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A discussion of the redundancy of the conditions involved in the general-

izations of von Staudt's Theorem should be preceded by a study of the involu-

tions. As an illustration and a supplement to part I, we give here a discussion

of the geometry of 2-rowed symmetric matrices; we intend to treat the gen-

eral case at a later occasion. More definitely, the condition concerning the

harmonic separation is a consequence of the invariance of arithmetic distance.

For the real case, even continuity (as well as the condition concerning the

signature) is redundant (a proof for even order symmetric matrices has been

obtained). As to the general discussion, some knowledge concerning involu-

tions seems to be indispensable; the author will come back to it later.

Throughout the paper, the notations in I are taken over and we assume

that n = 2.

1. Normal subspaces.

Theorem 1. Given two matrices Z\ and Z2 with arithmetic distance r{Z\, Z2)

= 1, the points Z satisfying

r(Z,Z0 * 1, r(Z,Zt)£t

form a normal subspace.

Proof. Without loss of generality, we may take

*-0 M~Öo)'
Let

-CO-
Then we have

(* ± 1)2 - y1 = 0,

that is, z = y = 0. The theorem is now evident.

Definition. The normal subspace obtained in Theorem 1 is said to be

spanned by Z\ and Z2.

Definition. Two normal subspaces are said to be complementary if there

is one and only one pair of matrices, one from each subspace, with arithmetic

distance less than 2.
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Theorem 2. Two complementary subspaces may be carried simultaneously to

(* °) (° °)
\0 0/' \0 yj'

Proof* We may let

(oo)' ( oo)

be the matrices to span the first subspace, and

CD- *
be the matrices to span the second subspace. In fact, by a theorem of I, we

may carry any three points A, 73, C with

r(A, B) - 1,     r(A,C) - r(B,Q - 2,

into

A"0- *-("ID- Ci"CD-

CD-)-'
\ai 6s 4- 1/

Since

we have

If a 7*0, the matrix

of the first subspace is at distance 1 from X. This contradicts our hypothesis.

Thus the second is spanned by

/oox     /o   o x

\0 1/'      \0 iJ4- 1/

The theorem follows.

Consequently two complementary subspaces have a unique matrix in com-

mon.

Theorem 3. Let © denote the set of matrices S such that

r{S, P) = 2,
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where P is the common matrix of two complementary normal subspaces. Then ©

is transitive under the subgroup leaving the two subspaces invariant.

Proof. Let the two complementary subspaces be

(p o)'      (o y)

and 5 be the points in ©. By the hypothesis with P = 0, we know that 5 is

nonsingular. The transformation

Z, =Z(-^1Z4-/)~1

carries S into *, and it leaves the subspaces

fx ON /0 0\
AO 0/'      \0 y)

invariant.

2. Direct sum of complementary subspaces.

Definition. The subspace formed by points of the form

(o y)

is called a (completely) reducible subspace which is the direct sum of the sub-

spaces

(* °) r °)
\0 0/'      \0 y)yt

Now we shall give its arithmetic construction. We take, by Theorem 2, I as

any point of the set <S. Find P satisfying

KD)-K
Let

\  fli       4- 1/

we have

(o2 -f- 1 - x)(b2 4- 1) = as&2,      («s 4- 1)(62 4- 1 - y) - a2*2.

Then, a2=y(l — x)/(xy — x— y), bi = x(l—y)/(xy—x—y).

Thus we have two solutions:

p =/10\      J._/       y(l-*) +(xy(l-*)(l-y))1/2\

±   \0 1/    xy-x-y\±(xy(l-x)(l-y)yi2 x(l-y) )'



1945] geometries of matrices. i, 485

Finally, we find all K satisfying

r(K, P+) = r{K, P_) = 1.
Putting

t_/Ai k2\

x — y) \k2 kz/'(xy - x - y)

we have

(h - y(l - x))(k3 - x(l - y)) - (k2 ± (xy(l -        - y))1'4)2 = 0.

Then k2 = 0, h= (14-p)y(l -*), h = (1 +l/p)*(l -y).
The matrices of the form

m (1 + (1 + p)y(l - *) 0 \

\ 0 1 4- (1 4- 1/p)*(1 - y))

run over all matrices of the reducible space.

Since we use the arithmetical notion only, we have the following general

definition.

Definition. Given two complementary subspaces I and g), let Q be a

point of the set ©. The reducible space (or direct sum of both subspaces) is

defined by the aggregate of points K such that

r(F+, K) = r(F_, K) - 1,

where P+ and P_ are both solutions of

r(Q, P) = r(P, X) = r(P, F) = 1,

and -X" and F belong to I and §) respectively.

As a consequence of Theorems 2 and 3 we have the following theorem.

Theorem 4. The aggregate of reducible spaces is transitive.

3. Involutions. Given

Z

we wish to find all matrices

_ (Zl Z2\

\z2 zj'

(o y)

of a reducible space such that

DC :;))=■■
consequently
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2
(x — zi)(y — z3) — z2 = 0.

This set is denoted by 2. To each matrix Z we have a set 2. Conversely, to

each 2, we have two matrices

\-Z2    z,/    \0 -1/   \0 -1/

Thus we obtain a transformation

<» *-C-D*C-D-
which is called an involution of the first kind. Further, each point of the re-

ducible space is a fixed point of (1); there are no other fixed points.

Since

yd i)(o -i)(-i i) = d o)'
we have an equivalent involution

<2> z--CÖKÖ>
and, since

CK -DC JH-tt
we have another equivalent involution

It may be shown that the most general form of involutions of the first

kindC1) is

(4) Zx = (PZ - Kx){KtZ 4- P')~\

where K\ and K2 are skew symmetric and

s
\K2 P'J

i1) The general definition of an involution of the first or second kind is that gJ = I or — £.

It may be verified easily that they are equivalent symplectically to (1) or (5) respectively. A

detailed study of involutions forms the subject of II, which will appear soon. For this reason,

the author omits some details of the discussion. Certainly, forn = 2, the properties used can all

be verified directly and easily.
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is symplectic. We use Si. S3 to denote the matrices of (1), (2) and (3)

respectively. We may easily verify that

and

that is,

(5)

SiS; — — 8jS»">

SiSsSs

Zi= -z.

This is called an involution of the second kind.

4. Commutative involutions. Let © and ©o be two reducible subspaces

associated with two involutions of the first kind, S and So respectively. (It

may be shown easily that, if S5o = SoS> then So carries © into itself point-

wise.)

If S carries ©o into itself, but not pointwise, then

SoS = - SSo.

In fact, S_1SoS leaves ©o fixed pointwise. Thus

S-1SoSi = i So;

the upper sign is ruled out, since S does not leave ©0 pointwise fixed.

Theorem 5. Any pair of commutative involutions of the first kind may be

carried into Si and S2 simultaneously.

Proof. The first one may be assumed to be Si- Let the second be given

by (4). Then

\k2 p'j

10    0 0

0-100

0    0 10

[0    0    0 -1

10 0 0

0-1    0 0

0 0 1

0    0 0

(k2 p)'

and we have

p

where

If

C 0)'
-Uö*>

Plp2 4" klki = 1.

/pl-\ -kl\

\ ki   p2- \J

/ 0 k2\

~\-k2 0)'
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has only simple elementary divisors, we have a, b, c, d such that

/a b\ /px - k{\ /a b\~l_ A 0 \

\c d) \k,     pj \c d)  " \0 1/X/'

Then

0

a

0

c

a

0

c

0

0

b

0

d

f ~Kl)
\K2 P'J

0

d

0 -c

■c 0

ad — be = 1.

<* 0-6

0-6 0

0 a

a 0

0 X

1/X 0

0 0

0 0

0 0

0 0

0 1/X

X 0

(Notice that the transformation carries Si into —Si. but they denote the

same transformation.) Further

1

0

0

0

0

X

0

0

0

0

1

0

0

0

0 1/X

carries S into Sa- If

/pi-\ -*i \

\   kt    pi - X/

has a double elementary divisor, we may take

\*2        Pi/ \1 1/

Now we have to consider the case

0 1

1

0

-1

0

1

0

0

0

0

1

01

0

1

0

The transformation
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1

0

-1

0

0

1

0

0

0

0

1

0

01

0

0

1.

carries % into %2. Thus, we have the theorem.

Theorem 6. Any triple of commutative involutions of the first kind may be

carried into gj, .    and simultaneously.

Proof. We may assume that the first two are gi and g2. Let the third one

be g. Since gitf = — Qflfi, we have

o

pi
0

— ki

pi

0

ki

0

0 -ki

ki 0

0 p2

pi o

Plp2 + klk2 = 1.

= X2 4- 1.

Since %i% = — StT2i we have pi = —p2. We may change it into g3, since

?i-X -*i

k%     —pi — X

5. Involution of the second kind. An involution of the second kind has two

isolated fixed points with arithmetic distance 2. Conversely, any two given

points, with arithmetic distance 2, will serve as the isolated fixed points of

an involution of the second kind, which is uniquely determined by them. In

fact, let 0 and «> be fixed points, then the transformation takes the form

Zi = - AZA',      A2 - I.

We have P such that

PAP' =

The latter case cannot happen, since then 0 would not be an isolated fixed

point. Thus we have

Zi = - Z.

Now we may define harmonic ranges. Four points Z\, Z2, Z3, Z4, no two

of them with arithmetic distance less than 2, are said to form a harmonic

range, if the involution determined by Z\, Z2 permutes Z3 and Z4.

Analytically, we let
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(Zu Z2, Z„ Z0 = ((Zx - Z,)(Z, - Z4)-1)((Z2 - Z3)(Z2 - Z4)-1)-1.

The involution

(Z - Zi)(Z - Zs)-1 = - (Z* - ZX)(Z* - z2)-1

carries Z3 into Z4. Evidently

(Zu Z2, Zu Zi) — — I,

This condition is sufficient as well as necessary.

Thus the "invariance of arithmetic distances" implies the invariance of "har-

monic range."
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