
GEOMETRIES OF MATRICES. I. GENERALIZATIONS
OF VON STAUDT'S THEOREM

BY

LOO-KENG HUA

It was first shown in the author's recent investigations on the theory of

automorphic functions of a matrix-variable that there are three types of ge-

ometry playing important roles. Besides their applications, the author ob-

tained a great many results which seem to be interesting in themselves.

The main object of the paper is to generalize a theorem due to von Staudt,

which is known as the fundamental theorem of the geometry in the complex

domain. The statement of the theorem is:

Every topological transformation of the complex plane into itself, which leaves

the relation of harmonic separation invariant, is either a collineation or an anti-

collineation.

Since the fields and groups may be varied, several generalizations of von

Staudt's theorem will be given. The proofs of the theorems have interesting

corollaries.

The paper contains also some fundamental results which will be useful in

succeeding papers.

The interest of the paper seems to be not only geometric but also algebraic,

for example we shall establish the following purely algebraic theorem:

Let be the module formed by n-rowed symmetric matrices over the complex

field. Let Y be a continuous (additive) automorphism of SUZ leaving the rank un-

altered and T(iX) =iT(X). Then V is an inner automorphism of 9)?, that is, we

have a nonsingular matrix T such that

T(X) = TXT'.

The author makes the paper self-contained in the sense that no knowledge

of the author's contributions to the theory of automorphic functions is as-

sumed.

I. Geometry of symmetric matrices

Let $ be any field. In I, II, and III, capital Latin letters denote «X«

matrices unless the contrary is stated. But on the contrary, we use Af(n'ra)

to denote an nXm matrix, and M(n) = Min'n). I and 0 denote the identity and

zero matrices respectively.

Throughout I, we use
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5 "(Jo)' *-C>
which are 2»-rowed matrices.

1. Definitions. We make the following definitions.

A pair of matrices (Zi, Z2) is said to be symmetric if

(zx,z2)%(zuz2y = o,

that is, if ZiZ2' = Z2Z/. The pair is said to be nonsingular if (Zlf Z2) is of

rank n.

A In X In matrix %. is said to be symplectic if

2S£' = %.

Explicitly, let

-es
then we have

AB' = BA',      CD' = DC,      AD' - BC = /.

Further, it may be easily verified that

\-C il'/

is also symplectic.

We define

(Wlt W2) =Q(ZUZ2)Z

to be a symplectic transformation, where Q is nonsingular and % is symplectic.

Since

(fFi, TF2)g(rF!, IF2)' = Q(Zi, Z2)Z\yZ'(Zu Z2)'Q',

a symplectic transformation carries symmetric (nonsingular) pairs into sym-

metric (nonsingular) pairs.

We identify two nonsingular symmetric pairs of matrices (Zi, Z2) and

(JFi, W2) by means of the relation

(ZltZ2) = Q(WU W2).

It is called a point of the space. The space so defined is unaltered under sym-

plectic transformations, which may be considered as the motions of the space.

If Zi and Wi are both nonsingular and if (Wu W2) = Q(ZU Z2) X let

w = - Wr'w2,    z = - Zrlz2,

then W and Z are both symmetric and

Z = (AW + B)(CW -f D)~\
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Thus a symmetric pair of matrices may be considered as homogeneous co-

ordinates of a symmetric matrix. The terminology "geometry of symmetric

matrices" is thus justified.

2. Equivalence of points.

Theorem 1. Any two nonsingular symmetric pairs of matrices are equiva-

lent. Or what is the same thing: every nonsingular symmetric pair is equivalent

to (I, 0).

Proof. Let (Zi, Z2) be a nonsingular symmetric pair.

(1) If Zi is nonsingular, we have

(Zi, z2) = z,{i, zrlz») = Zi(i, o) ̂  ^,

where 5 = Zf1Z2 is symmetric, and then

o
is symplectic.

(2) Suppose Zi to be singular. We have nonsingular matrices P and Q such

that

Wx = PZxQ = ( ),
\0Cn-r,O Qln-r, /

and

(Wu W2) = P(Z1,Z2)Q°Q^,

and
/sco w(--.»-o\

W2 = PZiQ'-i = ( ).
\?Cn-r.r) ((«-r) /

Since

\o (2'-V

is symplectic, (Wi, W2) is nonsingular and symmetric. Consequently 5 is sym-

metric and q is a zero matrix.

Let

(Ui, U2) = (Wi, W2)

where
fs^ 0

Then

/i<r> o \

~ \0 /<»-o/'
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/O m\
Ui = Wu     Ut - - WiS + Wt - ( j.

Since (£/i, f/2) is nonsingular, />-r> is nonsingular. Let

then

Fi - Ui + Ü

(Vlt Vi) = (Ult Uj(

= Vo t)'

which is nonsingular. By (1), we have the theorem.

3. Equivalence of point-pairs.

Definition. Let (Ui, Z2) and (Wi, Wi) be two nonsingular symmetric

pairs of matrices. We define the rank of

(zu z,MWu wty = ZyWi - z2w{

to be the arithmetic distance between the two points represented. Evidently,

the notion is independent of the choice of representation. Further, it is in-

variant under symplectic transformations. In fact, let

(Zt* Z2*) = Q(ZU Z2)£,     (Wf, TF2*) = R(WU Wt)%

then

(Z?,Zffi(Wf, W2*y = Q(ZU Z2)%m'(Wi, W2)'R' = Q(Z1,Z2)%(WU W2)'R'.

In nonhomogeneous coordinates, the arithmetic distance between two

symmetric matrices W, Z is equal to the rank of W—Z.

Theorem 2. Two point-pairs are equivalent if and only if they have the same

arithmetic distance. What is the same thing: every point-pair with arithmetic

distance r is equivalent to

(r, 0),       (I, Ir)
where

/IM 0\

~ \0 0/

Proof. By Theorem 1, we may assume that the point-pairs are of the form

(7,0), (ZUZ2).

The arithmetic distance being r, it follows that Z2 is of rank r. We have

two nonsingular matrices P and Q such that

Then

//(r> 0\

QZ'p-(o o)-'-
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AP'-1 0\
Q(Zi,zt){Q   pj = (r,/r)

and

QU, 0)        J = QP'-'d, 0).

Since {T, Ir) is a nonsingular symmetric pair, we have, consequently,

T-(""' ),

where s is symmetric and p is nonsingular. Then

C>«-((TU'4
Further,

and

Since

is symplectic, we have the result.

Definition. The points (Xlt X2) with singular Xi are called points at

infinity (or symmetric matrices at infinity). Finite points are those with non-

singular Xi.

Lemma. Any finite number of points may be carried simultaneously into finite

points by a symplectic transformation, if <J> is the field of complex numbers.

Proof. (1) Given any symmetric pair of matrices (Fi, F2), we have a sym-

plectic matrix

(.Ti F2)'

In fact, by Theorem 2, we have a symplectic J such that

(Fi, F2) = Q(- I, 0)X.
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Let

(Pi, P2) = C-»(0,1)X.
Then

which is evidently symplectic.

(2) For a fixed point (Xi, X2), the manifold

det (LYi, Xt)%(ZuZ#) = 0

is of dimension «(«-+-1) —2. Let

(Au A2), • • • , (Fi, L2)

be p given points. Then we have p manifolds

det (L4i, 448(2*.*40 = 0, • • • , det ((£„ Lfö@uZty) = 0.

In the space, there is a point (Fi, F2) which is not on any one of the mani-

folds. The transformation

carries evidently the p points into finite points simultaneously.

4. Equivalence of triples of points.

Definition 1. A subspace is said to be normal if it is equivalent to the sub-

space formed by symmetric matrices (in nonhomogeneous coordinates) of the

form

The least possible r is defined to be the rank of the subspace.

Definition 2. A triple of points is said to be of degeneracy d = n — r if it'

belongs to a normal subspace of rank r.

Evidently degeneracy is invariant under symplectic transformations.

Theorem 3. In the complex field, two triples of points are equivalent if and

only if they have the same degeneracy and the arithmetic distances between any

two corresponding pairs of points are equal.

Proof. Evidently, if two triples are equivalent, they have the same de-

generacy and the arithmetic distances between any two corresponding pairs

of points are equal.

We prove the converse in six steps.

(1) Every triple with arithmetic distances n, n, r is equivalent to

(F„ F2) = Q(XU X2)
(Pi P2\-1 / F2' - P2'\

V- Fi' Pi)

(r)
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/- /<'> 0\
0, I, f ) (in nonhomogeneous coordinates).

(Notice that now the degeneracy is 0.) We use r(A, 73) to denote the arith-

metic distance between A and 73. Let A, 73, C be the three points of the

triple. Then

r(A, 73) = r(A,C) = »•

By Theorem 2, we may write in homogeneous coordinates

A = (1,0),      5 =(0,7), C=(Z!,Z2).

Since r(4, C) =« and Z2 is nonsingular, we may write C as

(5, 7),

where 5 is a symmetric matrix of rank r. We have a nonsingular matrix T

such that
//fr> 0\

rsr='' = (o o>

•fl)C   F-.)-(   <0,7> )

then
„ . /rr'(/,o)'

rl (o

Thus the triple is equivalent to

(/, 0),      (0, 7),      (/„ 7).

Since (in the nonhomogeneous coordinate-system)

0, /, - 7,

is a triple with distances n, n, r, we have the theorem.

(2) Every triple of points with arithmetic distances n, s, t is equivalent to

(- 0      0 \
0    0    0 ),

0   o /<«>/

where p-\-q = s, n — q = t. (Obviously, s-H = «.)

In fact, we may assume that

A = (/, 0),      73= (7,7), C=(ZUZ2).

We may determine two nonsingular matrices Z7, V such that

//w 0\

^ = (0 o)'
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where r is the rank of Z2. If we set

\v - V-1 vj
the relations

U(I, 0)G = uv-v, 0),

U(I, I)G = UV(I, I),

imply that we may assume that

Owing to the symmetry, we have

AS^ W\

F'L r>
where S is symmetric and T is nonsingular. Further, since

VO      T~> )\\0    T)' \0    0/7 = V\0    If VO    0))'

we may assume that

*-0- -CD-
In the normal subspace of rank r, the points (7(r), 0(r)), (7(r), Jw), (5(r),

are, by (1), equivalent to

(/**,**>),      </«,/<").      ('<".('^ l^)}
Thus, we have, in nonhomogeneous coordinates,

(-/>> .0        0 \

0 V
o o o(B-r)/

The transformation

("" 0  )(z-C0 0 W»

carries the three points to the required form.
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(3) Now we are going to prove that any three points are equivalent to

A = 0,      B = bi+ • ■ ■ +h,      C - ei + ■ ■ ■ 4> cxC1).

where br and c„ are unit matrices of degree r, multiplied with a factor 1, 0,

or —1. (1) and (2) are special cases of this. We shall consider another special

case with

/0   m\ /0 n\
A-°-   J-U) c-(ro>

where

\ J(m> / \o • • • o/
n = 2w + 1.

They form a triple with distances 2m, 2m, 2m.

Now we are going to establish that there exists a symmetric matrix 5 such

that the transformation

W = Z(SZ + i)-1

will carry the three points to

/0 0 \
a = 0>    b = (obH' c

where TJi is nonsingular. In fact 5 is given by

1

1 0-1

0     0 0

- 1      0 1

0

0

- 1

0

0 - 1

0 0

0 0

0 1

0 0

and so on. The general form may be obtained easily. Applying the results ob-

tained in (2) to

0
(»-!> (n-1)

Ci
(n-l)

we have the conclusion.

(4) Let B, C be a nonsingular pair of symmetric matrices (in the ordinary

sense), that is, we have X and u such that

det (KB + nC) 9* 0.

Suppose C is nonsingular; the conclusion announced in (3) is true by (2).

Otherwise (X;*0) we have T such that

0) -f- and    ' denote direct sums.
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T'(\B 4- nC)T = I,

/d(r) 0\ w
T'Cr = f \, C\ nonsingular.

Then

//(r> -        0 \

xrw = (    Q .<_>).

Applying the results of (2) to

1      (r) 00 (r)
0,      — (/    - /iCi ),      Ci ,

a

and
1

0,      —/<"-■>, 0,
X

we have the result announced in (3).

(5) Finally, for any pair of symmetric matrices (cf. the lemma of §3)

B. C

we have a nonsingular matrix T such that

TBT' - h + • • • + h

and

rcr' - Ci + • • . + cx,

where

is either the pair discussed in (4) or the pair discussed in (3), hence the re-

sults in (3).

(6) By a rearrangement and some evident modifications, for a triple of

points with degeneracy /, we have

A =     0(p> + 0(9> 4- O^ 4> 0(,) 4- 0<'\

b= iw 4- o<«> 4- /(r) 4- iM + o(1>,

c = - /<*j 4- /<«> 4- o(r) 4-    4- o<*>,

which is the only possible form. The arithmetic distances between two points

are given by
a = r(B, C) = p + q + r,

b = r(C, A) - p + q + s,

c = r(A, B) = p + r + s.



1945] GEOMETRIES OF MATRICES. I 451

Thus, for given t, a, b, c, if the equations are soluble, the solution is unique.

We have therefore the theorem.

The conditions for solubility are

n — t = a, b, c,
(1)

a + b + c ^ 2(n - t).

In terms of a "triangle" we have the following theorem.

Theorem 4. A triangle of degeneracy t with sides a, b, c exists if and only if

(1) holds. If it exists, it is unique apart from equivalence.

Incidentally, we have

a + b = 2(» — /) — c = c;

equality holds if and only if c = a-\-b=n— t.

The "triangle-relation"

a + b = c,      ö 4-c = a,      c + a = b

does not guarantee the existence of triangles with a given degeneracy, for

example, n = 2, t = 0, a=b = c = \. But we have the following theorem.

Theorem 5. Given the lengths of three sides a, b, c (=w), where the sum of

every two is greater than the third one, there are X non-equivalent triangles, where

m ([(a + b + c)/2] - max (a, b, c) 4- 1, for n= [(a + b + c)/2](»),

\n — max (a, b, c) + 1, for n < [(a + b + c)/2}.

Proof. From a+b = c, b+c^a, c+a^b, we have

a 4- b -f- c = 2 max (a, b, c).

There always exists a t such that

a 4- b 4- c s| 2(n — t) = 2 max (a, b, c).

Then

max (0, n — [(a 4- b -\- c)/2\) ±£ /    n — max (a, b, c).

Thus, the number of t's is equal to

n — max (a, b, c) — max (0, n — [(a + b + c)/2\) 4- 1

= min (n, [(a -\- b + c)/2]) — max (a, b, c) -+- 1.

Corollary 1. // one of the sides is of length n, the triangle is unique.

Corollary 2. If the sum of two sides is equal to the third, then the triangle is

unique.

(s) [x] denotes the integral part of ac.
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5. Equivalence of quadruples of points.

Definition. Let Zi, Z2, Z3, Z4 be four points in the nonhomogeneous co-

ordinate-system. The matrix

(Zi - Z,)(Zi - Zi)-*<Zt - Z,)(Z2 - z,)-1

is defined to be the cross-ratio-matrix of the four points, and it is denoted by

(Zi, Z2; Zi, Z4).

It is defined only when Zi —Z4 and Z2 —Z3 are nonsingular.

In the homogeneous coordinate-system, we let Pi, P2, P3, P4 be four points

with coordinates

(XuYi),     (X%, F»)i     (X,,F,), (X4,F4).

In terms of

(Pit Pj) = (Xit YiMXi, Yd',

the cross-ratio-matrix is defined by

(Pu P2; P3, P4) = (Fx, Pft>(P„ P4)-1(P2, P«><Pi, Pa)"1,

provided that it is not meaningless.

Let Pf be the point with coordinates

(X*, Fi*) = Qi(Xit Y,)Z,

where J is symplectic; then

(P*, P?) -        F*)S(X*, F,*)'

= F,)g(Zi, Fi)'Ö/ = Qi(Pt, P,)Q'i.
Therefore

(Px* P2*; P3*. P4*) = (Px* P,*)(P1* Pf)-l{Pf, P4*)(P2*. Pa*)"1

=Ös(Pi, P«)0/öi       P4)Ö4Ör1(P2- PtälQl-^Pt, Pzr'Qr1.

=Q3(Pn P2; P3, P0Ö»-1.

and we now state the following theorem.

Theorem 6. In an algebraically closed field, two quadruples of points, no

two of the points having arithmetic distance less than ru, are equivalent if and only

if their cross-ratio-matrices are equivalent.

In order to prove Theorem 6, we need to establish the following theorem.

Theorem 7. In the algebraically closed field, any quadruple of points, no

two of which have arithmetic distance less than n, is equivalent to

0,     oo,       zZ'ai,      1Z' bi,
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where

0 1

1 0

fO 0

0 0

0 X,

X, 1
X, 9*0   or 1.

1 • • • 0 0 J [ X<  1 • • • 0 0

Proof. In homogeneous coordinates, we may write the four points as

(0,7),      (7,0),      {ZuZi), (Wi,Wt).

Since no two of the arithmetic distances are less than n, Z\, Z2, Wi, W2 are all

nonsingular. We may write them in the nonhomogeneous coordinates as

0,      oo,      Si, S2.

We have a nonsingular matrix T such that

TSir = £'<*,,   TS»r = zZ'bi.

The theorem follows.

The proof of Theorem 6 is now evident.

Remark. The equivalence of quadruples in any field seems to be more

difficult. The condition in Theorem 6 is insufficient for the real case. (A signa-

ture system is required.)

Definition. We define a quadruple of points satisfying

(P„ P2; P„ P4) = - /

to be a harmonic range.

Evidently a harmonic range is invariant under a symplectic transforma-

tion.

6. Von Staudt's theorem in the complex number field. Now we let $ be

the field formed by complex numbers.

We use Z to denote the conjugate complex matrix of Z. The transformation

(Wu W2) = Q(Ii, Z2)X

carrying a symmetric pair (Wi, W2) into a symmetric pair (Zi, Z2) is called

anti-symplectic if Q is nonsingular and X symplectic.

Theorem 8. A transformation satisfying the following conditions:

(1) one-to-one and continuous,

(2) carrying symmetric matrices into symmetric matrices,

(3) keeping arithmetic distance invariant,

(4) keeping the harmonic relation invariant,

is either a symplectic or an anti-symplectic transformation.

Proof. Let V be the transformation considered. Taking three points A, B,
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C (symmetric matrices), no two of which have arithmetic distance less than «,

let An B\, C\ be their images. By (3), the arithmetic distance between any

two of An Bi, Ci is n. Let Xi and £2 be two symplectic transformations carry-

ing respectively A, B, C and An Bi, Ci into 0, I, «>, in accordance with

Theorem 3. Then, without loss of generality, we may assume that

0 = r(0),    / = r(/),    co = r(oo).

Since

Z,     Zn (Z+Zn/2,

form a harmonic range, we have

T{Z) 4- r(Zt) = T(Z + Zv.

Consequently,

T(rZ) = rT(Z)

for all rational r. By continuity, this holds for all real r.

Now we introduce the following notations:

En = (p$t), p,t

and

En = (q,t), q>t

Let

-{:
l if s = t = i,

otherwise

1 if s = i, t = j or 5 = j, t = i,

otherwise.

T(Eu) = Mi.

Since Mi is of rank 1 and symmetric, we have

Mi — (X«, • • • , X,n)'(X,i, • • • , X,„).

Let

Then

A = (X,,).

i = r(/) = IZ r(£«) = Z Mi
<—1 i—1

n

= zZ (X<1| " ' " > X,„)'(X,l, • • • , X(n)
•-1

= E OwAtt) = ( Z

= A'A.
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That is, A is an orthogonal matrix

(X<i. • • • i X<n)A' = (5,i, • • • , oin),

where 5,-,- is Kronecker's delta. Thus

Ar(£«)A' = En.

Let

A(Z) = Ar(Z)A',

then A has the same property as T, that is,

A(Z4-Z0 = A(Z) 4-A(Z,),

0 = A(0),      I = A(7),      °° = A(oo)

and

Let

M is of rank 2. Since

En = A(£«).

A(Eif) = M = (m„),

E« 4- \EU 4- E„/\

is of rank 1, owing to the invariance of arithmetic distance, the matrix

(1) M + \En + Ea/\

is also of rank 1 for all X. We are going to prove that M = +£,,-. In fact, we

may assume that t = l, j = 2. The two-rowed minor of (1)

7»n 4" X 7»12

Wl2 Wt22 4" 1/X

= 0

for any X, that is

that is

Further

1tl\\1ft22 — Wl2 4" Wn/X 4" W22X -f-1 — 0,

tnn = OT22 = 0,      ntu = + 1.

Wh 4" X win

mit mtt

for all X, then mtt = 0, mu = 0 for all t ̂  3. Finally

0 m.t

m,t 0

then m.t = 0 for (s, 2)^(1. 2). Hence, we have

= 0

= 0   if   (s, 0 3* (1, 2),

t = 3,
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M — ± En.

ace«) = + En.
Thus

Let

Then

D = [ei, • • • , «„], e, = ± 1.

DA(Ei,)D' = ± e&Eij.

Thus we may choose e properly so that

DA(EU)D' = Eu.

Let DAD' = 11. Then II has all properties of A and further

ntEu) = Eu.

Now we consider Without loss of generality we take (*, 7) = (2, 3).

Then, if n(E23) = —En, we have

n(En 4- E33 4- E12 4- E13 4- E23) = En 4- £33 4- E12 4- E13 — E2S,

since
1 1 1

1 0 6

1   « 1

- - (« ~ I)2,

which is equal to zero for e = l and not zero for e= — 1. Consequently the

ranks of E114-E334-E124-E134-E23 and En4-E334-Ei2 4-Ei3 — £23 are not equal.

This is impossible.

Thus, we have

U(X) = X

for all real X. (If we do not use continuity, it holds for all rational X.) We

may assume T to be II.

Further for real F, the four points Yi, — Yi, Y, — Y, form a harmonic

range, while

r(F) = f,    r(- F) = - f,

thus we have
T(iF)F-1 = - Fr(tY)-1.

In particular,
mi))2 = - /•

Then
t(»7) = iJ

where J is an involutory symmetric matrix, that is J2 = I and J =     We have
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a matrix T (not necessarily orthogonal) such that

/ = T'T.

T'-lY(Z)T-1 = *(Z),
Let

we have then

Let

Then

#(»/) = il.

V(Z) = - i*(iZ).

V(0) = 0,      V(7) = /,      V(«) = oo,

so the ranks of Z and V(Z) are equal. By the method used before, we have

Vi - B'VB
such that

Vi(X) = X,

for all real X. Thus, we have finally that

T(Z 4- iY) = T(X) 4- r(iF) = 1+ L4T4,

where A is independent of X and Y.

Now we have

A'YAY-1 = FL4Y.4)-1,

that is,
(4'T^IF-1)2 = I,

for all real F. Here we introduce a lemma.

Lemma. Le< 4 be a nönsingular matrix. If

(4T4F-1)2 = I

for all symmetric Y then A — p7, where p = ±1 or +i.

If the lemma is true, then

T(X 4- iY) = X +iY   or   X - iY.

The theorem is proved.

Proof of the lemma. (1) We have a nonsingular matrix T such that

r->.4r = B

and
B = /, + ••• + /„

where 7< is a Jordan matrix of degree w<. Evidently
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(B\Tnrr)B(TVr)-1)* = y'^a'yay-^yt'-1 = /.

[May

Thus it is sufficient to prove the theorem for B instead of A.

(2) We shall prove «< = 1. In fact, if

Ji =

X 1

0 X

then

(JUJiiy =

0 0

f Xs    X 0

X 1 4- X2 X

0

0

0 1

0

X2(X2 4- 1) 2X» 4- X X2

0    0     0 • • • 1 4- X2

which is impossible. Thus n< = l, that is,

B = [ti, • • • , «„],

- I,

€, 9* 0,

which is a diagonal matrix.

(3) Putting

F =

110 0

10 0 0

0 0 10

0   0   0 1

0   0   0 0
we have

which implies

Similarly

2 2 2
«i«2 2cie2(ei — e2)

2 2
«1«2 KD

«1 = «2-

B = (I, t9*0.

Then A = el. For Y = I, we have e4 = 1, that is e= +1, ±i. The lemma is thus

completely proved.

7. Remarks. The following results are contained in the proof of Theo-

rem 8:

Theorem 9. Let $ be the complex field, and let Wbe a module formed by sym-
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metric matrices over <!>. Let T be an additive continuous automorphism of 991

leaving the rank invariant, so that V satisfies

(0 r(x)em,ifxewi;
(ii) T(X+Y) = T(X) + T(Y), if XGHJl and F<E3K;
(iii) T(iX)=iT(X);and
(iv) T(X) has the same rank as X.

Then Y(X) is an inner automorphism, that is

T(X) = TXT'
for certain T.

In the case of the real field the situation is more complicated. In Theo-

rem 9, we require an additional condition that the signature of T(X) is the

same as that of X.

The analogue of Theorem 8 in the real field is more complicated. Since

Theorem 7 is not true in case of the real field, degeneracy and lengths of sides

do not characterize the equivalence of triples of points, for example, there

does not exist a real symplectic transformation V satisfying

(2      0\     /- 2 0\
r<o,-o,    r<.>~.    r(o _2)-( o

In fact the transformation satisfying the first two of these relations is of the

form
r(z) = czc

where C is nonsingular and real. It keeps the signature invariant. By means

of the signature of a triple, we may obtain an analogue of Theorem 9 in the

real field.

II. Geometry of skew-symmetric matrices

Throughout II, we use

We let n = 2m.

8. Notions. A pair of matrices (Zi, Z2) is said to be skew-symmetric if

(Zu Z2)g1(Z1, Z2)' = 0,

that is,

Z\Z2 = — ZiZ\—

A 2wX2n matrix X is said to be Si-orthogonal, if

X$iX' = gi.
We define
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(Wlt W%) = Q(Zi} Z2)£

[May

to be an gi-orthogonal transformation if Q is nonsingular.

The transformation carries nonsingular skew-symmetric pairs into non-

singular skew-symmetric pairs.

The nonsingular skew-symmetric pair of matrices may be considered as

the homogeneous coordinates of a skew-symmetric matrix.

It is easy to verify that the geometry so obtained (analogous to I) is

transitive, that is, any two points of the space are equivalent.

We define the rank of

to be the arithmetic distance between the two points represented by (Z%, Z2)

and (Wi, Wt).
We have also:

Two point-pairs are equivalent if and only if they have the same arith-

metic distance.

We may also define the cross-ratio-matrix of four points Pi, P2, Ps, P4,

Pi**(Xit 70 («-1,2,3,4) by

where

<P„ Pt)(Pu P4)-»(P2, P4>(P2, Pa}"1,

(P>, P,) = (X,; F,)8i(Z,-, YiY.

The analogue of Theorem 6 is also true.

If the cross^ratio-matrix is equal to —I, we define Pi, P2, Ps, P4 to be a

harmonic range.

9. An algebraic theorem. On the ground of similarity, the following state-

ment seems to be true.

Let T be a continuous (additive) automorphism of the module formed

by all skew-symmetric matrices, such that T(iX) = iT(X), and that the rank

is left invariant. Then T(X) is an inner automorphism.

Unfortunately, this statement is false and so the situation becomes more

complicated. For n = 2,

0 a

-a 0

— b  — d

b

d

0

— c   — e   — /

- b  - c

- d — e

b

c

0

-/

d 1

e

f
0

is an automorphism but not an inner automorphism.

It is an automorphism of the required kind, since the principal minors

form equal sets, say

(aj - be + cd)2; a2, b2, c2, d2, e2, f.
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It is not an inner automorphism. In fact, we write

/   P (A    / P(A

V-o' r)   \-q rJ'

where P and R are two-rowed skew-symmetric matrices. Suppose it is an

inner automorphism, that is, that there exists a nonsingular matrix

such that

for all P, Q, R.
In particular, if P = P = 0, Q = I, we have

/A B\/    0 A A4 .B\' /OA

Combining (1) and (2), we have

A4 B\/Q - P \     /Q' - P\ A4 £\

VC ZV\F-     Q7     V?      Ö/\C ZV

Putting P = P = 0, we have

,4<2 = <2M,      BQ' = Q'B,      CQ = QC,      DQ'= QD

for any Q. Consequently, we obtain

B = ßl,      C = yl,      A = D = 0.

But

/ 0 0A /    P  (2\ / 0 y A     AS2*  - ßyQ'\

\yl 0/\-Q' R/\ßI 0/     \ßyQ      y*P)'

which, in general, is not equal to

( '*)■\-Q R/

Thus the automorphism is not an inner automorphism.

The above argument suggests that in general we might have m — 1 basic

automorphisms:

(i) ai4<=*a23, other elements invariant;

(ii) auv±a2i, oie^^s, other elements invariant;
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(iii) 014^023, öi6<=^fl26, aw+=£an, other elements invariant;

(m — 1) fli4<^023. • • • . Oi,2m<^02,2m-i, other elements invariant.

Such a reasonable suggestion is a false one, since for m = 3, "auT^an" does

not keep the rank invariant, for example,

0

0

0

0

-1

0

0

0

-1

0

0

-1

0

1

0

0

1

0

0

0

0

0

0

0

1

0

-1

0

0

-1

0

0

0

-1

-1

0

0

0

0

0

0

-1

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

0

0

-1

Here one matrix is singular while the other is nonsingular.

Theorem 10. Let $ be the field of complex numbers. Let STJi be the module

formed by all skew-symmetric matrices over <I>. Let V be a continuous (additive)

automorphism of 3> leaving the rank invariant and T(iX) = iT(X). Then, for

w ;* 2, T is an inner automorphism. For m = 2 there exists a nonsingular matrix T

such that
T(X) = TX,V

where X, is either X or

0 «12

— <Zl2 0

— «13    — Ö14

«13

«14

0

«23

a24

034

0— #23    — ^24    — Ö34

Proof, (i) Evidently, the automorphisms

Y = TXVT

satisfy the requirement, where T is nonsingular.

(ii) The additive property may be stated as

(1) T(X + Y) = T(X) + T(Y),

for any two X and Y belonging to SEX?. Putting X = F=0, we have

(2) r(o) = o.

It is also very easy to deduce that

(3) T(rX) = rT(X)

for any rational r. By continuity, it holds for any real r. Since T(iX) =iT(X),

the relation holds for all complex r.
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Let

—((-;>•••+(-.:))•

where a is a nonsingular skew-symmetric matrix. There exists a matrix q

such that

Let = <2r(X)(2', then i\ is an automorphism satisfying the properties

given in the theorem and

(4) IM/) = /,

where

Write r instead of IY. (In the following we shall repeat this procedure by the

simple statement "we may let t satisfy (4).")

(iii) Let Xi, • • • , Xm be m distinct numbers, and let

a-( 0 x') + - - + ( 0 X"Y
V-Xi   0/ K-Xn   0 /

Consider the two pairs of matrices a, J and TL4), /. Since t(a — XT)

= t(a) —\J, the characteristic roots of t(a —X/) are also Xi, ■ • • , Xm. (Each

is a double root.) We have a nonsingular matrix M such that

(5) MY(A)M' = A,     MJM' = J.

Now we are going to prove that M can be chosen independent of the X's.

Write M=M\t • • • xm- We have

= M'(C) +'" + (-! o) + ' • + (oo))M;<*)'
where Mt = M\l, • • ■ ,x„ with X< = 1 and X, = 0 for jVi. In this expression, only

the (2i— l)th and 2tth columns are significant. Let P be a matrix having

(2i — l)th and 2ith columns in common with Af, for * = 1, 2, • • • , n. Then

T(^) = PAP'.

Putting Xi= • • • =Xm = l, we find that P is nonsingular.

(3) The term different from the zero-matrix is the t'th term of the sum.
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Now we may let

(6)

where

A

T(A) = A,

\- Xi o / V- xm o /

(iv) The theorem is evident for m = 1.

Now we take m = 2. Let

0 a

a 0

b - d

b c

d e

0 /

c   — e  — f 0

0      a' b' c'

-a'      0 d' e'

- ¥ - d* 0 /'

- c' - e' - /' 0

Since
0 a - X        b c

- a 4- X 0           d e

-b -d         0 f-u

-c - e -f+ u 0

that is, (a—\)(f—u) — be+dc = Q, if and only if

0 a' - X c'

- o' 4- X 0          d' e'

-b' - d'         0 f - u

- c' - e' - f + p 0

0,

= 0,

we have

(7)

(8)

Now we consider

a = a',     f = f,

be - cd = b'e' - c'd'.

1 0

0 1

1 0

0 0

-(: ">

where " •" stands for zero-matrix and      stands for a matrix which either is
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evident or has no essential significance in the consideration. (This convention

will be retained for the rest of the paper.) Then M is of rank 2, Mi and M — Mi

are of ranks Jess than or equal to 1, that is

I Mi - XM I = 0

has two characteristic roots 0 and 1. We can find two matrices P and q of de-

terminant 1, such that

Therefore

and

Since

1 0

0 1

1 0'

0 0.

\0 07

0 X

-X 0

we may let

0 u

-n 0

b 0

0 e

\o qJ

0 X

-X 0

0 u

-M 0

b 0

0 e

(9)

We deduce easily that

From (8) we have

In particular, we have

0 1

1 0

b = b',      e = e'.

cd = c'd'.

0 c'

d' 0 c'd' = 1.

Since
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(d')1/2 0 0 0

0 (d')-w 0 0

0      0 (<f)-1/2 0

ooo (d'y*

0 a

-a 0

-b -a"

b

d'

0

we may let

-c' -e -J

0 a b

-a 0

-b -1

-1 -e

[May

(d')w   0     0 0'

0 ((f)-1'2   0 0

o    o K)~1/2 o

0      0      0 (<f')1/2.

1

0

-/

0

0

0

0

0 - 1

- 1 0

Finally, we have

0 0

0 0

0 0

- 1 0

0

1

0

0

0

0

0

0

0

0

0

- 1

0

0

0

- X

0

0

1

0

0

0

p

0

0

1

0

0

0

M

0

0

1

0

0

0

X

0

0

0

Then

CO—GDI—
for k = 1 and 0, so we have either

T(X) = X
or

T{X) = Xn

(v) For the sake of simplicity, we give the proof for m = 3. The method is

valid for any m.

Let M=(aij), Afi = (a'if) and

T(M) = Ml

Since, by (iii),

0 X

X 0

0 p

-p 0

0 \

X 0

0 p

-pO
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the determinants of

M -

0 X

- X 0

0 u

H 0

and   Mi —

0 X

- X 0

0 u

p 0

are identically equal. Comparing the coefficients of X2/i2. we find 0,12 = 0,12.

Similarly, we deduce

Now we let

034 = «34, 066 — 066.

1 0

0 1

Since for X/x = 1

= Mi

1 0

0 1

0 X

■X 0

0 p

—p 0

= 0,

it follows that

Mi -

0 X

X 0

0 p

— p 0

is of rank not greater than 2 for all X, p satisfying Xju = l. Thus we have

0 X

-X 0

0 X

- X 0

ttl3 «14

/ r
Ü23 Ö24

0 p

-p 0

a'u a'n
1 1

«24 *26

0 a«

0« 0

0 X

- X 0

0 X

- X 0

I I
013 016

/ /
023 026

Ö 036

036 0

/ /
014 016

/ I
024 026

0 a'46

046 0

0 X

X 0

0 X

X 0

013 016

I I

023 026

0 036

036 0

1 I
016 016

/ /
025 026

= 0.
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The first equation gives

so we may take

013  «H _

/    /     = L
«23 «24

/a'u a'i4\ _ /l 0\

Va'23 OvJ    \0 1/

(In fact, we can choose a suitable Q such that

/   0 01

0   Q 0 \M

0   0 I

10 0

0 Cf 0

0   0 1

has the required form.)

Then, from the system of equations, we have

till It ' ' c\
Ö85 = 036 — 046 — 046 = 016 — 016 — 026 — 026 — <J.

Thus, we may let

1 0

0 1

1 0

0 1

Let
1 0

0 0
= Mi

Since Mi is of rank 2, we have \P\ =0. Since

1 0

(10)
0 1

- Mi

is of rank 2, we have | P —1\ =0. There is also a matrix Q such that

g^'=Go>
Thus we may assume that
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1 0

0 0

1 0

0 0

/ /
015 01«

/ /
026 026

/ I
035 036

/ /
046 046

By consideration of the ranks of the previous matrix and the matrix given

in (10) we find

/
016 016 026

III
026 — 036 — 036

/
045 046 0.

Consider again a general skew-symmetric matrix M and its image

Mi = T(M). By the same method used for m = 2, we have either

Mi =

0 012

0

013

023

0

014

024

034

0

or

Mi =

Repeating the process for

012

0

013

014

0

023

024

034

0

015

025

035

046

0

016

026

036

I
046

0

016

026

036

046

066

0

01«

/
026

/
036

/
046

066

0

/0i5 0ie\

\026   0 26/'

we obtain either

or

026 «= 026,

026 <^ 016,

016 ?=* 016.

016 & 025-

For the equivalence of "au^azs" and uau^±a2b," we have three cases: (a)

r(M) = Mi, Mi is obtained by replacing a36, a36l 045, 046 by a^, a^, a^, 0«

in M;
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0        012     018     023     016 016

026

036

I t

046

056

0

0        012     013     023     015 026

016 026

r t
035 036

/ / •
046 046

0 066

0

(a) We leave a36, 036. 045, 046 arbitrary. Putting 016 = 024 = 034 = 1, 026 = *,

and the others equal toO, we have det(Af) = (x —a3ty, det(Afi) = (x—a^y. We

have det(M)=0 if and only if det(Afi)=0, that is a3% = a^&. Next putting

016 = 023 = 034 = 1, 025=*, and the others equal to 0, we obtain 046 = 0*5. Putting

015 = 024 = 014= 1, 026=*, and the others equal to 0 and putting 015 = 023 = 034

= 1, 026=* and the others equal to 0, we have respectively

/ r
036 = 03«, 046 = 04«.

Thus we have

T(M) = M.

iß) and (7) Putting 024 = 034 = 1, 0i« = 026 = * and others equal to 0, we

have 035 = 035- Further, if we put

012 — 013 = 0,    014 =  X,    016 = 1,    016 = 0,    023 = J,    «24 = 025 = 0,    02« = 1,

034 = 0,    036 =  — 1,    036 = 045 = 04« = 0,    066 = 1,

then
d(M) = (x(y - 1.))*,      d(M0 = (y(x - l))\

By putting x = — 1, y= +1, we see that this is impossible.

The general proof may be arranged in the following steps:

(a) Dividing the matrix into m2 2-rowed matrices.

(b) Choosing the first row of the small matrices as in the case m = 3 and

applying the analogous method as above to the image.

(c) Determining the other small matrices by the method given for m=3

(from (10) et seq.).

(0) T(M) = M2 =

0        014     024 025

0        034 035

0 0«

0

(7) T(M) = M3 =

0        014 024

0 034

0
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(d) Considering the 6-rowed minors we find that the exceptional case ap-

pearing for m = 2 cannot exist for m = 3.

10. Another generalization of von Staudt's theorem. The transformation

(WUW2)=Q(Z1, Z2)X

is called anti-orthogonal if Q is nonsingular and X is gi-orthogonal.

Lemma. Let A be a nonsingular matrix. Suppose that

(A'YAY-1)* = I

holds for all skew-symmetric Y. For m = l, A is a matrix of determinant +1. For

m > 1, then

A=pl,   or   A= PT[l, •   • ,1, - l]T~\

where p = +1, ± i, and conversely.

Proof, (i) The result is evident for m = \.

For m>l, A=pl evidently satisfies the equation. Now we prove that

A=pT\\, •• •, 1, —l]F_1 satisfies the equation.

We write

/F^V /   Fi* v*\
T'YT = ( L      (F'FF)-1 = ( ).

V - v'o) V- v*' 0 /

Then

// 0\ _ / Fi v\ / Y?   v*\ _ / FiFi* - vv*'    Yit* \

\0 //    \- v' 0/ \- v*' 0 /    \   -/Fi* -«W'

Further

/Fi   d\ n / Fi* »*\

FMT^F-F- = p*[l, • • • . 1, - 1](_ ^ 0) [1, • • • , 1. - !](_ ^ o )

2 / FiFi* 4- vv*'   Fij>*\        /I + 2vv*' 0\

= P\     /Fi*        v'v*)~P\     0        - 1/

Since v*'v= —1, we have

(/(n-i) + 2ot*')2 = / + 4ot*' 4- 4ct*'ot*' = /■<—»>;

hence the result.

(ii) As in the proof of the lemma of §6, we may assume that

A = /, + Jt + • • • ,

where /, is again of degree n,. The number of odd w,'s is always even,

(hi) We consider the case
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where n is even. Write

J ■o
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A m /<»>,

where

P =

X 1 0 • • • 0

0  X   1 • • • 0

0   0 0

1 =

0 0 • • • 0

0   0 ■ • • 0

1   0 • • • 0

Take
/    0 J<»/«\

" \_ /(»/«    o / '

then

-cr:)
implies (p'p)i = Hnl2\ which is impossible for «>2 (that is m>\).

(iv) Let
A = Ji -\- Jit      n\ 4- «2 = n

where «i and w2 are both odd. Let wi = w2. Write

Then, we have

'VAV-iV «= ( * q
(A'YAY-1)

which is possible only for wi = «2 = l. Further let Mi>m2. We write

0 /<»/*)>

Then

U'F^F-1)2 = r J = 7,

[May
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which is impossible for »i>3. For »i = 3 and «2 = 1, we have consequently

X   1   0 0]

A =

Taking

0X10

0 0X0

0   0   0 u

Y =

u = - X,      X4 = 1.

2 1

1 1

we find this also to be impossible.

Thus each of the numbers

»i, »2, • • •

must be either 1 or 2.

(v) It is easily seen that no two of the n/s can be 2. In fact

Xi 1 0 0

0 Xx 0 0

0 0 X2 1

0 0 0 Xs,

A =
P ■
■ 9

say. Taking

we find this to be impossible.

(vi) Further, if one of the m/s is 2, then n is equal to 2. In fact, suppose

that

A =

Xi 1

0 \i

X2 0

0 X3

Taking

we have
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Taking further

F =

0 0

0 0

-1-1

- 1 0

1

1

0

0

we have X2=X3. Both results cannot hold simultaneously,

(vii) Suppose n = 4. Let

A = [Xi, X», X3, X.i].

Taking

F =

0 0

0 0

-1-1

- 1 0

1

1

0

0

we have

(1) (A'YAY~1)2 =

2 2

X1X4    Xi(XlX44-X2X3)(X3 — X4)
2 2

X2X3

X2X3    X3(XiX44-X2X3)(Xi—X2)
=1

2 2
X1X4

which implies
22 22

X1X4 = X2X3 - 1.

Since Xi, X2, X3, X4 can be permuted, we have

2 2
X;X, = 1 for all i, j (i 5* j).

Thus
4 2222

Xj r    1, X1 = X2 = X3 = X4 =   T 1.

In general A = [Xi, • • • , X„] where X?= • • • =X^= + 1. By choosing a

suitable p in the lemma, we may consider the case with

22 2

Xi = Xo = * ' ■ — Xn = 1.

If among the X's there occur two positive and two negative numbers, we take

Xj = X4 = 1, X2 =X3 = — 1. Then (1) is impossible. Thus we have the lemma.

Theorem 11. A transformation satisfying the following conditions:

(1) one-to-one and continuous,

(2) carrying skew-symmetric matrices into skew-symmetric matrices,
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(3) keeping arithmetic distance invariant,

and

(4) keeping the harmonic relation invariant,

is for «t*4 either %i-orthogonal or anti-orthogonal. In the case «=4, the trans-

formation is either %\-orthogonal or anti-orthogonal, or is equivalent to

T(Z) = Zlt   where  Z =       * ^,      Z, = (_ P

or equivalent to

T(Z) = Zl

Proof, (i) A triple of points, no two of which have arithmetic distance less

less than «, is equivalent to

/ 0
°'      (-7-0 )'

We may let the transformation satisfy

r(o) = o,    r(g) = 55,    r(«) = ».

(ii) As in the symmetric case, we have

r(Z) 4- T(Zt) = r(z 4- Zi).

Again, for «5*4, we have, analogous to the symmetric case,

T(X + iY) = X + iA'YA.

Since Y, — Yare separated harmonically by t'Fand — t'Ffor real F, we have

TWY-1 = - Y(T(Yi))-\

that is,

(A'YAY-1)* = I

for all real Y. Now we suppose m = 3(4); then we have

T(X + iY) = X ± iY

or

T(X + *T) - X ± »r-^l, • • • 1, - l]F'FF[l, l]T~\

The first case is what we require. Changing variables in the second case we

may let

T(X + iY) = X + *[1, • • - , 1, - 1]F[1, • • • , 1, - 1].

Since

(4) For m = 1, the result is almost evident.
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0 0

0 0

*

= 0 and

0

0 5* 0

the rank is not invariant. The last case does not satisfy our requirement.

In case m = 2, a great deal of special consideration is needed. Apart from

the lemma, we require the solutions of

(4'Fi^F-1)2 = I,

where

Q' R/ \- Q

The proof of the lemma establishes that either

A = pi
or

A = PT[\, 1, 1, - l)T~K

(The Q used here is always symmetric.)

As in the preceding proof we have four cases,

T(X + iY) - X ± iA'YA,   or   Xx ± iA'YiA',

or   X! ± iA'YA,   or   X ± iA'YiA.

By the previous argument, for m^3, we have, for the first two cases,

r(Z) =z,z,zltzlt

where Z = X-\-iY, and Zi is obtained from Z by the process yielding Yi

from Y.

Next, if T(X+iY)=Xi +iA'YA, we have either

T(X + iY) = Xx ± iY  or   X! ±       1, 1, - l]F[l, 1, 1, - l].

Putting

Z =

r(z) =

o
0

— j

-1 -1

0

0

0

1

0 0

0 0

- i - 1

— i — 1

i i+i

0 1

0 0

0 0

I

1

0

0

or

0

0

0

0

0

i - 1  - 1

i

0

0

0

i+ 1

1

0

0
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we see that both these automorphisms could render a singular matrix non-

singular. Thus both these cases are ruled out.

Finally, the possibility of

T(X + iY) = X + iAYiA'

may be treated in a similar way.

III. Geometry of Hermitian matrices

The geometry of symmetric matrices in the real domain is closely analo-

gous to the present geometry.

11. Notions. We define an Hermitian pair (Zu Zi) of matrices by

(Zi, Z2)g(ZltZ2)' = 0.

A conjunctively symplectic matrix X is defined by(6)

X*$¥ = %■

We define a conjunctively symplectic transformation by

{Wu 1F2) = Q(ZUZ*)X.

We identify two nonsingular Hermitian pairs of matrices (Zi, Z2) and

(Wi, Wi) by means of the relation

(Zu Z2) = Q(Wu IF2).

It is called a point of the space. Evidently, the space so defined is transitive.

The rank of

(Wi, IF2)g(Zi,Z2)'

is defined to be the arithmetic distance of the points (Wu W2) and (Zi, Z2).

Two pairs of points are equivalent if and only if they have the same arith-

metic distance.

Let Fi, P2, Pz be three points no two of which have arithmetic distance

less than n. Then they are equivalent to the three points

0, 00, K(= [1, • • • , 1, - 1, • • • , - 1]).

The signature of K is defined to be the signature of the range Pi, P2, P$.

(The order of points is significant.)

Evidently the signature is invariant under the group. We also may say

that two triples of points are in the same sense if they have the same signa-

ture. We may prove that if two ranges are in the same sense, there is a con-

junctively symplectic transformation carrying one into the other.

As to the equivalence of quadruples of points, a great deal of difficulty

arises from the fact that the existing treatments of the theory of Hermitian

(') £* denotes the conjugate complex matrix of £.
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forms are incomplete. We shall give elsewhere a complete classification and

then its application to the present problem will be immediate.

12. A further generalization of von Staudt's theorem.

Theorem 12. Let T be an additive continuous automorphism of the module

formed by all Hermitian matrices keeping rank and signature invariant. Then V

is either an inner automorphism or an anti-automorphism (Z—*PZP').

Proof. (Cf. the results of §6.) (i) We have T(0) = 0. Let

= Ho.

Since Ho is positive definite, we may let

r(/) = i.

As in the proof of Theorem 8 (in the real field), we may let

T(X) = X

for all real symmetric X.

Let Y be any real skew-symmetric matrix, and let

T(iY) = H.

Since

det {X 4- iY) = 0

if and only if

det (X + H) = 0,

by Hilbert's theorem on polynomial ideals, we have an integer p such that

(det (X + iY))" m 0 (mod det {X + H))

and

(det (X 4- B))> m 0 (mod det {X + iY)),

in the polynomial ring formed from the real field by adjunction of the ele-

ments of X. Let X = X' = (xij). We write

det (X 4- iY) = fix» + gu

det (X + H) = f,xu + gi,

where fx, ft, gn gi are elements in the ring 9? (generated by the elements of X

omitting xn). Since

(ftijxxxi 4- gi) - fiiftxxx 4- gi))' = 0 (mod det (X + B)),

and since/2gi—/ig2 is independent of xu, we have
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figi - figz = 0.

Since the determinant of a Hermitian matrix is an irreducible polynomial in

its elements, fi and ft are irreducible and fi and gi have no common divisor.

Consequently we have

/»= u gl = «2.

In this procedure, we have to compare one of the coefficients.

Thus
det (X + iY) = det (X + H)..

Consequently each principal minor of i Y equals the corresponding principal

minor of H. We complete the proof with the aid of the following lemma.

Lemma. If two Hermitian matrices H and K have the same principal minors

of orders 1, 2, 3, then {for exp (x) =ex)

H = [exp (t0i), • • • , exp {idn)]K*[exp (- iOi), • • • , exp (- #»)],

where K* is obtained from K by replacing kr, by either kT, or kTt.

From the lemma, we may let

hr. =  + »Vr».

Since one of

i  — i

0 1

1 0

and

— i

1

0

is singular and the other is not, we have

H = + iY.

The proof of the lemma is straightforward. Considering the 1-rowed prin-

cipal minors of H=(Ar,), K = {kr.), we have

hrr hr.

Since

we have

h„

h„

krs

has

We may choose 9i,

[exp (idt), ■ ■

I M2 = I k.|2.

• • , 0„ such that the matrix

, exp (i0„)]Z7[exp (- »0i), • • • , exp (- i"0„)]

has real hu, Ai3, • • • , Ai„. We may let
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ku

be real and positive. Consider

hu An hij An Aii kij

An Aü A,< = Äü ku kij

h\j  hij   hjj        h~\j  kn hjj

Thus ß= ±b and we have

or kij. Q.E.D.

Theorem 13. A transformation satisfying the following conditions:

(1) one-to-one and continuous,

(2) carrying Hermitian matrices into Hermitian matrices,

(3) keeping arithmetic distance invariant,

(4) keeping sense of triples of points invariant,

(5) keeping the harmonic relation invariant,

is either a conjunctively symplectic or a conjunctively anti-symplectic transforma-

The proof is omitted because of the similarity to the real analogue of

Theorem 8 (cf. §7).

13. Subgeometries of the geometry of. unitary matrics. The geometry

studied in IJI may also be interpreted as the geometry of unitary matrices.

Since the matrix

Hon.

IV. Geometry of rectangular matrices

is of signature 0, we may use

instead of it. Then the pair of matrices (Zi, Z2), satisfying
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that is

zxzi - z*zi = o,    / - (Zr^sXZf-iz,)' - o,

is the homogeneous representation of a unitary matrix. We can generalize the

idea a little further. Let
//>>      0 \

%i = ( ), n — m.

The matrix T<m+n) satisfying

rg2r' = &

is called conjunctive with signature (n, m). The pair (Z[n\ Z%'m)) of matrices

satisfying
(ZlZOSsCZlZO' - 0

is called an (n, m)-unitary pair.

Instead of going into the details of this geometry we shall be content to

make the following remark.

Let

w(r'=ztz2.

Then we have
WxW{ = I.

Wi is formed by m columns of a unitary matrix. Thus the geometry may be

considered as a subgeometry of the geometry of unitary matrices by identify-

ing the elements with the same m columns as an element of the subgeometry.

This may be described in short as "the process of projection."

14. Remarks.
(i) The condition "one-to-one" is redundant, since the invariance of arith-

metic distance implies it.

(ii) The continuity for the real case is also very probably redundant. (Cf.

Sierpinski's contribution to the solution of the functional equation /(*4-y)

=/0R/(y).)
(iii) The geometry of pairs of matrices {Z[n), Z2B'm)) with the group given

in IV has interesting applications to the study of automorphic functions. It

is not an analogue of projective geometry but of non-Euclidean geometry.

(iv) Analogous to IV, we may establish a geometry of real rectangular

matrices.
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