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Introduction. In this paper we prove analogues of two of the Wedderburn

structure theorems for a special class of Banach algebras (we prefer the term

"Banach algebra" to the more common term "normed ring"). Our theorems

assert, first, that any algebra of the special kind we shall consider is a direct

sum of simple ones (simple = no closed 2-sided ideals) and, secondly, that

every simple algebra of this type is a full matrix algebra—where by a full

matrix algebra we mean the set of all finite or infinite (countable or uncount-

able) matrices for which the sum of the squares of the absolute values of the

elements converges (the matrix elements being complex numbers).

We use the term Banach algebra, or simply TJ-algebra, for a set which

is an algebra over the complex numbers (though without any assumptions

about a basis, finite or otherwise) whose underlying linear space has a norm

with respect to which it is a Banach space, and which satisfies the condition

||jey|| ^ ||a;|| ||y||. These assumptions are the same as those of Gelfand [III ]C1)

except that we assume neither commutativity nor the existence of a unit.

The special algebras which we consider (we call them 7J*-algebras) satisfy

the additional conditions: (1) the underlying Banach space is a Hilbert space

(of arbitrary dimension), (2) each element x has an "adjoint" x* in a certain

rather strong sense.

The part played in our theory by the fact that the underlying Banach

space is a Hilbert space is two-fold. It makes direct sum decompositions easier

through the possibility of taking orthogonal complements, and it opens up

the possibility of using the spectral theory of operators on Hilbert space.

Actually we do not use the spectral theory but instead use simplified forms

of some of the technique used in that theory. It is here that the adjoint ele-

ments in our algebra are essential for their existence makes it possible, through

the spectral theory technique, to construct idempotents.

Our consideration of these i?*-algebras arose from a consideration of the

Z,2-algebra of a compact group. Segal [VIII] has defined the group algebra

of a locally compact group to be the space L\ of integrable functions (that is,

complex-valued functions, integrable with respect to the Haar measure of the

group) with convolution for multiplication. In the case of a compact group

the space L% (of complex-valued functions whose square is integrable with
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respect to the Haar measure of the group, and again with convolution for

multiplication) also forms an algebra and this algebra is an 7J*-algebra; our

original concern was with theorems about this particular kind of 7J*-algebra.

(We should mention here that our concern with these L2-algebras arose from

reading Segal's paper [IX] in manuscript form, and from many conversations

in which he pointed out various features of group algebras of topological

groups; hence our indebtedness to Segal is great.) This Z,2-aIgebra has the

significant property that all the transformations in its regular representation

are completely continuous, and this property makes all the simple constitu-

ents of this algebra finite-dimensional. Hence i?*-algebras (as we shall see)

are more general than such Z2-aIgebras. On the other hand, the group algebra

of a non-compact locally compact group (that is, the Zi-algebra—unfortu-

nately!^ does not form an algebra in this case) is not an iT*-algebra but it is

close to being an il*-algebra. We say it is close to being an 7J*-algebra be-

cause the Hilbert space £2 is dense in it and, for groups whose right and left

Haar measures coincide, there is also an adjoint defined. So a general H*-

algebra lies, in degree of complication, somewhere between the group algebra

of a compact group and the group algebra of a non-compact locally compact

group. We hope that our theorems about ü*-algebras may be suggestive

about the structure of these group algebras.

Of the papers in our bibliography the one closest to this paper is probably

that of Gelfand and Neumark [IV]. Although both their assumptions and

conclusions differ from ours it may be helpful to point out the nature of the

differences. The assumptions differ in that we assume the underlying Banach

space to be a Hilbert space, and that they assume the existence of a unit.

Since' in some vague sense there are more 73-algebras with a unit than for

which the underlying Banach space is a Hilbert space our theory is more

special than theirs. On the other hand our theory would essentially become

extinct if we were to assume a unit since our results show that an JT*-algebra

contains a unit if and only if it is finite-dimensional. The main conclusion of

[IV] is that .B-algebras of their kind are algebras of operators on Hilbert

space and it is an achievement to find the Hilbert space since it was not

there at the beginning. In our case, though, it is there at the beginning and

the regular representation of an ü*-algebra is a representation in terms of

operators on Hilbert space (this representation is faithful except in trivial

exceptional cases which we describe). Since a full matrix algebra (in our

sense) is a very special type of algebra of operators on Hilbert space our con-

clusion that an 7J*-algebra is a direct sum of full matrix algebras can be

thought of as a concrete characterization of the particular type of alge-

bra of operators with which we deal. This characterization, incidentally,

can also be described in terms of another representation, and a full matrix

algebra described as an algebra of all operators of Hilbert-Schmidt type on a

function space Z2. In this description, however, the norm of an element in the
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algebra will not coincide with the norm of the corresponding operator.

In §1 we give our basic definitions and in §2 we eliminate from further

consideration a trivial kind of special situation. In §3 we prove theorems

about the existence of idempotents and in §4 we use these idempotents to

obtain our desired structure theorems. In §5 we consider the 1,2-algebra of a

compact group.

We are indebted to S. Eilenberg for many important suggestions which

have introduced great simplifications in a number of our proofs, and to R.M.

Thrall for a number of helpful discussions.

1. Definitions.

Definition 1.1. A B-algebra (or Banach algebra) is a set .4 which contains

more than two elements, is a ring in the sense of algebra [X, p. 35 ], and satis-

fies the following further conditions:

1. A is an algebra in the following sense: for each complex number X and

x(EA there is defined an element of A, denoted by \x, subject to the following

conditions (X and fi being any complex numbers, x and y being any elements

in A):

a. \(x+y) =X*4-Xy,

b. (X4-/i)*=X*4-M*.
c. lx=x,

d. (Ku)x=\(ux),

e. (Kx)(uy) = (kn)xy.

2. The underlying linear space of A is a (complex) Banach space with the

norm of x (x£A) denoted by ||x||.

3. The inequality ||xy|| ^||x|| ||y|| holds for all x, y in A.

The condition 3 on the norm is essentially nothing more than continuity

of the product xy. If we were to assume only continuity then a variation of a

theorem of Banach [II, p. 67] could be used to prove that there is a constant

M such that

defined by \\»
xy\\=M
' = M\\x\

x\\ \\y\\. Then changing the norm to a new norm

we would have a norm satisfying 3, and this change of

norm would not affect any of our results.

If E and Fare any two sets in a 5-algebra A then we shall use the notation

EF for the set of all elements of the form xy, with x(£E and yGF, and the

notation E" for the set of all products of n elements from E; we shall use the

similar notations yE, Ey (for y£-4), and so on. We denote the set consisting

of the zero element alone by (0), and we use the symbol [y| • • • ] for the set

of all y in A which satisfy the condition • • • .

Definition 1.2. An H*-algebra is a F-algebra which satisfies the following

further conditions:

1. The underlying Banach space of A is a Hilbert space (of arbitrary di-

mension).

2. For each xQ.A there is an element in A, denoted by x* and called an

adjoint of x, such that for all y, z in A we have both (xy, z) = (y, x*z) and
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(yx, z) = (y, xz*) (here, as throughout this paper, the symbol (x, y) stands

for the Hilbert space inner product of x and y).

Condition 2 in this definition says that for each x there is an x* such that

the operators (on A) defined by y—>x*y and y—»yx* are adjoints (in the ordi-

nary sense of linear transformations on Hilbert space) of the operators y—»xy

and y—»yx, respectively. This means that both regular representations of A

are closed under the operation of taking adjoints.

That the adjoint x* of x need not be unique is shown by the following

example: consider any Hilbert space and make it into an algebra by defining

the product of each pair of elements to be 0. It is trivial that this is an H*-

algebra in which every element is an adjoint of every element. Theorem 2.2

below shows that every üP-algebra can be split into two parts, one of which

will be of this trivial kind, and in the other of which adjoints will be unique.

The following facts about adjoints in an TP-algebra are obvious: (1) if

x* is an adjoint of x then x is an adjoint of x*, (2) if x* and y* are adjoints of

x and y respectively then \x*-\-ßy* is an adjoint of Xx+juy, and y*x* is an

adjoint of xy, (3) every element of the form xx* or x*x is self-adjoint, that is,

is an adjoint of itself.

If £ is a subset of an üP-algebra we shall denote by E* the set of all ad-

joints of all elements in E, and we call E* the adjoint of E. If E = E* we call E

self-adjoint.
Next we consider some examples of i7*-algebras. Our first example is a

matrix algebra; since we shall, in general, have little concern about whether

our matrices are finite or infinite, countable or uncountable, we formulate the

example in a way that allows all possibilities.

Example 1. Let / be an arbitrary set of elements and consider the space

of those complex-valued functions a(i, j) defined on JXJ which satisfy the

condition £,-y| a(i, j)\*< 00. We make this set into an 7J*-algebra by the fol-

lowing definitions: if a = a(i,j), b = b(i,j), and X is any complex number then

(a + b)(i, j) = a(i, j) + b(i, j),

(ab)(i,j) = £«(«, k)b{k,j),
k

(Xa)(i,i) = Xa(t, j),

{a, b) = alZ a(h j)b(i, j) (« = 1),
a

(a*)(i,j) = fX1).

It is easy to verify that with these definitions this set becomes an JJ*-algebra.

If n is the cardinal number of J then this algebra is called the full matrix

H*'-algebra of order n, or sometimes simply a full matrix algebra.

(2) We use ä(j, i) for the complex conjugate of a(j, i).
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The a in the preceding definition is any constant greater than or equal

to 1. Clearly for any such a we will have an 7J*-algebra and since we wish to

prove that every simple -fP-algebra is a full matrix algebra we have to allow

the possibility of an arbitrary a in this definition.

Example 2. The set of all complex-valued functions K(s, t) of two real vari-

ables which belong to L2 on the unit square, with the following definitions:

(K, + K2)(s, t) = Ki(s, t) + Kt(s, t),

(KiKtXs, t) = f Ki(s, p)K2(p, t)dp,

(\K)(s, t) = \K(s, t),

(Ku K2) = ff Kt(s, t) K2(s, t)dsdt,

(K*)(s, t) = K(t, s).

Examples 1 and 2 are special cases of the general situation where one con-

siders functions of two variables, defining the product and the norm in terms

of integration with respect to some measure, but in example 1 (the full matrix

algebra) each point has measure a=T, while in example 2 the measure is

Lebesgue measure. In fact, these examples are still more alike, for the algebra

of example 2 is easily seen, through a consideration of Fourier expansions, to

be isomorphic to the full matrix algebra of order fc^o-

Example 3. The set of all sequences (of any fixed cardinal number) (a,-) for

which     1 a, \2 < «>, with the definitions:

+ Q>i) = (a,+ bt)t

(ai)(bi) = (ajbj),

Had = (Xffj).

((*/). (*»)) = zZi^jhi,
(«/)* = («;)•

This example is really nothing but the subalgebra of all diagonal elements

from a full matrix algebra.

Example 4. The L2-algebra of a compact group. Let G be a compact topolog-

ical group and consider L2(G) (L2(G) is the space of complex-valued functions

of integrable square with respect to the Haar measure of G) with the defini-

tions (J((t), g(a) being functions in L2(G)):

(f+g)f» - yw +

(/»(*) = / f(^~l)g(r)dr,
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(X/) r» = X/f»,

£/*)« -/(•-»).

This example is isomorphic to a subalgebra of a type of /J*-algebra given

in example 2. The mapping which takes each/(<r) into the two-variable func-

tion F(a, t) defined by F(<r, r) =/(o"t_1) can easily be seen to be an isomor-

phism of this algebra into that counterpart of example 2 which is formed on

Li(GXG) instead of Z2 of the unit square.

We conclude this section with a few more definitions. All ideals that we

shall consider will be closed so we include this property in the definition of an

ideal.
Definition 1.3. A left, right, or 2-sided ideal in a B-algebra is a left, right,

or 2-sided ideal in the sense of algebra which has the additional property of

being closed in the topology given by the norm.

We consider (0) and A to be ideals, and use the term proper ideal for all

others. If E is any set in A then we refer to the smallest (left, right, or 2-sided)

ideal containing E as the (left, right, or 2-sided) ideal generated by E.

In finite-dimensional algebra two elements, or sets, are sometimes called

orthogonal if their algebraic product is the zer*o element. In dealing with

H*-algebras we also have the concept of orthogonality in terms of the inner

product of the underlying Hilbert space. We mention here that whenever we

refer to two elements or sets in an 7J*-algebra as orthogonal we shall always

mean it in terms of the inner product of the Hilbert space.

If £ is a set in an i7*-algebra A then we denote the orthogonal comple-

ment of E (that is, the set of all elements which are orthogonal to every ele-

ment in E) by Ep. A trivial proof shows that the orthogonal complement of a

left, right, or 2-sided ideal is again the same kind of ideal. We shall say that a

subset of A (or a collection of subsets of A) spans A if the smallest closed lin-

ear subspace of A which contains the subset (or collection of subsets) is A.

Definition 1.4. Let A be an TP-algebra and {Aa\ a family of subalge-

bras. A is the direct sum of the subalgebras A a if they are mutually orthogonal

and span A. We indicate this relation by writing A =y^,aAa.

From Hilbert space theory we know that if A =X)«-4« then each element

of A has a unique expansion in terms of components which are in the Aa. It

is easy to see that the following conditions are equivalent (in case the sub-

algebras A a are closed):

1. Each Aa is a 2-sided ideal in A.

2. For every xa(EAa and Xß£Aß, with aAß, we have xaxs = 0.

3. For every x and y in A (with expansions x =£a, y=zZ«y<') we have

xy =£a£„y<«.
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2. Proper i?*-algebras. Now we define the notion of a proper i7*-algebra.

This is an 7J*-algebra which contains no elements that annihilate the whole

algebra and, as we shall show, is equivalent to the non-existence of nilpotent

ideals. We shall show that any JT*-algebra may be decomposed into a proper

algebra and an algebra whose square is (0). For this reason (and because we

shall later prove that a proper iT*-algebra is a direct sum of minimal ideals)

it might seem reasonable to call such an algebra "semi-simple" and to call the

component whose square is (0) the "radical" of the H*-algebra. Because of the

trivial nature of these aspects of our theory and because we feel they are not

at all suggestive as to what semi-simplicity should be for a general Banach

algebra, we shall not use this classical terminology.

Lemma 2.1. Ifx is an element in an H*-algebra A then xA = (0) is equivalent

to Ax = (0).

Proof. Let y, z be any two elements in A and let x*, y*, z* be any adjoints

of x, y, z respectively. Because xy = 0 we have

0 = (xy, z) = (x, zy*) = (z*x, y).

Since y was arbitrary we conclude that z*x = 0 and since z was arbitrary we

conclude that Ax = (0).

Definition 2.1. An H*-algebra is proper if it satisfies the following two

equivalent conditions:

1. The only x in A such that xA = (0) is x = 0.

2. The only x in A such that Ax = (0) is x = 0.

Theorem 2.1. An H*-algebra is proper if and only if every element has a

unique adjoint.

Proof. First suppose A is a proper i7*-algebra, and let x* and x2* be ad-

joints of an element x. Then we have, for all y, z,

(xy, z) = (y, xfz) = (y, x2*z),
hence

(y, [xf - x2*]z) = 0

for all y, z. This implies that [xf — x*] z = 0 for all z, hence x* — x* = 0, that

is, xf =x2*.

Now suppose A is not proper, so there exists an element Xo(EA such that

x0A0 and XqA =Ax0 = (0). Then if x is any element and x* any adjoint of x

it is trivial that x*+x0 is also an adjoint of x.

Lemma 2.2. If x is an element in a proper H*-algebra then xAO implies

xx* AO, x*xA0 and x*A0.

Proof. If x*x = 0 we have, for all y££A, \\xy\\2.= (x*xy, y)=0, that is,
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xA = (0), hence x = 0. Thus x A 0 implies x*x A0 and this implies x* A0. In the

same way we see that xx*A0.

Lemma 2.3. If x is a self-adjoint element in a proper H*-algebra then xAO

implies xnA0for every positive integer n.

Proof. Lemma 2.2 implies that x2AQ and, by repeated application, that

xmA0 for m any power of 2. Hence xnA0 for all n.

Lemma 2.4. If R is a right ideal in a proper H*-algebra A and x£A then

xAQR implies xQR. (The corresponding lemma for left ideals also holds.)

Proof. Write x = Xi+x2 where Xi£R, x2(E.Rp; then xz = xiz+x2z. We have,

for all z£A, x2z£i?p and x2z = xz — x^zElR, hence x2z = 0. Thus xz = XiZ, (x—Xi)z

= 0, for all z, so x =Xi£R.

Lemma 2.5. Every 2-sided ideal in a proper H*-algebra is self-adjoint.

Proof. Let I be the 2-sided ideal in the iP-algebra A. If x£I and yEJp

then xy = 0, hence for all z(EA we have (xy, z)=0. Thus (y, x*z)=0 for all

y£/p and all z£.4, so x*z is orthogonal to Ip for all z£.4. Hence x*z£I for

all z(zA, which, by the preceding lemma, implies that x*£I.

Lemma 2.6. If R is a right ideal in a proper H*-algebra then the right ideal

generated by Rn is R. (The corresponding lemma for left ideals also holds.)

Proof. Let R0 be the right ideal generated by Rn and let xE.RC\Ro. Since

Ro C.R it will be sufficient to show that x = 0. Consider the element x(x*x)n;

this obviously belongs both to Rn and R„, hence x(**x)" = 0. If xAO then

x*xA0 by Lemma 2.2 and then (x*x)n+1A0 by Lemma 2.3; since (x*x)n+1A0

implies x(x*x)n?£0 we conclude that * = 0.

Now we prove that we can always decompose an iP-algebra into a proper

algebra and an algebra whose square is (0). The component whose square is

(0) will be just the set of annihilators of the original algebra.

Definition 2.2. If A is an /T*-algebra then the trivial ideal is the set Aü

defined by

A,= [y\Ay= (0)] => [y| yA = (0)].

Lemma 2.1 shows that the two sets involved in this definition are equal.

It is clear that A0 is a self-adjoint 2-sided ideal, and that A% = (Qi).

Theorem 2.2. Every H*-algebra is the direct sum of its trivial ideal and an-

other self-adjoint 2-sided ideal which is proper.

Proof. Let A be the iJ*-algebra, A0 its trivial ideal, and Ai = Aq. Then Ai

is a self-adjoint 2-sided ideal and A =.4o4-.4i- It only remains to be shown

that Ai is proper. Suppose Xi€E.Ai and XiAi = (0); we also have *i^4o = (0)
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(because this holds for all x£.4) and since A =A0+Ai this implies X\A = (0).

Thus xi£.A0; since xi(E.Aif~\Ao we conclude that Xi = 0.

It is now easy to see that an ZP-algebra is proper if and only if it con-

tains no nilpotent 2-sided ideals. Lemma 2.6 shows that if A is proper then

it can contain no nilpotent ideals. On the other hand, if A contains no nil-

potent 2-sided ideals then in the decomposition of Theorem 2.2 the trivial

ideal must be (0), so A is equal to the other component, which is proper.

The next two lemmas are needed for the proof of Theorem 2.3. In these

lemmas we denote by £ the set of all elements of the form Xiyi+ • • • -\-x„yn.

Lemma 2.7. If A is proper then E is dense in A.

Proof. E is obviously a linear subspace of A with the property that if

z££ and x is any element of A then zx and xz both belong to E; it is then clear

that E has the same properties, that is, £ is a 2-sided ideal. Since A2 C.E C.E

we conclude from Lemma 2.6 (applied with £=.4 and n = 2) that E=A,

that is, £ is dense in A.

Lemma 2.8. If A is proper then for any x(£A and y££ we have (x, y)
= (y*, **)•

Proof. First we prove this for yG^42, that is, for y = uz. We have

y) = (x, uz) = (u*x, z) = («*, zx*) = (z*u*, x*) = ((uz)*, x*) = (y*, x*).

The lemma now follows from the linearity of the adjoint and inner product.

Theorem 2.3. If A is a proper H*-algebra then \\x\\ = \\x*\\ and consequently

the transformation x—>x* is continuous.

Proof. If y£E then we know by Lemma 2.8 that ||y|| =||y*||. Now let x

be any element in A and let jx„} be a sequence of elements from £ which

converges to x (Lemma 2.7 shows the existence of such a sequence). Then

x„ —xmEE and hence ||x„* —xm*j| =||x„ — xm||—>0 as n, m—><x>. Hence the se-

quence {x„*} is convergent to an element x'. We see that x'=x* because

(xy, z) = lim (x„y, z) = lim(y, x„*z) = (y, x'z)
n n

and similarly (yx, z) = (y, zx'). Hence the sequence ja;*} converges to x*.

Since x„—>x, x„*—>x* and ||x„|| =||x„*|| (this last by Lemma 2.8) it follows that

||x|H**||.
3. Existence of idempotents. In this section we prove that every proper

77*-algebra contains a maximal family of primitive self-adjoint idempotents.

Then, in the following section, we shall use this family in essentially the same

way as in the finite-dimensional case to obtain our desired structure theorems.

In obtaining this maximal family of idempotents our first job is to prove

the existence of any self-adjoint idempotents, or even any idempotents at all,
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and in doing this we have to use other methods than are used for finite-di-

mensional algebras. This is because our assumptions do not yield in any simple

manner the existence of minimal ideals(3). In the finite-dimensional case the

existence of idempotents is obtained by taking a minimal left (or right) ideal

and proving (easily) that if it is not nilpotent it must contain an idempotent.

The greater difficulty we have with this point can best be emphasized by

considering example 2 of §1. In this algebra of functions K(s, t) consider, for

each real number X (0 ^X — 1), the subalgebra L\ of all functions K(s, t) which

vanish whenever t >X. It is easily seen that each L\ is a left ideal; this shows

that an il*-algebra can contain a continuously decreasing family of left ideals

whose intersection is (0) and whose union is the full algebra. Hence we cannot

hope to find minimal ideals by an arbitrary continued subdivision process.

We mention (but shall not use) the trivial fact that for TP-algebras the

existence of minimal ideals is equivalent to the existence of maximal ideals,

because the orthogonal complement of a maximal (minimal) ideal is minimal

(maximal).

Once we know that every £f*-algebra contains a self-adjoint idempotent

it is relatively easy to obtain a maximal family of primitive idempotents. We

obtain such a family by showing first that any self-adjoint idempotent can be

decomposed into a finite number of primitive idempotents and then using

Zorn's lemma (or transfinite induction) to obtain a maximal family.

Our procedure for proving the existence of an idempotent is a simplifica-

tion of the procedure used by F. Riesz [VII] in a proof of the spectral resolu-

tion theorem for self-adjoint operators on Hilbert space. The analogy of our

situation with that in the spectral theorem is clear for in the spectral theorem

one starts with a self-adjoint operator and tries to find certain idempotent

operators, while we start with a self-adjoint element in an 7f*-algebra and

try to find an idempotent in the algebra. In the Riesz proof of the spectral

theorem polynomial functions of the given self-adjoint operator are first con-

sidered and then, in terms of monotone convergence, the notion of a function

of an operator is extended to more general functions. The functions consid-

ered in this way are then general enough so that the corresponding operators

include the idempotent operators needed in the spectral theorem. In our case

the whole procedure is simpler because our main object (at this stage) is to

find a single self-adjoint idempotent—we do not try to find a whole family of

them and we do not try to relate it (at this stage, again) to given elements in

the algebra. For that reason we do not need to consider the general functional

calculus that is used in the spectral theory but instead can choose a particular

sequence of polynomials (the sequence X") and show that the corresponding

(3) N. Jacobson has pointed out to me that the essential result of this section is the semi-

simplicity, in a certain sense, of ff*-algebras, and that certain general theorems of his (now in

the process of publication) could be used to good advantage in deriving the results of this sec-

tion.



374 WARREN AMBROSE [May

elements of the algebra (the elements xn—with x properly chosen, of course)

converge to a self-adjoint idempotent. We do this however through a con-

sideration of the monotone properties of the sequences X" and xn—ä la Riesz.

That we can obtain an idempotent through consideration of a single (self-

adjoint) element x and limits of polynomials in it is to be expected since if

every i?*-algebra is to contain an idempotent then the subalgebra generated

by x (which will again be an i?*-algebra, provided x is self-adjoint) must con-

tain an idempotent.

We need the following lemma which is well known as a theorem about lin-

ear transformations on Hilbert space. For the sake of completeness we include

a proof.

Lemma 3.1. If x is any self-adjoint element in an H*-algebra then

sup I (xy, y) I = sup ||a;y||.
Il»ll=i M-i

Proof (4). By the Schwarz inequality we have (for all x and y) | (xy, y)|

^||*y|| ||y|| which shows immediately that

sup I (xy, y) I ^ sup ||a;y||.
M-i M-i

Now we prove the opposite inequality. We note first that if y is such that

xy = 0 then (xy, y) = \\xy\\ = 0 so we only need consider y's for which xyAO.

For any y and z we have

4(*y, z) = (x[y + z], [y + z]) - (x[y - z], [y - z])

^ {sup I (xu,u) \ }{||y4-z||2 + ||>'-z||2}

= 2{sup I (xu,u) \ H|H|24-||z||2}

(where the sup| (xu, u)\ is taken over all u for which ||w||=l). Taking

z = jcy/||j;y|| we then have, for all y with ||y|| = 1 and xyAO,

\\xy\\ g sup ] (xu, u) I

which proves the lemma.

Definition 3.1. An idempotent in an 7J*-algebra is an element e such that

e* = e?±0. If an idempotent is self-adjoint we call it an sa-idempotent.

Theorem 3.1. Every proper ET*-algebra contains an sa-idempotent.

Proof. We first prove the following fact which will be used in the proof

(this fact is also well known as a theorem about linear transformations on

Hilbert space):

(a) If y is a self-adjoint element which satisfies the conditions:

(i)  0 — (yu, u) — (u, u) for all u,

(') Taken from F. Riesz [Vll].
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(ii) sup (yu, w) = l (this sup being taken over all u with |]m|]=1),

then y2 also satisfies conditions (i) and (ii). (Actually (i) implies that y is self-

adjoint.) Because y is self-adjoint we have (y2u, u) = (yu, yu)^0 for all u.

Now we prove that y2 satisfies (ii), and this obviously implies that y2 satisfies

the second inequality in condition (i). By the preceding lemma we have

sup \\yu\\ = sup (yu, u) = 1.
Ml=i IMI-i

Hence

sup (y2u, u) = sup (yu, yu) = sup ||y«||2 = 1

(these sups being taken over all u with ||«|| = 1). This proves (a).

Now we choose an element x with the following properties:

a. x=y2 for some self-adjoint y,

b. 0 = (xu, u) = (u, u) for all u,

C. SUp||„||_i (xu, u) = 1.

It is clear that a and c together imply b. To prove we can find such an x

we first choose any zAO and consider the element z*z. By Lemma 2.2 we know

that z*zA0 and we also know not only that z*z is self-adjoint but that

(z*zu, u) = (zu, zu) = 0 for all u. Multiplying z*z by a suitable positive number

it is clear that we obtain a self-adjoint element y such that (yu, u) = 0 and

sup (yu, u) = l (this sup being taken over all u with =1). We define x

by x=y2 and will now prove that this x has the required properties. By

definition it satisfies a, and since y has properties b and c it follows from (a)

that x also has properties b and c.

Now we prove that if x is any element with properties a, b, and c, then the

sequence xn converges to an sa-idempotent, as n—> oo. Here we follow Riesz

[VI I ] very closely. We show first that

(ß) For each u the sequence (xnu, u) is a decreasing sequence of non-

negative numbers.

The numbers (xnu, u) are non-negative because (xnu, u) = (y2nu, u)

= (y"m. y"u) ^ 0. The sequence is decreasing because

(xn+1u, u) — (x"u, u) = (xy"u, y"u) — (ynu, y"u) = 0

(by c), that is, (xn+1u, u) — (xnu, u).

Now we use (ß) to prove that the sequence xn is convergent; first we prove

that for every u the sequence xnu is convergent. By (ß) we have, lor nt^n,

(x2mu, u) ^ (xm+nu, u) ^ (xinu, u)

so as m, ra—>°o these three terms tend to the same limit. Because of

\\xmu — £nm|| = (xmu — xnu, xmu — xnu)

= (x2mu, u) — 2(xm+nu, u) + (x2nu, u)

we see that ||*mw —x"w]|—>0 as nt, n—+<x>, thus showing that the sequence x"u
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converges for every u. Taking u=x it follows that the sequence x" itself con-

verges.

Denote the limit of the sequence xn by e; then e is self-adjoint because

each xn is self-adjoint. Because x2n—»e2 we have e2 = e and it only refnains

to be shown that eAO. By repeated application of (a) we see that (for m a

power of 2) sup {xmu, w) = l, hence (by Lemma 3.1) sup ||*m«||=l (these

sups being taken for u such that ||w|| =1). Since ||xm«|| ^||*m|| INI =||*OT|| we

have ||xm|| — 1. This implies eAO.

Definition 3.2. Two idempotents, e and/, are doubly orthogonal if (e,f) = 0

and ef=fe — 0.
Definition 3.3. An idempotent is primitive if it can not be expressed as

the sum of two doubly orthogonal idempotents.

Definition 3.4. A minimal left (right, or 2-sided) ideal is an ideal not

equal to (0) which contains no left (right, or 2-sided) ideal other than itself

and (0).
Our aim now is to prove the existence of a maximal family of doubly

orthogonal primitive sa-idempotents. For this purpose we need the following

lemmas about decompositions of ideals and decomposition of idempotents.

Lemma 3.2. Let A be a proper H*-algebra, e an idempotent, and R the right

ideal defined by R=eA. If Ris the direct sum of a finite number of right ideals,

R = Rx + R2 + • • • 4- Rn,
and if we write

e = ei 4- e2 + • • • + e„ (e< G Ri)

then the are doubly orthogonal idempotents and Ri = etA. If e is an sa-idem-

potent then each ei is an sa-idempotent. (The corresponding lemma for left ideals

also holds.)

Proof. Because R is the direct sum of the Ri we know that (ei, e,) =0 for

i Aj. We have

(a) ei = eei = exei + • • • -f- enei

and because the i?3- are right ideals we know that c,-c<G^,-. Because of this

and because the Rj are orthogonal we must have (since the efii add up to an

element in Ri) e,e, = 0 for iAj. It is then clear from (a) that e, = (e,)2. Thus we

have proved that the c< are doubly orthogonal idempotents. It follows trivially

that Ri = eiA.
Now suppose that e is an 5a-idempotent. We have

ex + ■ ■ • 4- «n = e = e2 = (ex 4- • ■ • + en)e = e%e + ■ ■ • + ene

and because ex+ ■ ■ ■ +en and exe-\- • • • +ene are both expansions of e in

terms of components in the Ri we conclude (from the uniqueness of such an

expansion) that e, =e,e. Using this and (a) we know that ei = e,e = ee,', and
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taking adjoints we have e? = ee? = efe. Because the Ri are orthogonal we have

(ay, ejz)=0 for all y, z (provided iAj), hence (efety, z)=0 for all y, z, and

hence e *«< = () for is*j. Using this and the fact that ef = efe we find

e* = e*(ei+ • • • +en) =e*et. Taking adjoints we have e< = efe<, hence a = ef.

Lemma 3.3, Let A be a proper H*-algebra, e an sa-idempotent, and R the

right ideal defined by R = eA. If e can be expressed as a finite sum of doubly

orthogonal sa-idempotents,

e = ei + • • • + e„

and if we define i?< by Ri = etA then R is the direct sum of the right ideals Ri.

(The corresponding lemma for left ideals also holds.)

Proof. The only thing we need prove is that the Ri are orthogonal, but this

is clear because e^,- = 0 implies (e^-y, z) = 0 for all y, z, and hence (e.y, e,z) = 0

for all y, z.

Lemma 3.4. If R is a right ideal (in a proper H*-algebra A) of the form

R = eA, where e is an idempotent, then R is minimal if and only if e is primitive.

(The corresponding lemma for left ideals also holds.)

Proof. If R is not minimal then R can be split into two orthogonal proper

right ideals, R = Ri+R2- Then by Lemma 3.2 it follows that there exist doubly

orthogonal idempotents ex and e2 such that e = exJre2.

If, on the other hand, e is not primitive we write e = ei-\-e2 where ex and e2

are doubly orthogonal idempotents. Then we define Ri = exA and we shall

show that Ri CR but RiA(0) and RXAR. We have eex = (exA-e2)ex = (ex)2 = ex

which shows that R\ C.R, and that e2£2?. Since ex£Fi we see that Rx A (0) and

because exe2 = 0 we see that e2 is not in R%, hence RXAR.

Theorem 3.2. If e is an sa-idempotent in an H*-algebra then e is the sum of

a finite number of doubly orthogonal primitive sa-idempotents.

Proof. Consider the right ideal R — eA. If R is minimal then (by the pre-

ceding lemma) e itself is primitive. If not we find a proper right ideal Ri

which is properly included in R, and write i? = Ri-\-R[°. We continue this proc-

ess, at each stage splitting each summand (which is not minimal) into or-

thogonal right ideals. Then at each stage we have a decomposition of R into

orthogonal right ideals, R = RX+ ■ ■ ■ -\-Rn. For each such decomposition we

have, by Lemma 3.2, a decomposition of e into doubly orthogonal sa-idem-

potents, e = ex+ • ■ -+en. Since in any 73-algebra an idempotent must have

norm greater than or equal to 1 (because of ||e|| =||e2|| ^||e||2) we have

INI2 = 1WIJ + ---+IW|2^«.
This shows that our subdivision process on the right ideals must end at some

stage. Hence we have R the direct sum of a finite number of minimal right
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ideals and e the sum of a finite number of doubly orthogonal primitive sa-

idempotents.

Theorem 3.3. Every proper H*-algebra contains a (nonvacuous) maximal

family of doubly orthogonal primitive sa-idempotents.

Proof. We know, by Theorem 3.1 and Theorem 3.2, that every proper H*-

algebra contains a primitive sa-idempotent. A simple application of Zorn's

lemma (or transfinite induction) then shows the existence of a maximal

family of doubly orthogonal primitive sa-idempotents.

4. Structure theorems. In this section we use the idempotents obtained

in the last section to prove our structure theorems. We operate with these

idempotents in essentially the same way as is done in the finite-dimensional

case. We use the known fact that the only 23-algebra which is a field is the

algebra of complex numbers.

The following theorem says that every proper Zz"*-algebra is a direct sum

of minimal left ideals and of minimal right ideals, but also says slightly more

because it shows that the same idempotents can be used in both the left and

right decomposition.

Theorem 4.1. Let {c, } be a maximal family of doubly orthogonal primitive

sa-idempotents in a proper H*-algebra A. Then

A = X e*A — £ Aeu
i i

that is, A is the direct sum of the minimal left ideals Ae{ and A is a direct sum

of the minimal right ideals aA.

Proof. Let -4i=£<ei.4 and A%=A\\ we shall show that A=^lieiA by

showing that A 2 = (0). Suppose that A 2 contains an element y A 0 and we shall

obtain a contradiction. If y£.42 then x=yy* also belongs to ^42 (because A2

is a right ideal), is not equal to 0 (by Lemma 2.2) and is self-adjoint.

Now we consider that (closed) subalgebra A' of A generated by x and

we use this subalgebra to prove that A2 contains an sa-idempotent. We know

that *G^42 and we find that every xn is in .42 because, for any y in A\, we have

(y, x") = (yxn~l, x) =0 (using the fact that Ai is a right ideal). It follows that

.4'C-42. Since A' is again an i?*-algebra it must contain an sa-idempotent;

hence we know that A2 contains an sa-idempotent, that we shall denote by/.

Applying Theorem 3.2 to / we can decompose it into a finite number of

doubly orthogonal primitive sa-idempotents, /=/i4- ■ • • 4-/». and then ap-

plying Lemma 3.3 we see that the/j are in A2. Thus we have found at least

one primitive sa-idempotent/i in A2.

To obtain the desired contradiction we only need prove that/i is doubly

orthogonal to every e<. Since/i£-42 .we have (eiy,/iz)=0 for all y, z. Taking

y = e< and z=/i we see that (e<, /i)=0. Rewriting this in the form (/ie,y, z)

= (y, e,/iz) =0 (for all y, z) we conclude that/iej = e,/i = 0.
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Definition 4.1. An 2J*-algebra is simple if it contains no proper 2-sided

ideals.

Theorem 4.2. Every proper H*-algebra A is a direct sum of simple H*-alge-

bras, each of which is a minimal 2-sided ideal in A.

Proof. We first express A as a direct sum of minimal right ideals = e(A.

Then for each 2?,- we consider the 2-sided ideal I(Ri) generated by 2?,-, and we

denote by 3 the family of all these 2-sided ideals. We shall show that the mem-

bers of 3 are the simple algebras demanded by the theorem.

First we prove that J(2?<) is minimal, by contradiction. If this is false

then we can split I(Ri) into two orthogonal 2-sided proper ideals, I(Ri)

= 2*i4-Js. Since R, is minimal we must have 2iP\2?i = (0) or 2?,-, and since

I(Ri) is the ideal generated by 2?,- we must then have 2*^2?, = (0) (for

k = \, 2). Now let r be any element of 2?,- and write r—y-\-z, with y£21 and

zE/2. Then r = etr = eiy-\-eiZ. Since e(y, e,z belong to 2?< they must be 0, hence

r = 0. This shows that 2?<= (0), which is a contradiction.

Next we show that A is the direct sum of the ideals in I. To do this it is

sufficient to show that each I(Ri) is itself a direct sum of right ideals chosen

from the family {Rh} • To show this latter it is clearly sufficient to show that

if F,n/(2?,) A (0) then Rj CI(Ri)- But this is trivially true, by the minimality

of the Ri.

To complete the proof we need to show that each I(Ri) is itself a simple

22*-algebra. Since a 2-sided ideal is self-adjoint, 2"(2e,-) is an 2J*-aIgebra. Now

we show it is simple, by showing that any 2-sided ideal / in the algebra

I(Ri) is a 2-sided ideal in A. For if y£J and x£A then x = xi+X2, with

XiE.I(Ri), x2(EI(Ri), and then xy = (x1+x2)y = X2yE.J, and similarly yx£J.

(Here we are using the fact that if 2"i and I2 are orthogonal 2-sided ideals

then any product xy, with x(E.Ii and yE/2, is 0.)

Gelfand [III] has proved that the only field which is a Banach algebra

is the field of complex numbers. We shall want the following analogue, which

differs in that "field" is replaced by "division algebra," "Banach algebra" is

replaced by "2J*-algebra," and the adjoint is asserted to be the ordinary com-

plex conjugate. These differences are quite trivial but nevertheless we give a

complete proof. Since we have not so far considered whether our algebras had

a unit we have made no restriction in this lemma to make the unit of the

complex numbers have norm 1, and this accounts for the arbitrary constant,

a, that appears. If we were to insist that the unit of the complex numbers

have norm 1 some later statements would become more complicated.

Lemma 4.1. If A is an H*-algebra which is a division algebra then A is the

algebra of complex numbers with complex conjugate for adjoint. The norm need

not be the ordinary absolute value but the norm of the unit may be any number

a — 1; then the norm of any complex number X will be | X [ a (where | X | = absolute

value of\).
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Proof. Let e be the unit of A and x any element of A. Applying Gelfand's

theorem ([III, p. 8]—that the only field which is a Banach algebra is the field

of complex numbers) to the closed subfield of A generated by e and x we con-

clude that *=Xe, where X is a complex number. Hence every x in A is of this

form, so A is the algebra of complex numbers. Because (Xe)* = Xe* = Ae we see

that the adjoint is the ordinary complex conjugate, and we also have, if

« = l|e||, that ||Xe|| = |X|y = |x|a.
In the following proof we follow Albert [I, p. 29] in outline but with cer-

tain modifications which are necessary both because our algebras are infinite-

dimensional, and because we must make sure that our adjoint operation and

norm turn out to be the desired ones.

Theorem 4.3. Every simple H*-algebra is a full matrix H*-algebra.

Proof. Let {et} be a maximal family of doubly orthogonal primitive sa-

idempotents. By Theorem 4.1 we know that A =£,e^4 =£v4e,-. We define

subsets, Atj, of A by Aij = aAe,; and we break the first part of the proof into

a number of parts, concerned with these sets Ai,-.

(i) Each An is a division algebra.

If a, b(EAu and a^Owe show first that there is a ydA such that ay = b.

Consider the right ideal aA. We have aAA(0) because aA~3aa = aAQ, and

we have aA CZetA. From the minimality of aA we conclude that aA = aA, and

hence there exists a y in A such that ay = b.

Now we prove that if aAO and a, b^Au then there exists a z(E.Au such

that az = b. Consider the ydA for which ay = b and define z^aye,; then

az = a(eiyex) = (aa)ya = aya = bei = b.

In the same way we find a solution to the equation za = b. Hence An is a

division algebra.

(ii) Every element in An is of the form Xe, for some complex number X.

An is obviously closed in A and not equal to 0; because the e, are self-

adjoint An is itself an iJ*-algebra. Since it is a division algebra it must be

just the algebra of complex numbers with the idempotent ei for the unit,

that is, every element is of the form Xc,-.

(iii) Each An is not equal to (0).

Suppose that An= (0), that is, eiAej= (0). This would mean that the right

annihilator of the right ideal e{A contains e, ̂ 0 and hence that that right an-

nihilator is not equal to (0). Since this right annihilator is a 2-sided ideal and

A is simple this implies that e,-.4.4=(0). But this is a contradiction since

(e,-)V0.
(iv) A aA jk = A ik; A uA hl = (0) if jA k.
It is trivial that A aA ki = (0) for jAk, since e,e* = 0 if jAk. We have

AijAjk=(eiAej)(e,Aek) = (eiA)(ejAek) = (0) then, as in the proof of (iii) we

would have e,AA = (0), which would be a contradiction. We have aAe,A = eiA
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since aAejA is a right ideal, not equal to (0), included in aA. Hence aAejAek

= e,Aek, that is, AijAjk = Aik.

(v) Each A a is a 1-dimensional linear subspace of A.

We see, as above, that there is a z£A such that 2e,v4=e,4; then

Ae,-. Thus we have a linear transformation, y—>zy, of ejAe,- onto

dAej. Since ejAej is 1-dimensional and we already know that ^4,-,?^(0), this

implies that e*4e,- is 1-dimensional.

(vi) Aif = Aa.
Since the e,- are self-adjoint we have («<y*/)* »*#*<<, which obviously im-

plies (vi).

(vii) We can find elements /uG^i/ and /,i£.4,i, for jAl, such that

fijfil = «i-
Let/i„ gji be nonzero elements in An, Ajx respectively (J^l). Since An

and An are 1-dimensional and .4i,-.<4,i = .14hf£ (0) we must have/i,-g,-i 0. Then

/ijgji=Xei (X^O) for some complex number X. Defining/3i = (1/A)g,i we have

the required elements fn and/,i.

Now we shall prove the existence of a set of "matrix units" c,-,- with the

following properties

€ij £ A,j, Ca

ene,k = eik, eneki = 0 if j ^ k,

en = (e,y, e^) = 0 unless i = k and / = I,

||e,-,j[ =        for all i, j, k, 1.

We define e,i = e<. Next we define the en and tfi. Consider the elements

fn and/,1 obtained in (vii) (for j5^1). Then/if=X/,-i for some complex num-

ber X. We have

ifu, fa) = ifu, eifi,) = (fufn, «0 = ^(fiifiu «i) = X(«i, «i)

which shows, since both (fn,fu) and (ci, ei) are positive, thatX is real and posi-

tive. Now we define en and e,i by

Cii = X-1/2/i,-,      c;l = ei,-.

Then we have

= X-»'»/i#(X-*'Vfl)* = X-Vk^/f, = X-'/iyX/yi = en.

Thus far we have defined e«, e,i, and eu for all i. Now we define e,-, for

all i, j by

e,j = tafia-

Since the e„ given by this definition (by taking i =j) is obviously idempotent,

and in An, and since we know that every element in An is of the form Xe„
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it is clear that this coincides with our old definition of eii = eit and it is also

clear that eadAn, e,-,-c,-t =e«, c,-,-e*i = 0 iorj^k. We also have ey = e,-.- because

e% = (eneij)* = e*}e* =       = t#.

Because the right ideals Ri = etA are orthogonal, and so are the left ideals

Li = Aei, it is clear that (en, eui) =0 unless i = k and j = l. We also note that all

the en have the same norm because

Ikwll2 =      eij) IMI2 = (««• eu)
= (eikeicj, e%j) = (e%j, e^e^i)

~ (enc, e,'j6fc3) — (eikCij, ejcj)

=  (eik, eijVjk) (CkiCij, ßkj)

= (eik, en) = (ekj, e*,-)

= ||e«||2, = ||e*f||2.

Now we are ready to complete the proof of Theorem 4.3. We define the

number a by a = ||ei,j|2 (here using the fact that all the en have the same

norm). Since the An span A (this comes from Theorem 3.2) and are 1-dimen-

sional we see that the en span A. Hence each y(E^4 can be expressed uniquely

in the form

y = zZ au*u
a

where the an are complex numbers. Thus we make each y£.4 correspond to

a matrix (an) of complex numbers, and it is clear that distinct elements of

A correspond to distinct matrices. Because the e,,- are orthogonal and all

have the same norm a1'2 it is clear that the matrices we obtain in this way

are precisely all matrices (an) for which zZa\an\2 < 00 • and t'lat IMI2

= ö23w|a'j'l2- Since our adjoint operation is conjugate linear and continuous

it is clear that if y corresponds to (an) then y* corresponds to (ä;i). And

finally, because the en multiply like matrix units it is clear that multiplication

in A corresponds to matrix multiplication. Thus Theorem 4.3 is proved.

When we want to refer to the algebra of complex numbers as an i?*-alge-

bra as in Lemma 4.1 we shall call it the "complex number il*-algebra."

Corollary 4.1. Every proper abelian H*-algebra is the direct sum of complex

number fields.

Proof. This is an immediate consequence of Theorem 4.2 and Theorem 4.3

since the only abelian full matrix algebra is the algebra of complex numbers.

This corollary says that the only abelian proper iJ*-algebras are sequence

algebras of the type of example 3, §1, but where the sequences considered are

those sequences (a,) such that z~li\a? \ 2(Xi < 00 (with the a, a fixed sequence of

numbers greater than or equal to 1) and with the norm of the sequence (a,)

defined to be]F],-|a,-| 2a,.
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5. The L2-algebra of a compact group. We have mentioned previously

that Segal [VIII] has defined the group algebra of a locally compact group

to be the space L\ (of complex-valued functions which are integrable with

respect to the Haar measure of the group) with convolution for multiplica-

tion; we shall call this 23-algebra the Li-algebra of the group. We have also

mentioned that for a compact group the space L2 is also an algebra (with con-

volution for multiplication) and is not only a 23-algebra but a proper 22*-alge-

bra (see §1). In this section we consider the structure of this kind of an

2?*-algebra, and show that it is a direct sum of finite-dimensional full matrix

algebras. This result was obtained after reading Segal's paper in manuscript

form and should only be considered as a variation of his theorem on the

structure of the Z,i-algebra of a compact group. Nevertheless, because of the

relative ease with which we can determine the structure of this L2-algebra

and also the simpler form that the structure theorem takes for the 2,2-algebra

we shall consider it independently of Segal's results.

As in [IX ] we shall call a Banach algebra A completely continuous if for

every x<E\A the operator T defined by Ty = xy is completely continuous. Then

the L2-algebra is completely continuous; this is proved in [IX] for the Zi-alge-

bra and is essentially proved for the L2-algebra in every proof of the Peter-

Weyl theorem [XI ] hence we shall not give a proof of it here. We shall state

the theorems in this section for a completely continuous proper 2J*-algebra

and, from the remarks just made, this will include the case of the L2-algebra of

a compact group.

We shall base the theorems of this section as little as possible on the theo-

rems of previous sections and make use of the spectral theorem for com-

pletely continuous operators instead. We do this for two reasons. In the first

place it is possible to give here a proof which parallels the proof of the Peter-

Weyl theorem but which is in purely algebraic terms, and this we consider

interesting. In the second place we feel that the proof given here, because of

its lack of emphasis on idempotents and its use of the spectral theorem, is

possibly more suggestive of techniques for use in general group algebras. We

shall however make use of Theorem 4.4 for a finite-dimensional proper H*-

algebra. We could, if we preferred, refer to the Wedderburn theorem instead

of using this theorem, but then we would have to prove that the full matrix

algebra given by the Wedderburn theorem would have the same norm and

*-operation as those demanded in our definition of a full matrix 2?*-algebra.

Since this last point involves a little trouble and since Theorem 4.4 in the

finite-dimensional case is even more elementary than the Wedderburn theo-

rem (because in the finite-dimensional case it is trivial to find the necessary

idempotents) we have decided to assume this result.

We remark here that the structure theorems for the Lx and Z2 algebras

bear the same relation to these algebras that the Peter-Weyl theorem bears

to the family of representations of the group. In the case of the Z2-algebra,
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when the structure theorem is translated back to the representation theory it

includes both the Peter-Weyl theorem and the orthogonality relations.

Now we recall the spectral theorem for completely continuous self-adjoint

operators on Hilbert space. It asserts that if T is such an operator then there

exists a countable sequence {A,-} of real numbers, all not equal to 0, and a

countable sequence {Mi} of mutually orthogonal closed linear subspaces with

the following properties: (1) the sequence {X<} is bounded and 0 is its only

limit point, (2) all elements y of Mi satisfy the equation Ty =X,y, (3) each Mi

has finite dimension, (4) the subspaces Mi together with the closed linear

subspace M0 of all y for which Ty = 0 span the Hilbert space, (5) an operator

on the Hilbert space commutes with T if and only if it commutes with the

projection operator of each Mi.

The following theorem contains our application of the spectral theorem.

Theorem 5.1. Let A be a completely continuous proper H*'-algebra and let x

be any self-adjoint element in A. Then A can be expressed as a direct sum of

right ideals,
A - J?0 + Rl + • • • + Rn + • • •

where each Ri, for i^O, is finite-dimensional. If x5*0 then there is at least one

i^O for which i?,;*5 (0). Each y£i?o satisfies the equation xy = 0 and each y<EzRi

satisfies the equation xy=X,y (Xi^O).

Proof. We apply the spectral theorem to the completely continuous self-

adjoint operator T defined by Ty=xy. We obtain a sequence of numbers

and a sequence of closed linear subspaces of A, {Ri} (we now call them i?<

instead of Mi), with the properties mentioned above. If 2?, = (0) for all is^O

then we have xA = (0), and hence x = 0. Thus if x^O there must be at least

one tVO for which 2?,^(0).

It only remains to show that the Ri are right ideals. Since every opera-

tor Tz defined by Tzy — yz commutes with T it follows from the spectral theo-

rem that every Tt commutes with that projection operator which projects A

onto R(. This means exactly that if y£i?,- and z is any element of A then

yz£i?i, that is, Ri is a right ideal.

Since we want to show that a completely continuous 7J*-algebra is a direct

sum of finite-dimensional full matrix algebras we need a way of finding

2-sided ideals in A, and also of knowing that they are finite-dimensional.

The following theorem is helpful for this purpose because it shows how to use

finite-dimensional right ideals (whose existence we already have, by the pre-

vious theorem) to obtain finite-dimensional 2-sided ideals. It will then be easy

to break these finite dimensional 2-sided ideals down into finite-dimensional

minimal 2-sided ideals. It is interesting to note here that, because of our

special Hilbert space conditions on our algebra, the orthogonal complement

of the 2-sided ideal I plays the role that would otherwise be played by the
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quotient algebra A11. In fact it is easy to see that All is again an i?*-algebra

and as such is isomorphic to Ip.

Theorem 5.2. If R is a right ideal in a proper H*-algebra and if 1= [y \ Ry

= (0)] then I and Ip are 2-sided ideals. If R is finite-dimensional then so is Ip.

IfR^(0) then Ip'=*(0).

Proof. Obviously I, and hence Ip, is a 2-sided ideal. Now we consider the

mapping which assigns to each z(E.Ip the linear transformation of R into R

defined by y—»yz (yGi?). This mapping is obviously linear and since the space

of linear transformations of R into itself is finite-dimensional it will be suffi-

cient, in proving Ip finite-dimensional, to prove that distinct elements of Ip

go into distinct linear transformations on R. If zu z2 belong to Ip and go into

the same linear transformation then we have yz\ = yz2 for all y£R. This means

that R(zi — Z2) = (0), hence zx — z2(E.I. Since also Zi — z2(EIp we conclude that

Zi —z2 = 0, Zi = z2. Thus Ip is finite-dimensional.-

If R96 (0) then we must have Ip9^ (0) since otherwise we should have I = A

and RA — (0); this latter contradicts our assumption that A is proper.

Lemma 5.1. A finite-dimensional proper H*-algebra is a direct sum of mini-

mal 2-sided ideals.

Proof. Choose a minimal 2-sided ideal Ii and write A =/i-|-/f. If /f = (0)

or is minimal then the theorem is proved. If not we choose a minimal 2-sided

ideal 72 in if and write A =/i+/2-|-(/i-f h)p. Continuing this process a finite

number of times we arrive at the desired decomposition.

Theorem 5. ,3. A completely continuous H*-algebra A is a direct sum of full

matrix H*-algebras, each of which is a 2-sided ideal in A.

Proof. Consider the family F\ of all minimal finite-dimensional 2-sided

ideals in A (for the moment this family may be vacuous). Clearly any two

members of this family either coincide or have only 0 in common. Since a

finite-dimensional simple proper H*-algebra is a full matrix algebra our theo-

rem will be proved if we can show that the ideals belonging to Fi span A.

Now consider the family F2 of all finite-dimensional 2-sided ideals in A

(for the moment this family may be vacuous). Since every finite-dimensional

proper Jf*-algebra is a direct sum of minimal 2-sided ideals it will be sufficient

to prove that the ideals belonging to the family F2 span A. To prove this it is

sufficient to prove that for any y 5^0 in A there is a finite-dimensional 2-sided

ideal to which y is not orthogonal.

Now let y be any nonzero element in A and consider the self-adjoint x

defined by x=yy*. By Lemma 2.2 and Lemma 2.3 we know that x2yr*0.

Consider the decomposition of A into right ideals obtained by applying Theo-

rem 5.1 with this x,
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A = R0 + i?i + • • • + Rn + ■ ■ ■ .

We define the 2-sided ideals Ii by

h= b\R<y = (0)]

and we know of their orthogonal complements /f that for ij^O they are finite-

dimensional and that at least one if, with iy^O, not equal to (0). Hence it will

be sufficient to prove that y can not be orthogonal to all the 7f (i'^O), or

equivalently, that y can not belong to all the ideals 7, (iy^O).

Let the decomposition of x into components in the i?< be

x = x0 + Xi +•••+*„+•• ■ .

Then if y were in all the 7,- (i^O) we would have

x2y = x(x0 + xi + •••+*» + ••• )y = xx0y = 0.

This contradicts the fact that x2y^0. Hence y can not belong to all the 7,-

(i?^0) and the theorem is proved.
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