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1. Introduction. The customary conception of a field is a system based

on two inherently independent operations and thereby sharply differentiated

from systems of single composition such as groups. That this distinction is

not essential was first demonstrated by N. Wiener (') when he exhibited a

postulate set for fields requiring only one primitive operation(2). This opera-

tion, here designated as aVb, is expressible in terms of the usual field

operations as l—a/b. V possesses the remarkable property that every ra-

tional binary operation of the field as well as the zero and unit elements can

be directly expressed in terms of it. However, it has the disadvantage that

the field is not closed under it. The absence of closure is always a source of

much complexity in the use of an operation because it is necessary to deter-

mine for each expression the conditions under which it belongs to the class and

to treat separately the exceptional cases that arise when it does not belong.

In the present paper a definition of field is given by means of five inde-

pendent postulates in terms of a single operation which is class-closing. This

definition will be referred to as (F) and its primitive operation as A. aAb may

be expressed as a - (1 — b). The two operations A and V are intimately related,

since V is the right inverse of A. A second definition (F') of field in terms of V

is given by means of six independent postulates. It is used to give a brief

demonstration of the sufficiency of (F). The sufficiency of (F') is established

by recourse to Wiener's postulates. In §§2-8 the postulates are stated and

their sufficiency, necessity, and independence proved. Certain additional

properties of the operations are stated in §9. In §10 it is shown that (A) and

(V) are susceptible of a variety of interpretations in terms of the field sum

and product, and all such interpretations are found. In §11 are listed a num-

ber of other single operations that can be used to define field.

At this time I should like to express my appreciation to Professor B. A.

Bernstein for the interest he showed and the many valuable suggestions he

gave me in the preparation of this paper.

2. Postulate set (F). Consider as primitive a class K and a binary opera-

tion (A). The postulates Fi-F6 following will make the system (K, A) a field.

Presented to the Society, November 22, 1941; received by the editors January 14, 1945.

(') Norbert Wiener, A set of postulates for fields, Trans. Amer. Math. Soc. vol. 21 (1920)

pp. 237-246.
(') On the other hand a group can be regarded as a system of double composition. See

H. Boggs and G. Y. Rainich, Note on group postulates, Bull. Amer. Math. Soc. vol. 43 (1937)

pp. 81-84.

426



FIELDS IN TERMS OF A SINGLE OPERATION 427

Definitions are denoted by 'D'. In F2, F3, and F6, the condition, "provided

the elements involved and their indicated combinations are in K," is to be

understood.

Fi. For every a and b in K, aAb is an element of K.

F2. (aAb)Ac=(aAc)Ab.

F3. aAb=a implies that bAa = b.

Di. If 0 is a /^-element such that aA0=a for every a in K, 0 is called a

zero-element.

F4. If a and b are /^-elements, there is an element x in K such that

aAx = b, unless K contains a unique zero-element 0 and a = 0.

D2. If K contains a unique zero-element 0, and 1 is a 7£-element such that

ßAl =0 for every a in K, 1 is called a unity-element.

F6. If 1 is any unity-element, \A[aA(bAc)\=b implies that \A[bA{aAc)]

= a.

There are no categorical existence postulates in the above set. If it is

desired to exclude the trivial empty and one-element classes from considera-

tion as fields, the following must be added.

N. K contains at least two elements.

3. Elementary theorems from (F). The following theorems will be used to

established the sufficiency of (F) for fields. Postulate N will be assumed and

used in the proofs without citation.

Ti. K contains at least one zero-element.

Proof. Let a and b be any TsT-elements. We may suppose that a is not a

zero-element, since otherwise there would be nothing to prove. By F4 there

exist elements z and x such that

(1) aAz = a, (2) b = aAx.

Then, bAz = (aAx)Az = (aAz)Ax = aAx = b; by (2), F2, (1), (2). Hence, since b

was arbitrary, z is a zero-element by Di.

T2. 0Aa = 0, where 0 is any zero-element.

Proof. aAO = a for every a by Di. Hence, OAa = 0; by F3.

T3. There is a unique zero-element 0 in K.

Proof. There is at least one zero-element by TV Suppose there were more

than one, and let 0 and z be distinct zero-elements. Then by F4, for every a

and b there would exist an x such that aAx = b. In particular, there would be

an x such that zAx = Q. But this is impossible, since zAx = zs*0 by T2. Hence 0

is unique.

T4. K contains at least one unity-element.

Proof. Let a 5*0, b any .fiT-element. By F4 there are elements u, x such that
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(1) aAu - 0, (2) b = aAx.

Then, bAu = (aAx)Au = (oAm)Ax = OAx = 0; by (2), F2, (1), T2. Hence, since b

was arbitrary, m is a unity-element by Dt.

Tj. lA(aAb) =b implies that lA(bAa) =a, where 1 is any unity-element.

Proof. 6 = lA(aAö) = lA[aA(&A0)]; by hypothesis, Di. Therefore a

= lA[Z>A(aA0)] = lA(6Aa); by F6, Di.

T«. lA(lAa) =a, where 1 is any unity-element.

Proof. lA(aAl) = lA0 = l; by D2, D,. Hence, lA(lAa)=a; by T6.

T7. There is a unique unity-element 1 in K.

Proof. There is at least one unity-element by F4. Let 1 and u be unity-

elements. Then, u = lA(lAw) = 1A0 = 1; by T6, D2, Dj.

T8. 15=0.

Proof. Suppose 1 =0 and let a 5*0. Then a=aA0 =aAl = 0; by Di, hypothe-

sis, D2—contrary to the assumption that a 5*0.

T9. If aAx = a Ay and a 5*0, then x = y.

Proof. Let 05*0 and aAx = aAy (1). By F4 there is an element ö such that

oAä=l (2). Then, x = lA(lAx) = 1A[(aAä)Ax] = 1A[(oA*)Aä] = lA[(aAy)Aö]
= lA[(aAä)Ay] = lA(lAy)=y;by T6, (2), F2, (1), F2, (2), T,.

Tio. The equation aAx = b has a unique solution x if and only if a 5*0.

Proof. If a 5*0, there is a unique solution by F4, T9. Conversely, 0Ax = 0

for every x; by T2. Hence, if a = 0, the equation has no solution unless o=0

also, and in that case it is satisfied by every iC-element.

D3. aVb denotes the element x such that bAx=a, whenever x is uniquely

determined by a and b.

Tu. aVb is an element of K if and only if b 5* 0.

Proof. The proof is by D3, Ti0.

Ti2. aVa = 0, 0Va = l, where a5*0.

Proof. Let p=aVa. Then, aAp=a = aA0; by D3, T3. Hence, since a5*0 by

hypothesis, p = 0; by T9. Next, let g = 0Va. Then aAg = 0 = aAl; by D3, T7.

Hence, since a 5*0 by hypothesis, q= ll by Tg.

TJ3. // a and b are distinct K-elements and 0 5*aVa, then aVb is an element

ofK.

Proof. If a 5*0, oVo = 0 by T^. Hence b 5*0 by hypothesis. If a = 0, 65*0,
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since a and b are distinct by hypothesis. In either case, b 5*0. Hence aVb is

in K by Tu.

Tu. If bVb is not an element of K, neither is aVb.

Proof. If bVb is not in K, b = 0; by Tu. Hence aVb is not in K; by Tu.

T«. If aVb = cVd and b, c, a* 5*0, then aVc = bVd.

Proof. Let p=aVb = cVd (1); q=aVc (2); r = bVd (3). Then by D3, a = bAp
(4) ; c = dAp (5); a = cAg (6); b=dAr (7). Therefore cAg = a = &A/> = (aAr)Ap

= {dAp)Ar = cAr; by (6), (4), (7), F2, (5). Hence, since C5*0 by hypothesis,

g = r;byT,;that is, aVc = bVd; by (2), (3).

Ti6. (aVa)Vo = (&V6)Vo, where a, Z>5*0.

Proof, (ovo)Vb = OVb = 1 = OVa = (&VÖ)Va; by Ti2, Ti2, Ti2, Ti2.

T17. If xVa = yVa, x=y, where O5*0.

Proof. Let xVa=p=yVa. Then x = aAp=y; by D3.

D4. a' = lAa.

Ti8. (a'Vb)Va = (b'Va)Vb, where a, &5*0.

Proof. Let£ = a'V& (l);q = pVa (2);r = b'Va (3);s = rVb (4). Then, a' = bAp

(5) ; p = aAq (6); b'=aAr (7); r = bAs (8); by D3 and lAa = bA(aAq) (9);
lA&=aA(&As) (10); by D4, (5)-(8). a = lA(lAa) = lA[bA{aAq)] (11); and
& = lA(lAö) = lA[aA(&As)] (12); by T«, (9), (10). Therefore lA[aA(bAq)]=b
= lA[aA(>As)]; by (11), F6, (12). Hence q = s; by T8, T9 ,T9, T9 and (a'Vo)Vo

= q = s = (b'Va)Vb; by (l)-(4).

4. Postulate set (F')« The last six theorems in §3 can be taken as the basis

of a convenient definition of fields in terms of the operation (V), the inverse

of (A). Consider as primitive a class K and a binary operation V. The postu-

lates Fi -F6' following will make the system (K, V) a field. In F3 , F4', F6', F6'

and DZ the condition, "provided the elements involved and their indicated

combinations are in K," is to be understood. To exclude trivial cases, postu-

late N must again be added. See §2.

Fi. If a and b are distinct /^-elements and &5*aVa, then aVb is an ele-

ment of K.

F2. If a and b are üT-elements and bVb is not an element of K, then aVb

is not an element of K.

F3. aVb=cVd implies that aVc = bVd.

FI. (aVa)Vb = (bVb)Va.
F/. xVa=yVa implies that x=y.

D/. a'=aV[(aVa)Va].

F«'. (a'Vb)Va = (bya)Vb.
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5. Elementary theorems from (F'). The following will be used to establish

the sufficiency of (F') for fields. Postulate N will be assumed without citation.

Certain obvious steps in the proofs have been left to the reader.

Ti. There is an element of the form aVa in K.

Proof. Let a and b be distinct ÜT-elements and suppose bWb not in K.

Then aVb is not in K; by F2. Hence, by Fi , aVa = £> and so is an element of K.

T2. If a and b are distinct and b=aVa, then a9*bVb.

Proof. Let aVa = b (1), b9*a (2), and suppose that bVb = a (3). Then,

b=aVa = (bVb)Va = (aVa)Vb = bVb=a; by (1), (3), F4', (1), (3) contradicting

(2). Hence (3) is impossible.

T3. aVa = bVb (whenever aVa and bVb are elements of K).

Proof. Let a9*b; then, by T2', b=aVa and a = bVb cannot both hold. Sup-

pose b9*aVa. Then aVb is in K; by Fi*, and, from aVb=aVb follows aVa = bVb;

by F/.
D2. 0=aVa, where a is any ÜT-element such that aVa is in K. (0 is a

uniquely defined K element by Ti, T3'.)

T4. aVb is an element of K if and only if b 9*0.

Proof. Let a and b be distinct ÜT-elements and b9*0. Then b9*aVa; by D2 .

Hence aVb is an element of K; by F/. bVb is also an element of K\ by F2.

Conversely, suppose aVO were in K. Then OVO would be in K; by F2. Let

b9*0 (1). Then bVb and OVb are in K; by the first part of this theorem. There-

fore öV6 = OVO = (6V&)VO = (OVO)VJ = OV6; by T3', D2', F4', D2'. Therefore

b = 0; by F6', contradicting (1). Hence OVO and consequently aVO are not

elements of K.

T/. 0Va = 0V& (where a,b**0).

Proof. aVa, bVb, (aVa)Vb, and (bVb)Va are in K; by T4'. Therefore OVa

= (&Vo)Va = (aVa)Vb = 0V&; by D2', F4', D2'.

D3. 1 =0Va, where a=*0. (1 is a uniquely defined if-element; by T4, T6'.)

T,'. IfaVb = 0, a = b (where b9*0).

Proof. Let b 9* 0 and aVb = 0 (1). Then bVb is in K by T4'; and aVb = 0 = bVb;

by (1), D2'. Hence, a = b; by F6'.

T7'. \9*0.

Proof. Suppose 1=0 (1), and let a9*0 (2). Then aVa is in K; by T4'.

aVo = 0 = l=0Va; by D2 , (1), D3 . Hence a = 0 by F6', contradicting (2).

Tg'. If aVb = cVd, bVa = dVc (where a, b, c, aVO).
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Proof. From aVb = cVd follows aVc = bVd by F3'. Writing this as bVd = aVc,

it follows that bVa = dVc by F8'.

D/. 0' = 1. (In view of T4', 0' is not defined by D/.)

T9'. a'=aVX,

Proof. For a = 0, 0' = 1=0V1 by D4', D3'. For a5*0, a'=aV[(aVa)Va]

= aV(0Va) =aVl; by D/, D2', D3'.

T10'. l' = 0.

Proof. 1' = 1V1=0; by T9', D2'.

D6'. a" = (a')'.

Note. References tc TY -Tio' and Di-D6' will frequently be omitted when

obvious.

Tn'. a" = a.

Proof. For a = 0, the theorem is obvious by D4', T^. Let a5*0. a"Va

= (a'Vl)Va = (l'Va)Vl = (OVa)Vl = lVl=0 by T9', F,', T10', D3', D2'. Hence

a"=aby T6'.

TV. If (aVb)' = 0, a = 0 (where &5*0).

Proof. 0 = (aV5)' = (aV&)Vl. Hence aV& = l=0Vi and a = 0 by T6\ F6'.

T13\ aV(aVb)' = b' (where a, &?*0).

Proof. Since ö5*0, (aVb)'^0; by Ti2'. Then aVb = (aVb)" = (aVb)'Vl by
Tn', T9'. Hence aV(aVb)' = bVl = b' by F3', T9'.

Ti4'. (aVc)'V(bVc)'=aVb (where b, c5*0).

Proof. For a = 0 the theorem is obvious. Let a, b, c5*0. Then (oVc)'5*0,

(6Vc)V0 by Tu'. aV(aVc)' = c' = bV(bVc)' by T13', T13'. aVb = (aVc)'V(bVc)'

by F3'.

Tu'. (aVb)'Vc=(aVc)'Vb (where b, c5*0).

Proof. Fora = 0, the theorem is obvious. LetO5*0. Sincea, c5*0, (aVb)'?*0,

(aVc)'5*0, (cV5)'5*0 by Tuf. Then, (aV6)'V(oVc)' = (aV&)'V[(aV&)'V(cV&)']'

= [(cV6)']' =cV6 by TJ4', TM', Tu . Therefore (aVb)'Vc= (aVc)'VJ by F3'.

Ti/. [(aV&)V(0V7j)]Vc = [(aVc)V(0Vc)]VftwÄerc6, c5*0.

Proof. This is proved by D3 , T9, Ti6'.

D6'. a-b= [aV(lVA)']' where &5*0, a-0 = 0. Clearly, a b is in X for every

a and & in K.

T17'. a-5= {1V{ [((lV6)Vl)Vo]Vl) }V1 (where a, b5*0).

Proof. All combinations indicated in the theorem are in K by Ti2', T7,
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F6', T4, and so on.

a-b = [aV(lVft)']' = {(aV«)'v[(lV*)'Va]'}' = {lv[(lVi)'Va]'}'

= {lv{ [([lV*]vl)Va]vl} }V1 Äy D,, Tl4, D4, T,.

D7. a —&=a-(i>Va), where a5*0. (The definition of 0 — b is not supplied

here because it involves considerable complexity unnecessary for the estab-

lishment of sufficiency. Clearly, a — b is in K for every a and b in K except

a = 0.

T[s. a — b = 0 if and only if a = b (where a5*0).

Proof. a-a = a-(aVa)=a-0 = 0 by D7', D2', D6'. Next, let a-b = 0. Then

a-(bVa)=0. If &Va5*0, {aV[lV(JVa)]'}' = 0 by D6', which is impossible since

a 5* 0. Therefore bVa = 0 and a = b.

Ti9'. <*-&= [(oVa)V(lVa)']' (where O5*0).

Proof. Let a 5*0. For a = b the theorem follows from TJg. Let a?*&. Then

6Va5*0 and [lV(&Va)]'Va = (lVa)'V(JVo) by Ti'5. Hence, oV[lV(6Va)]'

= (ÄVo)V(lVo)' (1); by T8'. a - b = a-(bVa) = {aV[lV(&Va)]'}' = [(bVa)

V(lVa)']'by D7',D6', (1).

T^. [(aV6)V(lV6)']'Vc=(aV&)V(cV6)' (where b, c9*0).

Proof. For <j = £> the theorem is obvious by T6'. Let a9*b and b, C9*0.

By T12' and T4 all the following combinations of elements are in K.

[(aVb)V(yVb)'\'V(aVb)=[(aVb)V(aVb)]'V(\Vby = 1V(1VÖ)'=b' =cV(cVb)' by

Tu', D4', Ti/, T13'. Hence, [(oV6)V(lV&)']Ve = (oV6)V(cV6)' by F3'.

T21. a— (A — c)=c— (A— a) (where a, b, c5*0).

Proof. Let a, 6, C5*0 and suppose first that cVb = (aVb)' (1). Then b — c

= [(CV&)V(lV&)']'=[(aV6)'V(lV&)']' = (aVl)'=a"=a by T,9', (1), TM', T» ,

Tn. Similarly, b—a = c and the theorem is obvious from TJ8.

Next let cVb9*(aVb)'. Then (cVb)V(aVb)'9*0. Hence [(cV&)V(lVo)']'Vo5*0

byT^,. Also (lVa)', (aVb)', (cVb)'9*0 by T&< Hence all the following expres-

sions are in K.

{ [(aVb)V(\.Vb)']'Vc)v(aVb)' = [(aVb)V(cVb)']V(aVb)' = [(av&)"V(cV&)']V(aV£)'

= [(cVJ)"V(aVi)']V(cV6)' = [(cVb)V(aVb)'\V(cVb)'

= {[(cV6)V(lV6)']'Va}v(cV6)'

by Tjo, Tu, Fg, Tu, Tgo- From the first and last members,

{[(aVb)V(\.Vb)']'Vc)v{[(cVb)V(\Vb)']'Va) = (aVb)'V(cVb)' = aVc



1945] FIELDS IN TERMS OF A SINGLE OPERATION 433

(2) by Fi, T14'. But (lVc)'Va= (lVo)'Vc by T16'. Hence aVc = (lVc)'V(lVo)'

(3) by Fg so that

{[(aVi)V(lVA)']'Vc}v(lVc)' = { [{cVb)V{Wb)'}'Va\V(lva)'

(4) by (2), (3), F,'. Therefore

c - (b - a) = {{ [(aV6)V(lV6)']'Vc}V(lVc)'}'

= { { [(cVÖ)V(lVo)']'Va}v(lVa)'}' = a - (b - c)

by T„', (4), Tx/.

T22. (a — 6) — (c—d) = (a — c) — (ö — </,) {where a, b, c?*0 and a^b, c).

Proof. First let dy*0. From aj*b, c follows a — b^O, a — C9*0; by Ti8'.

Hence the following expressions are all in K by D7'. Then,

(a - b) - (c - d) = d - [c- (a- b)] = d- [b - (a - c)] = (a - c) - (b - d);

by T21, T21, T21. Next let d = 0. Note that for any element e, e — 0 = e (1); for

e-0 = e (OVe)=e-l = [eV(lVl)']' = e" = e by D/, D6', Tu. Hence b-d = b,

c-d = c (2). If a-b = c (3) then b-{a-c)=c-(a-b)=c-c = 0 by T^, (3),

Fi'g. Hence, a — c = b (4) by T18. Then (a — &) — c = c — c = 0= (6 — £>) = (a — c)— b

by (3), Tj'g, T'1S, (4). Finally, let a — b^c. Then, as above, a — C9*b and all the

following expressions are in K. Therefore [(a—b)—c] — [(a—c)—b] = b—{ (a—c)

- [(a-b) -c]} = b- {c-[(a-b)-(a-c)]} =b-{c-[c-(a-(a-b))]}

= b - {c - [c - (b - (a - a))]} = b-{c-[c-(6-0)]j\=b-[c-(c-b)]

=6-[6-(c-c)j=6-(6-0) =6-6=0;by T,/, T„', TM', TV, Tx,', (1),TS1,
Tig, (1), Tig. Hence (a — b) — c= (a — c) — b and the theorem holds by T18', (2).

6. Sufficiency of (F) and (F') for fields. It will be convenient to establish

the sufficiency of (F') first by deriving Wiener's postulates from (F'). The

sufficiency of (F) is then readily proved by deriving (F') from (F). Following

are Wiener's postulates and their derivation from (F').

I. "Whatever x may be, there is a ÜT-element y such that xViyVy) is not

a ÜT-element."

Proof. Take y f*0. Then yVy = 0 by D2'. Hence xV(yVy) is not in K by T4'.

II. "If x and y are ÜT-elements, but xVy is not a ÜT-element, there is a

ÜT-element z such that y=zVz."

Proof. If xVy is not a ÜT-element, y = 0 by T4. Take Zt*0. Then y = zVz

by D2',T4'.

III. "Whenever x and y are distinct JT-elements, either xVy or yVx is

a üT-element."

Proof. Since X9*y, either x^Oor y ?*0 by T3', D2'. Then yVx or xVy is an

element of K accordingly as x 7* 0 or y 5* 0 by T4.
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IV. "Whenever x, y, u, v, and their indicated combinations are 7£-ele-

ments, and xVy = uVv, then xVu=yVv."

Proof. The proof is by F3.

Definition A. uZ = xVx if x and xVx belong to K, and xVx is unique in

the system."

Note that Z = 0 by T,', D2'.

V. "If x, y, xVy, and Z are TT-elements, and xVy = Z, then x=y."

Proof. The proof is by T6'.

VI. "If x, y, z, Z, and their indicated combinations belong to K,

[(xVy)V{Zvy)]vz = [(*Vz)v(ZVz)]vy."

Proof. The proof is by Ti6'.
Definition B. " U= ZVx, if x, Z, and ZVx belong to K, and ZVx is unique

in the system."

Note that [7=1 byTB', D3'.
Definition C. "*Oy= {iv{ [((lVy)Vl)Vx]vi} } VI, if all the indicated

expressions belong to K. Otherwise, if Z belongs to K, x<3y = Z."

Note that xOy = x-y; for, if the indicated expressions in xOy are all in K,

x, y?*0 by T/. Hence in this case x<3y = x-y by Tn'. If not all the indicated

expressions for xOy are in K, either x = 0 or y = 0 by T/. For y = 0, xO0=0

= x-0 by D,'. For jc = 0, 0©y = 0= [0V(lVy)']' = 0 y by Ti„' D3', D6'.
Definition D. "x~y=xO(yVx).v

Note that x~y = x — y by D7', if X9*0. Neither 0~y nor 0—y has been

defined.
VII. "If x, y, u, v, and their indicated combinations belong to K,

(x ~ y) ~ (m ~ ») = (x ~ «) ~ (y ~ o)."

Proof. The proof is by T22' ■

This establishes the sufficiency of (F') for fields.

To establish the sufficiency of (F) by deriving (F') from (F) we have only

to notice that F( to F6' correspond respectively to Ti3 to Ti8 inclusive. F3 to

Fi are subject to the condition that the expressions involved are elements of

K, but by Tn this is precisely the significance of the conditions in Ti6 to Ti8.

Hence (F) is also sufficient for fields.

7. Necessity of the postulates of (F) and (F'). The postulates of (F) and

(F') are all necessary for fields and can be derived from any of the well

known postulate sets(8) in terms of (4-) and (•) by means of the definitions

aAb=a-{\— b) and aVb = \—a/b.
8. Independence of the postulates. The independence of the postulates of

(F) and (F') are established by the systems in the following table, all of which

(') See, for example, E. V. Huntington, Note on the definitions of abstract groups and fields

by sets of independent postulates, Trans. Amer. Math. Soc. vol. 6 (1905) pp. 181-193.



1945] FIELDS IN TERMS OF A SINGLE OPERATION 435

are finite, it will be noted. Si is the independence system for Fi. The blanks

indicate that the result of the corresponding combination is not in K.

K

0, 2

2,3

0,2

2,3

0,1,2,3

aAb

0 2

0 -
2 0

2 3

3 2
3 2

0 2

0 2
2 0

2 3

3 3
2 2

0 12 3

0 0 0 0

10 2 3
2 0 3 1

3 0 12

System

Si

Si

Si

Si

K

2,3

0,1

0,1,2,3

0,1,2,3

0,1,2

0,1,2,3

aVb

2 3

0 1
- 1

1 0

0 12 3

1 1 1

0 2 2
3 0 3

2 3 0

0 12 3
- 1 2 3
-032
- 3 0 1
-210

0 1 2
- 1 1

-00
-00

0 12 3
-111
- 0 3 2
-203
-320

To these may be added an independence system for N, the same for both (F)

and (F')- K consists of the single element 0 with 0A0 = 0 and 0V0 = 0.

9. Additional properties of the operations A and V. The operations A and

V have other interesting properties which were not brought.out in §§3, 5,

since they were not required for the proofs of sufficiency. Some of these prop-

erties are stated below without proof:

(1) 0' = 1, l' = 0.
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(2) a" = a.

(1) and (2) are true when a' is defined as in §3 (D4) as well as §4 (D{, T9')

in fact,

(3) lAo=oVl=a'.

(4) a'Ab = b'Aa, aA6' = 6Aa', a'A6' = 6Aa.
(5) If aAb = a and a 5*0, then 6 = 0.

(6) If aA6 = 0 and o5*0, then 6 = 1.
Definition, ä is the element uniquely determined by the equation

aAä = l, when o5*0.

(7) The equation aAx = b has the unique solution x = (bAä)' if a 5*0.

(8) The equation yAa = b has the unique solution y = 6Aa' if a 5*1.

The ordinary field operations are definable in terms of A as follows:

(A) o-6 = oA6'.
(B) a/b=aAl, 65*0.
(C) a — b=aAp' for a 5*0, where p is uniquely determined by the equation

aAp = b. 0 — b = (c — b)—c, where c5*0, 6 and provided K contains more than

two elements. When K consists of two elements, 0 — 6 = 6.

(D) a+b = (pAa)' for «5*1, where p is uniquely determined by the equa-

tion a'Ap = b. 14-6 = 1-(0-6).
As alternative definitions of subtraction and division we have:

(E) a — b=aA{bAa) (where a5*0).

(F) a+b=[(bAa7)'Aa]' (where 05*1).

(9) a' = \-a.

(10) aA6 = a-o-6=o (l-6).
All rational operations, as well as the special elements 0 and 1, can be

expressed directly in terms of V without postulating any inverse operations.

How this can be done for 0, 1, multiplication, and subtraction has already

been shown. (See §5, D2', D3', D6', and D7', or Ti9'.) Addition and division

can be defined as follows:

(G) o/6 = (aV6)', 65*0.
(H) a4-6 = (6Vo')V(lVo')', a5*l.

With / defined as in (G) we have:

(11) aV6 = (6-a)/6 = l-a/6.
(12) The unique solution of the equation aVx = b, where a, 65*0, is

*=(aV6')'.
(13) The unique solution of the equation yVa = 6, where o, 65*0, is

y=[aV(lV6')']'.
The relationships between V and A are given by the following:

(14) oV6=(oA5)'.
(15) oA6= [oV(lV6')']'.
10. Equivalent field operations. In §1 it was stated that the simplest ex-

pression for cV6 in terms of the usual field operations is 1 —0/6. By this was

meant that aVb possesses the same formal properties as 1—a/6. Moreover,
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with / and — defined in terms of V, we find that aV6 = l—a/6 (see §9: (11)).

However, the properties F/—F« do not by any means characterize V uniquely.

For example, F{—Ft are all satisfied when aV6 is interpreted as (1 — a)/(l—b).

Furthermore, it is possible to give definitions different from the previous

ones for — and / preserving the field properties of subtraction and division,

yet in terms of which aV6 = (1 — a)/(l — b). These definitions are:

a/b = a'W,      MO. a - b = (b'Va')V(lVa')',      a 5* 1.

All these facts can easily be verified. Similar considerations show that aA6

can be interpreted as a b — 64-1 just as well as a - (1 — b). In short, 1 —a/b and

(1 — o)/(l — b) are in a certain sense formally equivalent to each other as are

a-(l—b) and a-b — b4-1. We now proceed to give a general definition of this

concept of equivalence and apply it to field operations.

Let S be a mathematical system having a class K and an ordered set of

tnn-ary operations (O', O", • • • , 0(m)) as its primitives, and satisfy-

ing certain postulates Pi — P*. If two ordered sets of ran-ary operations,

(A', A", • • • , A(m>) and (V, V", • • • , V(m)), both satisfy the postulates

Pi —P*, these sets of operations are said to be equivalent:

(A', A", • • • , A<->) ~ (V', V", • • • , V(m)).

This notiop of equivalence is obviously reflexive, symmetric, and transitive.

It is also clear that all the theorems deducible from Pi—Pk will remain true

if the operations of one set are replaced throughout by those of an equiva-

lent set.

As an example, consider the pairs of operations, (©', O') and (© ", © ").

given by

a ® 'b — a+ b+ 1, s 0 'i = a + J + a b,

a ®"b « a + b - 1,      a Q"b = a + b - a b.

Since, as is easily seen, both pairs satisfy the Huntington postulates for fields

in terms of + and ■ (footnote 3), we have

(©', ©')-(©". ©")-(+, •)•

The totality of such operations is given by the following theorem.

Theorem I. The most general pair of rational binary operations (©, ©)

equivalent to the sum and product (4-, •) in every field are of the form

(1) a © b = a 4- b - Z,

ab - Z(a 4-6) 4- UZ

where the parameters U and Z are distinct arbitrary field elements.
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Proof. It can be readily verified that for each U and Z the operations (1)

and (2) are equivalent to a+b and a-b by observing that they satisfy the

Huntington field postulates. To show that they are the most general such

operations, let aQb and aQb be any pair of rational functions of a and b

equivalent to a + b and a-b in an arbitrary field F. Then any field property of

4- and • must also be true of © and ©. To eliminate an operation from con-

sideration we need only exhibit a particular field in which it does not possess

one of these properties. Thus, aQb and aQb must be elements of F for every

a and b in F. But in the field of complex numbers values of a and b can always

be found to make the denominator of any rational non-integral function of a

and b vanish, and for this a and b the value of the function fails to be in the

field. Hence, we may restrict our attention to operations expressible as poly-

nomials in a and b.

Next, the equations

(3) a Q x = ß,       x © a = 3,

(4) 7 © x = 5,       x © 7 = 5

must have unique solutions in x for all a, ß, 6 and for all 7 except the identity

element of ©. This enables us to say that a © b and a © b must be of the form

a © b = Aab + Ba + Cb + D,

a © b = Mab + Pa + Qb + R,

where A, 73, and so on, are arbitrary field elements subject to the conditions

(6) A = 0 implies B, C 9* 0,   and   M = 0 implies P, Q 9* 0.

For, if aQb contained a term in b", «>1, for example, then the equations (3)

would have «> 1 solutions in the field of complex numbers; while, if M and P

were both zero, for instance, aQb would contain only b, and the second of the

equations (4) would be solvable only when 8 = Qy+R. We can further assert

that A =0 in (5). For, if A 9*0, the first equation (3) would have no solution

when a= — C/A and ß = Ba+D, since under these circumstances aQx re-

duces to Ba+D. This argument cannot be used to prove M=0 because of

the exceptional value of 7 for which (4) need not have a solution.

To obtain further conditions on the coefficients of (5) we use the commuta-

tive, associative, and distributive laws of addition and multiplication. From

the first of these we find, for example,

(7) Aab + Ba + Cb + D = Aba + Bb + Ca + D

identically in a and b. From this and the corresponding identity for aQb,

we get, by equating coefficients of like terms,

(8) B = C,      P = Q.
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Using (8) and making similar application of the associative and distributive

laws respectively, we obtain

(9) B2 = B,

(10) P2 = P + MR,

(11) P = MD,

(12) DP = R + D.

Since A =0, B ?*0 by (6). Hence, (9) implies 5 = 1. (This fact was used in de-

riving (11) and (12).) The last three equations are not independent; elimina-

tion of D between (11) and (12) yields (10). Note that Af5*0; for, if it were,

we should also have P = 0 by (11) contrary to (6). We define Z and U as

follows:

(13) Z = - D,      U = l/M - D.

From (11), (12), and (13) we find

(14) D=-Z,  M=l/(U-Z),  P=-Z/(U-Z), R=UZ/(U-Z),

where obviously Uj*Z. Substituting from (14) and (8) into (5), we obtain (1)

and (2).

Corollary 1. The identity elements of the operations (1) and (2) are Z and

U respectively.

Corollary 2. The most general pair of rational operations equivalent to sub-

traction and division in every field (that is, the inverses of the operations (1) and

(2)) are

(15) a&b = a - b +Z,

(U - Z)-a+Zb - UZ
(16) a0b =-, J/5*Z.

b — Z

Theorem II. The most general rational operations satisfying the postulates

of (F) and (F') respectively are

Ua+Zb - ab - Z2
(17) aA'b = »0»0i = —

(18) aV'b = {b O a) 0 b =

U -Z

Ub - (U - Z)a

b-Z

where U and Z are distinct arbitrary field elements.

The proof is left to the reader.

11. Other single primitive field operations. As examples of other single

operations that can be taken as primitive in a definition of fields, there may
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be mentioned the following:

a O b = a/(a — b)   and   «□ b = (ab + a — b)/(ab — b).

Postulate sets for fields jn terms of these operations will not be stated in de-

tail here. However, by the following methods V may be expressed in terms of

<> and O. Once V has been defined, the usual field operations (4-, —, •,

and /) can be expressed in terms of V as in §§5 and 9.

Let a and b be any isT-elements. 1 and 0 are defined as the unique K-e\e-

ments such that oDO and iUJb are not in K. h designates the unique element

determined for each b by (bC3b)E3o = 0, 6 5*0. Then, aVb = (aC3a)C3h, a5*1, 0;
65*0.

oO& is in K if and only if 05* b. 0 is defined as the unique element such that

006 = 0 for all b. l=aO0, 05*0. Then, aVb = l<>(a<>6), 65*0, a.

Finally there remains the problem of determining the necessary and suffi-

cient conditions an operation O must satisfy in order that a definition of

field may be formulated with O as the only primitive operation. An equiva-

lent statement of this problem is to determine all operations capable of gen-

erating the usual field operations in the general field. The solution depends on

precisely what processes are to be admitted in generating derivative opera-

tions from the primitive operation. When V is taken as primitive, iteration

is the only process required. When A is taken as primitive, iteration alone is

not sufficient(4); inversion must also be permitted. A complete discussion of

this problem would lead too far afield from our main objective, the develop-

ment of specific postulate sets, and so will be left to a projected future paper.

However, it may be mentioned that, for the case when only iteration is ad-

missible, a solution, valid for a wide class of fields, has been obtained by

N. Wiener (6). In the general field his conditions on the primitive operation

are necessary; but they are not sufficient, as the following example shows:

(a — b)/(a+b) satisfies Wiener's conditions and will in fact generate all ra-

tional functions over the field of rational numbers, for instance, but cannot

generate the usual field operations over a field of characteristic 2, where it

degenerates into the constant element 1.

Washington, D. C.

(4) A proof of this fact can be found in the reference of footnote 5 below.

(6) Norbert Wiener, Bilinear operations generating all operations rational in a domain Q,

Ann. of Math. vol. 21 (1920) pp. 157-165.


