i.

(by_i) £?y_i = /y_i//y_2.

Note that if v(f,) is a rational multiple of v(x), and dj is defined by (4y+i)

that is, dj is the least positive integer such that djv(fj) GAy_i, then (ay) and

(by) hold.
We now prove:

(cy) If deg„g(x, y)<deg„/y, g(x, y)£K[x, y], then g(x, y) is a sum of

monomials in x,fi, ■ • ■ ,/y-i,

g(x, y) = HZ c(a0' ' - " > <*i-i)p(<xo, ■ • • . ctj-i), c(a0, • • • , ay-i) G K,

with 0^ak<dk, k = l, 2, • • ■ ,j—1, in which no two monomials have equal

values, and hence »(g)GA,_i where F(<x0, • • • , ay-i) is the monomial

^(o^a) . . . /5i?f 1}i a notation used throughout.

The proof is again by induction. For j= 1, degafi = 1, whence g(x, y) =g'(x)

Gi^[x], and the statement is trivial. For the general case, since/y-i(x, y)
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is monic in y we may write

g(x, y)= a0(x, y) + ai(x, y)/y_i(*, y) 4-+ at(x, y)/y-i(«, y),

di(x, y)GK[x, y], with degva,(x, y) <deg„/y_i(x, y), and /<rf,_i since

degvg(x, yXdegv/yC*:, y)=<*y_i-deg,/j_i(*, y). By induction, v(ak) GAy_2,

fe = 0,1, • • • , /, whence
k k'

»(a</,_i) 5^ »(at-/,_i)   for   k r+ k'

by 4, that is, since v{fflf) £Ay_2. (c) now follows by induction. Note that

if v(fj) is a rational of v(x), and <2y is defined by (4J+i), then (cy+i) holds when

we write dydegi/y instead of degv/,+1.

If, now, v(Jj) is not a rational multiple of v(x) then Ay=Z>m, m^ij. In

fact, if g(x, y)CK[x, y] then, since/,•(*, y) is monic in y, we may write

g(x, y) = a0(x, y) + a^x, y)/,(s, y) 4-+        y)/J(*, y),

where a<(x, y)CK[x, y], and degya.O*:, y) <degB/,(x, y). By (c), i>(ai)GAy_i

whence v{akß)^v{ak^) for since »(//"*') is not a rational multiple of

w(*), whereas v(ak/ak>) is. Thus 0(g(x, y)) =i'(ot(*, y)ff(x, y)), some fe, 0 ^fe gL

whence v(g(x, y))GAy. In this case, as remarked before, there is nothing more

to prove.

If v(Jj) is a rational multiple of v(x), we define dj by means of condition 4.

Since djv(f/) = k/tj-.i>dj-iv(fj-i), we have, by (a), dJv{fj)=ao+aiSi+ ■ ■ •
4-ay-io,_i, with O^a,- <d„ «**!, 2, • • • , /— 1. Since v is 0-dimensional

and X is algebraically closed, there exists an element cG-ST such that

v(f*»-cF(a<h • • • , «,•_!))>(#">). Let ^(*, y) =//<>>-<;/?(«„, • • • , «y_i).

Now

deg»F(a0, ai, • • • , ay-i)) < deg„F(0, ii, ds — 1, d3 — I, ■ ■ ■ , d^ — 1) = deg„/y

whence//}?i is monic in y. If v(//ft)GAy then by (ay), one has

<*J  ■ , I     <2>«.    r, ^    <2) ^ J •      « 1
»(/j+i) = «o   + <*i oi 4- • • • 4" o-i oy, 0 ^ ai   < dit      t — I, 2, • • • , j.

Then there exists an element CiGK such that »(//}i —caF(a^2), • • • , aj2)))

>i;(/5:+,1). Let/^i-^j—tiF(a^, ■ • ■ ,af}). Note, as above, that //ft is monic

in y. Repeating the above process, we obtain a sequence fj+i,fj+\, • • • , which

is finite if, for some integer k, »(/y+i)£Ay, and which is infinite otherwise.

In case the sequence is infinite, all groups Dm, m^ij, coincide with Ay.

In fact, if g(x, y)£R~[x, y] and v(g(x, y))=7* then there are only a finite

number of values less than v(g) assumed by elements in K[x, y), whence for

some k, v(f^.l)>v(g). Since fj+i is monic in y, g(x, y) can be written:

g(x, y) = a(x, y) + g'(x, y)fi+i(x, y),
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with a(x, y), g'(x, y)£-K[x, y] and degya(x, y)<degyf)+)1 = degyffU), whence

v(g(x, y))=v(a(x, y))GAy, by (cy+i).

In case the sequence is not infinite, that is, in case for some integer k

we have »tf^),^), ' • ■ , *<CfyV)GAy, while »(/J&XJAy, then either
is infinitely large with respect to v(x) in which case Aj = Dm, m^ij, or

fi+i=fj+i together with fu ■ ■ • , f} satisfy (1, 2, 3, 4, 5, In fact, in
either case 1, 3, 4, 5, are clearly satisfied. It thus remains to prove in either

case that if v(g(x, y))<»(/y+i), g{x, y)(=K[x, y], then »(g)GAy. Since/y+i

is monic in y we may write g(x, y)=g'(x, y)-\-h{x, y)/y+i(x, y), where

g'(x, y), Ä(*, y)E2?[*, y] and degvg'(x, y) <degyf= degyfiU), whence
f y)) =f (g'(*> y))- The statement now follows from (cy+i). This completes

the proof.

Corollary 1. The sequence fi, ft, ■ ■ • is infinite if and only if v is non-

discrete, and of rational rank 1.

Proof. Let the sequence /i, /2, • • • be infinite. Since deg„/i—-><» as

we have, by (c) of the above theorem, that lim Ay is the value group. Since

the value group contains an infinite ascending sequence of subgroups it must

be non-discrete; since »(/,) is rationally dependent on v(x), it is rational rank

1. The converse is trivial. (Actually, the corollary does not depend on any

special properties of the/y, but solely on the fact that the/y are in 1-1 corre-

spondence with the Ay; in fact, the value group is non-discrete, rational rank 1

if and only if the value group contains an infinite ascending sequence of sub-

groups).

Corollary 2. If v is of rank 2, in which case the sequence /i, ft, ' • • is

finite, containing j terms say, then, except for the valuation in which v(y) is

infinitely small with respect to v(x), the possibilities (a) Aq^O and (b) Aqf = 0

correspond respectively to the possibilities (a') v(f/) is a rational multiple of v(x),

and (b') v{f,) is not a rational multiple of v(x).

Proof. Also this corollary may be proved without recourse to any special

properties of the fi. In fact, in all cases of rank 2 valuations, if Aq^O then

the 7,- generate a group of the type of all integers (in fact, an isolated subgroup

of the value group). Hence any two y's are rationally dependent. In particu-

lar, then, if v(y) is not infinitely small with respect to v(x), then xG^Q» and

the statement follows.

If Aqi = 0, the 7< generate the entire value group, which does not possess

a rational base of one element. This completes the proof.

We wish to remark that if v is of rank 1 then "v(fj) not a rational multiple

of v(x)" means v{fj) is an irrational number: if, however, v is of rank 2, then

uv(fj) not a rational multiple of v(x)" can be distinguished into two cases.

Namely, either »(/y) may be infinitely small with respect to v(x); or, although

mv(x)>v(fj) for some integer m, v{xn)j*v{J^ ) for any integers «, n' different
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from 0. The former case can arise, however, only forj=l and if v(y) is infi-

nitely small with respect to v(x). (The case t>(/y) infinitely large with respect

to v(x) cannot arise here, since ijv(x)> 8,-=»(/,•)).

Let v be a rational rank 2 valuation of 2 over K with v{x) >0, v(y) >0 and

let/i, fi, ■•■,/,• be the polynomials for v introduced in this theorem.

Corollary 3. If V\ is a rank 1 valuation of S over K (a subgroup of the ad-

ditive group of real numbers being taken as a value group) and if Vi(x)=v(x),

Vi(fi)=v(fi), i=l, ■ ■ ■ ,j, then Vi = v.

Proof. We have shown that if g{x, y)Q.K[x, y] then g(x, y)=a0(x, y)

4-ai(x, y)fj+ ■ ■ ■ +ai(x, y)f), where a,(x, y)dK[x, y] and degyai(x, y)

<degvfj(x, y); moreover, that v(akfj)y£v(akf^') fork^k'. Hence by (c),g(x,y)

is a sum of monomials in x,f\, ■ • ■ ,/y,

g(%, y) = iZ c(ao, • • • , oti)F(a0, • ■ • , or,), c(a0, •••,«#) G K,

a,-, i = 0, 1, • • • ,j, non-negative integers, with

v(F(a0, • • ■ , ay)) * v(F(a£ , •••,«/))

unless a,-=a/, *=0, 1, • • • , j. Hence the value of g is the minimum of the

values of these monomials. The corollary is an immediate consequence.

We insert here a table displaying the polynomials / introduced in Theo-

rem 6 for a given 0-dimensional valuation. The valuation in which v(y) is

infinitely small with respect to v(x) forms an exception, and is omitted.

Rank 1

Discrete :/i,/2, • • • , fj, fj+n ff+i, ■ • ■ (infinite).
Non-discrete:

Rational Rank 1. • • • ,/y,/y+i, • • •,

Rational Rank 2. ft, ft, • ■ • ,/y,/y+i-

Rank 2

Aq, = 0. fx, ft, • ■ ■ ,/y,/y+i.
Aq^O. fx, ft, • ■ ■ ,fi,Muf?+u ■ ■ ■    (finite or infinite).

Let v be a rational rank 2 valuation of K(x, y) with v(x) = 1, v(y) >0. Let

A;+i be the value group, and /i, /»,••*, /y, /y+i, J ^O, the polynomials con-

structed in Theorem 6. »(/y+i)=r is an irrational number.

Theorem 7. For any irrational number o>r = v(fj+i) there exists a rational

rank 2 valuation Vi of K(x, y) with »i(x) = 1, Vi(y) >0, and such that Vi(fi) =»(/<),

i=l, 2, • • • , j, o1(/y+i)=o-.

Proof. Since/y+i is monic in y, every polynomial g(x, y)£K[x, y] may be

written
k

(1) g(x, y) = a0(x, y) 4- ai(x, y)fi+i 4-+ «*(*, y)/y+i
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with üi(x, y)(£K[x, y] and deg„a,<deg;,/y+i. The expansion (1) for g(x, y)

is unique; in fact, let g(x, y)=d0'(.x, y)+a{(x, y)/y+i4- ■ ■ • +ak (x, y)/*+i

with al (x, y)(E.K[x, y] and degvai<deg„/.+i. Since a0—a0' = 0(/y+i) and

degyfj+i>degy(a0 — <io) we have a0 = a0'. Similarly k = k' and di = dl. By (c) of

Theorem 6, n(ai)£Ay. We now place

»i(g) = min (»(o<) 4- i<r),

where i runs from 1 to k. Clearly »i (/",■) =»(/,-), *=1. ■ • ■ ■ j. »i(/y+i)= 0">

»i(x) = l and »i(y)>0. If &(*, y) = b0(x, y)+bi{x, y)/y+i4- • • • +bk,(x, y)ff+l
is the expansion (1) for a polynomial A(x, y)(EK[x, y] then

g + h = (a0 + bo) + (ai 4- &i)/y+i + • • • + (<**" + bk»)fJ+i

is the expansion (1) for g+h, where k" = max (A, k') and a< = 0 for t> A, £< = 0

for i>k'. Then

pi(g 4- A) = min (v(di + J,) 4- *V) S min (min (fl(a,), »(6.-)) 4- to)
< <

= min (y(di) 4- i<r, »(Z>A 4- to) — min (min (»(a.) 4- ier)),
< <

min (v(bi) + io)) = min (»i(g), fi(A)),
<

that is,

(2) n(g 4- A) ^ min (0l(g), fli(A)).

Moreover, since i>i(l) = »i( — 1) =0 we also have

(2') Bi(g 4- A) = min (vi(g), n(*))   if   »i(g) ^ »i(*)).

We wish now to prove

(3) n(*A) = n(g) 4- n(A).

Because of the uniqueness of (1) and because of (2) and (2') it is sufficient

to prove (3) for g = di(x, y)/j+i, h = bi-(x, y)f'+i- Since the expansion (1) for

k(.x, y)fj+i, k(x, y)(E.K[x, y], is simply obtained from the expansion for k(x, y)

by multiplication by ff+i, we may assume, without loss of generality, that

i = i' = 0, that is, g = di(x, y), h = bi(x, y). Since degyaj<degv/y+i and degvö<

<degj/y+i, the expansion (1) for gA is

gA = a(x, y) + b(x, y)/y+i.

Since v(gh) and v(a) are elements of Ay while v(bfj+i) £Ay, we have v(gh)

= min (v(d), v(bfj+i)), whence v(gh)=v(d) <v(bfj+1) = v(b)+r<(bv)+<T. Hence

vi(gh) = Vi(d) = v(gh) = v(g) +v(h) = Vi(g) +vi(h), which proves (3).

If we now place

vi(g(x, y)/h(x, y)) = Vi(g) - vi(h)
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where g(x, y), h(x, y)CK[x, y], Vi becomes a valuation of K(x, y). Since V\

is of rational rank 2, it is necessarily 0-dimensional. This completes the proof.

Let v be a 0-dimensional valuation of 2 over K with v{x)>0, v(y)>0.

1. If v is non-discrete, rational rank 1, place v(x) = l, and let/i,/2, •

be the infinite sequence of polynomials constructed in Theorem 6.

2. If v is rank 1, discrete, or of rank 2 with Aq,5*0 and v(y) is not infinitely

small with respect to v(x), let fi, • • • , ff, fj+\, ff+n • • • , j^O, be the se-
quence of polynomials constructed in Theorem 6. If v is of rank 1 then the

sequence/j+i./j+i, • • • is infinite: this is also possible for v of rank 2, but the

case v(fj+i) infinitely great with respect to v(x) can arise. To conserve nota-

tion, we place/j+i =/j*t11 = • • • , in the latter case.

3. If v is rational rank 2 or of rank 2 with Aq, = 0, let/i,/2, • • • ,fk,fk+i,

& = 0, be the sequence of polynomials constructed in Theorem 6.

In all three cases we write ir(v(g))=r/s, g(E2, if sv{g) = rv(x), r, s integers,

55*0.

Theorem 8.1. For any integer j>0 and any irrational number t>v(Jj(j))

there exists a rational rank 2 valuation vi of 2 over K with Vi(x) = 1, vi(y)>0

such that vi(fi)=v(fi), i=l, ■ ■ • , j, and v1{fi+1)=t.

Theorem 8.2. For any integer k>0 and any irrational number t >-it{v(ff1))),

there exists a rational rank 2 valuation v\ of 2 over K with Vi(x) = \, fi(y)>0,

vi(fi)=ir(v(fi)),i=l, ■ ■ ■ ,j,andv1(f%1)=t. (For j = 0, place ff<» = y:)

Theorem 8.3. For any j, O^jgLk, and any irrational number r>ir(v{jf1))),

there exists a rational rank 2 valuation v\ of 2 over K with vi{x) = \, vi(y)>0

such that Vi(fi)=w(Lv(/,)), i=l, ■ ■ ■ , j, Pi(//+i)==t. (For j = 0, place =y;

for k = 0, the theorem is trivial, where r is any positive irrational number.)

Proof. By Theorem 6 there exists a monomial cF(y0, • • • , 7,--i), cGiT,

0^7i<<*i, t=l, • • - J-i, such that v(F(0, ■ ■ •, 0, d,)-cF.(y0, • • •, 7^))
>v(F(0, • • • , 0, dß). Let f}+1 = F(0, • • • , 0, dJ)-cF(y0, •_• ■ , y+J. If v

is non-discrete, rational rank 1, or rank 1, discrete, then »(/j+i) is certainly

a rational multiple of v(x); if v is rank 2 with Aq^O (as in Theorem 8.2) then

v(fj+i) is possibly infinitely large with respect to v(x) (in which case fj+i =/j+i

=fj\\= • • • ) or v(fj+i) is a rational multiple of v(x); in Theorem 8.3, v(fj+i)

will be a rational multiple of v(x), unless j = k, and /J+i =/*+i. In case »(/y+i)

is a rational multiple of v(x), it is sufficient, by Theorem 7, to prove Theorem 8

for an irrational number r such that

tv(F(0, • • • , 0, dj)) < t < irv(F(0, ■ ■ ■ , 0, d,) - cF(y0, • • • , 7/-1)),

since any number greater than Tvv(ff{i)) is also greater than some irrational

number satisfying this inequality. Since fj+i is monic in y, any polynomial

g(x, y) CK [x, y] can be written as
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— — k
(1) g(*. y) = «o(z, y) + ai{x, y)fj+i 4--f- ah(x, y)/,+i,

where Oi(x, y) £/£[#, y] and deg„a,(x, y) <deg„/3+i. Just as in Theorem 7,

one proves that the expansion (1) is unique. Placing

z>i(g) = min (X^a;)) 4- ir),
t

we can prove exactly as in Theorem 7 that

(2) vt(g+ A) Simin f>i(g), »i(A))

and

(2') m(g 4- A) = min (Sl(g), t>i(A))   if ^ Bl(A)

where g, h£K[x, yj. Also as before, in proving

(3) Di(gA) = »i(g) 4- fi(A)

we may assume without loss of generality that

degvg(x,y)<degv/J+i = degv//()') and deg„A(x, y)<degyJi+i = degyff <■>'>.

By (c) of Theorem 6, g(x, y), h(x, y) are sums of monomials cF(ao, ■ • • , a,),

cGJT, Oga, <^,-, *=1, • • • , J, of distinct value. Hence by the uniqueness of

(1), and because of (2) and (2'), we may further assume without loss in

generality that

g(x, y) = F(a0, • • • , a}), 0 ^ a0, 0 g a{ < du im 1, • • • , j

and

h(x, y) = F(30, • • • , ßi), 0 ^ /30, 0 g 3.- < dit i - 1, • • • , j,

or, more generally, that

g(x, y) = g'(x, y)fV\ where g'O, y) £ y], deg„ g' < deg„/,-, and a, < djt

and

A(z, y) = h'(x, y)/jU\ where A'(*, y) £        y] deg„ A' < deg„/,-, and ß,- < d,-.

Consider first the case a,= 0. If ßt<di-\ then degvgh = degyg'h'ffü)

<degv/j2//°')-2 = degB//Cj'>, whence »i(gA)=7ro(gA)=7ri;(g)4-7ri'(A)=0i(g)4-i'i(A).

If ßj=dj-L, then

gA = g'A'/-0')_1 = (af>, y) 4- y)/,)/^''

= a(», y)//,>_1 4- K*. 4- cF(y0, • • • , 7,-i))

where a, bCK [x,y] and deg„<z < degyfj, deg„ö <deg„/y. Also, v(g'h') = min (»(a),
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v(bfj))=v(a), that is,

v(a) < v(bfd

since v(g'h'), »(a)GA,-_i while v{bf,)£i&j-\- Because of the limited degree in y

of a(x, y) and b(x, y),

n(afj      ) = T{v(afj )),

»i(*/i0>) = min (5r(»(ö)) 4- t,   ir(v(b-F(y0, • • ■ , 7y-i))))

= )

whence

vi(gh)=v1(af^-1) =w(v(aff^-1)) = r(v(gh))=vv(g)+in)(h) = vdg)+vi(h).

Consider now the case a,->0, the general case. Here we can write, for

reasons given in the case ay=0,

gh = g'h'fi = (a(x, y) + b(x, y)f,)fi

with the same conditions on a(x, y) and b(x, y), and again deduce that v(a)

<v(bjj). We assert that

and that

vi(afj ) = irviafj )

,«(j')+0O)+l ,<*(J)+0<J')+1.

whence will follow,

!>i(gA) = min (ci(a/,- )), Pi(J/y )) = ir(o(a/,- ))

= x(v(gk)) = r(v(g)) + *■(»(*)) = »,(«) + 0i(Ä).

Since ay<rf3- and j8y<dy we have aj+ßj+l £2dj— 1. If ay4-/3y4-l<<2y then

degB&/;('')+*('')+1 <deg„/, <«, whence

Mbfi ) = x(»(A/y )).

If ay4-ßy4-l = dj we can write

, ,a<i)+/3(J)+l .«()

Since deg^<«+"'')+1-,,"> <deg „//<'>,

,or (y) +3 < J) +1— d C/) 7 .

»i(o/i Ji+V '

and since ay4-/3y4-1 — dj<dj, we have by the case ay = 0,

,,a (;)+? (J)+l a<J)+0<J)+l-<«(y).7 ,

,«(;)+3(J)+!-<!(>) 7    , ,«Cj)+(S{d<
= ) 4- T,
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Vi{bfj F(70, • • • , 7j_i))

= ) 4" »i(F(7o, • • • , 7j-i))

= ir(l)(i/i ) 4" *W,- )),

whence

^(mOH-ßiiy+i) = ^(J^(/)+/»(fl+i-<«(/).F(70l • • • ,7^0) = ir(v(bff<>'>+l>i»+1)).

Similarly n(o/f= 7r(w(a#<'>+«'>)).

Thus (3) is proved. Placing vi(g/h) = üi(g) — Vi(h), g/h any element of 2,

g, /t£7C[x, y], we obtain that V\ is a valuation of 2 over TT. Since V\ is of ra-

tional rank 2, it is 0-dimensional. That V\(x) = 1, »i(/,) =ir(»(/,■)), t=l, • • ■ , j,

is immediate from the definition of V\. fi is monic in y of degree 1, whence

/i—y=0(x), since y)>0. Hence »i(y)>0, since »i(/i)>0 and i/i(x)>0.

It remains to prove the conditions on »i(/y+i), respectively. In

the case v(fj+i) is not a rational multiple of v{x),fj+\ =fk+i orfj+\ =ff+i and the

condition has been verified. In the other cases we assume r <irv(fj+i). Recall-

ing the construction of fj+\, note that fi+i =//+i. Thus for fe = l, the required

statement holds. Now unless fj+\ =fj+\, we have deg^C/J+^-^Xdegy/f«,

whence-/j^) =7r(»(/j^-/ii,1)). Hence,

»i(/V+i) = 4- (/,+l - /i+i)) = mm (r- "■(»(/,■+1 - //+i))) = r,

since t <7ro(/j|'1) =ir(»(/j+1 —/j+i))- The statement for Vi(fj+i) follows similarly

if we consider constructed from fj as in Theorem 6. Note also, however,

that sinceand/,+i are both monic in y of the same degree it is true that

K/j+i-jy+i) £Aj by (c) of Theorem 6. Hence v(Jj+i-fj+1)^v(fj+1), since

v(fj+i)QAj. The statement for/3+i now follows exactly as above for/j+j. This

completes the proof.

Remark. For_; = 0, the restriction T>v(ffu'))=v(y) is superfluous with

r>0 only required. In fact, for j = 0, and the restriction on r lifted, Theorems

8.2 and 8.3 become: For any monic polynomial fiC.K\x, y] of degree 1 in y,

and any irrational number t>0, there exists a rational rank 2 valuation Vi

such that Vi(x) = 1, Viiy) >0, and fi(/i) =r. This is clear directly, without refer-

ence to the theorem.

Let v be a 0-dimensional valuation of 2 over K with »(x) >0, z>(y) >0 and

let qi, q2, • • • be the Jordan sequence of 0-dimensional D-ideals in K[x, y]

for v.

Theorem 9. For any integer m>0 there exists a valuation vi of 2 over K

of rational rank 2 with vi{x) = \, i>i(y)>0 such that qi, q2, • ■ • , qm are the first

m valuation-ideals for v\ in K[x, y].

Proof. Consider first the case that v is non-discrete and rational rank 1;

let v(x) = 1, and let/i,/2, • • • be the (infinite) sequence of polynomials intro-
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duced in Theorem 6. We assert that if q is a »-ideal with »(q) <v(fj+1) then q

has a basis consisting of/y+i and monomials F(ao, • • • , ay), 0ga0, 0^a,<o\,

i = 1, • ■ • , j. In fact, if g(x, y) £q then, since/y+i is monic in y,

g(x, y) = g'(x, y) -f g"{x, y)fi+i(x, y),

where g'{x, y), g"(x, y)CK[x, y] and degyg'(x, y) <degv/y+i(x, y). Since

/y+iGq, also g'=g— g"/y+i£q, whence the statement follows by (c) of Theo-

rem 6. Since qm is preceded by (contained in) only a finite number of p-ideals

for », there exists an integer j=j(m) such that »(qm) <»(/y+i). Consider the set

of monomials F(a0, • • • , a,), 0^a0, 0^a{<di, * = 1, • • • , j=j(m), and order

them according to their value: F(a0, ■ • • , ay) precedes F(a0' , • • • , a/) if

»(F(a0, • • • , a,)) <v(F(oto, • • • , a/)). Since every F(a0, • • • , ay) has only

a finite number of predecessors, the ordered set {F(a0, • • • , ay)} is a simple

sequence:

(1) «1, «2, • • • .

For some A, »(«*) <»(j*y+i) <»(tt*+1), where clearly AS^m; consider also the

sequence:

(2) «1, «2, • • • , Mti /j+l. MJb+l, Wfc+2i • • • .

Every »-ideal q with »(q) <»(/y+i) has for value the value of some w,-, i^k, arid

conversely, whence»(qi) =»(Mi),t= 1, • • • , k. Since q,-,i= 1, • • •, k, has a basis

consisting of elements in (2), the q< may be described in the following manner:

q< has a basis consisting of m,- and the elements of (2) following «,-, i = 1, • • •, k.

Since v(ffi))=v(iii), some z', and v(ffU)) <»(/y+i), we have z'^/fe, whence

»(«*) (/yW)- Thus if t is an irrational number with »(m*) <t<»(w*+i) then

there exists, by Theorem 8, a rational rank 2 valuation of S over ÜT with

»i(x) = l, »i(y)>0 such that »!(/,)=»(/,), i=l, •••,/, and »i(/,-+i)=r. Since

»i(M<)=»(Mi), every t, and »i(«*) <»i(/y+i) <»i(m*+i), the set of monomials

{F(a0, • • ■ , a,)}, 0i£ao, 0^ai<a\-, z=l, • • • , j, together with/y+i ordered

according to their value tu again yields the sequence (2). The »i-ideals of

»i-value less than »i(/y+i) can be described again as above: the ith »i-ideal

has for basis w,- and the elements of (2) following «,-, i=l, • • • , k. Since

m^k, qi, ■ • • , qm are the first m »i-ideals.

Next, consider the case that » is discrete, rank 1 or of rank 2 with Aq,-7*0

(leaving aside the case »(y) is infinitely small with respect to v(x), for which

case the theorem is readily verified). In this case, the sequence/i, fz, ■ ■ •

of Theorem 6 is finite, containing j terms, say. If » is of rank 1 then the se-

quence fjl\, fj+i, • • • is infinite: this is also possible for » of rank 2, but the

case »(fy+i) infinitely great with respect to v(x) can arise. To conserve nota-

tion, we place f}+\=fj+\" = • • • , in the latter case. Now, since qm is con-

tained in only a finite number of »-ideals, there exists an integer / such that

»(qm) <»(/y+i). The ideal q,-, t=l, • • • , m, then has a basis consisting of fj%i
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and monomials F(ao, ■ ■ ■ , ay), OiSao, 0^at<di, i—l, ■ ■ ■ ,j. We order the

set {F(a0, • • • , ay)} by means of v, again obtaining the sequence (1); and

if =v(uk) we also introduce the sequence:

(2') Ml, «2, • 1 • , Mfc, /,-+!, Wjfc+l, • • • .

Introducing a rational rank 2 valuation Vi of 2 over K with »i(x) = 1, »i(y) > 0

such that v1(fi)=Tr{v(fi)), i=l, ■ ■ • ,j, where Jr(»(f<)) = r/s if p(f<) = z>(xr)> and

Vi{f}+)1)=t, where t is an irrational number satisfying w(uk) <t <w(uk+1), we

can conclude as above that qi, • • • , qm are the first m fi-ideals.

Finally, we have the case that v is of rank 2 with Aq, = 0. The sequence

/i,/a, • • • is finite, containing j4-1 terms, say. Here every »-ideal has a basis

consisting of monomials F(a0, • • • , ay, ay+i), 0^a0, 0^ay+i, 0^a,<^,-,

i=l, 2, • ■ ■ ,j, and two distinct such monomials have distinct value. These

may be ordered according to their value v, and again we obtain the sequence

(1). We introduce a rational rank 2 valuation V\ of S over K with v\(x) = \,

»i(y)>0, »i(f<) =»(/.), *=1, • • • , j, Vi(fj+i)=t>v(jf])), t irrational. The
valuation Vi also orders the set {F(a0, • • • , ay, ay+i)}, 0^a0, 0^aJ+i,

0^at<di, i=l, •••,}, yielding the simple sequence

(10 wo, wi, • • •

corresponding to (1). We wish to determine the extent to which (1') coincides

with (1); or rather, how large an initial segment of (1) may be made to coin-

cide with an initial segment of (1') by a proper choice of t. To this end, con-

sider two terms of (1):

(3) F(a0, • • • , ay, ay+i),      F(0,jS • • • , 0y, /8y+i)

with i»(F(a0, • • • , ay, ay+0) <v(F(ß0, • • • , ßj, ßy+i)). If a}+i=ßj+i then these

two terms will have the same order in (1') as in (1), no matter what r, since

»1(F(a0, • • • ,a,))=»(F(a0, • ; ■ , «y)), fi(F(/30, • ■ • , ß,)) =v{F(ß0, ■ ■ ■ ,ß,)).

Thus we need consider only the cases aj+i<ßj+i and ay+i>/3y+i. In case

aj+i>ßj+i we shall use the letters y, 8 instead of a, ß; that is, consider two

terms of (1):

(30 F(y0y • • • , 7j, 7y+i).      F(S0, • • • , 8,-, 5y+x)

with h(F(yo, ■ • • , 7y, 7y+i)) <v(F(80, • • • , oy, 5y+1)), where 7y+i > 8m and

aJ+i</3y+i is now understood in (3). The two terms of (3) will have the same

order in (10 if and only if r is such that

t(s(F(«o, ■ • • , ay))) 4- aJ+1r < t(»(F(/S0, • • • , (3,))) + /3y+1r,

that is, if and only if,

(4)
t(»(F(«0, • • • , ay))) - ic(v(F(ßo, ■■ ■ , ßj)))

T > -:-

3j+i — a»+i
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For the appropriate terms, condition (4) includes the condition T>djv(fj),

since djv(fj) is the value of some Ui with viut) <v(fj+i). Similarly, the two

terms of (3') will have the same order in (1') if and only if

x(t»(F(«0f • • • , Si))) - r(v(F(y0, ■■■ , ?,)))
(4') t <-

Now

(yi+1 - Si+1)v(F(a0, • • • , «/)/FfjS0, • • • , ßi))

< (ßi+i - «m)(Tw -

< (ßi+i - ai+1)v(F(80, ■■■ , «,)/F(7o, • • • , 7/))

by (3) and (3'), whence

r(v(F(a0, ■■■ , ad)) - r(v(F(ßt, • • • , 3,)))

ßi+i — «i'+i

<
t(r(F(«o, ■ • • , Si))) - t(»(F(7o, • • ■ , T,)))

7/+i - 5

Thus t can be taken such that (4) and (4') be satisfied. Similarly, any finite

number of conditions (4) and (4') are satisfied by some irrational number t.

Thus for any initial segment of (1) there exists a valuation V\ such that the

elements of this segment retain the same relative order in (1'); that is, for

any integer w>0 there exists a valuation Vi = V\{n) such that if Ui = wku)

then ki<ki+i provided i<n. For a given i, ki is a function of Vim. ki = ki(vi).

Let &(i) = min {ki(vi)} over all vi. We assert that ><» as z—>°o. In fact,

consider the monomials {F(a0, ••-,«,)}, 0ga0, 0?Sa<<d,-, * = 1, • • • , j,

and order them according to their i>-values, which are also their »i-values,

obtaining the sequence:

Zli Z2, • • • .

Clearly the sequence (1) may also be written:

m(l) m(2)

Z'(l)7)+1 i  ZimJ j+l l • ' ' •

We have

S> max (h, mt),

since Vi(wkii))=vi(ui)=vi(zni)f^f)^max KiC/J+i'))- Since not both

/,, «i are bounded, ku)—>oo as t—»». Hence for any integer A7'>0 there exists

an integer n = n(N) such that if Ui = wk, where k = ki(vi), then ki(vi)>N for

any i>i, provided i>n. Thus if the elements U\, «*,•••,«» retain their order

in (1') then the initial segment U\, • • • , Urr of (1) coincides with the initial

segment wu ■ • ■ , wN of (!')•



1945] VALUATION IDEALS IN POLYNOMIAL RINGS 411

Let s be an integer such that v(qm) <v(fj+1). Then every ideal qi, • • • , qm

has a basis consisting of and monomials F(a0, ai, • • • , ay, ay+i), 0^a0,

0^cti<di, i=\, • • • ,j, aj+i<s. In fact, if g(x, y)Gq<, i^m, then, since fy+i

and fj+i are monic in y one can write:

g(x, y) = a0(x, y) 4- ai(x, y)f,-+i + • ■ • + a,-i(x, y)f'j+\ 4- «»(*, y)f]+i

where ai(x, y)G-K[x, y], i = 0, 1, • • • , s, and degj,ai<deg„/y+i, *' = 0, 1, • • • ,

s — 1. The statement now follows from (c) of Theorem 6. We can therefore

describe the ideals qi, • • • , qm in terms of the sequence (1) in the following

manner: q^ has a basis consisting of the elements with i^k. If, now, V\ is

such that the initial segment of (1) preceding f]+1 coincides with an initial seg-

ment of (l')i one concludes, in a manner employed above, that qi, • • • , qm

are the first m n-ideals of V\. This completes the proof.

The significance of Theorem 9 is that it allows us in the study of 0-dimen-

sional ^-ideals of O-dimensional valuations to restrict ourselves to rational

rank 2 valuations, at least if this study is confined to the ring R~[x, y].

Corollary 1. In the case v is non-discrete, rational rank 1, or rank 1 and

discrete, or of rank 2 with Aq.-^O, the vi-ideals of value less than t are the first

v-ideals for v. In the case v is of rank 2 with Aqi = 0, the vi-ideals of value less

than st are the first v-ideals for v (where s is as in the theorem).

Corollary 2. // the vi-ideals of vi-value less than st are the first v-ideals for

v and if t > 1 then:
(a) in the case that v is non-discrete, rational rank 1, s^iy+i.

(b) in the case that v is rank 1 and discrete or of rank 2 with Aq,-7*0, s — l.

Proof. Suppose s^dj+i. Then the »i-ideals of V\-value less than PiC/f+i"1')

are the first »-ideals for v. We order the elements F(a0, ■ • • , ay+i), Oga0,

0=a,<ö\, t=l, • • • ,'J+t, according to their v- and »i-value, obtaining the

sequences

(1) Ui, ut, • • • ,

(2) Wi, w2, • • • .

If Vi(wk) <»i(jy+i"1)) <z'i(w*+i). then as in the theorem it follows that w, = w,-,

i'=1, ... , k. Let qi, q2, • • • ; q*, q2*, • ■ ■ be the Jordan sequences of 0-

dimensional valuation ideals for v and Vi respectively. We know that

v(ff+tl))=v(u">)> f°r some um, and since q* = q**, we have m^k. If m = k

then qt+is*q**+i since ff^Cq*+i but/7£1"1)£q*+i, whence s>dj+i is impossible.

If m>k then q*+i = q**+i but q*+2 7*q**+2. since «*+iGq*+s but uk+1Qqk+2. Now

if s>dj+i then st>dj+iT4-1, whence »i(q*+2) <»i(//+i). But then qk+s = qk*+2,

a contradiction. This completes the proof of (a). Part (b) follows in the same

way if we place rfy+1=l (and write/y+i for/y+i). This completes the proof.

6. Characterization of simple zz-ideals. Let tbea O-dimensional valuation
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of 2 over K with v(x) >0, »(y) >0. If we further assume that »(y) ^»(x) then

the groups D0, Dt, ■ ■ ■ introduced in Theorem 6 no longer depend on the

element x, but solely on the ring K[x, y]; in fact, »(y)^»(»0>0 implies that

v{c\i) = v(x), and we may write »(qi) instead of v(x) in Theorem 6. If » does not

belong to the set of non-discrete rational rank 1 valuations, then for some in-

teger j we have A; = Dm, ra^z'y This integer j depends only on » and on the

ring K[x, y]. We shall call j the type of » with respect to the ring K[x, y].

Theorem 10. Let v be a rational rank 2 valuation of 2 over K with

0<»(x) <v(y) and of type j with respect to K[x, y], j>l, and let fx, f2, ■ ■ ■ , fj

be the polynomials introduced in Theorem 6. Then the v-ideals for v of value equal

to or less than dj^.\v(fj-\) are also the first v-ideals for a rational rank 2 valuation

v\ of 2 over K with 0 <V\{x) <»i(y) and of type j—I with respect to K[x, y].

The polynomials fi, • • • ,/y_i satisfy Theorem 6 for the valuation t>i.

Proof. If q is a »-ideal with »(q) g(f3_i»(/y_i) then q has a basis consisting

of ff*i together with monomials {F(a0, • • • , «y-i)}, 0^a0, 0^ai<dit

i=\, • • • , j — 1. As in Theorem 9, we order the set [F(ao, • • • , a;_i)},

0^«o, 0^oti<di, i=\, ■ ■ ■ , j— 1, by means of v, obtaining the simple se-

quence :

(1) «i, m2, • • • .

If v(ff(Ji1>)=v(uk) then any »-ideal q< with i^k can be described in the fol-

lowing manner: q,- has a basis consisting oiffJ{~l) together with the elements

Mf of (1) with i'^i. Normalizing » so as to have »(»0 = 1, we introduce for

every irrational t>dj-2v{fj-i) (if 3 = 2, for every irrational t>1) a rational

rank 2 valuation »i of 2 over K with »i(x) = l, »i(y)>0, »i(/,) =»(/,),

z = l, • • • , j — 2, and »i(/y_i)=r. The valuation »i also orders the set

{F(ao, • • • , «y_i)}, O^oio, O^oaKdi, i=l, ■ ■ • , yielding the simple

sequence:

(10 Wli w2, ■ ■ ■

corresponding to (1). Now |»(m.) — »i(m;) | <^i-i| r — »(/,--i) |, since ay_i<fl0_i

in any term m,-, whence, if

(2) <2,-_i I t — »(/,_i) I <    min     [ »(«0 — »(m<+i) |
l-i,—,1

then the initial segment U\, • • • , uk of (1) coincides with an initial segment

of (10- (We may note that if »i(m<) >»(m.) for one u{ then »i(Mi) £?»(«,) for

every i.) Let V\ denote the set of valuations {»i} for which (2) holds. For

every valuation »i£ Fi such that r>»(/y_i), the ideals qi, • • • , q* are the first

k »i-ideals; in fact«2y_i»i(/y_i) >rfy_x»(f3_i) =v(uk) =vi(uk) =v1(wk) (v(uk)=v1{uk),

since by condition 4 of Theorem 6, uk does not involve/y_i), whence we can

draw the required conclusion in a manner several times employed in Theo-
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rem 9. The polynomials fx, /2, ■ • • , /y_i clearly satisfy Theorem 6y_i. Since

"i(fy-i) is irrational, the sequence/i, /»,••• for Vi terminates, as is shown in

Theorem 6, with /y_i; that is, vi is of type j— 1 with respect to K[x, y]. It

remains to prove z>i(y)>vi(x). If /i = y, this is clear. If/i?*y, then v(Ji—y)

is an integer, and since v(fi) is not an integer, v(fi—y) =v(y) = 2. Hence also

—y) = 2, since y) =»(/i — y). Since fi(/i)>l, »i(y)>l=»i(«) follows.

This completes the proof.

Corollary 1. The ideals qt, • • • , qk are the first kvi-ideals for any valuation

»iG Fl

Proof. For T>t»(/y_i) the proof has been given above. The proof there de-

pends on the fact that, since dy-M/i-i) >»(j^ =»i(*t*) =»i(w*), the &th Di-ideal

has a basis consisting of ffil together with the monomials w< with i^k.

If T<n(/y_1) then rfy_1i;(/y_i)<z;(Mi)=iii(Mi:)=»i(ws:)- However, if a*y_i!;(/y_i)

>Vi(wk-i) then the kth Vi-ideal can still be described as before: it has a basis

consisting of ffil15 together with the monomials to,- with i = &, whence, as

before, q* would be the kth. »i-ideal. And, in fact, v(uk-\) =fli(«*_i), whence

<*f_l»(/>-l) — <f/-l»l(/|_l) < — ^ »(«*) —

by (2), and dy-i^iC/V-i) >»i(«*-i). This completes the proof.

Corollary 2. FAe v-ideal qk with v(qk) =<fy_xu(/y_i) is a simple v-ideal.

Proof. Since »(/j_i)><f,-_si»(/y_s), r=t;1(/y_i), PiGFi, may be taken greater

than or less than »(j*y_i). If T>v(f,-i) then dj-iVi(fj-.i)>dj-lv(fj-1)=v(uk)

= Vi(uk)=v1(qk), whence Ki(q*) is rational, while if T<v(fj-i) then dy-rfiCfy-i)

<vi(uk), whence fi(q*) =^y-ifi(/y-i), that is, t>i(q*) is irrational. Suppose now

that q* is not simple :q* = q*wq* (2) • • • q*(m), m>l. Since uk(i),l = 1,2, • • •

belong to the initial segment «i, w2, • ■ ■ , we have

ci(q*(u) = »i(«*(o). I = 1, ■ • ■ , m,

and »i(q*)=i>i(M*(i))4- • • • +Vi(uk(m)).LetVi(uk(i))=rk(l)+sk(i)v1(fj-.i), where

rk(d is a non-negative rational number, and sk(n is a non-negative integer,

/=1, • • • , w. The numbers rA(j), st(i) are independent of the valuation

is the exponent of/y_i in ukid, while r*(d =fli(tt*(;)/y_i exp s*(o) is the same for

any t^G V\, since uk(i)/fj-i exp sko is a monomial in s, flt /2, • • • , /3_2. If

now »iG Fi is taken such that Vi(qk) is irrational ( = dy_i»i(/y_i)), we have that

r*d>+ • - • 4-r*(m)=0, whence r*c«>= • • • =rk(l)=0. But then vi(uk(t))

= s*(m)i'i(/y-i) for every »:GFi, 1=1, • • • , m, whence »i(q*) = (s*a>4- • • •

+sk(m))vi(fj-i), that is, fli(q*) is irrational for every z>iG Vf This is a contradic-

tion.

Corollary 3. All the v-ideals q,- with d/_i»f//_0 ^»(q.) =^(/y) are simple.

Proof. For v(q,-)=<£y_i»(fy_i), this is Corollary 2. If i>(q,) =v(f,), then q,- is



414 A. SEIDENBERG [May

certainly simple, since a(q,) is irrational, while fl(qO, v(qi), ■ ■ ■ , f(q,_i) are

rational. Suppose i>(q;) = ui <v(f,), i>k, where v(uk)=dj-yv{fj-{). Since

v{ui-\)^dj-\v{fj-\), there exists by Theorem 8.3 for any irrational num-

ber r, v(ui-i) <t <v(ui), a rational rank 2 valuation vx of 2 over K with

Vi(x) = \, vi(y)>0 such that z>i(/i) = v(fi), t=l, • • • , J — 1 and »i(/y)=r. The

first z »i-ideals (in isT[sc, y]) may clearly be described in the following manner:

the Ith »i-ideal, l^i, has a basis consisting of /y and the monomials uk with

k^l. Hence, qi, q2, • • • , qt are the first i z>rideals. Moreover, since i>i(/y)

<v\{ui), we have that v(q,) =i>i(/y) =t. This case, however, has already been

considered. This completes the proof.

Corollary 4. Every v-ideal q,- wz7A dy-i^Cfy-i) <!»(q;) S»(/y) belongs to a ra-

tional rank 2 valuation Vi of 2 oz/er wi/A »i(a:) = l, flj.(y)>0, with ft, •■■,/,•

as associated polynomials, and with qi, • • • , q< as /irs< v-ideals, such that

v1(qi)=vl(fj)=T'.

Proof. This has just been proved in Corollary 3.

Let v be a rational rank 2 valuation of 2 over K with z/(x) = 1 and v(y) >0,

and let /i, /»,•••,/« be the sequence of polynomials for z» introduced in

Theorem 6. We have f(/.) =rt/s,, r,, Si positive integers, (r,-, S;) = l, * = 1,

• • • , n — 1, and v(J„)=t is irrational. Every p-ideal has a basis consisting of

monomials in x, fi, •••,/«, thus every ideal has a value u/t-\-VT, u, v non-

negative integers, where <=/„_i= I.e.m. (si, • ■ • , S„_i).

Lemma. Ifv(F(a0, ■ ■ ■ , ak))>v(F(ß0, ■ ■ ■ , ßk))+v(fk+i)-l,0^eci, 0£ßtt

z = 0, 1, • • • , A, /Aew /Aere exist non-negative integers a/, /3/ such that a/ =i/3/

»(F(a„', • • ■,ak'))=v(F(a0, ■ ■ ■ ,ak)),v(F(ß0', ■ ■ •, ß{)) =v(F(ß0, ■ ■ • ,ßh))\

Proof. The proof is by induction on k, being trivial for k = 0. (That is,

a0>ßo — l, whence ao = ßo-)

First, if ak<ßh then v(F(a0, • • • , ak-i))>v(F(ß0, • • • , ßk-i)) +v(fk) -1,

so that by induction we may assume a^ßi, i = 0, 1, • • • , k — 1. Factoring

out F(8o, • • • , /3*_i), we may assume ß0=ßi= ■ ■ ■ =ßk-i = 0. Assuming

ßo = ßi= ■ • • =ßk-i = 0, let ak be as large as possible, that is, let ak = max ak

over the set of monomials F(a0', • • • , ak) of value = v(F(a0, • • • , at)),

where 0 5=a/ ,1 — 0,1, • • • , k; that is, we may without loss of generality sup-

pose that a{ Soik if v(F(a0', ■ • ■ , ak)) =v(F(a0} ■ ■ • , ak)), where O^a/,

*' = 0,1, • • •, k.Thenak}zßk. In fact, supposinga* </3jb, then w(F(a0, • • ■ ,ak-i))

>v(fk)+v(fk+1)-l>dkv(fk)+v(fk)-l. Nowd*w(ft)=»(F(7o, • • • ,7*-i))- By
induction we may assume that «i = 7i, i = 0, 1, • • • , k — 1. But then

v(F(a0, • • • , a*_i, at)) = a(F(a0 — 7e, * • • , a*-i — 7*-ii «* 4" <**))

which is in contradiction with the maximality of ak.

Second, if ak = ßk, we may assume, factoring out fk exp ßk, that /3t = 0. As-

suming ßk = 0, let at be as small as possible, that is, let aj; = min otk over the
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set of monomials F(a0', ■ ■ ■ , ctk) of value = v(F(a0, ■ ■ ■ , ctk)), where 0^a/,

i = 0, 1, • • • , k. Then certainly ak<dk, whence v(F(a0, • • • , ak-i))

>v(F(ß0, • • • , ßh-v)+v(fk)-l, since v(fk+v>v(fiw)>v(fat(t)). The proof is

thus complete by induction.

The essential facts of the following theorem have already been proved for

» = 1. Principally on the grounds of simplicity, therefore, we assume w>l.

Theorem 11. Let v be as in the lemma, and let n>\.

1. If v(qi) = u/t+VT, then qi = qJqt, where v{q,) = u/t, v(qk)=vr; q,-, qy, qk,

v-ideals for v.

2. If v(qi)=mr (i>0) and z>(q.-+i) =u/t+vr then v<m and q, = q3q* where

v(q,) = (m—v)T, v(qk)=vr; q,-, qy, qk, v-ideals for v.

3. If v(qi)=m/t (m an integer), v(qi+i)=u/t-r-vT and vr^O, then u<m

and q, = qyqit where v(qj) = (m — u)/t, v(qk) = u/t, q,-, q3, q*, v-ideals for v.

Proof. 1. We have to show that if v(F(a0, ■ • • , cen))^u/t+vT then

F(a0, ■ ■ ■ , an)=zZai(x, y)bi(x, y), au bfGK[x, y], with v(ai)^u/t, i>(o<)=it,

where is the summation of a finite number of products a,ö,-. This is clear

forn(F(a0, ■ • •,«»)) sufficiently large; in fact, let k0, ki, ■ • ■, kn, l0, h, ■ ■ ■ ,ln

be integers such that kQv(x)^u/t, kiv(fi)^u/t, • • • , k„v (fn) ^ u/t, l0v(x) ^ vr,

liv(Ji)=vr, • • • , lnv(fn)^VT. If, now, v(F(a0, • • • , an)) ^v(F(k0+lo, • • • ,

kn-r-ln)) then a,-2:&;-Wi for at least one i, i = 0, 1, •••,»; if am = fcm-Hm,

say, then F(a0, ■ • • , an)=0(fm exp km-\-lm) =0(q3qi). Hence in the proof we

may assume that all monomials of value greater than v(F(ao, • ■ ■ , an))

are in q^q*. Moreover, if v(F(a0, ■ ■ • , an))=v(F(ß0, • • • , ßn)) then

v(F(a0, • ■ • , «„)— cF(ß0, ■ ■ ■ , ßn))>v(F(a0, • • ■ , a,)) for some c^K,

so that F(a0, • • • , an) —cF(ß0, • • • , ßn) is a sum of monomials of value

greater than v(F(ao, • ■ • , «„)), since every d-ideal q has a basis consisting of

monomials in x, f\, ■ • ■ , /„. Hence it is sufficient to prove F(«o, • • • , ctn)

=zZaibi for some monomial of value equal to v(F(a0, • ■ • , a„)). If «//-r-fr

= v(F(ßo, ■ ■ ■ , ßn-u v)) and ct„^v, then this is clear: F(a0, ■ ■ • , an-i, a»)

= F(ao, • • • , an-i, «1.-v) fn = 0(qjqk); if an<f, then by the lemma we may

assume a^ßi, i = 0, 1, • • • , « —1, whence F(a0, • ■ • , an-i, a„) = F(a0—ßo,

• ■ ■ ,an-i—ßn-i,an)-F(ß0, ■ ■ ■ ,/3„_i)=0(qj;q3). This completes the proof.

2. Let [r] indicate the greatest integer equal to or less than the real num-

ber r. If q is a z>-ideal then l-p-^Cq) is the value of some p-ideal, whence

Kq.+i) — v(q{) gl. Since r = v(fn) ^v(f2) >div(fi)^v(x) = 1, we must have v^m.

Moreover, v = m is impossible; in fact, v = m implies u>0 and mr < [u-r-mtrj/t

<u/t+mr. By (a) of Theorem 6, [w-f-w/r ]/t is the value of a p-ideal; this is a

contradiction. Hence v<m. The only monomial of value mr in q,- is f%

(==/nl_!/n)» which is clearly in q^. For monomials F(a0, ■ • • , an) of value

^.u/t-\-vr, we have, as in 1, F(a0, • • • , an)=2Zaiö,-, with v(ai)^u/t, vibi)

= z)r; since u/t> (m—v)r, a.Gqy, whence F(a0, • • • , a») =0(q3qjfc). This com-

pletes the proof.
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3. Here u/t+vr— \<m/t<u/t+vr, since u(q,+i)—d(q<)<l (equalities are

excluded since t is irrational and v^O), so that not only m>u, but

(m — u)/t>r — 1 =v(fn) — 1. Hence it follows from the lemma that there exist

non-negative integers a,, /Si with a,- = j3j such that v(F(a0, ■ • • , an-i))

= m/t>u/t = v(F(ß0, • • • , ßn-i)), whence at least one monomial of value

m/t is in qyq*. For monomials of value greater than m/t, the proof goes as in 2.

Theorem 12. Let v{qi)'^:t, v as in Theorem 11. The v-ideal q( is simple only

if of the numbers »(q,-), v(qi+1), one is rational and the other an integral multiple

Of t.

Proof. If v(q,) =u/t+vr, u?*0, vp^Q, then q; is not simple by Theorem 11.1.

If v(q<) =mr, v(qi+i) =u/t+vr, and v^O then ut^Q since v<m. Hence q; is not

simple by Theorem 11.2. If v(q() =m/t, m an integer, t = tn-i, v(qi+i) = u/t+vr,

u, v integers, and if, first, v^O, then either ut^O and qt is not simple by Theo-

rem 11.3, or u = 0 (and there is nothing to prove). If u = 0 then by (a) of Theo-

rem 6, z)(qi+i) = (m + l)/t. Let qk be the first u-ideal after q< of value u/t+vr

such that d^O. Then also w5*0. In fact, if u = 0 then v>l. Moreover,

T>d„-iv(fn-i)=k/t, k an integer, whence [/t]/< = k/t = dn-iv(fn-i). Hence, by

(a) of Theorem 6, there exists ai/-ideal qywithp (q,) = (»— 1)t4- i<j<k

since 0<t— [<t]/<<1/<. This is a contradiction, since v — l^O. Hence ut±0.

Then u <m and q, = qyqi, with v{q,) = (m—u)/t, v{qi)=u/t. In fact, proceeding

as in Theorem 11, we need only prove that some monomial of value =v{qi)

= m/t is in q,qi (because at the same time this proves that some monomial

of value =f (q<')> *!§*' <k, is in q^q;). To prove this it is only necessary, by (a)

of Theorem 6, to show that m/t — u/t>r — \ (the proof then proceeding, by

means of the lemma to Theorem 10, as in Theorem 10.3). If »>1 then

u/t+{v — Y)t<m/t, whence m/t — u/t>(v — l)t^t. If v = l then u/t<r. In

fact, if u/t>r then u/t>dn-iv{fn-\)=k/t, k an integer, whence (u — l)/t

=d*-iv(fn-i); by (a) of Theorem 6, (« — l)/t+r is then the value of a p-ideal,

whence {u — \)/t+t<m/t, or u/t+r<{m + \)/t: this is a contradiction since

we are in the case v(qi+i) = (m + l)/t<u/t+vr = u/t+t. Since v(qi) =u/t<r,

we have v(qt-i) =u'/t, u' an integer (/— 1 possibly =0), and u/t — u'/t^l.

From u'/t+r<m/t follows: m/t — u/t>r — \. This completes the proof.

Let v be as in Theorem 11, qi, q2, • • • the Jordan sequence of 0-dimen-

sional d-ideals.

Theorem 13. If of the numbers v(qi), f(q,+i) one is rational and the other

an integral multiple of t, then qt- is simple.

Proof, a. Consider the case v(qi)=vr, v(qi+i)=u/t, u an integer. Consider

the ordered set of numbers, v(qi), i»(q2), ■ ■ • i<(q.-i), v(qi), v(qi+i), • • * , that

is, the numbers

(1) , m/t + nr, vt, u/t,
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We shall show that there exists a rational rank 2 valuation i>2 of S over K

with v2(x) = 1, v2(y)>0, %(/<) =»(/»),* = 1, ■ ■ • , n — 1, »s(/»)=t'such that the

set of numbers: i>s(qi), i>2(q2), • • • , f2(q,'-i), %(q/), f2(q/+i), • • • , where

q' > q2', • • • is the Jordan sequence of O-dimensional %-ideals, is the sequence:

(2) • • • , m/t 4- m', u/t, vt',

This implies that q,- is simple. In fact, every z>2-ideal q' has a basis consisting of

monomials F(a0, ■ ■ ■ , an), a,- non-negative integers, i = 0, 1, • • • ,n — 1. This

follows for the %-ideals exactly as for the v-ideals. We can now assert that

qi = qi, • • • , q,- =q,'. For example, to prove q, = q/, let F(a0, • • • , an)Eqi,

whence v(F(a0, • • • , a„_i))4-a„t = i>t. Hence f(F(a0, • • ■ , an-i)) +ocnr is not

among the first *—1 numbers of (1), hence v2(F(a0, • • • , a„_i))-r-ani"'

( = v(F(a0, ■ ■ ■ ,a„_i))-f-an7"') is not among the first z — 1 numbers of (2). Hence

v2(F(a0, • • • , an-i))+ant'^u/t, whence F(a0, • ■• • , an)Eq'. Thus

q<Cq/. Similarly q/ Cqi( whence q; = q'. Similarly, qi = qi, • • • , q,_i = q/_i.

Now suppose qi = q3q*. Since v(qi) = vt, we have fl(qy), v(q*) are integral multi-

ples of t, say »(qy)=£r, f(q*) = (w — />)t. Since j<i, the numbers pr',

{v — p)r' are thejth and &th numbers in the sequence (2). Hence z>2(qy) =pr',

fl2(q*) = (»'-P)t', and z>2(q,-) = i/r'. This is a contradiction.

Thus it remains to prove the existence of the valuation v2. Suppose that

there exists an irrational number r' such that the set of positive numbers

{a0+aiv{fi)+ ■ ■ ■ -\-an-iv(fn-i)+anr'}, a,- non-negative integers, ordered

according to magnitude, is the sequence (2); then r'>r is immediately im-

plied by (2) and (1): t'>u/vt>r. The existence of the valuation v2 is then

given by Theorem 7. Thus it remains to find t'.

Consider the sequence obtained by multiplying (1) by / = /„_i, that is, the

sequence

(10 •••,» + n{tr), v{tr), «, • • • .

This set of numbers will be contained, in the same order, in the set of positive

numbers {g-\-h{tr) \, g, h non-negative integers, ordered according to mag-

nitude, and, in fact, (1) can be obtained from that sequence by first dropping

the numbers k+l(tr) in which k is not of the form t(a<s-sraiv{fi)+ ■ ■ ■

4-an-ifl(/n-i)), «o, «i, • • • , ff»-i non-negative integers, and then dividing the

sequence by t.

Now we assert that the numbers v(tr), u which are successive in (10 are

also successive in the ordered set of numbers {g+h(tr)}. In fact, let k-\-l(tr)

be the number immediately following v(tr) in the sequence \g+h(tT)}. Since

v(tr) < [v(tr) + l] <i/(/r)4-l, necessarily 0<k+l(tr) — v(tr) < 1, whence Kv,

and k> (v — l)tr^tT = tv(fn). Hence by (a) of Theorem 6, k is of the form

t(a0+aiv(fi)-{- • • • 4-a„_it>(/„_i)). Hence k/t+lr succeeds vt in (1), whence

/ = 0 and k = u.

Let then the sequence of numbers \g-\-h(tr)} be
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1, • • • , P + q(tr), v(tr), u, • ■ ■ .

From our consideration of valuations given by y = xT, there exists an irra-

tional number r' such that the ordered set of numbers {g+h(tT')\ is the se-

quence

1, • • • , p+ q{tr'), u, v(tr'),

Dropping from this sequence the numbers k-\-l(tr') in which k is not of the

form t(a0-\-aiV• ■ • +an-iV(fn~i)), and dividing by /, we obtain the se-

quence (2). This completes the proof in case a.

b. This is the case: v((\i)=u/t, v(q,+i) = vr. The proof is almost the same.

Here the sequence v(qi), v(q2), • • • , u(q,_i), i>(q,), i>(q<+i), • • • is the sequence:

(1) • • • , m/t 4- fir, u/t, vt, ■ • • .

Multiplying (1) by I, we get the sequence

(1') ••■,»! + n(tr), u, v{tr), ■ ■ ■

which we wish to compare with the ordered set of numbers \g-r-h(tT)}, g, h

non-negative integers; namely, we wish to show that« and v{tr) are successive

in the set (g-f-Ä(/r)}, ordered according to magnitude. In fact, let k+l(tr) be

the number immediately preceding v{tr) in the set {g+h(tr)}. Then l<v and

k + 1 -\-l{tr) >v(tr) (clearly k-f-1 +l(tr) ^v(tT); equality is excluded since k4-1

is an integer, while (v — l)tr is not), so that k + l > (v — l)tr ^tT>td„-1v{fn^1),

whence k — ̂ „_ii>(/„_i) since k, tdn-iv(Jn-\) are integers. Hence, as above, / = 0,

k = u, and we can find an irrational number t' such that the ordered set of

numbers {a0+ctiv(f1)+ ■ ■ • 4-«r.-if(/'n-i)4-«nT'} is the sequence

(2) • ■ • , m/t -f- nr', vt', u/t, ■ • • .

However, it does not follow as in (a) that there exists the required valuation v2.

For v> 1, however, it does follow. In fact, (v— ^T-r-^n-i^Cfn-i) Su/t, since u/t

and vt are successive in (1), and if v> 1 then (v — l)r-f-d„_i!;(/„_i) <u/t, equal-

ity being excluded since u/t is rational while (v— l)t+dn-iv(fn-i) is not.

Hence, by (2), (i;— 1)t' +dn-1v(fn-i) <vr'\ hence r'>dn_iz;(/n_i). Thus for v>l

the required valuation v2 exists by Theorem 8.3.

For t)=l, the fact that q, is simple is given by Corollary 3 of Theorem 10.

This completes the proof.

Corollary. If v{<\i)=u/t, v(qi+i)=VT or if v(qi)=VT, v{qi+\) = u/t then

(u, v) = l and u/v is an approximant or quasi approximant to tr;and conversely.

Proof. The direct statement follows by Lemma 1 of Theorem 4 from the

fact that u, v(tr) (or v(tr), u) are successive in the ordered set of numbers

{g + A(/r)}, g, h non-negative integers. Conversely, let u/v be an approximant

or quasi approximant to It. Since v is of type n> 1, t = v(J„) ^v(f2) >di v(fi) = 1,

since div(f\) is a positive integer. Hence v/u is certainly an approximant or
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quasi approximant to 1/tT (<1). Hence by Lemma 1 of Theorem 4, u, v(tr)

(orv(tr), u) are successive in the set {g+h{tr)}. NowT>dn-iv(fn-i) = k/t, k an

integer, whence w2: [/r] = A = /d„_io(/„_i). Hence by (a) of Theorem 6, u/t is

an element of (1); that is, u/t, vt (or vt, u/t) are successive in (1). This com-

pletes the proof.

7. The quadratic transformation F and rational rank 2 valuations. As al-

ready indicated, Theorem 9 allows us in the study of valuation ideals to re-

strict ourselves to rational rank 2 valuations, at least if the study is confined

to the ring £) = K\x, y]. We wish now to see to what extent the same restric-

tion can be made when the transformation T and the ring 0' = K[x', y'] are

also involved.

Let, then, v be a O-dimensional valuation in which, without loss of gen-

erality, we assume v(y) >v(x) >0. T is the transformation :

T:   x' = x,   y' = y/x;      x = x',   y = x'y'.

hetfi(x, y),fi(x, y), • • • be the (finite or infinite) sequence of polynomials

introduced in Theorem 6. From these polynomials, we wish to derive poly-

nomials /i (x', y'),fi{x', y'), • • ■ , in the ring K\x', y'], satisfying Theorem

6 for v. In accordance with (b) of Theorem 6, let fi_i = degj,/,-.

Lemma. fi(x, y) =fi{x', x'y') =0(x' exp ti-i),fi(x', x'y')^0(x' exp *<_].+1).

Proof. The proof is by induction on i. For i=l, degj,/i = 1, and/i is monic

in y, whence/i(x, y) =fi(x', x'y')^0{x'2); since v(fi) >0, /i(x, y) =fi(x', x'y')

= 0(x'). For *>1, degy(fi(x, y)-ff-Tl)(x, y)) <deg„/;(:r, y), whence, by (c) of

Theorem 6, /,— ffll^ is a sum of monomials in x, fi, ■ • • ,with distinct

values:

fi — fi-i   ' = ZZ c(ao> ' ' ' i ai-i)F(a0, • • • , a;_i), c(a0, • • ■ , £ K,

0 = «o, 0^ak<dk, k = l, • • • Hence

v(F(a0, • • • , a;_0 = v(f{ - ft") = viftl^)

for each term of the sum ]T]; that is,

(1) «o + aMfi) + • • ■ 4- «i_i»(/i-i) = rfi-1»(/,--1).

By (3) and (5) of Theorem 6,

deg„/<_i = rfi deg„/i 4- (d2 - 1) deg„/2 -f • • • 4- (<f*_i - 1) deg„/i_i

and

di-M/i-v > drtfi) + (d* ~ !)»(/*) + • • • + (<*f-i -

A fortiori,

di-i(v(fi-i) - deg^/i-i) > ai(o(/i) - degv/i) • • • 4- a.^M/^) - deg^/.-i).
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Combining this with (1) we have,

a0 4- ai deg„/i 4- • • • 4- a—I deg„/,_i >      deg,,/,_i = deg„/,.

Hence /,(*, y)-ff^n(f, y) =/.(*'. *V)-jl^V, x'y')mQ{x' exp
by induction. Also by induction,

/£""(«, y) = /fi*V, «'yO - o(x' expk-i)

but

/ÜTV, *Y) H 0(«' exp      + 1),

whence

y) - /»(*'. *V) = 0(x' exp

but

*V) r4 0(x' exp      4- 1).

This completes the proof. We also make the remark (already proved) that if

0^ak<dk, k = l, • ■ • , i — 2, then z/(/,_i)-deg„/,_1>ai(o(/1)-deg„/i)4- • • •

4-a,_2(f (/,-_j) — deg„/,_2). Note also the following :degv/j = subdegree/,( = de-

gree of the leading form of/,).

Theorem 14. We place

/.' (*'. /) = /<■(*', *'/)/*' exp

The elements// (*-', y') are polynomials in K[x', y' ] a»<f satisfy Theorem 6 for v.

Proof. That the /i(*', y') are polynomials, and, moreover, monic in y',

is the content of the lemma. We proceed now by induction on i. Note that

v(fi)—v(fl) is an integral multiple of v(x), in fact equals U-\v{x). Since f{

is monic, of degree 1 in y', it follows as in Theorem 6, that any polynomial

g(x', y')SR~[x', y'] with v(g) <v(f{) has an integral multiple of v(x) as value;

that is, (2) of Theorem 6 is satisfied for * = For *>1, (3) is trivial since

deg»/i = degj,// ; (4) follows directly from the remark that »(//)—o(/<) is an

integral multiple of v(x), and the fact that all the groups F>, involved contain

the group of integral multiples of v(x). (We assume by induction that

A,_1=A/_1.) As for (5),

»(/*') = '(/•) - t>-iv(x) > di-iv(Ji-x) - ti-iv(x)

= a',-_i(»(//_i) -f U-iv(x)) — ti-iv(x) = rf<_i»(/,'_i).

Thus it remains to prove (2). Explicitly stated, we have to prove that

if g(x', y') £ K[x', y'] has value less than the value of // then v(g)

= v(F'(a0, • • • , a,-i)) for some integers a0, ai, • • • , a<~i, where F' is a mo-

nomial in the//. Since// is monic in y and v(g)<v(fl), reducing g{x', y')

mod /*(*', y'), we may assume m = degV'g{x', y') <degv/,'. But then
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g(x', y') = g(x, y/x) = g'(x, y)/xm, g'(x, y) G K[x, y].

Hence v(g') = mv{x)-\-v{g) <ti-iv(x)-r-v(f!) = v(fi), whence »(g')GA,-_i. Since

v(g')—v(g) is an integral multiple of v{x), (2) now follows. Note finally that

if the sequence/1,/2, ■ • • is finite, then the sequence// ,/2', • • • is finite, and

of the same length, as follows at once by considering the 1-1 correspondence

with the groups A,-. This completes the proof.

We now derive a theorem which is a continuation, in a sense, to Theorem

9. Let vi be the rational rank 2 valuation introduced for v in Theorem 9.

If t is the least irrational oi-value assumed by elements in O then we have

seen by Corollary 1 to Theorem 9 that for certain integers s it is true that

the i/i-ideals of value less than st are the first o-ideals for v. Note that in

Theorem 9 we now have t> 1, since we are assuming v(y) >v(x)>Q.

Theorem 15. Let v and v\ be as in Theorem 9; let r be the least irrational

Vi-value assumed by elements in O, and let r' be the least irrational vi-value as-

sumed by elements in £)'. If for some integer s the Vi-ideals in O of Vi-value less

than st are the first v-ideals for v, then also in £)' the v\-ideals of vi-value less

than st' are the first v-ideals for v.

Proof. Let/i, • • • ,/y+i be the polynomials of Theorem 9, and consider the

elements F(a0, ■ • ■ , ay, ay+1), 0 = a0, 0 = a,<ö\-, * = 1, • • • , j, 0^aJ+i<5. Any

two of these have distinct »i-value and, by Corollary 2 of Theorem 9, the

integer s is bounded in such manner that they also have distinct o-value. We

may therefore order these elements according to their v- and ^-values, ob-

taining the simple sequences

(1) «1, ui, ■ • • ,

(2) Wi, »»,••« ,

respectively. Let qi, q2, • • • ; q*, q2*, • • • be the Jordan sequences of 0-dimen-

sional valuation ideals for v and vi respectively. If Vi(u>k) <Vi(f'+i) <vi(wk+i)

then, as in Corollary 2 of Theorem 9, Ui = Wi, i=l, • ■ ■ , k. In the ring

D'=R~[x', y'] consider the elements F'(a0, • • • , a„ ay+i), with the same

limitations on the a,-. Now if

(3) v(F'(a0, ■■■ , am)) < v(F'(ß0, • • • , < ss(//+1)

then

(4) v(F(a0 + m - (ru a,, • • • , aj+1)) < v(F(ß0 + m -     ß%, • • • , ßj+v)

< SV(fj+i)

wherew=s-deg„/y+i, <ri = degvF(0, aa, • • ■ , aj+1), a2 = degyF(0, ßu ■ • • ,ßj+i).

Since ax<m and ai<m, the elements evaluated in (4) are in K[x, y], whence

the inequality (4) holds with v replaced by »1, whence it follows that (3) holds

with v replaced by Vi. Likewise, any two distinct F'iao, ■ • • , ay+i) have dis-



422 A. SEIDENBERG [May

tinct v-value. Hence the elements F'(ao, ■ ■ ■ , aJ+i) can be ordered according

to their v and »x-values to yield the sequences

(10

(20 Wi, vi, • ' • ,

respectively, and if v\(wl) <i»i(//+i) <v(wl+1) then u[ =w[, z = l, • • • , I. It

follows now in a manner several times employed that the first / valuation

ideals in O' for vi coincide with the first / for v. This completes the proof.

Theorem 15, like Theorem 9, will be used to replace a given valuation by

a rational rank 2 valuation.

Corollary. Theorem 15 also holds for a rational rank 2 valuation v (of

type not less than i-f-1) having fi, ■ ■ • ,/y+i as the first j4-1 associated polyno-

mials, and such that v(fi)=Vi(fi), t*=T, • • • , j.

8. The transform of a simple z/-ideal, general case. We come now to the

proof that the transform of a simple v-ideal is simple. As usual we assume

v(y) >v(x) >0; and T is the transformation

T:   x' = x,   y' = y/x;      x = x',   y = x'y'.

Theorem 16. The transform of a v-ideal q is a valuation ideal for v.

Proof. If v is not already of rational rank 2, let i>i be a rational rank 2

valuation, as given in Theorem 9, such that Vi(q) <sv(fj+j) and such that the

Oi-ideals of zvvalue less than svi(fj+i) are also the first f-ideals for v. We assert

that Vi(T(q)) <svi(fj+i). In fact, the ideal q has a basis consisting of and

of elements F(a0, • • • , ay, ay+i), 0^a0, 0^a,<d,-, i=l, ■ ■ ■ , j, 0^aJ+i<s.

Placing

h -  h(q) = min {a0 + ]C «< deg„/,-}

over the elements of this basis, we have Vi(T(q)) =Vi(q) — h. Clearly h = deg„f7+1.

If equality holds, the assertion follows at once. Supposing Ä<degv//+1, then

for at least one of the basis elements F(ao, ■ ■ • , ay+0, it is true that

v(F(ae, • • • , «,+1)) - (aa 4- E «< deg,/,) = v(T(q)),

whence the assertion follows from the remark at the end of the lemma to

Theorem 14. Hence, by Theorem 15, if T(q) is a Oi-ideal it is also a p-ideal,

and we may pass from v to vu that is we may assume without loss of generality

that v is rational rank 2.

We now prove a lemma.

Lemma. Let 0^a,<df, i=l, • • • , j; 0^aj+i. If the subdegree k of

F(0, ai, • • • , a,+i) is equal to or greater than h = h(q) then

v(F(0, au • ■ ■ , ay+i)) - k = v(q) - h.
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Proof. The proof is by induction on k. In fact, let k>h. Since subd/i=l

and v(fi) > 1 =v(x) we have, if ai9*0,

v(F(0, Hi,---, ai+1)) — k> v(F(0, ai - 1, a2, • • • , aJ+1)) - (k - 1) = v(q) - h,

by induction. If «i = 0, let «i= • • • = a,_i = 0, aj^O; then

d(F(0, ai,---, etf+i)) - k

> v(F(0, di—1,'-', i<_i - 1, a< - 1, am, • • • , «,■+,)) — (k — 1)

= »(q) - A,

by induction. Thus it remains to prove the lemma for k = h. In the case

A = A, let F(ß0, • • • , ß,+\) be an element of q of subdegree h. Clearly

<*i+i = ßj+i- If cci — ßi, *=1, • • • , j'4-1, then ßo = 0 and the lemma is trivial.

Otherwise, let a,+i = /3,+j, • • • , ay+i=/8y+i but a,>/3,-. Then clearly,

jK^XO, £*i 4- di — ßu a2 4- d2 — 32 -t 1, • • • , QÜ 4- <*.■ — 3< — 1, a,+i — 3i+i — 1)

> ßov(x),

since both terms evaluated have like subdegree, and v(y)>v(x). The lemma

is an immediate consequence.

To proceed with the proof of the theorem, let g(x', y')£0', with v(g)

^v(T(q)): to prove gCT(q). We can write g(x', y')=2c(ao, • • • ,

■F'{ao, • • • , whereis a finite sum of terms with distinct value. Thus it

suffices to assume g = F'(a0, • ■ • , a3+i), where 0=a0, 0g«(<4 * = 1, • • • »J,

Ogay+i. Clearly, if a0 is sufficiently large then gGT(q); in fact, if v(x"m) = v(q)

then x'"m arises from x"m+h, and g is a multiple of x'am. Thus we may as-

sume that if &(*', y')=0(x'a«»+1) and v(h) =v(T(q)) then *(*', y')€T(<\), We

now make an induction on k = subd F'(0,oti, • • • , aj+i).U k — h then g(x',y')

arises from F(aQ-T-h — k, ay+i). Let, now, k>h. If «i>0 then by the

lemma F'(ao, on — 1, a2, • • • , ay+1) has value not less than T(q), and hence is

in T(q) by induction, whence also g£T(q). If «i = 0, let ai= • • • =a,_i = 0,

«,•7*0. Then

F'(a0, 0, • ■ • , 0, on, • • • , a,+i)

= f{ -F'iao, di — 1, • • • , di-i — 1, a< — 1, a,+i, ■ • • , a,+i)

4- «'o<0>+1*(«', y'),

where h(x', y') £ £>'. The first term on the right is a multiple of

F'(a0, d\ — 1, • • • , a\_i — 1, «, — 1, a,+i, • • • , which by the lemma has

value not less than T(q), and hence is in T(q) by induction. Hence also the

second term has value not less than T{q), and since it is divisible by x'a(0)+1

it also is in T(q). Thus gGTXq). This completes the proof.

Theorem 17. The transform by T of the ith simple v-ideal is the (i-l)th
simple v-ideal
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Proof. As in the previous theorem, if v is not already of rational rank 2

then there exists a rational rank 2 valuation vi such that the f-ideals up to

and including ^ß< coincide with the fi-ideals up to and including 'JJ, and such

that the o-ideals in £)' up to and including T(tyi) coincide with the nrideals

up to and including T(tyi). Hence tyi is also the ith simple i/i-ideal, and if

T(tyi) is the (*— l)th simple Oi-ideal then it is also the (i — l)th simple o-ideal

for v. Thus we may pass from v to Vi; that is, without loss of generality we may

assume v to be of rational rank 2.

Let n be the type of v with respect to the ring K[x,y];fi{x,y), • • • ,fn(x, y),

the polynomials introduced in Theorem 6 for v, and let v(Jn)=r. The proof

is by induction on n. For n=\, the proof has already been given in Theo-

rem 5. For «>1, every D-ideal of value equal to or less than d„_ii>(/„_i) be-

longs also, by Theorem 10, to a rational rank 2 valuation v' of type « — 1 with

respect to K[x, y]: and moreover v' exists such that tyi is the ith simple

n'-ideal. (Here also, by corollary, Theorem 15, if F($i) is the (*— l)th

simple n'-ideal, then it is the (»— l)th simple o-ideal.) Thus we may assume

»($,•) >dn-iv(fn-i) by induction. If »($,-) <t = p(/„) then, by Corollary 4 of

Theorem 10, f}< is also the ith simple valuation ideal for a rational rank 2

valuation v', of type n with respect to K[x, y] and with fn • • • , fn as asso-

ciated polynomials, such that v'(*$,) =r' =f'(/„). In short, we may assume

without loss of generality that !>(?3,) =t.

Let q be the immediate successor of in the sequence qi, q2, • ■ • . By

Theorem 12, either =st, v(q)=r/t or v(%)=r/t, v(q)=sr, s, r positive

integers, / = /„_i = deg,/„. The two cases are not really different, since, sup-

posing v(tyi) =r/t, there exists a second valuation v' with/i, • • • ,/„ as asso-

ciate polynomials such that qi, q2, • • • , are the first o'-ideals in R~[x, y]

and such that f'($,) =st', where t' = v'(J„). We suppose therefore that

t)(iT3,) = 5T, i>(q)=r//. If F(ao, • • • , ctn)Ctyi then, just as in the lemma to

Theorem 14, since v(F(a0, ■ • • , <*»)) we have

xmfVl)(x, y) • ■ ■ }T\x, y) = x'^VrV. *Y) ■ • • /t" f>, *V) = 0(,'s').

Also/jo*, y) =£(*', x'y') ^0(x'>,+1), whence, from the definition of F, »(r($,-))

-»(f<)-s<. Now v(f„)-v(fn')=t, whence, placing »(jV)=t', »(F^)) « st'.

By the corollary to Theorem 13, r/j is an approximant or quasi approximant

to <t. Since t' = t —/, clearly (r — st2)/s is an approximant or quasi approximant

to It'. By the corollary to Theorem 13, then, 5r'( = min (sr', (r — st2)/s)) is

the value of a simple u-ideal for n in K~[x, y]. Since(8) F($i) is a o-ideal, it is

therefore a simple o-ideal. It remains to prove that F($,) is the (i—l)th

o-ideal in K[x', y'].

(•) In the case of a simple u-ideal the proof that T(tyi) is a valuation ideal for t> is quite

immediate. In fact, let q'be the »-ideal in K[x', y'] having value sr'. We have r(?Ji)Cq'and we

wish to prove q'C T(%). Let g'(x', y')E q'. Since u(q') —»(/!') and since £ is monic in y', reduc-

ing g'(*, y') mod     we may assume m =deg„'g'(*'. y') <deg„'/^' =s<. There follows: £'(*', /)
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We have shown above that if o(^ß.) =v(JH) then f(F($,-)) =»(/„'*) i simi-

larly one shows that if vC$k) = dn-iv(f„-i) then v(T(^ßk)) =dn_io(/„'_i) whence

v(yk)-v(T(yk))=dn-1v(fn_1)-d„-1v(fn'-.1)=dn-itn-2 = tn-i = t. (The ideal of

value d„_iD(/n_i) is simple by Corollary 2 of Theorem 10.) Also, if f(93,)=r

then vC$i) — v(TC$i)) = t. Hence if q is a f-ideal for v with $;OqD$t, the in-

clusion being proper, then i/(q) — o(F(q)) =/also, F($i)DF(q)DF($,-),and each

inclusion is proper. Hence there are at least as many o-ideals between TC$k)

and T(tyi) as there are between tyk and Since q is simple by Corollary 3

of Theorem 10, F(q) is simple, and there are at least as many simple o-ideals

between T(tyk) and F(*iß,) as there are between tyk and 'iß,-. If, in addition,

there are not more o-ideals between T(tyk) and F(^ß.) than there are between

and ^3,- then the present theorem certainly holds up to since by induc-

tion it holds up to tyk. This is the case. In fact, as we have seen, v(F(^ß,)) = t',

and every o-ideal in K[x', y'] preceding F($.) has rational value u'/t, u' a

non-negative integer. For every integer u' such that v(T(^k)) <u'/t <z>(F($,))

there exists, by (a) of Theorem 6, a f-ideal for v in y'] with value u'/t.

Thus there are as many o-ideals between F(93*) and F(*iß,) as there are in-

tegers in the interval (tv(T(^k)), tv(T(%))). Since v($k)-v(T(^k)) = v('$i)

— !>(F($,-)) =/, an integer, there are the same number of integers in the in-

terval (tvC$k), /»($,-)). By the reasoning just used, this is the number of

o-ideals between tyk and which was to be proved. Hence F(^,) = if

t>(<ß.) =t. Placing v(ym) =t, we have FCißm) =

Returning to the general case: vity^ — sr, v(q)=r/t, we know that r/s is

an approximant or quasi approximant to tr, say the kth. The correspondence

between the simple o-ideals and the approximants and quasi approximants

to tr is such that 'iß,- is the (k — 2)th simple o-ideal after ^ßm: that is, i = m-\-k

— 2. Since (r — st2)/s is the kth approximant or quasi approximant to

tT'( = t(j — i)), F(*ißi) is the (k — 2)th simple o-ideal after the simple r-ideal in

K[x', y'] of value t'. Hence F(^<) = ^3m'_1+i_2= W-i- This completes the

proof.
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= g'(*. y/x)=g(x, y)/xm, g(x, j)GO, whence g'(x', y') arises under T from g(x, y)x"~m. This

last element is in     since it has value = v(g') +st^v{f^)   st =v(f^).


