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1. Introduction. Let

(1.1) L(U) = A {7/4 + A(dU/dx) + B(dU/dy) + CU = 0

be a partial differential equation whose coefficients A, B, C are supposed to

be entire functions of x and y.

As was shown in previous papers, with every real solution U(x, y) of (1.1)

it is possible to associate another real solution V{x, y) such that the class Q of

complex solutions u = U-\-iV obtained in this way possesses many properties

similar to those of analytic functions of a complex variable^). For instance:

I. There exists a set of solutions {<£>.}> <py(x, y)=Uy(x, y)+iVy(x, y),

L(<p„) =0, each of which is an entire function of x and y, which can be consid-

ered as an analogue of {(x-\-iy)'} :

i. {(/>„} behaves similarly to the powers for large values of v, more ex-

actly, we have \<py(x, y) — H(x, y)(x-sriy)"\ = Ciix, y)/2(v + l) whereH and C\

are entire functions which are independent of v.

ii. c0„, c an arbitrary complex constant, is again a member of class Q.

iii. Every solution u which is regular in a circle x2+y2^p2 can be devel-

oped there in a uniformly convergent series, u=^,y-lav<py (see [4, §6])..

iv. Every u which is regular in a simply connected (closed) domain SQ,

(0, 0)£33, can be approximated there by a linear combination, 2^-ia'n)<Py> °f

the <p„ (an analogue of Runge's theorem). See [4, §6].

II. There exist simple relations (similar to those of the theory of analytic

functions of a complex variable) between the properties of a solution u whose

series development at the origin is u =2~^,Z,n-oAmnzmzn, z=x+iy, z = x — iy, and

the behavior of the sequence {v4„0}, n = 0, 1, 2, 3, ■ • • . For example:

i. u is regular in every domain in which y^Z=nAmgZm is regular. (Note

that consequently the location of singularities of u is determined by the Am0,

m=0, 1, 2, • • • , independently of the coefficients of the equation.) [4, §7].

ii. If Zm-oMmo| 2< 00 then n=EiiV™^" is regular in x2-fy2<l and

possesses boundary values for radial paths of approach, almost everywhere.

Again the set of points where the boundary values exist is independent of the

coefficients of the equation (see [4, §7]).

Presented to the Society, April 29, 1944; received by the editors March 30, 1944.

(}) The conjugate V is uniquely determined by U within a fixed solution multiplied by an

arbitrary constant. V and U are connected by certain linear integrodifferential relations (see

[4, §8]). The numbers in brackets refer to the bibliography at the end of the paper. The

present paper does not presuppose knowledge of previous publications.
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Clearly the results obtained about these (complex) solutions u yield cor-

responding results about the real solution U, and therefore the introduction

of the class of complex solutions indicated above represents a powerful tool

in the theory of partial differential equations.

The study of the duality which exists between the theory of (complex)

solutions w, mentioned above, and that of analytic functions of a complex

variable is essentially based on the fact that the solutions u can be obtained

from analytic functions/(z) by means of an integral operator.

«(z, z) = P(/) m J B(i, z, 0/(t(l - f>/2)*/(l - t*y\

(1.2) z = x + iy,      z = x — iy,

2  r '/2        6u(z sin2 0, 0) 1
/(z/2) = -       z sin 6    \   . dd + - u(0, 0).

t J o d(z sin2 6) t

Here E is a conveniently chosen entire function of z and z (which depends

only upon the coefficients A, B, C of the equation L). When/ ranges over the

totality of analytic functions of a complex variable, Re« ranges over the total-

ity of real solutions of (1.1). (/and u are supposed to be regular at the origin.)

See [3].

Remark. We note that the operator P is not defined only with respect to

some particular domain of the #y-plane; it can be shown that both functions

w(z, z), z conjugate to z, and /(z/2) are regular in the same domain of the

ary-plane, and that the representation (1.2) is valid in every simply connected

domain %, (0, 0)Gr5> in which uiz, z) is regular.

Definition. The totality of functions u, which we obtain by means of

an operator (1.2) when / ranges over the class of analytic functions of a com-

plex variable, is denoted as the class Q(E); E is called the generating function

of the class £(E).
The relation (1.2) can be interpreted as a mapping, in function space, of

the class of analytic functions of one complex variable into the class of func-

tions (3(E). A more thorough analysis shows that the above-mentioned

method of investigation which is based on the study of the integral operators

of the type (1.2) is not limited to the case where the transformed functions u

satisfy equation (1.1) (see [4, §2]).

The two following properties of the set of functions are sufficient in order

to establish the duality between the theory of functions u and that of one

complex variable.

i. Every function u(x+iy, x — iy) which is regular in a domain 23 of the

(real) xy-plane can be analytically continued for complex values of x and y

into a certain (four-dimensional) domain 9?(58) which depends on 93 but is

independent of u, and it is possible to represent u in 9i(S3) in terms of values

of u and its derivatives on the boundary b of 93.
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ii. The generating function E is of the first kind, that is, has the form

where E* is also an entire function (2) of z, z. (Classes of functions of this kind

occur in other fields as well(3), for example, in the theory of linear partial

differential equations of order 2n, n> 1.)

In this connection in [4] we considered what types of results of the theory

of analytic functions can be carried over to the theory of functions which

satisfy the conditions i and ii (above).

On the other hand one may obtain complex solutions of (1.1) using oper-

ators which differ from those described immediately above. One again ob-

tains classes of functions (U+iW) where U ranges over the totality of (real)

solutions of (1.1) and W is determined in a unique way (within a constant

multiplied by a fixed function) from U by some suitable linear relation.

A particular case of this question is the investigation of classes which can

be obtained by an integral operator of the form (1.2) or similar to (1.2) but

where E is not necessarily a generating function of the first kind. (Clearly the

conjugate Wcorresponding to a given real solution [/changes if we pass from

one generating function E to another generating function.)

One of the motivations of the study of the preceding question is the

fact that in certain investigations of real solutions U, these functions U+iW

{W obtained as described immediately above) would be more suitable than

those obtained by means of the operator (1.2) with the generating function

of first kind(4). The first step in this direction is to determine all operators

which transform analytic functions into solutions of differential equations, or

at least a large class of such operators (5).

The first part of the present paper is devoted to this question.

(2) One of the essential results of paper [3] was the proof that to every equation (1.1)

there exists a class of complex solutions u satisfying ii, and that the Rew represents the totality

of (real) solutions of (1.1) each of which is regular at the origin.

(3) We wish, further, to stress the fact the results obtained for linear partial differential

equations are of interest for many nonlinear equations of physics. By suitable transformations

the (nonlinear) equations of the theory of a compressible fluid, of plasticity, of the theory of

heat can, in many instances, be reduced to linear equations, of the type considered in this ap-

proach.

(4) Indeed, such a situation occurs in the study of growth of entire solutions U(x, y).

It is possible to show that for various differential equations (1.1) there exists a generating func-

tion E=*Q exp P, where Q and P are polynomials in t, whose coefficients are algebraic functions

of the coefficients of L, and it is often much easier to determine the growth of Q exp P than the

corresponding generating function of the first kind (see [5]). Another such case occurs in the

study of singularities of solutions of (1.1).

(5) Another problem of the theory, which however has been almost unexplored until the

present, is the study of different forms of the same operator and the connections between differ-

ent classes of functions.

(1.3)



302 STEFAN BERGMAN [May

In §§2 and 3 we determine a large class of integral operators which trans-

form the totality of analytic functions of one complex variable into (certain)

complex solutions of (1.1).

Simultaneously in §2 we attempt to show that the transition from real

solutions U to the functions wE(?(E), E being a generating function of the

first kind, can be considered as a natural generalization of the transition from

a harmonic function of two variables to the analytic function of a complex

variable of which it is the real part. We show, namely, that certain require-

ments (which are fulfilled in the case of harmonic functions) entail that the

operation transforming analytic functions into real solutions of U must be

representable as the real part of (1.2), E being a generating function of the

first kind, or derivable in a simple way from such an operator.

The second part of the present paper is devoted to the study of singulari-

ties of complex solutions of (1.1).

In §5, we show that in the case of classes of (complex) solutions with gen-

erating functions of the first kind singularities exist which are similar to

branch points and poles(6).

In §§6-8 we study the behaviour at infinity of entire functions of the class

(3(E) where E satisfies certain conditions but is not necessarily a generat-

ing function of the first kind. The following result is derived there. Let

n[r, (u — &)_1] denote the sum of the "indices" of points which lie in the circle

x*-\-y2^r2 and where u assumes the value b. We then give an upper bound for

the growth of n[r, (m —6)_1], r—>«>, in terms of the Am0, m = 0, 1, 2, • • • ,

2 Z,Amnzmzn, z = x+iy, z = x—iy, being the series development of u at the

origin.

I. Integral operators in the theory of partial differential equations

As indicated in the introduction, in this chapter a large class of integral

operators which transform analytic functions into complex solutions of (1.1)

will be determined and an attempt will be made to derive the integral repre-

sentation (1.2), with generating function E of the first kind, as a natural

generalization of the representation of harmonic functions in terms of an-

alytic functions.

2. The associate function. Every real(7) function <p(x, y) = U{z, z),

z=x-\-iy, z = x—iy, of two real variables a: and y may be written in the form

(2.1) <p(x, y) = U(z, z) = [k(z, g) + k(z, z)]/2 = Re [k(z,z)],Re = Real part,

where k(z, z) is some complex function and k(z, z) is the conjugate of k(z, z).

(•) It should, however, be stressed that while the branch points have the same character

as those in the theory of analytic functions, the singularities which correspond to the poles are

no longer single-valued, but represent a combination of a pole and a logarithmic branch point.

(7) Real=real valued for real values of x and y. If U(z, z) ="^2Amnzmzn, then Am„ = A„m is

the necessary and sufficient condition that U(z, z) be real.
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In fact we may choose for k(z, z) any function of the form U(z, z)-\-iV{z, z),

where V(z, z) is an arbitrary real function of z and z.

If <p is a harmonic function, then for k we may choose an analytic function

of a complex variable z, say/(z). In this case if we continue cp{x, y) to complex

values of the arguments, we obtain very simple relations

(2.2) k(z, 0) = /(z) = 2U(z, 0) + const., k(0, §) = /(0) = const.

In many instances the study of the analytic function/(z) leads to interest-

ing results about the corresponding harmonic function. Thus, the introduc-

tion of analytic functions provides a powerful tool in the theory of harmonic

functions.

Consider, now, a partial differential equation of the elliptic type

L(U) m AU/4 + AU, + BUy + CU m U z-z + aUz + äU, + cU = 0,
\Z .o)

a = A + iB,      ä = A — iB,      C = c,

Uz = 2-\Ux - Uy),      Ux = dU/dx,

Here A, B, and C are functions of the real variables x and y which when

continued to complex values of the arguments are supposed to be analytic

functions of two complex variables, x and y, which are regular in a domain 3)

containing the origin of the (four-dimensional) space of these two complex

variables. (A, B, C are supposed to be real, see footnote 7.) In order to in-

vestigate the functions satisfying (2.3) in the real xy-plane, one may attempt

(by analogy with the theory of harmonic functions) to generalize the above-

mentioned method of attack, which method is based on the use of functions

of a complex variable. This may be done by associating with every function

satisfying (2.3) an analytic function of a complex variable.

In certain respects it is more convenient to introduce operators which

transform an analytic function of a complex variable into a complex solution

u=U+iV, whose real part is U and whose imaginary part Fis uniquely de-

termined by(8) U (to within a constant multiplied by a fixed function).

Under rather general assumptions an operator which links w(z, z) to/(z)

can be defined in the following manner:

Let w(z, 1) =J2m=oHn~oAmnZmzn and f(z) =2Zn=o«»z". Substituting z = 0 we

obtain

(2.4) u{z, 0) = E^oz™.

Let

(2.5) {rmn},     » = 0, 1,2, •••;* = 0,1,2,

(a) In §4 we shall discuss in more detail several possible choices of V, in particular also the

case where Vis not necessarily a solution of (2.3).
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be an infinite matrix. Writing

(2.6) zZ ( Z WiJ) 3"
n—0 \ m=0 /

and making some assumptions about the convergence of (2.6) we obtain from

/ another function of a complex variable. Since w is a solution of (2.3) it is

uniquely determined if the Amo and Aom are prescribed. We may thus define

an operator which transforms / into u(z, z) by the introduction of the matrix

(2.5), setting

QO

(2.7) 2j rmnam = An0

and prescribing the Aom in a certain manner which depends only on/(0) but

is otherwise independent of /. For the sake of brevity we shall call f(z) the

associate of U of the type {

Before proceeding further we wish to make a remark concerning the choice

of the rmn.

Consider U(z, z) in the complex domain('). The characteristics of (2.3)

are z = const, and z = const. If one wishes to associate with U{z, z) an analytic

function/(s) which possesses the property that/(2) and U(z, z), z conjugate

to z, have the same regularity domain in the (real) xy-plane, it is natural to

choose /(z) = 2 U(z, 0), or some function which is in some simple way con-

nected with U(z, 0). Clearly, it is of importance that, in addition to this, both

the operator which transforms / into U and the inverse operator be not too

complicated, and further, that they possess many properties in common with

harmonic functions. In this connection the following result was obtained in

[4]:
There exists for every equation (2.3) an operator S[/(z)] =k{z, z), defined

for all functions/(z) analytic at z = 0, which transforms each of these functions

into a function, k(z, z), analytic at the origin. This operator S has a unique

inverse which depends only on L (that is, on A, B, C) and not on the domain

in which k is considered. In terms of this operator every solution of (2.3) can

be represented in the form(10)

(9) Our aim is to obtain results concerning the behavior of U(z, z) in the real domain,

that is, when z and z are conjugate to each other. The continuation in the complex domain is

only a means of investigation.

In what follows, in most cases it will be clear whether we are considering <f>(x, y) m U(z, z)

in the real domain, or whether we consider its analytic continuation in the space of two complex

variables x = X\-\-tX2, y = yi-\-iyi- In the first case z and z will be conjugate to each other; in the

second case z and z will be two independent complex variables. Sometimes, in doubtful cases,

in order to indicate whether we are considering U in the real or in the complex domain, we shall

add after U: "z conjugate to z" or "z, i independent."

(10) The function k{z, z) satisfies (in analogy to the case of harmonic functions) relation

(2.2).
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(2 8)    U(Z' ~Z) = ^(Z' Z)k{Z' Z) + *(*' Z)^/2'   HZ' Z) = S^(Z)^'

k(z, z) = k(z, z).

Here p(z, z) is a function which depends only on L and has the property

(2.9) p(z,0) = l.

The matrix {rmn} andzZ>Z-(AomZm for the above operator are

TlliY{m + 1/2)
(2.10) rmm — -> Tmn = 0, for m A n,

2mT(m + 1)

(2.11) XMomZ'" = expT- f 5(z, 0)ozl.
m-0 L      J 0 J

In order to employ the operators in the theory of partial differential equa-

tions successfully, it is necessary to represent them in a form more convenient

for applications than infinite matrices. One form is an integral representation.

An integral representation (1.2) for the above operator was obtained in

[3], see also p. 311 of the present paper.

As mentioned in the introduction, it is in some instances preferable to use

other operators than those previously introduced. In this connection the prob-

lem arises of finding all integral operators which transform analytic func-

tions into complex solutions of (1.1), and. determining their properties.

This problem will be partially solved in §3 where a very large class of

integral operators which transform analytic functions into complex solutions

of (2.1) is determined, and the corresponding matrices {rm„} and the Aom,

«z=0, 1, 2, • • • , are computed.

3. Integral representations for complex solutions of (2.3) in terms of

analytic functions of a complex variable. As was pointed out at the end of

§2 the development of the described approach in the theory of partial differ-

ential equations requires finding for the operator P which transforms the as-

sociate/^) in p(z, z)k(z, z) a form suitable for application.

The expression (n)

(3.1) k(s, z)f(z) + Je(2, -z, 0/[»(«, t) )dt,

where the integration is taken over i1, represents a form for the operation P

which is convenient for many purposes.

(u) This form of operator was suggested by the study of the equation Au+u = 0, where we

have chosen K = 0, E= (1-«,)-1'I[exp(t/(sz),'!)], n = z{\-P)/2, and il-£[-l«<l]. Substi-

tuting /(r) = r, z = re** we then have 2-Vei'*/'1[exp(tir)](l-<s)v-1'!!di = 7rI/2ei''*r(I.-|-l/2)/,(r),

where J,{r) are the Bessel functions of the pth order. See [2, p. 390]. The analogy suggests the

generalization of various results in the theory of Bessel functions to the case of operators of

the form (3.1). By E[ ■ • • ] we denote the set of points whose coordinates satisfy the relations

indicated in brackets.
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Here K(z, z), E(z, z, /), n(z, t) are some fixed functions which are defined

in the neighborhood U4 of the origin, z=z = 0, and for t&K They are assumed

to be differentiable with respect to z, z and t as many times as will be necessary

in our further considerations. The integration curve t1 can be assumed either

to be an open curve t = t(r), —tt<t<tt, t(—Tr)=a, t(ir) = b in the complex

/-plane, or a closed curve.

The associate / ranges over the totality of analytic functions of a complex

variable. It is assumed to be regular for all points n = n(z, i), <£t\ |z| <p,

p>0 sufficiently small.

We shall denote by (J? = C[E, K, n; t1] the class of functions of the form

(3.1) which we obtain if/ranges over the above indicated totality of functions.

Two questions arise:

1. How to determine E, K, n, i1 in order that the functions of the obtained

class are solutions of a given differential equation, L(m)=0.

2. How to characterize the obtained totality of complex solutions of

L(m) =0 independently of the operator.

1. We consider at first the case where t1 is an open curve.

Two simplifications can be made.

I. Since /»E(z, z, t)f[n(z, *)]<*/= /*x[E(z, z, *(r))]/'(r)/[ra(z, t{r))]dr, we

may assume from the start on that i1 = E[ — 7r</<ir].

II. If p{z, z)k(z, z) satisfies (2.3) then u(z, z)= [exp(ffcdz) ]p(z, z)k{z, z)

satisfies the equation

(3.2) L*(w) = u* + Dus + Fu = 0

where D = ä—foazdz, F= —az — aä+c. (See [3, p. 1172].) We assume therefore

from the start that equation (2.3) has the form (3.2). We note that in this

section for the sake of simplicity we shall omit the asterisk and write L in

stead of L*.

We notice that

df[n(z, t)]     df[n(z, /)] nz

dz dt nt
and therefore

uz =

(3.3)

Kz/+K/,+ f (Ezf+Efz)dt
d —T

= Kzf +Kfz+ j   {f[n(z, t) ]} [E, — (E»z/nt)t]dt + j,

j =  (/E«z/»,)<-ir — (/E«z/«,)i — *

V

+ 12f[n(z, a,)] lim[(E«3/«,)i=o„+e — (E»*/ra()
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t = ar=ar(z), v = \, 2, • ■ • , p, denoting the zeros of nt(z, t) in the interval

E[-v<t<r].
Differentiating (3.1) and (3.3) with respect to z and inserting the obtained

expressions into (3.2) we have

(3.4) L(«) = /L(K) + K*/, + J /(»(*, *))[L(E) - (E*n,/nt),]dt + j, = 0.

(3.4) must hold for any analytic function / which is regular at the origin.

The expression (3.4) is a sum of terms Mlk)Nw and JlwMip)Nlp)dt, where

/V(m), m = l, 2, • • • , depend upon E, K, n and (in the second expression) on

/ but are independent off, and Mim) depend also on/. If all A7*"0 vanish, that

is, if

(3.5) NW = L(E) — (EjW2/»,)< = 0,

(3.6) /y(2) = K2 = o,

(3.7) 7Y<S> = L(K) = 0,

7Yo4) - [(Ew./»,),]^, = 0,

(3.8) N,   = (E,n,/fii)f=0„+e - (ßtn./n,)^^, = 0, v = 1, 2, • • • , p,

Np+! = [(£»,/»()       = 0,

then clearly (3.1) will be a solution of (3.2). Therefore a sufficient condition

in order that the operator (3.1) generate solutions of L(«) =0 is that E ful-

fills the differential equation N(1) =0 and satisfies the additional conditions(I2)

7VW = 0, v = 0, 1, ■ ■ ■ p, p + i, and that K isa solution of (3.6) and (3.7).

However it could happen that two terms, for example MWNW and

fZ.„M(-s)N(-s)dt, can be combined into one term of a similar structure, say

(3.9) MwN<-» + f M^NMdt = f MNdt

where N is independent of /. This would mean that the number of conditions

(3.8) is reduced. It is therefore of importance to show that certain relations

of the form (3.9) can never occur.

Lemma 3.1. A relation

f[n{z,t)}N^dt = J   f[n(z, t)]Ndt,

where N is independent of f, is impossible unless n(z, t) is independent of t.

Proof. (3.10) can be written in the form

(u) We denote the points — t and w by do and ap+\, respectively.
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(3.11) /[»(*, ay) JE,»,,/»! = J   /[«(», <) ]5(z, i, /) A

where 5(z, z, t)=N—N(1) is a fixed function which is independent of /. But a

relation (3.11) is impossible. Assume, on the contrary, that a relation (3.11)

holds. Then for some value of z, say z = Zo, w = »(zo, i), — ir^t^ir, will repre-

sent a curve in the complex plane, and, of course, «(zo, ayü), a,o — ay{zo), is

only a point of it.

Assume at first that [Eä(zQ, So, a»o)«z(zo, a,o)/»i(zo, o»o)]?*0. Then we can

determine a function / which is sufficiently large at the point «(z0, a,o) and

sufficiently small on the remaining part of the curve « = «(z0, t), — Tr = t = ir,

so that the right-hand side of (3.11) will be smaller than the left-hand side.

Therefore such a relation is impossible.

If further we assume that [Eä(z0, zo, ay0)nz(z0, ayQ)/nt(z0, ay0)] =0 then we

may determine a function / so that the real part of / in the neighborhood

of w(zo, it) is sufficiently large, and which is on the remaining part of the curve

sufficiently small so that the right-hand side of (3.11) is not zero.

In a similar way one can show that it is impossible that a relation

/(z)L(K) = f[n(z, a,)]Ez(z, z, a,)nz(z, ay)/nt(z, ay),

<h - 0, 1, 2, • • • , p, p + 1,

holds unless w(z, ay)=z.

Finally it is evident that no relation

(3.13)      /»(Z)=J N(z,z,t)f[n(z,t)}dt   or  /2(z) = f[n(z, a.)]

exists since we may determine a function / which is smaller than 1 in absolute

value on the integration curve n=n(z, t), —ir^t — ir, z fixed, and possesses

a derivative at the point z which is larger than the above integral and

/[«(z, ay)].

Summarizing our reasoning we obtain the following:

Theorem 3.1. Let the functions E(z, z, t) and n(z, t) satisfy equation (3.5)

and the additional conditions

(4)
No   = Eä(z, z, — v)nz(z, — ir)/nt(z, — ir) = 0,

Np+l m Eä(z, S, ir)«,(z, ir)/«,(z, x) = 0,

(3.8)'    N^ = lim {[E,(a, S, t)nz{z, t)/nt(z, t)]t,ay+,
«—+0

- [E,(2, z, t)nz(z, l)/nt(z, /)],_„,-«} =0,      v = 1, 2, ■ ■ ■ , p,

where t = ay^a„(z), \z\ <p, p>0 sufficiently small, are the roots of nt(z, t)=0
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which lie on the interval E[ — ir<t<ir]. Let K satisfy the equations (3.6) and

(3.7).
Then the operator (3.1) transforms any analytic function of a complex varia-

ble which is regular at every point n = n(z, t), —w^t^ir, \z\ <p, p>0 suffi-

ciently small, into a solution of equation L(u) =0. (See (3.2).)

If n(z, 7t)=»(z, —w) then both first equations of (3.8) have to be replaced by

Eä(z, z, 7r)»2(z, 7t)/»,(z, 7t) = — E,(z, z, — *-)*,(*, — *-)/»<(*, — x).

7/ some functions n(z, o,(z)), ^ = 0, 1, 2, • • ■ , £ + 1, say w(z, a„i(i(z)),

2, • • • , k (see footnote 12), are equal then the corresponding expressions

N,*l can be combined in one equation

(3.14) ZiC=0.

If finally n(z, a„,„(z)) =z then Nm =0 (see (3.7)) can be combined with (3.14),

and instead of (3.14) and (3.7) we have one equation

k

(3.15) ]£ N,,l + L(K) = 0.

In the case where i1 is a closed curve the considerations are similar but

slightly more complicated.

From now on L will again denote the expression introduced in (2.3) and E

the corresponding generating function.

2. Since w(z, z) =zZZ~oZZn=cAmnzmz" are (complex) solutions of the equa-

tion L(«)=0, they are determined if Zm-o4mozm and 2~lm-cAomZm are given.

If mG(3(E, K, n, i1) then for many (E, K, n, t1), Zm-o-^moz"1 can be an arbitrary

analytic function of a complex variable, which is regular at origin. On the

other hand if/[w(0, t)]=c0, c0 independent of t, then the A0m are determined

essentially by the operator, within/(0) and c0. Indeed substituting z = 0 into

OO 00

(3.16) £ Z Amnz™zn = K(z, z)/(z) 4- I E(z, z, /)/[»(*, <)]*
m=0 n—0 J

we obtain

(3.17) I>onZ" = K(0, z)/(0) 4- Co f E(0, z, 0*.
n-0 J

where the integration is taken over il.

3. We proceed now to the determination of the matrix {rmn} and the

function Zm-o^omZ"* which corresponds to a given operator of the form (3.1).

For the sake of simplicity we assume that

(3.18) t1 = E[- x < t < tt],      K = 0,



310 STEFAN BERGMAN [May

and that n{z, t) is an analytic function of z which is regular at z = 0 for

/Gt1- Hence we may write

(3.19) n(z, t) = n0(t) + «i(/)z + n2{t)z2 4-,       | z | ^ p, t G i1,

where p>0, sufficiently small.

LetnowE(z, z, t), |z| ^p, |z|^p, t&1, be a solution of (3.5) which satis-

fies the initial value conditions (3.8), let

(3.20) E(z, 0, t) = H0(t) + Hx(0z + H2(t)z2 +•••,/ 6 i1, | z \ gp,

and

CO

(3.21) /(z) = I>»z"> I zI ^ p.
n=0

Substituting these series developments into /l,E(z, 0, /)/[«(z, t1)]^, we obtain

CO /* T 00       ,     00 .

(3.22) U(z, 0) = £ ^n0z" - I   E(z, 0, 0/[n(a, 0     = Z ( L ) «"•

A formal computation yields

too = ^ Hodt,      Tio = J H0n0dt,

T-io = J HQno2dt, • • • ,

toi = J Hidt,      Tu = J (HiHo + H0ni)dt,

(3.23)

tu = J (fliMo2 + 2H0nani)dt, ■ ■ ■ ,

to2 = J H2dt,      Tu = J (H2n0 + ffiWi + H0n2)dt,

T22 = J" [«^2 + 2fl'iWoWi + H0(2n<>n2 + tti*) ]dt, • ■ •

(the integration is to be taken over i1) and

(3.24) Z A0mzm = /(0) I   E(0, z, t)dt.

Thus using the procedure described above we may determine the matrix

{fmn} and Xm-o^omZ"1 for all possible integral operators of the form (3.1).

Another question is which among these operators are of interest. For some
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purposes one integral operator may be more valuable than another.

Remark. An interesting problem is the question how, for a given differ-

ential equation, to choose K, n and t1 in order that E is a function of t which

can be represented in a closed form in terms of elementary functions. See

[5, §3].
In many applications.it is necessary that E(z, z, t) be an entire function

of z, z, or at least regular in some prescribed domain.

4. We obtain the operator introduced in [3] to which we referred in §§1

and 2 in the following way. Setting(13)

(3.25) n(z, t) = (z/2) cos2 t,      K(z, z) = 0

we obtain for E the equation (see (3.5))

(3.26) NW m [(2-V2) cot t(E, + aE)]t + L(E) = 0.

Among the solutions of (4.8) we choose the solution(14)

(3.27) E(z, I, t) = |^exp ^- J  adij^ £l + £ (sin2" tW«\z, z)

where (p(,l)(z, z) satisfy the following recurrence formulas:

4,-^ + 2zF = 0,

(3.28) (2n + 1)*,<**« 4- 2z(*„<») + D<bz^ + F<p<"> - («/z)<^<">) = 0,

n = 1, 2, ■ • ■ ,

<t>{n){z, 0) = 0, n = 0, 1, 2, • • • , where D = ä — I  azdz,F = — az — aä + c.
J 0

See [3, p. 1174].
Assuming that A, B, C are entire functions of z, z it is possible to show

that E is an entire function of z, z. See [3, Theorem 2](16). As before men-

tioned, in the case under consideration the relations (2.10) and (2.11) are

valid for the matrix {rmn\ and for Zm^-^omZ"1, respectively.

(13) YVe often use t instead of sin so that the operator under consideration assumes the

form P(/) = r:iE(z, z, t)/(z(l -P)/2)dt/{\ -f2)1'2. The factor 1/2 in this operator causes some

inconvenience. For instance, if the star domain ®2 is the regularity domain of /, then u(z, z)

is regular in 2©2. It would be more convenient to use n{z, t) =z cos21 rather than (z/2) cos21. Un-

fortunately the second expression was introduced in previous papers, and we shall continue to

use it in order to avoid confusion.

(") The solution E of the form (3.17) has the advantage that E(z, 0, t) = 1, and therefore

«(z, 0) = /.'/((z/2) cos2 t)dt so that/(z) and «(z, 0) are connected in this simple way.

It was suggested by the study of the equation uzz+u/4 — 0. See [2] and footnote 11, p. 305.

(l6) This result follows if we choose, in Theorem 2 of [3], U4(0, 0)=E[|z|<<», |zj]<°o.

We note further that in (1.13), (1.16) and (1.20) of [3], "(2»-l)" has to be replaced by

"(2» + l)" and in (1.23), (1.26), (1.27), (1.28), "(2rc-3)" has to be replaced by "(2«-l)".
Further in (1.16), "Pf'(z, z)" has to be replaced by "Pf'(z, z).n

■
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The class of complex solutions of (1.3), Q, which has the generating func-

tion E, introduced in (3.27), has many properties in common with the class of

analytic functions of a complex variable(16). See [4, §§5-7] and §§5-9 of the

present paper. We denote it as the generating function of the first kind. The

associate function of u with respect to the above described operator is called

the "R-associate" of u(z, z), R(z| w). The relation

2  C W2
(3.29) R(g| «) = — I     z sin d[du(2z sin2 0, 0)/d(z sin2 8)]d$ + ir^uiQ, 0)

X J 0

holds for R. In addition to R(z|w) often we consider the "Q-associate," for

which we have simply

(3.30) Q(z| u) = u{z, 0)

(Q and R are connected by the relation

(3.31) R(z| «) = [r(l/2)]-1(2z)1/W2Q(22| u)/dz1'2.)

For details see [3, §l] and [4, §3]. A formal computation yields

u(z, z) = ^exp (- j ' adzj^ [g(z) + £ 2-2T(2« 4- 1) [T(n + 1)]-»

(3.32) -e<n)(z. i) f    f' • • • P \{zn)dzn ■ ■ ■ dz?\
" 0    " 0 ^ 0 J

2 r*
= — I   E(z, z, sin /)

x •/_»■

r j"" 2 sin dg(z cos2 t sin2 0) "1
•    I     zcos20----dd + g(0) \dt.
LVo d(z cos2 / sin2 0) J

Remark. If u='^lAmnzmznGQ(E), A0o real, where E is the generating func-

tion of the first kind and £P/mnzmzn its real part, then £F/m0zm=Z^4moZm

-f-exp [-/5«(0, z)dz].
4. Additional remarks.

1. An alternate form for the representation of operators. For the purpose of

applications it is of importance to obtain various forms of the operators pre-

viously described in this paper.

Lemma 4.1. Let

(4.1) I ^(z, z) I < C I z/r \\ § conjugate to z.

The operator

(>•) We note that often we write C?(E) instead of -i!)-"'E(j, z, /)■ 0, z(l-«')/2,

E(-1«<1)].
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(4.2) P(J) = j lEx(«, -z, t)Ml - fi)/2)dt/(t - t*y*

where
to

(4.3) E1(z, z, t) = £ ¥<">(z, z)?>

can be written in the form

(4.4) p(/)-E-- ' ^hh(l,m),/""'(0)~ ,
,„o 2T(v + 1) dz" J2_o

wÄere

00

h(f, *,*) = £ r*(n)(z, z)r(« 4- l/2)/r(» 4- 1),

(4.5)

hW({-t z, z) = I • h(fn, 2> z)rff„ • ■ •
J o    •/ 0 0

I z| <p, wÄere p = min (r, P), P foiwg /Ae radius of convergence of/(z/2).

Proof. Substituting

oo

(4.6) /(z(l - f)/2) = £ 2-»z»/[(n)](0)(l - *2)n/i> 4- 1)

into (4.2) we obtain

(4.7) f   £ *«(■, z)/2" [ £ 2-"z»/[(n,1(0)(l - p)/r(« 4- 1)1        - *2)1/2.
•/_1 ,._o L n-0 J

Both series converge uniformly and absolutely in the circle £[|z| <p]. Inter-

changing the order of summation and integration and rearranging the terms

we obtain

" . Y{v+ 1/2) / " r(» 4-1/2)\1
£ [V/"*"(0)  v(      '   { E*W(z,z)      \ '*)
,_o T(v + 1)   \n_o T{v + n + 1)/J

oo

= £ s"/«'"(0)r(f + i/2) hw(i, z, g)/r(i. 4-1).

Lemma 4.2. If the coefficients a, c of the equation (2.3) are entire functions

of z, z and ifEi is the function E of the first kind which generates the solutions u

of (2.3), then representation (4.4) holds in the circle of convergence E[\z\ ^R]

off(z/2).

Proof. According to (1.27) of [3], for every r there exists a constant C
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such that

(4.9) I *(''(z, z) *<»>(«, 8)| = C\ 2z/r\"

(see also (3.28)). Therefore H(f, z, z) is an entire function of z, zfor [f| gl,

and for every r there exists a constant C=C(r), such that

(4.10)       H[')(Jf z, z) = C/I> 4-1), |s| Ür, |8| Sr, |r| £ 1,

Since lim sup^, [/lMl(0)/2T(f'4-l)]1/' = l/P, (4.4) converges for |z|<P.

This implies Lemma 4.2.

An application of the operator (3.32). Let u(z, z) =£^4mnzmzn be a solution

of (2.3), m£(?(E), where E is a generating function of the first kind. From the

form (3.32) of the integral operator which transforms u(z, 0) = y^,AmnZm into

m(z, z), it follows that many relations of the sort indicated in II, p. 299, hold

in the case of functions w(z, z) of class (3(E). Typical examples are:

1. Let Amo = 0(m~1~'), e>0. Then g = «(z, 0) and all integrals in (3.32)

are continuous on |z| =1, and since (3.32) converges uniformly there, u(z, z)

is also continuous there.

2. As is well known, it is possible to formulate, in terms of the Am0,

m = 0, 1, 2, • • • , sufficient conditions in order that Jlu{z, 0)dz is continuous

on |z| =land that Re [u(z, 0) ] has a jump, as well as to determine the magni-

tude and location of this jump. w(z, z) has at the same point on |z| =1 a

similar singularity.

We note that the expressions for the location and the magnitude of the

jump of Re{ [u(z, z)]/exp( — J'0a{z, z)dz)} do not involve the coefficients a, c of

equation (2.3). From the above results for complex solutions we may derive

analogous results for (real) solutions £7(z, z) =^2,Dmnzmzn — Re(w). By the rela-

tion 2c7(z, 0) =u(z, 0)4-exp(-/0'ä(0, z)dz)«(0,0) (see (2.9), (2.11)) we see that

in addition to the Dm0, m = 0, 1, 2, • • • , now only a(z, 0) and ä(0, 2) will

appear in the corresponding formulas.

In similar manner we can obtain various theorems on behaviour of solu-

tions u(z, z) and U(z, z) in the neighborhood of singular points, results con-

cerning methods of summation of zZAmnzmzn, and so on.

2. Other types of integral operators. By a procedure similar to that de-

veloped in §3 we can determine the integral operators

where the first integral is taken over tl and the double integral is taken

over32, or those of more complicated structure, which transform analytic func-

tions into solutions of (2.3).

(4.11)

4-
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Another type of integral operator has the form

(4.12) P(/) = f(z) + j f[n(x, y, t) ]E(x, y, t)dt,

where the integration is taken over i1. This kind of operators will be discussed

in another paper (in connection with differential equations of three variables).

Remark. In considering special types of differential equations, it is of inter-

est to introduce also differential operators.

Generalizing the "method of cascades" we conclude that if the coefficients

of the differential equation are connected by certain differential relations,

then the totality of solutions can be represented in the form(17)

n

(4.13) u(z, z) = D(/) = £ Bt(z, z)d*f(z)/dzK
4=0

Here Bk are some fixed functions and/(z) ranges over the totality of analytic

functions. (See for details [5, footnote 5], and the literature indicated there.)

The result formulated in Theorem 3.1 leads us to a great variety of integral

operators, since for many functions n(z, t) there exist functions E(z, z, t) and

K(z, z) satisfying the equations (3.5), (3.6), (3.7), and the conditions (3.8).

Further integral operators of considerable interest for applications can be

obtained if we take for t1 a closed curve(18) or if we introduce integral opera-

tors of different types, for example of the form (4.11).

We wish to add here two remarks concerning the linear operators.

Remark 1. In introducing operators (in a general manner) by matrices it

is useful to make a certain classification of these operators.

A. Suppose that for every sequence [am], for which £m=oöm| r\ m< » , r>0,

the sumsj^=0r„nam converge and the corresponding function p(z, z)k(z, z)

is regular in a sufficiently small circle x2-\-y2 <p2, p>0. If, simultaneously,

the inverse operator transforms every function p(z, z)k(z, z) which is regular

in a circle x2-\-y2 <p\ into a function g(z) which is regular in a sufficiently

small circle, say x2+y2<r[, fi>0, then the operator under consideration is

said to belong to the type A.

B. If the operator is of type A and in addition to this, proceeding in both

directions, we always have r = p, then we say that the operator is of type B.

Remark 2. We concentrate in the present paper our attention on finding

operators in the case of all equations (2.1) with analytic coefficients.

If, however, one limits himself to special classes of partial differential

(17) Clearly using the Cauchy formula we may express D as an integral operator of the

type (3.1).

(ls) By the procedure indicated in [3, §5], every operator can be replaced by an integral

operator /H(z, z, t)f{t)dt, where the integration is taken over a closed integration curve i1.

We note that in this case il can be any closed rectifiable Jordan curve which lies in the regu-

larity domain of/and includes the origin.
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equations, for instance to equations whose coefficients are connected by some

relations, then for some special classes of equations there exist very interesting

pairs of solutions (U, W).

3. The conjugate function. As indicated in §3 we shall make some remarks

concerning the choice of the "conjugate" of a (real) solution U.

Many theorems on analytic functions can be formulated as statements

about properties of a real harmonic function. There are, however, many re-

sults which essentially involve the real and the imaginary parts of an analytic

function and which when formulated in terms of harmonic functions represent

statements on pairs of harmonic functions (which are connected by the

Cauchy-Riemann equations).

By introducing an operator which transforms an analytic function into a

complex solution, U+iV, we associate with every U a conjugate F(19).

There exist, however, other interesting possibilities of choosing the

"conjugate."

For any of these choices of the "conjugate" Fwe shall require (i) that the

V is uniquely (to within a fixed function multiplied by an arbitrary constant)

determined by U; (ii(20)) that the regularity domain of V (in the real xy plane)

coincides with that of (21) U(z, z), z conjugate to z; (iii) that V has some basic

properties which conjugates possess in the case of harmonic functions.

We obtain a choice which satisfies all these conditions, and which differs

from that used before by requiring that Uand Fare connected by generalized

Cauchy-Riemann equations:

Clearly a generalized Cauchy's integral formula holds for such pairs of func-

tions^2) (see [4, p. 145]), and therefore we are in the position to apply many

(19) In the case of harmonic functions it is very natural to require that both functions,

U and V, are connected by Cauchy-Riemann's equations. Any attempt to consider pairs of

harmonic functions which are connected by other relations would probably lead to a highly

complicated theory.

In contrast to this is the case of functions //satisfying (2.3); there exist various combina-

tions the study of which is of interest.

(20) We note that this property is not always satisfied by the conjugates obtained by means

of an integral operator.

(21) The usual classification of singularities (poles, branch points, essential singularities)

refers to analytic functions, that is, to the pairs of harmonic functions.

Therefore in particular we shall expect that the conjugate V will be chosen in such a way

that to each singularity of the associate corresponds a singularity of U+iV'at the same point,

and that the classification of singularities of analytic functions can be used as a basis for a

classification of those of U+iV, L(U)=0.
(22) The generalized Cauchy formula involves a "fundamental solution" W{x, y; £, tj)

= A(x, y; £, ij) log [(x —J)2 + (y — i;)2]-!-^^, y\ £, v) of (2.3). In this connection it is of importance

(4.14) = a,«C'F. 4- <h*wV, + a32<»'F + a«<»\ »-1,2,

k — 1,2.
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of the methods of attack used in the theory of analytic functions of a complex

variable, and we obtain analogous results.

4. An interpretation of the integral representation (1.2) with a generating

function E of the first kind. The integral representation (1.2) where E is the

generating function of the first kind permits an interpretation which sheds

some light on the nature of our approach. In (2.3) let us replace z by X and

z by Y where X and Y are supposed to be real variables, and write b instead

of ä. The resulting equation

(4.15) uxy + aux + buy + cu = 0

is of hyperbolic type. If now the values of u(X, 0) =£"=0^4„oXn and of

«(0, Y)=zZn~oABnYn along intervals £[0 = XgX0] and E[0= Fg F0] of the

X and Y axes, respectively, are given by a known formula

u(X, Y) = «(0, 0)R(X, Y, 0, 0) + f R(X, F; f, 0)*i(0#
J o

(4.16) + f R(X,Y;0,v)ht(r,)dn,
J o

h\{£) = 3«(f, 0)/3{ 4- &*(!, 0), = d«(0, r?)/67, 4- au(0, v),

u(X, Y)=lZZ=olZn°=oAmnXmYn is determined in the rectangle E[0£X^X0,

0— Y— Y0]. Here R(X, Y; £, n) is the Riemann function. Since we assume

that a, b and c as well as Z~ln=(AnoXn and £"=o^4 0nF" are analytic functions

of real variables, the function u =zZZ=o2lln=oAmnXn Yn is also an analytic

function of two real variables, and can be analytically continued outside of

the rectangle E [0 = X g X„, 0 = F = F0 ].

»(X, F) = J F, <)/i(y (1 ~

4- E,(X, F, 0/i(y (1 - *2))]^/U - Z2)"2,

/ X\     2  f '« 9m(X sin2 0, 0) 1
Af —)= — I     Xsin0—i- d0 4-«(0,0),
J \2/     x Jo d(X sin2 0) 7t

/F\     2 a«(0, Fsin20)
/,( — )=—        FsinÖ—-dB,

\2/     x Jo d(Fsin20)

where Ei and E2 are the corresponding generating functions, gives a represen-

tation of u in the whole regularity domain of u. (See Duke Math. J. vol. 6

(1940) p. 540.)

to study the "fundamental solutions" of (2.3) and to determine those among them which are

especially suitable for certain purposes.

In particular, taking as basis the generalized Cauchy formula one can develop the theory

of entire functions U+iV.
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Let us assume (in the remaining part of the section) that z and z are not

necessarily conjugate to each other. This means that we analytically continue

u to the complex values of x and y, z = x-\-iy, $"=*—iy, and consider u(z, f)

in the (four-dimensional) space of two complex variables z and f.

The analogue of intervals E[0 = X^X0, Y = 0], E[0 = 7= F„, X = 0] and

the rectangle E[0=X^X0, Og Fg Y0] become the circles E[\z\ gPi, f = 0],

F[|r| gP2> z = 0] and the bicylinder E[\z\ gPi, |f| gP2], respectively. The

integral (1.2) gives the representation of u(z, f) in terms of its values in the

z and in the £" planes.

Since, however, we are limiting our considerations to the real domain

(that is, to the real values of x, y), we must consider the function u(z, f) in

the plane f =?. This last fact often complicates the formulation of the results.

Remark. Introducing as the argument of / conveniently chosen expres-

sions, for example, x-\-i(\ — y)1/2, we often obtain solutions of differential equa-

tions which are elliptic in one part of the xy-plane and hyperbolic in another.

II. Singularities of functions of a class (3(E)

5. Singularities corresponding to the poles and branch points of the asso-

ciate function, in the case of a generating function of the first kind. The

introduction of complex solutions u of L(m) =0 suggests the study of the sin-

gularities of the function u= U+iV, belonging to a class (3(E), whose generat-

ing function is of the first kind.

If the associate function / has a singularity at the point z = 2a and is

regular in E[\z\ ^b, zA2a], &>21«| >0, then the function u(z, z) obtained

by applying (3.1) has a singularity at the point z=a. (See [4, p. 150].)

Further if the R or Q associate has at the points z = 2a and z = a, respec-

tively, a singularity of a certain type, for example a pole or a branch point,

then as we shall show it is possible to describe the character and various prop-

erties of the singularity of w(z, z) at the point z = a.

Let the associate Q(f \u) possess a pole at the point £ = <x. Clearly, it will

be sufficient for our purposes to consider

(5.1) Q(? | «) = (<* — r)-1-

Employing (3.32) we have

/     fi     \(   1        Qm [z, z)       / z\
«(z, I) = exp ( — J    adz) <-1-log II-J + • • •

r(2w4-l) [" (a - z)"       / z\
(5.2) 4--Ö(n)(s,z) "-logll-)
V    1 22»r(n+l) Lr(» + i)      V a)

+ E(~ D*+1fln.*«"-*Z*l + • • •
k=l J

where a„,i = 1/T(ra-|-1), a„,ifc= [«r(M4-l)]_1C„,j;-|-fe~1an-i.*-i.
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The associate R(f|w) can be written in a closed form; substituting the

obtained expression into (3.33) we have

C1 T     22(1 - t2)2 1 / 2a \-3'2
w(z,z) =      E(z,z,0  —-T+—(l-)

J-i La[2a - z(l - t2)]      4\ z(l-/2)/

(5.3)
(z(l - t2) - 2a)1'2 + (2(1 - t2))1'2! dt

8 (z(l - t2) - 2a)V2 - (z(l - *2))i/2J (1 - fiy2

By (5.3) and [4, p. 150], u is determined in the whole space except z = 2a,

where it possesses a combined pole and branch point of an infinite order.

The Riemannian surface of (5.3) consists of infinitely many sheets, con-

nected at the branch points, z = a and z= °o. Cutting the Riemannian surface

of (5.3) along E[z = as, 1 — s — » ] we denote as the principal sheet of u that

sheet in which Im [log (1 — z/a)] varies between 0 and 27r. Clearly if we let z

approach a along a path situated in the principle sheet we have

(5.4) lim (a — z)w(z, z) = exp      J a{z, z)dz~^.

We proceed in similar way if the R-associate has a pole. Let

(5.5) R(f I u) = (a - t)-K

Then

,       1 rl it
(5.6) Q(f «) =ir_

2 J_x [2a -[2a - f (1 - ?) } [1 - t2}1'2     2 [a(a - f)]1'2

Thus we obtain

r1 dt

«(*, 2) = JJ('' Z'l) [a - 2(1 - 0/2](l - *2)"2

= [exP (-/o,«('.^)]{[a(a_T8)]l/,

(5.7)

<2(1) 2- Z) r
4- —- [(a - z)1/2 - a"2

r(5)ö<2)(z,z)r   2 21

24r(3W'2  L     3 3 J

r(7)<2(3)(z,z)r4 4 2 1
\ j\> — (a - z)6'4-a6'2 + — a3'2z-oW

2T(4)a1/2 L15 15 3 2

+
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from which we may draw conclusions analogous to those obtained in the

former case.

Since

1 r
(a — Zi)"(fzi = ■—■-      [(a - z)n+I - a"+1J,

n + 1

(5.8) f    f (a - zt)ndzidzi
J o   J 0

r 1 an+2 an+1 "1

=   —-(a - z)"+2-z \,
L(»+l)(» + 2) (f»+l)(» + 2)     «+l J

we obtain from (5.2) the following theorem(23).

Theorem 5.1. // the Q-associate g(z) has a branch point of the nth order

(n not an integer) then the corresponding function u(z, z) has also a branch point

of the nth order.

If g(z) has a pole of the nth order at a, and \a\ < oo, then the corresponding

function u has a combined pole and a logarithmic branch point at a.

If g(z) has a pole at infinity, u{z, z) has also a pole of the same order at in-

finity.

Definition. The above described singular point of «(z, z) which corre-

sponds to a pole of wth order of the Q-associate (that is, a combined pole and

branch point if \a\ < ao and a pole if a= <*>) will be denoted subsequently

as a q-singular point of wth order.

Many theorems concerning connections between the coefficients of the

series development of a function and the character of its singularities hold for

functions mGC(^), E being generating function of the first kind, for ex-

ample:

Lemma 5.1. Let
A\o       • • • A).+ o

(5.9) CT-    •A

where Aoo+zZZ=iZZn=(AmnZ"lzn is the series development of a function u,

The necessary and sufficient conditions that all singularities of u are q-sin-

gular points is that for suitable M and N

(5.10) Cx° = 0,        \ = M + 1 - N, M + 2 - N, ■ ■ ■ ; ix = N + 1.

(23) we omit the formulation of the corresponding results for the case where the R-associate

has a pole or a branch point.
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Lemma 5.2. Let u=A 00 +1ZZ=i£»-o4 mnzmzn and v = B 00+lZZ=uLn°>*oBmnZmzn

be functions of the class (3(E). // /Ae determinants Cx*' corresponding to the An0

satisfy the relations (5.10) and if

n

(5.11) 4oo50o = 1,     zZ B»-"0A*o = °.        w = 1. 2, 3, • • • ,

then v has only ^-singularities, and the number of q-singular points (each singu-

larity counted with the corresponding order of multiplicity) of v equals the num-

ber of zeros of £-4m0zm.

6. The value distribution of functions of the class (3(E). The analogy with

the theory of analytic functions suggests the study of the value distribution

of the functions belonging to the class (3(E), that is, the investigation of how

often a function u(z, z), z conjugate to z, assumes a fixed (complex) valued.

Just as in the theory of entire functions of a complex variable, we shall

investigate some relations which exist between the behaviour of the following

three sets of numbers(24) which we can associate with a given function w(z, z)

of a class (3(E):

I. The coefficients, Amn, of the series development of £^=0£^'=0ylm„z'"zn

of u(z, z), or some subsequences of the Amn, say of {^4mi}, k fixed, m=0, 1,

2, • • • .
II. The maxog^2x| u(re^, re~i4,)\ when r—»».

III. The points z„ = z„(o), \z,\ = |z»+i|, where u(z, z) assumes some fixed

value, say b,

Remark. As was indicated in §5 a branch point of u(z, z) of a certain type

corresponds to a pole of the associate of the first or of the second type. A

similar situation holds for various other types of the generating function, E.

This enables us to investigate functions u(z, z) £(3(E) which possess denumer-

ably many singular points of the above mentioned character, that is, functions

whose associate with respect to some generating function E is meromorphic.

A simple example shows that, in general, we meet in the theory of func-

tions of the class (3(E) a situation which is quite different from that in the

case of analytic functions. The functions un(r, <j>) =7T1/2r(«-f-l/2)/rl(r)e<n*

= 2-nfl_leitrrnein*(\-/2)"-1/2diG(3[exp (Mr)], r2=x2+y2, are solutions of the

equation Am+m = 0. Here /„ are the Bessel functions of the wth order. If

r = r(0) where r(0) is a zero of Jn(r), then u vanishes on the circle |z| =r(0), a

situation which never can occur in the case of analytic functions.

However, if we generalize in a suitable manner certain notions from the

theory of analytic functions the generalization of classical theorems on value

distributions is possible.

(M) Clearly the behaviour of all three kinds of quantities depends upon the choice of the

origin. The study of the dependence of the coefficients, Am„, on the choice of the origin does not

represent in many instances any essential difficulty.
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Let

(6.1) Z = X + iY = w(z, g) = U(x, y) + iV{x, y)

map the neighborhood of the point z = z<0) into the neighborhood of the point

Z = ZW. With every point z(0) we may associate the index C(z(0)) of the

mapping.

Remark. In the following we shall assume for the sake of simplicity that

the function u(z, z) under consideration possesses only isolated ^-points.

Let $2 be a simply connected domain in the z plane and let z, be the

points of $2 which are mapped into the points Z = b. As is well known

(6.2) EC[*,(&)] = (2W)-1 j d[log «(z, z) - b]

where the sum is taken over the zr(b) G$2, and the integration is taken over E1,

the boundary curve of $2.

If, in particular, $2 is the circle of radius a with the center at the origin,

we shall write

(6.3) E C[z,(b)] = n[a, («(z, z) - b)~l],

where the sum is taken over the z„(&)£$2.

There exists an important special case of a generating function E, when

it is possible to develop for the entire functions of the class (3(E) a theory

similar to that of the entire analytic functions of a complex variable.

Suppose that E(z, z, /) has the property that introducing the variables z

and 5 = (zz)1/2 instead of z, z we have

(6.4) E(z, g, t) = E<1)(z, 5, 0 m E(z, s2/z, t),

where E(1) is an entire function of two complex variables, z and 5, for 11\ gl.

Let us indicate an example of a function E possessing the above

property. If we assume that u satisfies the equation Au + F(z, z)u = 0,

F = z{lZl-iZZm-iA%vznzp), where A™ = 0 for m<p, then the generating

function of the first kind will be of the required type. For, if we write

E = 14-£»=i*2"*(2B) and P<2"> =z~n^^n\ we obtain (see [3, p. 1174]):

Pm = - 2F,      (2n + l)F<2"+2) = - 2P{r+F V P™dz.
d 0

Let Ami denote a sequence of numbers which possesses the property that

A%1 = 0 for m<p. Then #<« = -2z2f*AiJllzmzpdz = lZA%lzmz1'. Assume now
that 0<2"> =zZA™zmzp. Then

(2n) -n,-lr-i       («) mp

P =  Z     Z     2-, ArnpZ Z

and
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(271+2) — n_-l|    -1 v->   ,1*1  m-P   ,      / .(!)   ».P>   C 2 Ml   m-P I
P = 2   2   |j3    2_AmvZ Z   + Z{AmpZ 2 ) J     2-,AnvZ 2 flzj

(n+l)_—1 r , (n) m_p   ,     2 -1        ^ (n) >n_p-,
z z= 2 z    L4 mp2 z   + z z    2^ ■«771 JJ

(Note that the .4^ do represent different numbers in the above expressions.)

Therefore
(2n+2)        -r-,     (n+1) m p

Z  Z .4>        = 2^-4fflp

For the sake of brevity, in the following the classes C(E) whose generating

function E possesses the above property will be denoted by Ct(E).

The basic idea of the applied method consists in considering simultane-

ously with u(z, z) the family of functions

(6.5) ».(z) = J E«>(«, s, t)f(z(l - ?)/2)dt/{\ - fy\   0 < s < «,

where/ is the associate of the first kind of u. vs(z) =£c»(-y)2" is a function of

a real variable 5 and of the complex variable z. In the following we extend

the domain of variation of s to the whole complex plane. vs(z) =£cm„smz"

becomes then an analytic function of two complex variables, s and z. Clearly,

it is rather simple to express the cmn in terms of the Amn, or some subsequences

of the Amn. Using the classical method we can then determine an upper bound

p(Z, S) for the growth of £|cmn| |^|m|z|" on the hypersurface E[\z\ =Z,

\s\ =S, 0<S< oo, Z = KS], K constant. Clearly

(6.6) max  I »,(z) I < s > 0.
\t\-KB

Applying now the classical theorems of the theory of entire functions of a

complex variable, we obtain upper bounds for the quantities

m[s, (v,(z) - b)-1],

(6-7)       r 1 r2xr   I     1 II
m[r, (vs(z) - 6)-i  = — log+ ——--Id*

2iri J o   L      I vs{re%+) — b I J

and

(6.8) »[*, (vs(z) - 6)-i],

where (6.8) denotes the number of the b points of v„(z) in |z| gs.

On the other hand, as we shall show in §8, the quantities connected with

growth and density of b points of m(z, z), z conjugate to z, can be expressed

in a simple way by (6.7) and (6.8).

We proceed now to a more detailed exposition of this method of attack.

7. Some auxiliary theorems of the theory of entire functions of two com-

plex variables.
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Theorem 7.1(26). Let

OO 00

(7.1) V(s, z) = zZ E CmnsV, Cmn 2: 0,
m—0 n—0

6e on entire function of two complex variables, with non-negative coefficients, and

let

(7.2) n(S,Z)=    max     I V(s, z) I
v     y    l»l-s, |t|-z 1   v 1

and

* r        log log m(Z, g*)
(7.3) p = p(a) = lim sup-» 0 < p < oo,

«-.« log /

6e /Ae order of growth of p. on the hyper surface

E[ \ s I = t, I z| = Kt, 0 < / < oo ].

(w 4- m) log (« 4- m)
(7.4) p = pi,   pi m lim sup

- log (1/Cm„) + »log

Proof. A. We shall prove at first that p is not smaller than the right4iand

side of (7.4). By Cauchy's formula we have

(7.5) Cmn g ^r~, !-r )   or  Cm„K"\ g p(| si, Z| s I).
I m l .in

Let us assume that A is chosen in such a way that for \s\ ^So, So sufficiently

large,

(7.6) p(| s\, K\ s\ ) = exp(| j|*),and thereforeCmnKn = exp (| s|*)/| s|m+\

Substituting \s\ = [(m-\-n)/k]llk we obtain

(7.7) cT+m)K'*+m) g f-ÜLY",
\ m 4- «/

that is,

(——) flog ~ + » log —]
\n + m/ L    Cmn K J

1 "I    log (« + »)- log £ — 1

(B) Similar results were obtained by Baumgarten [l] and Sire [8, p. 11 J. Since, however,

we need inequalities which are different from those obtained by Sire and Baumgarten, we derive

here directly the relation (7.4). The procedure is clearly a trivial generalization of analogous

considerations in the case of one complex variable. We note that for the sake of brevity we omit

considerations which lead to sharper results.
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or

(w + m) log (m + n)
(7.8) k — --■-• (m + n sufficiently large)

log (1/C\»„) + n log {l/K)

since for sufficiently large (m-\-n) we can neglect log £ + 1. Thus

(» + w) log {n + m)
(7.9) p = hm sup-•

n+^. log (1/Cmn) + n log (1/2Q

Thus the order, p, of growth is not smaller than the right-hand side of (7.4).

B. We shall now prove that p is not larger than the right-hand side of

(7.4). Let pi</c. We write

(7.10) N(s) = 2'\ s\"(eK).

Then

/   ex. V*
(7.11) (-)   |s|gl/2  for n + n\W N(s)t

From pi<K we can work backwards from (7.8) to get (7.7), k being replaced

by k in both expressions and m+n sufficiently large. Therefore

n(\s\, K\s\) = C* + Cu\s\ 4-Coi| z \ + ■■•

g     Z    Cmn \ s\>" \ z\» + (l/2W)[N(s) + 3}.

For sufficiently large | s \, N{s) becomes arbitrarily large, and therefore

(7.13)     /»(I s I, KI * I ) £ [N(s) + 2]2C(s)/2,   C(s) = max (Cmn Kn \ s |*»+").

Using (7.7) (with k instead of k) we obtain by a formal computation

(6k \

-) I s I m+", s large enough,
w -f- «/

The maximum of the right-hand expression (when (m+n) varies) is assumed

for ot4-k = k|s|\ Substituting this value in the right-hand side of (7.14) we

obtain

__j = exp (I

By (7.13), (7.10) and (7.15) we have

(7.16) u(| 5 |, K\ s I ) = 2*«|s|W exp (I * |«),

which yields the assertion B, and thus completes the proof of the Theorem 7.1.
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Remark. p = p(K), 0 < K0 = K^Ki < <*>, p<c°, the order of growth of

p{151, KI sI) is independent of K.
This follows immediately from (7.4): divide the numerator and the

denominator by n. Since (l + (m/n)) log (n+m)-+<x> for (m+n)—>»,

M_1 log (1/Cm„)—>°° for (m+n)->», and therefore log (1/K) can be neglected.

If the series development

00 00

(7.17) u(z, z) = zZ 2~lAmnZmzn
m=0n=0

is given we can express the coefficients cm„ of va{z) = Zm=oZ"=oc>»nSmzn in

terms of the ^4mo-

Lemma 7.1. Let E(z, z, f) be a generating function of the first kind, and let

u(z, z)€ECt[E(z, z, t)] and v, = Q\Eil)(z, s, t)] be functions of different classes

which possess the same associate. Then

to t1"^ 4- 1/2)

where E^' (/) are the coefficients of the series development

(7.18) cmn=E j   £_w(l-0 A,
,=,o x1/2r(^ 4-1/2) J-i

(7.19) E%,M) = ££4"^)"*''.
m=0 (i=0

Proof. Denoting by/=Zn=oanZ" the R-associate of u (see p. 312) we

have by (2.10)

(7.20) an = l/rnnAn0,      rnn - T^T(n + l/2)/2T(» 4- 1)

Thus

2Tf> 4-1) (1 - Z2)-1/2
it

r;;^.,; 2-r(,4-i)
■'-1 r-0 7T1/2r(l' 4-1/2)

(7.21)

-I  Z £ j 2   Z e_,(*m,o 1/2r,        (i - o
•/-l „=0m-0 L »=0 1T1/2r(f 4" 1/2) J

which yields (7.19).

If E(z, z, t) is not a generating function of the first kind the only difference

is that with the case considered above instead of (7.20) we obtain a more

complicated expression representing the an as functions of the AmB.

Writing now Cm^=|cmn|, we obtain for the maximum /i(U|> -^M) °f

|Zm=oEn=oCr»nSmzn| on e[|z|, K\s\ ], and sufficiently large \s\,

(7.22) p(\ s\, K\ s\ ) = exp (| s\"+'), « > 0,

where
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(m + n) log (m + n)
(7.23)  p = lim sup——

m+n—>»

log
S  T^T(V+ 1/2) J_x

8. Upper bounds in terms of the coefficients .4„o of w(z, 2)

=Z,m=oE»=o -4mn2'"2n for functions, n[s, (u(z, 3)-6)-x] and («(2, 2)

— i)_1], characteristic for the distribution of i-points of m(z, 2). We intro-

duced in §6 the function v„(z). In contrast to §7 we shall now consider it as a

function of one complex variable z, for some fixed real 5.

Denoting (l/2ir)/0'r[log+ ^.(/e1*)! ]dcp, t>0, by m[t, va(z)] we have for

sufficiently large s

(8.1) m[Ks, vs(z)] = log ß[s, Ks] = s*+«, s > 0,

where p is determined by (7.24).

The fact that

(8.2) u(z, z) = v,(z),    for   | z| = s,

and therefore

(«(z, 2) - b)~l] =        (o,(z) - b)-1],

(     ) r - i r l
m[s, («(z, z) — 6)-1J = m[s, (»,(2) — i)-1J,

leads us to various conclusions on the distribution of the ö-points of u(z, z).

Lemma 8.1. Ifu(z, z)G(?t(E) then

(8.4) n[s, («(z, z) —         ^ 0, z conjugate to 2, s > 0.

Proof. The inequality (8.4) follows from (6.2), (8.2) and the fact that

n[s, (vt(z)-b)~l]=0.

Let 8l(b) denote the totality of points of the positive 5 axis, for which

\J  [E<1>(0, 5, t)dt/(l - Z2)1'2] t C 0 0,

c being an arbitrary fixed constant.

Theorem 8.1. Let

00      co /• 1

«(*, i) - E E ^-2"2B = I   E(Z, I, 0/(2(1 - t2)/2)dt/(\ - i2)1'2,
m=0 K—0 " — 1

2 conjugate to z, &e 0« entire junction of x and y which possesses only isolated

b-points in the (real) xy-plane. Let further E(1,(z, s, t) = E(z, s2/z, t) be an

entire function of two complex variables z and s. Then for every e>0 and for suffi-

ciently large s, s&l(b/f(0)),
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(8.5) n[s, («(*, S) - Ä)-1] £ *>+«,

(8.6) (m(z, g) - i)-1] g

where p is given by (7.24).

Proof. Applying classical techniques to the function

v.{z) = J E(1>(«, 5, 0/(2(1 - P)/2)dt/{\ - I*)1'*

(see [7, p. 11 ]), we obtain

log+ |/(0) J 1 [E<1>(0, s, t)dt/(l - tyi*] - b

+ m[r, (p,(z) -        + 7V[r, (»,(«) -

1
(8.7) = m[r, (v,(z) - i)]log+

g m [r, v,(z) ] + log+

/(0)X;[E»)(0, »,0*/(l " 01/2] - b

1

(8.9)

I /(0)li [E(1,(0, s, t)dt/(l - **)»/*] - ft

4- 2 log+ b + 2 log 2.

Substituting r=Ks, K>\, noticing that

(8.8) m[Ks, v,(z)] = log p[s, Ks], s > 0,

and using Theorem 7.1 we obtain

l°g+ |/(0) J  E(1)(0, s, t)dt/{\ - Z2)1'2 j + m[Ks, (v.(z) - ft)"1]

+ N[Ks, (v,(z) - ft)-1] g S>+' + log (1/c) 4- 0(1)

for sufficiently large s which belong to 8'(V/(0))- Since

,     N[Ks, {v,(z) — b)_1]
(8.10) n[s, (u(z, g) - b)~l] = n[s, (vs(z) - ft)-1] g —-—-

log K

[see (8.3)], (8.9) implies (8.5).

Taking |z| =s in (8.10) and using the second relation of (8.3) we ob-

tain in similar manner inequality (8.6). n[s, [u(z, z) — b)~l] is a sectionally

constant function of the real variable 5 which in every interval E[0<sgSo],

5o< 00 , possesses finitely many finite jumps.

We now introduce the expressions

rp dn[s, (u(z, g) - ft)"1] C[z,(b)]
(8.11) 7„(P) = I -= 2-, i—77-r

J S" |.„|£,   I 2,(6) I*1
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where / denotes the Stieltjes integral, z„(ft) are the ft-points of «(z, z) and

C[zv(ft)] their indices.

Lemma 8.2. If

(8.12) n[s, («(z, z) - ft)-1] = s>>—, € > 0,

then I\( <x>) is bounded. Conversely, if I\{<») is bounded, then

°° n[s, {u(z, z) — ft)-1]^
(8.13) j

exists.

Proof. A well known procedure (see, for example, [7, p. 27]) yields im-

mediately the lemma.

In fact, integrating by parts we obtain

n[s, (w(z, z) — b)_1]ds     n[r0, (w(z, z) — b)-1]

(8-14) r 0
n[r, (w(z, z) - ft)-1]      1   r r dn[s, («(z, z) - ft)-1]

Suppose now that (8.10) holds. Then it follows by (8.14) that I\(r)

g Ctr~*-\-0(l), and therefore 7x(°°) is bounded. Conversely 7x(00)<co im-

plies that (8.13) is bounded since, by Lemma 8.1, n[r, (u(z, z)—ft)-1] is non-

negative.

9. Some additional remarks concerning the value distribution of entire

functions of the class (J(E). In §§6-8 we assumed that the generating function

E(z, z, t) has the property that E(z, s2/z, t) is an entire function of z and 5.

Clearly, in the general caseE(z, s2/z, t) =2Zm=o2~ln=-«>Hrnn(t)smznisnot regular

in E[| s\ < <*>, 0 < I z| < <x> ]; in addition to singularities at z= oo and at s=«

it possesses an essential singularity at z = 0. The application of our procedure

will require the generalization of the corresponding results in the theory of

entire functions of one and two complex variables to the case of functions

which are singular also at z = 0.

It will be of interest to indicate another method of attack for the study of

value distribution of u(z, z) in a domain bounded by an arbitrary closed

curve, i1.

In [4, §5], see also footnote 18, p. 315 of the present paper, the operator

(9.1) «(z, z) = (2xt)-' f /(Z)H(z, z;Z)dZ,

where the integral runs over i1, was introduced. Here / is the Q-associate

(see p. 312);
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(9.2) H(z, z;Z)=J   [E(z, z, t)/(Z - z(l - f)/2)]dt/(\ - Z2)"2

is a solution of L(m) =0 which possesses a singularity at the point z = Z, and

i1 is an arbitrary closed rectifiable curve which lies in the regularity domain of

f(Z) and includes in its interior the origin.

The representation (9.1) of w(z, z) is very suitable for investigation of

u(z, z) in the domain bounded by t1. This method of attack leads to the study

of the properties of the function H(z, z; Z).

In particular if certain differential relations between the coefficients of

L(w) =0 exist we obtain for E(z, z, Z) a closed expression in Z in terms of ele-

mentary functions (see [3, §3] and [5, §3]), which is very convenient for

investigations of this kind.

The formula (9.1) can also be used for the study of the derivatives of

u(z, z).

Lastly we observe that the introduction of the operator

f\(z, z, Z)/(z(l - Z2)/2)<ZZ/(1 - Z2)"2

enables us to investigate the behaviour of various subsequences,

M N

(9.3) 2Z 2ZAmnZmZn,
m*=ii n—v

of a function u(z, z) =zZZ=oZZn=<Amnzmzn of a class (?(E).

Using the relation

/      Amnzmz" = (2*i)-> f  f f fr(m+1)f2-(n+1)E(f13, f2z, 0
(9.4) JaJbJ-i

•/(fj2(l - P)/2)dtldUdt/{\ - Z2)1'2

where a and b are rectifiable closed Jordan curves in the fi and f2 planes,

respectively, and employing standard methods of the theory of functions one

may draw various conclusions about the left-hand side of (9.4) from the

behaviour of / and E.
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